PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1178324)

Clipboard (0)
None

Related Articles

1.  Ethyl acetate extract of germinated brown rice attenuates hydrogen peroxide-induced oxidative stress in human SH-SY5Y neuroblastoma cells: role of anti-apoptotic, pro-survival and antioxidant genes 
Background
There are reports of improved metabolic outcomes due to consumption of germinated brown rice (GBR). Many of the functional effects of GBR can be linked to its high amounts of antioxidants. Interestingly, dietary components with high antioxidants have shown promise in the prevention of neurodegenerative diseases like Alzheimer’s disease (AD). This effect of dietary components is mostly based on their ability to prevent apoptosis, which is believed to link oxidative damage to pathological changes in AD. In view of the rich antioxidant content of GBR, we studied its potential to modulate processes leading up to AD.
Methods
The total phenolic content and antioxidant capacity of the ethyl acetate extract of GBR were compared to that of brown rice (BR), and the cytotoxicity of both extracts were determined on human SH-SY5Y neuronal cells using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) Assay. Based on its higher antioxidant potentials, the effect of the GBR extract on morphological changes due to hydrogen peroxide (H2O2)-induced oxidative damage in human SH-SY5Y neuronal cells was examined using inverted light microscope and fluorescence microscope by means of acridine orange-propidium iodide (AO/PI) staining. Also, evaluation of the transcriptional regulation of antioxidant and apoptotic genes was carried out using Multiplex Gene Expression System.
Results
The ethyl acetate extract of GBR had higher total phenolic content and antioxidant capacity compared to BR. The cytotoxicity results showed that GBR extract did not cause any damage to the human SH-SY5Y neuronal cells at concentrations of up to 20 ppm, and the morphological analyses showed that the GBR extract (up to 10 ppm) prevented H2O2-induced apoptotic changes in the cells. Furthermore, multiplex gene expression analyses showed that the protection of the cells by the GBR extract was linked to its ability to induce transcriptional changes in antioxidant (SOD 1, SOD 2 and catalase) and apoptotic (AKT, NF-Kβ, ERK1/2, JNK, p53 and p38 MAPK) genes that tended towards survival.
Conclusions
Taken together, the results of our study showed that the ethyl acetate extract of GBR, with high antioxidant potentials, could prevent H2O2-induced oxidative damage in SH-SY5Y cells. The potential of GBR and its neuroprotective mechanism in ameliorating oxidative stress-related cytotoxicity is therefore worth exploring further.
doi:10.1186/1472-6882-13-177
PMCID: PMC3726323  PMID: 23866310
Germinated brown rice; Antioxidant; Oxidative stress; Neuroprotective; SH-SY5Y
2.  Antioxidative Effects of Germinated Brown Rice-Derived Extracts on H2O2-Induced Oxidative Stress in HepG2 Cells 
The antioxidant properties of germinated brown rice (GBR) are likely mediated by multiple bioactives. To test this hypothesis, HepG2 cells pretreated with GBR extracts, rich in acylated steryl glycoside (ASG), gamma amino butyric acid GABA), phenolics or oryzanol, were incubated with hydrogen peroxide (H2O2) and their hydroxyl radical (OH•) scavenging capacities and thiobarbituric acid-reactive substances (TBARS) generation were evaluated. Results showed that GBR-extracts increased OH• scavenging activities in both cell-free medium and posttreatment culture media, suggesting that the extracts were both direct- and indirect-acting against OH•. The levels of TBARS in the culture medium after treatment were also reduced by all the extracts. In addition, H2O2 produced transcriptional changes in p53, JNK, p38 MAPK, AKT, BAX, and CDK4 that were inclined towards apoptosis, while GBR-extracts showed some transcriptional changes (upregulation of BAX and p53) that suggested an inclination for apoptosis although other changes (upregulation of antioxidant genes, AKT, JNK, and p38 MAPK) suggested that GBR-extracts favored survival of the HepG2 cells. Our findings show that GBR bioactive-rich extracts reduce oxidative stress through improvement in antioxidant capacity, partly mediated through transcriptional regulation of antioxidant and prosurvival genes.
