PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1115446)

Clipboard (0)
None

Related Articles

1.  Dominance of highly divergent feline leukemia virus A progeny variants in a cat with recurrent viremia and fatal lymphoma 
Retrovirology  2010;7:14.
Background
In a cat that had ostensibly recovered from feline leukemia virus (FeLV) infection, we observed the reappearance of the virus and the development of fatal lymphoma 8.5 years after the initial experimental exposure to FeLV-A/Glasgow-1. The goals of the present study were to investigate this FeLV reoccurrence and molecularly characterize the progeny viruses.
Results
The FeLV reoccurrence was detected by the presence of FeLV antigen and RNA in the blood and saliva. The cat was feline immunodeficiency virus positive and showed CD4+ T-cell depletion, severe leukopenia, anemia and a multicentric monoclonal B-cell lymphoma. FeLV-A, but not -B or -C, was detectable. Sequencing of the envelope gene revealed three FeLV variants that were highly divergent from the virus that was originally inoculated (89-91% identity to FeLV-A/Glasgow-1). In the long terminal repeat 31 point mutations, some previously described in cats with lymphomas, were detected. The FeLV variant tissue provirus and viral RNA loads were significantly higher than the FeLV-A/Glasgow-1 loads. Moreover, the variant loads were significantly higher in lymphoma positive compared to lymphoma negative tissues. An increase in the variant provirus blood load was observed at the time of FeLV reoccurrence.
Conclusions
Our results demonstrate that ostensibly recovered FeLV provirus-positive cats may act as a source of infection following FeLV reactivation. The virus variants that had largely replaced the inoculation strain had unusually heavily mutated envelopes. The mutations may have led to increased viral fitness and/or changed the mutagenic characteristics of the virus.
doi:10.1186/1742-4690-7-14
PMCID: PMC2837606  PMID: 20167134
2.  Passive immunity to feline leukemia: evaluation of immunity from dams naturally infected and experimentally vaccinated. 
Infection and Immunity  1977;16(1):54-59.
Antibodies against feline leukemia virus (FeLV) and the feline oncornavirus-associated cell membrane antigen (FOCMA) were transferred from pregnant cats to their suckling kittens. All of these kittens were protected against infection and oncogenesis by virulent FeLV when challenged at 2 weeks of age. Suckling kittens acquired 25 to 100% of maternal virus-neutralizing and FOCMA titers by 3 days of age, and titers underwent linear decay to undetectable levels by 2 to 3 months of age. FOCMA antibody in dams and kittens was identified as immunoglobulin G (IgG) by use of goat anti-human IgG serum, which cross-reacts with feline IgG in the indirect membrane immunofluorescence test for FOCMA antibody. In an attempt to induce protective maternal antibody by vaccination, 10 pregnant cats were immunized by three to five weekly intramuscular injections with purified FeLV inactivated by ultraviolet irradiation. After the course of immunization, neither virus-neutralizing nor FOCMA antibody was detectable in the dams or in 19 kittens born to these cats. When these kittens were challenged with FeLV at 2 weeks of age, 18 of 19 developed persistent viremia and FeLV-related disease.
Images
PMCID: PMC421487  PMID: 194840
3.  Longitudinal Analysis of Feline Leukemia Virus-Specific Cytotoxic T Lymphocytes: Correlation with Recovery from Infection 
Journal of Virology  2002;76(5):2306-2315.
Feline leukemia virus (FeLV) is a common naturally occurring gammaretrovirus of domestic cats that is associated with degenerative diseases of the hematopoietic system, immunodeficiency, and neoplasia. Although the majority of cats exposed to FeLV develop a transient infection and recover, a proportion of cats become persistently viremic and many subsequently develop fatal diseases. To define the dominant host immune effector mechanisms responsible for the outcome of infection, we studied the longitudinal changes in FeLV-specific cytotoxic T lymphocytes (CTLs) in a group of na|$$|Ad|five cats following oronasal exposure to FeLV. Using 51Cr release assays to measure ex vivo virus-specific cytotoxicity, the emerging virus-specific CTL response was correlated with modulations in viral burden as assessed by detection of infectious virus, FeLV p27 capsid antigen, and proviral DNA in the blood. High levels of circulating FeLV-specific effector CTLs appeared before virus neutralizing antibodies in cats that recovered from exposure to FeLV. In contrast, persistent viremia was associated with a silencing of virus-specific humoral and cell-mediated host immune effector mechanisms. A single transfer of between 2 × 107 and 1 × 108 autologous, antigen-activated lymphoblasts was associated with a downmodulation in viral burden in vivo. The results suggest an important role for FeLV-specific CTLs in retroviral immunity and demonstrate the potential to modulate disease outcome by the adoptive transfer of antigen-specific T cells in vivo.
PMCID: PMC135947  PMID: 11836409
4.  Feline Leukemia Virus DNA Vaccine Efficacy Is Enhanced by Coadministration with Interleukin-12 (IL-12) and IL-18 Expression Vectors 
Journal of Virology  2001;75(18):8424-8433.