doi:10.1155/2014/371907
PMCID: PMC4241308  PMID: 25431609
3.  Germinated brown rice as a value added rice product: A review 
Rice is a staple food for over half of the world’s population. Germinated brown rice (GBR) is considered whole food because only the outermost layer i.e. the hull of the rice kernel is removed which causes least damage to its nutritional value. Brown rice can be soaked in water at 30 °C for specified hours for germination to get GBR. Soaking for 3 h and sprouting for 21 h has been found to be optimum for getting the highest gamma-aminobutyric acid (GABA) content in GBR, which is the main reason behind the popularity of GBR. The intake of GBR instead of white rice ameliorates the hyperglycemia, boosts the immune system, lowers blood pressure, inhibits development of cancer cells and assists the treatment of anxiety disorders. Germination process could be used as enzymatic modification of starch that affects pasting properties of GBR flour. GBR would improve the bread quality when substituted for wheat flour. It is concluded that GBR has potential to become innovative rice by preserving all nutrients in the rice grain for human consumption in order to create the highest value from rice.
doi:10.1007/s13197-011-0232-4
PMCID: PMC3551059  PMID: 23572802
Germinated brown rice; Gamma-aminobutyric acid; Health benefits; Brown rice
4.  Antidiabetic Properties of Germinated Brown Rice: A Systematic Review 
Diet is an important variable in the course of type 2 diabetes, which has generated interest in dietary options like germinated brown rice (GBR) for effective management of the disease among rice-consuming populations. In vitro data and animal experiments show that GBR has potentials as a functional diet for managing this disease, and short-term clinical studies indicate encouraging results. Mechanisms for antidiabetic effects of GBR due to bioactive compounds like γ-aminobutyric acid (GABA), γ-oryzanol, dietary fibre, phenolics, vitamins, acylated steryl β-glucoside, and minerals include antihyperglycemia, low insulin index, antioxidative effect, antithrombosis, antihypertensive effect, hypocholesterolemia, and neuroprotective effects. The evidence so far suggests that there may be enormous benefits for diabetics in rice-consuming populations if white rice is replaced with GBR. However, long-term clinical studies are still needed to verify these findings on antidiabetic effects of GBR. Thus, we present a review on the antidiabetic properties of GBR from relevant preclinical and clinical studies, in order to provide detailed information on this subject for researchers to review the potential of GBR in combating this disease.
doi:10.1155/2012/816501
PMCID: PMC3529503  PMID: 23304216
5.  Effects of White Rice, Brown Rice and Germinated Brown Rice on Antioxidant Status of Type 2 Diabetic Rats 
Oxidative stress is implicated in the pathogenesis of diabetic complications, and can be increased by diet like white rice (WR). Though brown rice (BR) and germinated brown rice (GBR) have high antioxidant potentials as a result of their bioactive compounds, reports of their effects on oxidative stress-related conditions such as type 2 diabetes are lacking. We hypothesized therefore that if BR and GBR were to improve antioxidant status, they would be better for rice consuming populations instead of the commonly consumed WR that is known to promote oxidative stress. This will then provide further reasons why less consumption of WR should be encouraged. We studied the effects of GBR on antioxidant status in type 2 diabetic rats, induced using a high-fat diet and streptozotocin injection, and also evaluated the effects of WR, BR and GBR on catalase and superoxide dismutase genes. As dietary components, BR and GBR improved glycemia and kidney hydroxyl radical scavenging activities, and prevented the deterioration of total antioxidant status in type 2 diabetic rats. Similarly, GBR preserved liver enzymes, as well as serum creatinine. There seem to be evidence that upregulation of superoxide dismutase gene may likely be an underlying mechanism for antioxidant effects of BR and GBR. Our results provide insight into the effects of different rice types on antioxidant status in type 2 diabetes. The results also suggest that WR consumption, contrary to BR and GBR, may worsen antioxidant status that may lead to more damage by free radicals. From the data so far, the antioxidant effects of BR and GBR are worth studying further especially on a long term to determine their effects on development of oxidative stress-related problems, which WR consumption predisposes to.
doi:10.3390/ijms131012952
PMCID: PMC3497306  PMID: 23202932
antioxidants; diabetes; electron spin resonance; germinated brown rice; white rice; nutrigenomics
6.  Germinated brown rice (GBR) reduces the incidence of aberrant crypt foci with the involvement of β-catenin and COX-2 in azoxymethane-induced colon cancer in rats 
Nutrition Journal  2010;9:16.
Chemoprevention has become an important area in cancer research due to the failure of current therapeutic modalities. Epidemiological and preclinical studies have demonstrated that nutrition plays a vital role in the etiology of cancer. This study was conducted to determine the chemopreventive effects of germinated brown rice (GBR) in rats induced with colon cancer. GBR is brown rice that has been claimed to be richer in nutrients compared to the common white rice. The male Sprague Dawley rats (6 weeks of age) were randomly divided into 5 groups: (G1) positive control (with colon cancer, unfed with GBR), (G2) fed with 2.5 g/kg of GBR (GBR (g)/weight of rat (kg)), (G3) fed with 5 g/kg of GBR, (G4) fed with 10 g/kg of GBR and (G5) negative control (without colon cancer, unfed with GBR). GBR was administered orally once daily via gavage after injection of 15 mg/kg of body weight of azoxymethane (AOM) once a week for two weeks, intraperitonially. After 8 weeks of treatment, animals were sacrificed and colons were removed. Colonic aberrant crypt foci (ACF) were evaluated histopathologically. Total number of ACF and AC, and multicrypt of ACF, and the expression of β-catenin and COX-2 reduced significantly (p < 0.05) in all the groups treated with GBR (G2, G3 and G4) compared to the control group (G1). Spearman rank correlation test showed significant positive linear relationship between total β-catenin and COX-2 score (Spearman's rho = 0.616, p = 0.0001). It is demonstrated that GBR inhibits the development of total number of ACF and AC, and multicrypt of ACF, reduces the expression of β-catenin and COX-2, and thus can be a promising dietary supplement in prevention of colon cancer.
doi:10.1186/1475-2891-9-16
PMCID: PMC2868780  PMID: 20346115
7.  Perinatal exposure to germinated brown rice and its gamma amino-butyric acid-rich extract prevents high fat diet-induced insulin resistance in first generation rat offspring 
Food & Nutrition Research  2016;60:10.3402/fnr.v60.30209.
Background
Evidence suggests perinatal environments influence the risk of developing insulin resistance.
Objective
The present study was aimed at determining the effects of intrauterine exposure to germinated brown rice (GBR) and GBR-derived gamma (γ) aminobutyric acid (GABA) extract on epigenetically mediated high fat diet–induced insulin resistance.
Design
Pregnant Sprague Dawley rats were fed high-fat diet (HFD), HFD+GBR, or HFD+GABA throughout pregnancy until 4 weeks postdelivery. The pups were weighed weekly and maintained on normal pellet until 8 weeks postdelivery. After sacrifice, biochemical markers of obesity and insulin resistance including oral glucose tolerance test, adiponectin, leptin, and retinol binding protein-4 (RBP4) were measured. Hepatic gene expression changes and the global methylation and histone acetylation levels were also evaluated.
Results
Detailed analyses revealed that mothers given GBR and GABA extract, and their offspring had increased adiponectin levels and reduced insulin, homeostasis model assessment of insulin resistance, leptin, oxidative stress, and RBP4 levels, while their hepatic mRNA levels of GLUT2 and IPF1 were increased. Furthermore, GBR and GABA extract lowered global DNA methylation levels and modulated H3 and H4 acetylation levels.
Conclusions
These results showed that intrauterine exposure to GBR-influenced metabolic outcomes in offspring of rats with underlying epigenetic changes and transcriptional implications that led to improved glucose homeostasis.
doi:10.3402/fnr.v60.30209
PMCID: PMC4740094  PMID: 26842399
epigenetics; germinated rice bran; gamma amino-butyric acid; insulin resistance
8.  Effect of Different Germination Conditions on Antioxidative Properties and Bioactive Compounds of Germinated Brown Rice 
BioMed Research International  2015;2015:608761.
This study investigates antioxidative activity and bioactive compounds of ungerminated brown rice (UBR) and germinated brown rice (GBR). We used two rice cultivars (Oryza sativa L.), Taiwan Japonica 9 (TJ-9) and Taichung Indica 10 (TCI-10), as the materials in our experiments. The conditions for inducing germination are soaking time in water 24, 48, or 72 h; temperature 26 or 36°C; incubation in light or darkness; and open or closed vessels, in which the antioxidative activities and bioactive compounds of GBR were determined. We found that, in order to maximize antioxidative activity and bioactive compounds, germination should be under higher temperature (36°C), long soaking time (72 h), darkness, and closed vessel. GBR contains much higher levels of antioxidative activity and bioactive compounds than ungerminated brown rice (UBR). We found a strong correlation between antioxidative activities (DPPH radical scavenging ability, reducing power, and Trolox equivalent antioxidant capacity) and bioactive compounds (γ-oryzanols, tocopherol, and tocotrienol). Higher temperature (36°C) is also conducive to the production of GABA in GBR. These results are considered very useful research references for the development of future functional foods and additives.