The expectation that cell-mediated immunity is important in the control of feline leukemia virus (FeLV) infection led us to test a DNA vaccine administered alone or with cytokines that favored the development of a Th1 immune response. The vaccine consisted of two plasmids, one expressing the gag/pol genes and the other expressing the env gene of FeLV-A/Glasgow-1. The genetic adjuvants were plasmids encoding the feline cytokines interleukin-12 (IL-12), IL-18, or gamma interferon (IFN-γ). Kittens were immunized by three intramuscular inoculations of the FeLV DNA vaccine alone or in combination with plasmids expressing IFN-γ, IL-12, or both IL-12 and IL-18. Control kittens were inoculated with empty plasmid. Following immunization, anti-FeLV antibodies were not detected in any kitten. Three weeks after the final immunization, the kittens were challenged by the intraperitoneal inoculation of FeLV-A/Glasgow-1 and were then monitored for a further 15 weeks for the presence of virus in plasma and, at the end of the trial, for latent virus in bone marrow. The vaccine consisting of FeLV DNA with the IL-12 and IL-18 genes conferred significant immunity, protecting completely against transient and persistent viremia, and in five of six kittens protecting against latent infection. None of the other vaccines provided significant protection.
doi:10.1128/JVI.75.18.8424-8433.2001
PMCID: PMC115087  PMID: 11507187
5.  Feline Leukemia Virus Immunity Induced by Whole Inactivated Virus Vaccination 
A fraction of cats exposed to feline leukemia virus (FeLV) effectively contain virus and resist persistent antigenemia/viremia. Using real-time PCR (qPCR) to quantitate circulating viral DNA levels, previously we detected persistent FeLV DNA in blood cells of non-antigenemic cats considered to have resisted FeLV challenge. In addition, previously we used RNA qPCR to quantitate circulating viral RNA levels and determined that the vast majority of viral DNA is transcriptionally active, even in the absence of antigenemia. A single comparison of all USDA-licensed commercially available FeLV vaccines using these modern sensitive methods has not been reported. To determine whether FeLV vaccination would prevent nucleic acid persistence, we assayed circulating viral DNA, RNA, antigen, infectious virus, and virus neutralizing (VN) antibody in vaccinated and unvaccinated cats challenged with infectious FeLV. We identified challenged vaccinates with undetectable antigenemia and viremia concomitant with persistent FeLV DNA and/or RNA. Moreover, these studies demonstrated that two whole inactivated virus (WIV) adjuvanted FeLV vaccines (Fort Dodge Animal Health’s Fel-O-Vax Lv-K® and Schering-Plough Animal Health’s FEVAXYN FeLV®) provided effective protection against FeLV challenge. In nearly every recipient of these vaccines, neither viral DNA, RNA, antigen, nor infectious virus could be detected in blood after FeLV challenge. Interestingly, this effective viral containment occurred despite a weak to undetectable VN antibody response. The above findings reinforce the precept of FeLV infection as a unique model of effective retroviral immunity elicited by WIV vaccination, and as such holds valuable insights into retroviral immunoprevention and therapy.
doi:10.1016/j.vetimm.2009.10.017
PMCID: PMC2822011  PMID: 20004483
FeLV; vaccine; whole inactivated virus; immunity; diagnosis; pathogenesis
6.  Protection of cats against feline leukemia virus by vaccination with a canarypox virus recombinant, ALVAC-FL. 
Journal of Virology  1993;67(4):2370-2375.
Two ALVAC (canarypox virus)-based recombinant viruses expressing the feline leukemia virus (FeLV) subgroup A env and gag genes were assessed for their protective efficacy in cats. Both recombinant viruses contained the entire gag gene. ALVAC-FL also expressed the entire envelope glycoprotein, while ALVAC-FL(dl IS) expressed an env-specific gene product deleted of the putative immunosuppressive region. Although only 50% of the cats vaccinated with ALVAC-FL(dl IS) were protected against persistent viremia after oronasal exposure to a homologous FeLV isolate, all cats administered ALVAC-FL resisted the challenge exposure. Significantly, protection was afforded in the absence of detectable FeLV-neutralizing antibodies. These results represent the first effective vaccination of cats against FeLV with a poxvirus-based recombinant vector and have implications that are relevant not only to FeLV vaccine development but also to developing vaccines against other retroviruses, including human immunodeficiency virus.
Images
PMCID: PMC240401  PMID: 8383248
7.  The surface glycoprotein of a natural feline leukemia virus subgroup A variant, FeLV-945, as a determinant of disease outcome 
Feline leukemia virus (FeLV) is a natural retrovirus of domestic cats associated with degenerative, proliferative and malignant diseases. Studies of FeLV infection in a cohort of naturally infected cats were undertaken to examine FeLV variation, the selective pressures operative in FeLV infection that lead to predominance of natural variants, and the consequences for infection and disease progression. A unique variant, designated FeLV-945, was identified as the predominant isolate in the cohort and was associated with non-T-cell diseases including multicentric lymphoma. FeLV-945 was assigned to the FeLV-A subgroup based on sequence analysis and receptor utilization, but was shown to differ in sequence from a prototype member of FeLV-A, designated FeLV-A/61E, in the long terminal repeat (LTR) and the surface glycoprotein gene (SU). A unique sequence motif in the FeLV-945 LTR was shown to function as a transcriptional enhancer and to confer a replicative advantage. The FeLV-945 SU protein was observed to differ in sequence as compared to FeLV-A/61E within functional domains known to determine receptor selection and binding. Experimental infection of newborn cats was performed using wild type FeLV-A/61E or recombinant FeLV-A/61E in which the LTR (61E/945L) or LTR and SU (61E/945SL) were exchanged for that of FeLV-945. Infection with either FeLV-A/61E or 61E/945L resulted in T-cell lymphoma of the thymus, although 61E/945L caused disease significantly more rapidly. In contrast, infection with 61E/945SL resulted in the rapid induction of a multicentric lymphoma of B-cell origin, thus recapitulating the outcome of natural infection and implicating FeLV-945 SU as a determinant of disease outcome. Recombinant FeLV-B was detected infrequently and at low levels in multicentric lymphomas, and was thereby not implicated in disease induction. Preliminary studies of receptor interaction indicated that virus particles bearing FeLV-945 SU bind to the FeLV-A receptor more efficiently than do particles bearing FeLV-A/61E SU, and that soluble SU proteins expressed from the viruses demonstrate the same differential binding phenotype. Preliminary mutational analysis of FeLV-945 was performed by exchanging regions containing either the primary receptor binding determinant, VRA, the secondary determinant, VRB, or a proline-rich region, PRR, with that of FeLV-A/61E. Results implicated a region containing VRA as a minor contributor, while a region containing VRB largely conferred increased binding efficiency.
doi:10.1016/j.vetimm.2011.06.015
PMCID: PMC3167950  PMID: 21764142
feline leukemia virus; lymphoma; surface glycoprotein; receptor binding domain
8.  Dynamics of two feline retroviruses (FIV and FeLV) within one population of cats. 
We present a deterministic model of the dynamics of two microparasites simultaneously infecting a single host population. Both microparasites are feline retroviruses, namely Feline Immunodeficiency Virus (FIV) and Feline Leukaemia Virus (FeLV). The host is the domestic cat Felis catus. The model has been tested with data generated by a long-term study of several natural cat populations. Stability analysis and simulations show that, once introduced in a population, FIV spreads and is maintained, while FeLV can either disappear or persist. Moreover, introduction of both viruses into the population induces an equilibrium state for individuals of each different pathological class. The viruses never induce the extinction of the population. Furthermore, whatever the outcome for the host population (persistence of FIV only, or of both viruses), the global population size at the equilibrium state is only slightly lower than it would have been in the absence of the infections (i.e. at the carrying capacity), indicating a low impact of the viruses on the population. Finally, the impact of the diseases examined simultaneously is higher than the sum of the impact of the two diseases examined separately. This seems to be due to a higher mortality rate when both viruses infect a single individual.
PMCID: PMC1688431  PMID: 9225475
9.  Disruption of Thiamine Uptake and Growth of Cells by Feline Leukemia Virus Subgroup A 
Journal of Virology  2013;87(5):2412-2419.
Feline leukemia virus (FeLV) is still a major cause of morbidity and mortality in domestic cats and some wild cats despite the availability of relatively effective vaccines against the virus. FeLV subgroup A (FeLV-A) is transmitted in natural infections, and FeLV subgroups B, C, and T can evolve directly from FeLV-A by mutation and/or recombination with endogenous retroviruses in domestic cats, resulting in a variety of pathogenic outcomes. The cell surface entry receptor for FeLV-A is a putative thiamine transporter (THTR1). Here, we have addressed whether FeLV-A infection might disrupt thiamine uptake into cells and, because thiamine is an essential nutrient, whether this disruption might have pathological consequences. First, we cloned the cat ortholog of the other of the two known thiamine transporters in mammals, THTR2, and we show that feline THTR1 (feTHTR1) and feTHTR2 both mediate thiamine uptake, but feTHTR2 does not function as a receptor for FeLV-A. We found that feTHTR1 is widely expressed in cat tissues and in cell lines, while expression of feTHTR2 is restricted. Thiamine uptake mediated by feTHTR1 was indeed blocked by FeLV-A infection, and in feline fibroblasts that naturally express feTHTR1 and not feTHTR2, this blockade resulted in a growth arrest at physiological concentrations of extracellular thiamine. The growth arrest was reversed at high extracellular concentrations of thiamine. Our results show that FeLV-A infection can indeed disrupt thiamine uptake with pathological consequences. A prediction of these experiments is that raising the plasma levels of thiamine in FeLV-infected cats may ameliorate the pathogenic effects of infection.
doi:10.1128/JVI.03203-12
PMCID: PMC3571393  PMID: 23269813
10.  Humoral immune response of asymptomatic cats naturally infected with feline leukemia virus. 
Journal of Virology  1986;60(2):669-673.
The humoral immune response of cats that were naturally infected with the feline leukemia virus (FeLV) was examined after antigenic stimulation with the synthetic antigen poly(L-Tyr, L-Glu)-poly(DL-Ala)-poly(L-Lys). The primary humoral antibody response in FeLV-infected cats was both delayed and greatly reduced, compared with that seen in uninfected control cats. A similar discordance was observed after secondary stimulation with the antigen, in the FeLV-infected cats had both a delayed response and a reduced response, compared with uninfected cats. The levels of total immunoglobulins of the immunoglobulin G and immunoglobulin M classes in the sera of FeLV-infected cats were significantly higher (two- and threefold, respectively) than were those of the uninfected control animals. The presence of an impaired humoral immune response to newly presented antigens in the presence of elevated immunoglobulin levels has been thoroughly documented in the case of people with the acquired immunodeficiency syndrome. This further emphasizes the potential value of FeLV-infected cats as a model for human acquired immunodeficiency syndrome.
PMCID: PMC288940  PMID: 3022000
11.  Prevalence and risk factors of feline leukaemia virus and feline immunodeficiency virus in peninsular Malaysia 
Background
Feline leukaemia virus (FeLV) and feline immunodeficiency virus (FIV) are major causes of morbidity and mortality in domestic and wild felids. Despite the clinical importance of feline retroviruses and the growing interest in cats as pets, information about FeLV and FIV in Malaysia is presently insufficient to properly advise veterinarians and pet owners. A cross-sectional study was carried out from January 2010 to December 2010 to determine the prevalence and risk factors associated with FeLV and FIV among domestic cats in peninsular Malaysia. Plasma samples were harvested from the blood of 368 domestic cats and screened for evidence of FeLV p27 antigen and FIV antibodies, using an immunochromatographic kit. Additionally, data on cat demographics and health were collected using a structured questionnaire, and were evaluated as potential risk factors for FeLV or FIV status.
Results
Of the 368 cats that were evaluated in this study, 12.2% (45/368; 95% CI = 8.88 - 15.58) were positive for FeLV p27 antigen, 31.3%, (115/368; 95% CI = 26.51 - 35.99) were seropositive to FIV antibodies, and 4.3% (16/368; 95% CI = 2.27 - 6.43) had evidence of both viruses. Factors found to significantly increase the risk for FeLV seropositivity include sex, age, behaviour, sickness, and living in a multi-cat household. Seropositive response to FIV was significantly associated with sex, neuter status, age, behaviour, and health status.
Conclusions
The present study indicates that FeLV and FIV are common among domestic cats in peninsular Malaysia, and that factors related to cat demographics and health such as age, sex, behaviour, health status and type of household are important predictors for seropositive status to FeLV or FIV in peninsular Malaysia. High prevalence of FeLV or FIV observed in our study is of concern, in view of the immunosuppressive potentials of the two pathogens. Specific measures for control and prevention such as screening and routine vaccination are needed to ensure that FeLV and FIV are controlled in the cat population of peninsular Malaysia.
doi:10.1186/1746-6148-8-33
PMCID: PMC3349470  PMID: 22439903
Feline leukaemia virus; Feline immunodeficiency virus; Prevalence; Risk factors; Cats; Peninsular Malaysia
12.  Seroprevalence of feline leukemia virus and feline immunodeficiency virus infection among cats in Canada 
The Canadian Veterinary Journal  2009;50(6):644-648.
The purposes of this study were to determine the seroprevalence of feline leukemia virus (FeLV) and feline immunodeficiency virus (FIV) infection among cats in Canada and to identify risk factors for seropositivity. Signalment, lifestyle factors, and test results for FeLV antigen and FIV antibody were analyzed for 11 144 cats from the 10 Canadian provinces. Seroprevalence for FIV antibody was 4.3% and seroprevalence for FeLV antigen was 3.4%. Fifty-eight cats (0.5%) were seropositive for both viruses. Seroprevalence varied geographically. Factors such as age, gender, health status, and lifestyle were significantly associated with risk of FeLV and FIV seropositivity. The results suggest that cats in Canada are at risk of retrovirus infection and support current recommendations that the retrovirus status of all cats should be known.
PMCID: PMC2684053  PMID: 19721785
13.  Pathogenicity Induced by Feline Leukemia Virus, Rickard Strain, Subgroup A Plasmid DNA (pFRA) 
Journal of Virology  1998;72(9):7048-7056.
A new provirus clone of feline leukemia virus (FeLV), which we named FeLV-A (Rickard) or FRA, was characterized with respect to viral interference group, host range, complete genome sequence, and in vivo pathogenicity in specific-pathogen-free newborn cats. The in vitro studies indicated the virus to be an ecotropic subgroup A FeLV with 98% nucleotide sequence homology to another FeLV-A clone (F6A/61E), which had also been fully sequenced previously. Since subgroup B polytropic FeLVs (FeLV-B) are known to arise via recombination between ecotropic FeLV-A and endogenous FeLV (enFeLV) env elements, the in vivo studies were conducted by direct intradermal inoculation of the FRA plasmid DNA so as to eliminate the possibility of coinoculation of any FeLV-B which may be present in the inoculum prepared by propagating FeLV-A in feline cell cultures. The following observations were made from the in vivo experiments: (i) subgroup conversion from FeLV-A to FeLV-A and FeLV-B, as determined by the interference assay, appeared to occur in plasma between 10 and 16 weeks postinoculation (p.i.); (ii) FeLV-B-like recombinants (rFeLVs), however, could be detected in DNA isolated from buffy coats and bone marrow by PCR as early as 1 to 2 weeks p.i.; (iii) while a mixture of rFeLV species containing various amounts of N-terminal substitution of the endogenous FeLV-derived env sequences were detected at 8 weeks p.i., rFeLV species harboring relatively greater amounts of such substitution appeared to predominate at later infection time points; (iv) the deduced amino acid sequence of rFeLV clones manifested striking similarity to natural FeLV-B isolates, within the mid-SU region of the env sequenced in this work; and (v) four of the five cats, which were kept for determination of tumor incidence, developed thymic lymphosarcomas within 28 to 55 weeks p.i., with all tumor DNAs harboring both FeLV-A and rFeLV proviruses. These results provide direct evidence for how FeLV-B species evolve in vivo from FeLV-A and present a new experimental approach for efficient induction of thymic tumors in cats, which should be useful for the study of retroviral lymphomagenesis in this outbred species.
PMCID: PMC109925  PMID: 9696797
14.  Distinctive receptor binding properties of the surface glycoprotein of a natural Feline Leukemia Virus isolate with unusual disease spectrum 
Retrovirology  2011;8:35.
Background
Feline leukemia virus (FeLV)-945, a member of the FeLV-A subgroup, was previously isolated from a cohort of naturally infected cats. An unusual multicentric lymphoma of non-T-cell origin was observed in natural and experimental infection with FeLV-945. Previous studies implicated the FeLV-945 surface glycoprotein (SU) as a determinant of disease outcome by an as yet unknown mechanism. The present studies demonstrate that FeLV-945 SU confers distinctive properties of binding to the cell surface receptor.
Results
Virions bearing the FeLV-945 Env protein were observed to bind the cell surface receptor with significantly increased efficiency, as was soluble FeLV-945 SU protein, as compared to the corresponding virions or soluble protein from a prototype FeLV-A isolate. SU proteins cloned from other cohort isolates exhibited increased binding efficiency comparable to or greater than FeLV-945 SU. Mutational analysis implicated a domain containing variable region B (VRB) to be the major determinant of increased receptor binding, and identified a single residue, valine 186, to be responsible for the effect.
Conclusions
The FeLV-945 SU protein binds its cell surface receptor, feTHTR1, with significantly greater efficiency than does that of prototype FeLV-A (FeLV-A/61E) when present on the surface of virus particles or in soluble form, demonstrating a 2-fold difference in the relative dissociation constant. The results implicate a single residue, valine 186, as the major determinant of increased binding affinity. Computational modeling suggests a molecular mechanism by which residue 186 interacts with the receptor-binding domain through residue glutamine 110 to effect increased binding affinity. Through its increased receptor binding affinity, FeLV-945 SU might function in pathogenesis by increasing the rate of virus entry and spread in vivo, or by facilitating entry into a novel target cell with a low receptor density.
doi:10.1186/1742-4690-8-35
PMCID: PMC3113301  PMID: 21569491
15.  Molecular analysis and pathogenesis of the feline aplastic anemia retrovirus, feline leukemia virus C-Sarma. 
Journal of Virology  1986;60(1):242-250.
We describe the molecular cloning of an anemogenic feline leukemia virus (FeLV), FeLV-C-Sarma, from the productively infected human rhabdomyosarcoma cell line RD(FeLV-C-S). Molecularly cloned FeLV-C-S proviral DNA yielded infectious virus (mcFeLV-C-S) after transfection of mammalian cells, and virus interference studies using transfection-derived virus demonstrated that our clone encodes FeLV belonging to the C subgroup. mcFeLV-C-S did not induce viremia in eight 8-week-old outbred specific-pathogen-free (SPF) cats. It did, however, induce viremia and a rapid, fatal aplastic anemia due to profound suppression of erythroid stem cell growth in 9 of 10 inoculated newborn, SPF cats within 3 to 8 weeks (21 to 58 days) postinoculation. Thus, the genome of mcFeLV-C-S encodes the determinants responsible for the genetically dominant induction of irreversible erythroid aplasia in outbred cats. A potential clue to the pathogenic determinants of this virus comes from previous work indicating that all FeLV isolates belonging to the C subgroup, an envelop-gene-determined property, and only those belonging to the C subgroup, are potent, consistent inducers of aplastic anemia in cats. To approach the molecular mechanism underlying the induction of this disease, we first determined the nucleotide sequence of the envelope genes and 3' long terminal repeat of FeLV-C-S and compared it with that of FeLV-B-Gardner-Arnstein (mcFeLV-B-GA), a subgroup-B feline leukemia virus that consistently induces a different disease, myelodysplastic anemia, in neonatal SPF cats. Our analysis revealed that the p15E genes and long terminal repeats of the two FeLV strains are highly homologous, whereas there are major differences in the gp70 proteins, including five regions of significant amino acid differences and apparent sequence substitution. Some of these changes are also reflected in predicted glycosylation sites; the gp70 protein of FeLV-B-GA has 11 potential glycosylation sites, only 8 of which are present in FeLV-C-S.
PMCID: PMC253922  PMID: 3018287
16.  Identification of novel subgroup A variants with enhanced receptor binding and replicative capacity in primary isolates of anaemogenic strains of feline leukaemia virus 
Retrovirology  2012;9:48.
Background
The development of anaemia in feline leukaemia virus (FeLV)-infected cats is associated with the emergence of a novel viral subgroup, FeLV-C. FeLV-C arises from the subgroup that is transmitted, FeLV-A, through alterations in the amino acid sequence of the receptor binding domain (RBD) of the envelope glycoprotein that result in a shift in the receptor usage and the cell tropism of the virus. The factors that influence the transition from subgroup A to subgroup C remain unclear, one possibility is that a selective pressure in the host drives the acquisition of mutations in the RBD, creating A/C intermediates with enhanced abilities to interact with the FeLV-C receptor, FLVCR. In order to understand further the emergence of FeLV-C in the infected cat, we examined primary isolates of FeLV-C for evidence of FeLV-A variants that bore mutations consistent with a gradual evolution from FeLV-A to FeLV-C.
Results
Within each isolate of FeLV-C, we identified variants that were ostensibly subgroup A by nucleic acid sequence comparisons, but which bore mutations in the RBD. One such mutation, N91D, was present in multiple isolates and when engineered into a molecular clone of the prototypic FeLV-A (Glasgow-1), enhanced replication was noted in feline cells. Expression of the N91D Env on murine leukaemia virus (MLV) pseudotypes enhanced viral entry mediated by the FeLV-A receptor THTR1 while soluble FeLV-A Env bearing the N91D mutation bound more efficiently to mouse or guinea pig cells bearing the FeLV-A and -C receptors. Long-term in vitro culture of variants bearing the N91D substitution in the presence of anti-FeLV gp70 antibodies did not result in the emergence of FeLV-C variants, suggesting that additional selective pressures in the infected cat may drive the subsequent evolution from subgroup A to subgroup C.
Conclusions
Our data support a model in which variants of FeLV-A, bearing subtle differences in the RBD of Env, may be predisposed towards enhanced replication in vivo and subsequent conversion to FeLV-C. The selection pressures in vivo that drive the emergence of FeLV-C in a proportion of infected cats remain to be established.
doi:10.1186/1742-4690-9-48
PMCID: PMC3403869  PMID: 22650160
Feline leukaemia virus; FeLV; Anaemia; Receptor
17.  Transforming potential of a myc-containing variant of feline leukemia virus in vitro in early-passage feline cells. 
Journal of Virology  1987;61(10):3072-3081.
We studied a naturally occurring variant of feline leukemia virus (FeLV) in which the oncogene myc has substituted for a portion of the viral structural genes (myc-FeLV). myc-FeLV was rescued by replication in the presence of FeLV as helper, and its biological activity was examined in early-passage feline cells in vitro. Infection of leukocytes from peripheral blood, spleen, or thymus, or of kitten fibroblasts did not immortalize these cells or alter them morphologically. Northern blot (RNA blot) analysis of virion RNA prepared from the supernatant of infected cells demonstrated the 8.2-kilobase genome of FeLV, but did not demonstrate the 5.0-kilobase genome of myc-FeLV. Apparently, the myc-FeLV genome was lost in the absence of the selective pressure of transformation. In contrast, infection of embryonic fibroblasts with myc-FeLV(FeLV) rendered these cells capable of greatly increased, if not infinite, proliferative potential. The cells were morphologically altered compared with controls and were only loosely adherent to the substrate. The cells failed to proliferate in semisolid medium and did not form tumors when inoculated subcutaneously into athymic mice. Blot analyses demonstrated the presence and expression of integrated proviral DNAs of both FeLV and myc-FeLV in these cells. They appear, then, to represent cells partially transformed by infection with myc-FeLV(FeLV). The action of feline v-myc in early-passage cells in vitro was compared to that of avian v-myc.
Images
PMCID: PMC255882  PMID: 3041029
18.  Clinical Aspects of Feline Retroviruses: A Review 
Viruses  2012;4(11):2684-2710.
Feline leukemia virus (FeLV) and feline immunodeficiency virus (FIV) are retroviruses with global impact on the health of domestic cats. The two viruses differ in their potential to cause disease. FeLV is more pathogenic, and was long considered to be responsible for more clinical syndromes than any other agent in cats. FeLV can cause tumors (mainly lymphoma), bone marrow suppression syndromes (mainly anemia), and lead to secondary infectious diseases caused by suppressive effects of the virus on bone marrow and the immune system. Today, FeLV is less commonly diagnosed than in the previous 20 years; prevalence has been decreasing in most countries. However, FeLV importance may be underestimated as it has been shown that regressively infected cats (that are negative in routinely used FeLV tests) also can develop clinical signs. FIV can cause an acquired immunodeficiency syndrome that increases the risk of opportunistic infections, neurological diseases, and tumors. In most naturally infected cats, however, FIV itself does not cause severe clinical signs, and FIV-infected cats may live many years without any health problems. This article provides a review of clinical syndromes in progressively and regressively FeLV-infected cats as well as in FIV-infected cats.
doi:10.3390/v4112684
PMCID: PMC3509668  PMID: 23202500
feline leukemia virus; FeLV; feline immunodeficiency virus; FIV; clinical signs; immunosuppression; immune-mediated diseases; tumors; neurologic signs; bone marrow suppression
19.  Pre- and postexposure chemoprophylaxis: evidence that 3'-azido-3'-dideoxythymidine inhibits feline leukemia virus disease by a drug-induced vaccine response. 
Antimicrobial Agents and Chemotherapy  1992;36(12):2715-2721.
The benefits of postexposure 3'-azido-3'-dideoxythymidine (AZT) prophylaxis following human immunodeficiency virus exposure are unknown. We describe a comprehensive assessment of pre- and postexposure AZT therapy in the feline leukemia virus (FeLV)-cat model for AIDS which included in vitro testing, an in vivo dose-response titration, a postexposure treatment study, plasma drug concentration determinations, and evaluation of the immune response to FeLV. In in vitro studies, AZT prevented FeLV infection of a feline T-lymphoid cell line, giving 50 and 90% inhibition concentrations of 4.6 and 11.1 mM, respectively. In all of the in vivo efficacy studies, AZT was administered by continuous subcutaneous infusion for 28 days. AZT toxicity was excessive at a dosage of 120 mg/kg of body weight per day, causing acute anemia, but AZT was tolerable at 60 mg/kg/day. In preexposure studies, AZT was efficacious in preventing chronic antigenemia at a dosage of > or = 15 mg/kg/day, at which plasma AZT concentrations averaged between 0.51 and 0.81 micrograms/ml (2.13 and 3.03 microM). As a postexposure treatment, at 60 mg/kg/day, AZT prevented chronic FeLV antigenemia when treatment was started up to 96 h post-virus inoculation (p.i.), but not when treatment was started at 192 h p.i. The 4-day period between 96 and 192 h p.i. appears to be critical for establishing chronic viremia. It is presumed that the increase in virus load between 4 and 8 days p.i. was able to overwhelm the immunologic functions responsible for containment of FeLV infection, even though AZT therapy effectively controlled viremia during the treatment period. The antibody response to FeLV varied depending on the time of AZT treatment initiation relative to virus challenge.When AZT treatment was started 48 h before or 8 h after FeLV challenge, antibodies to FeLV were not detected until after AZT treatment was discontinued at 28 days p.i. Following AZT treatment, however, antibody titers rapidly increased at a rate suggestive of a secondary immune response. When AZT treatment was initiate at later time points relative to virus challenge (24, 48, and 96 h p.i.), antibodies to FeLV became detectable during the treatment period. These results indicate that AZT treatment does not completely prevent FeLV infection, even when treatment begins before virus challenge, and that immune sensitization to FeLV proceeds during the prophylactic drug treatment period.
PMCID: PMC245534  PMID: 1336345
20.  Analysis of the Disease Potential of a Recombinant Retrovirus Containing Friend Murine Leukemia Virus Sequences and a Unique Long Terminal Repeat from Feline Leukemia Virus 
Journal of Virology  2002;76(3):1527-1532.
We have molecularly cloned a feline leukemia virus (FeLV) (clone 33) from a domestic cat with acute myeloid leukemia (AML). The long terminal repeat (LTR) of this virus, like the LTRs present in FeLV proviruses from other cats with AML, contains an unusual structure in its U3 region upstream of the enhancer (URE) consisting of three tandem direct repeats of 47 bp. To test the disease potential and specificity of this unique FeLV LTR, we replaced the U3 region of the LTR of the erythroleukemia-inducing Friend murine leukemia virus (F-MuLV) with that of FeLV clone 33. When the resulting virus, F33V, was injected into newborn mice, almost all of the mice eventually developed hematopoietic malignancies, with a significant percentage being in the myeloid lineage. This is in contrast to mice injected with an F-MuLV recombinant containing the U3 region of another FeLV that lacks repetitive URE sequences, none of which developed myeloid malignancies. Examination of tumor proviruses from F33V-infected mice failed to detect any changes in FeLV U3 sequences other than that in the URE. Like F-MuLV-infected mice, those infected with the F-MuLV/FeLV recombinants were able to generate and replicate mink cell focus-inducing viruses. Our studies are consistent with the idea that the presence of repetitive sequences upstream of the enhancer in the LTR of FeLV may favor the activation of this promoter in myeloid cells and contribute to the development of malignancies in this hematopoietic lineage.
doi:10.1128/JVI.76.3.1527-1532.2002
PMCID: PMC135779  PMID: 11773427
21.  The Surface Glycoprotein of Feline Leukemia Virus Isolate FeLV-945 Is a Determinant of Altered Pathogenesis in the Presence or Absence of the Unique Viral Long Terminal Repeat 
Journal of Virology  2013;87(19):10874-10883.
Feline leukemia virus (FeLV) is a naturally transmitted gammaretrovirus that infects domestic cats. FeLV-945, the predominant isolate associated with non-T-cell disease in a natural cohort, is a member of FeLV subgroup A but differs in sequence from the FeLV-A prototype, FeLV-A/61E, in the surface glycoprotein (SU) and long terminal repeat (LTR). Substitution of the FeLV-945 LTR into FeLV-A/61E resulted in pathogenesis indistinguishable from that of FeLV-A/61E, namely, thymic lymphoma of T-cell origin. In contrast, substitution of both FeLV-945 LTR and SU into FeLV-A/61E resulted in multicentric lymphoma of non-T-cell origin. These results implicated the FeLV-945 SU as a determinant of pathogenic spectrum. The present study was undertaken to test the hypothesis that FeLV-945 SU can act in the absence of other unique sequence elements of FeLV-945 to determine the disease spectrum. Substitution of FeLV-A/61E SU with that of FeLV-945 altered the clinical presentation and resulted in tumors that demonstrated expression of CD45R in the presence or absence of CD3. Despite the evident expression of CD45R, a typical B-cell marker, T-cell receptor beta (TCRβ) gene rearrangement indicated a T-cell origin. Tumor cells were detectable in bone marrow and blood at earlier times during the disease process, and the predominant SU genes from proviruses integrated in tumor DNA carried markers of genetic recombination. The findings demonstrate that FeLV-945 SU alters pathogenesis, although incompletely, in the absence of FeLV-945 LTR. Evidence demonstrates that FeLV-945 SU and LTR are required together to fully recapitulate the distinctive non-T-cell disease outcome seen in the natural cohort.
doi:10.1128/JVI.01130-13
PMCID: PMC3807393  PMID: 23903838
22.  Identification of a Feline Leukemia Virus Variant That Can Use THTR1, FLVCR1, and FLVCR2 for Infection▿  
Journal of Virology  2009;83(13):6706-6716.
The pathogenic subgroup C feline leukemia virus (FeLV-C) arises in infected cats as a result of mutations in the envelope (Env) of the subgroup A FeLV (FeLV-A). To better understand emergence of FeLV-C and potential FeLV intermediates that may arise, we characterized FeLV Env sequences from the primary FY981 FeLV isolate previously derived from an anemic cat. Here, we report the characterization of the novel FY981 FeLV Env that is highly related to FeLV-A Env but whose variable region A (VRA) receptor recognition sequence partially resembles the VRA sequence from the prototypical FeLV-C/Sarma Env. Pseudotype viruses bearing FY981 Env were capable of infecting feline, human, and guinea pig cells, suggestive of a subgroup C phenotype, but also infected porcine ST-IOWA cells that are normally resistant to FeLV-C and to FeLV-A. Analysis of the host receptor used by FY981 suggests that FY981 can use both the FeLV-C receptor FLVCR1 and the feline FeLV-A receptor THTR1 for infection. However, our results suggest that FY981 infection of ST-IOWA cells is not mediated by the porcine homologue of FLVCR1 and THTR1 but by an alternative receptor, which we have now identified as the FLVCR1-related protein FLVCR2. Together, our results suggest that FY981 FeLV uses FLVCR1, FLVCR2, and THTR1 as receptors. Our findings suggest the possibility that pathogenic FeLV-C arises in FeLV-infected cats through intermediates that are multitropic in their receptor use.
doi:10.1128/JVI.02317-08
PMCID: PMC2698567  PMID: 19369334
23.  A Putative Thiamine Transport Protein Is a Receptor for Feline Leukemia Virus Subgroup A 
Journal of Virology  2006;80(7):3378-3385.
Feline leukemia virus (FeLV) is a horizontally transmitted virus that causes a variety of proliferative and immunosuppressive diseases in cats. There are four subgroups of FeLV, A, B, C, and T, each of which has a distinct receptor requirement. The receptors for all but the FeLV-A subgroup have been defined previously. Here, we report the identification of the cellular receptor for FeLV-A, which is the most transmissible form of FeLV. The receptor cDNA was isolated using a gene transfer approach, which involved introducing sequences from a feline cell line permissive to FeLV-A into a murine cell line that was not permissive. The feline cDNA identified by this method was approximately 3.5 kb, and included an open reading frame predicted to encode a protein of 490 amino acids. This feline cDNA conferred susceptibility to FeLV-A when reintroduced into nonpermissive cells, but it did not render these cells permissive to any other FeLV subgroup. Moreover, these cells specifically bound FeLV-A-pseudotyped virus particles, indicating that the cDNA encodes a binding receptor for FeLV-A. The feline cDNA shares ∼93% amino acid sequence identity with the human thiamine transport protein 1 (THTR1). The human THTR1 receptor was also functional as a receptor for FeLV-A, albeit with reduced efficiency compared to the feline orthologue. On the basis of these data, which strongly suggest the feline protein is the orthologue of human THTR1, we have named the feline receptor feTHTR1. Identification of this receptor will allow more detailed studies of the early events in FeLV transmission and may provide insights into FeLV pathogenesis.
doi:10.1128/JVI.80.7.3378-3385.2006
PMCID: PMC1440375  PMID: 16537605
24.  The feline leukemia virus long terminal repeat contains a potent genetic determinant of T-cell lymphomagenicity. 
Journal of Virology  1997;71(12):9786-9791.
Feline leukemia virus (FeLV) is an important pathogen of domestic cats. The most common type of malignancy associated with FeLV is T-cell lymphoma. SL3-3 (SL3) is a potent T-cell lymphomagenic murine leukemia virus. Transcriptional enhancer sequences within the long terminal repeats (LTRs) of SL3 and other murine retroviruses are crucial genetic determinants of the pathogenicities of these viruses. The LTR enhancer sequences of FeLV contain identical binding sites for some of the transcription factors that are known to affect the lymphomagenicity of SL3. To test whether the FeLV LTR contains a genetic determinant of lymphomagenicity, a recombinant virus that contained the U3 region of a naturally occurring FeLV isolate, LC-FeLV, linked to the remainder of the genome of SL3 was generated. When inoculated into mice, the recombinant virus induced T-cell lymphomas nearly as quickly as SL3. Moreover, the U3 sequences of LC-FeLV were found to have about half as much transcriptional activity in T lymphocytes as the corresponding sequences of SL3. This level of activity was severalfold higher than that of the LTR of weakly leukemogenic Akv virus. Thus, the FeLV LTR contains a potent genetic determinant of T-cell lymphomagenicity. Presumably, it is adapted to be recognized by transcription factors present in T cells of cats, and this yields a relatively high level of transcription that allows the enhancer to drive the requisite steps in the process of lymphomagenesis.
PMCID: PMC230290  PMID: 9371646
25.  Transduction of Notch2 in feline leukemia virus-induced thymic lymphoma. 
Journal of Virology  1996;70(11):8071-8080.
Feline leukemia virus (FeLV) is thought to induce neoplastic diseases in infected cats by a variety of mechanisms, including the transduction of host proto-oncogenes. While FeLV recombinants that encode cellular sequences have been isolated from tumors of naturally infected animals, the acquisition of an unrelated host gene has never been documented in an experimental FeLV infection. We isolated recombinant FeLV proviruses encoding feline Notch2 sequences from thymic lymphoma DNA of two cats inoculated with the molecularly cloned virus FeLV-61E. Four recombinant genomes were identified, three in one cat and one in the other. Each had similar but distinct transduction junctions, and in all cases, the insertions replaced most of the envelope gene with a region of Notch2 that included the intracellular ankyrin repeat functional domain. The product of the FeLV/Notch2 recombinant provirus was a novel, truncated 65- to 70-kD Notch2 protein that was targeted to the cell nucleus. This virally encoded Notch2 protein, which resembles previously constructed, constitutively activated forms of Notch, was apparently expressed from a subgenomic transcript spliced at the normal envelope donor and acceptor sequences. The data reported here implicate a nuclear, activated Notch2 protein in FeLV-induced leukemogenesis.
PMCID: PMC190881  PMID: 8892932

Results 1-25 (1115446)