doi:10.1155/2015/608761
PMCID: PMC4377434  PMID: 25861637
9.  Germinated Brown Rice Alters Aβ(1-42) Aggregation and Modulates Alzheimer's Disease-Related Genes in Differentiated Human SH-SY5Y Cells 
The pathogenesis of Alzheimer's disease involves complex etiological factors, of which the deposition of beta-amyloid (Aβ) protein and oxidative stress have been strongly implicated. We explored the effects of H2O2, which is a precursor for highly reactive hydroxyl radicals, on neurotoxicity and genes related to AD on neuronal cells. Candidate bioactive compounds responsible for the effects were quantified using HPLC-DAD. Additionally, the effects of germinated brown rice (GBR) on the morphology of Aβ(1-42) were assessed by Transmission Electron Microscopy and its regulatory effects on gene expressions were explored. The results showed that GBR extract had several phenolic compounds and γ-oryzanol and altered the structure of Aβ(1-42) suggesting an antiamyloidogenic effect. GBR was also able to attenuate the oxidative effects of H2O2 as implied by reduced LDH release and intracellular ROS generation. Furthermore, gene expression analyses showed that the neuroprotective effects of GBR were partly mediated through transcriptional regulation of multiple genes including Presenilins, APP, BACE1, BACE2, ADAM10, Neprilysin, and LRP1. Our findings showed that GBR exhibited neuroprotective properties via transcriptional regulation of APP metabolism with potential impact on Aβ aggregation. These findings can have important implications for the management of neurodegenerative diseases like AD and are worth exploring further.
doi:10.1155/2015/153684
PMCID: PMC4700861  PMID: 26858770
10.  A novel anti-CD19 monoclonal antibody (GBR 401) with high killing activity against B cell malignancies 
Background
CD19 is a B cell lineage specific surface receptor whose broad expression, from pro-B cells to early plasma cells, makes it an attractive target for the immunotherapy of B cell malignancies. In this study we present the generation of a novel humanized anti-CD19 monoclonal antibody (mAb), GBR 401, and investigate its therapeutic potential on human B cell malignancies.
Methods
GBR 401 was partially defucosylated in order to enhance its cytotoxic function. We analyzed the in vitro depleting effects of GBR 401 against B cell lines and primary malignant B cells from patients in the presence or in absence of purified NK cells isolated from healthy donors. In vivo, the antibody dependent cellular cytotoxicity (ADCC) efficacy of GBR 401 was assessed in a B cell depletion model consisting of SCID mice injected with healthy human donor PBMC, and a malignant B cell depletion model where SCID mice are xenografted with both primary human B-CLL tumors and heterologous human NK cells. Furthermore, the anti-tumor activity of GBR 401 was also evaluated in a xenochimeric mouse model of human Burkitt lymphoma using mice xenografted intravenously with Raji cells. Pharmacological inhibition tests were used to characterize the mechanism of the cell death induced by GBR 401.
Results
GBR 401 exerts a potent in vitro and in vivo cytotoxic activity against primary samples from patients representing various B-cell malignancies. GBR 401 elicits a markedly higher level of ADCC on primary malignant B cells when compared to fucosylated similar mAb and to Rituximab, the current anti-CD20 mAb standard immunotherapeutic treatment for B cell malignancies, showing killing at 500 times lower concentrations. Of interest, GBR 401 also exhibits a potent direct killing effect in different malignant B cell lines that involves homotypic aggregation mediated by actin relocalization.
Conclusion
These results contribute to consolidate clinical interest in developing GBR 401 for treatment of hematopoietic B cell malignancies, particularly for patients refractory to anti-CD20 mAb therapies.
doi:10.1186/1756-8722-7-33
PMCID: PMC4021825  PMID: 24731302
B cell malignancies; GBR 401; Anti-CD19 monoclonal antibody; ADCC; Therapeutic antibody
11.  The Hypocholesterolemic Effect of Germinated Brown Rice Involves the Upregulation of the Apolipoprotein A1 and Low-Density Lipoprotein Receptor Genes 
Journal of Diabetes Research  2013;2013:134694.
Germinated brown rice (GBR) is rich in bioactive compounds, which confer GBR with many functional properties. Evidence of its hypocholesterolemic effects is emerging, but the exact mechanisms of action and bioactive compounds involved have not been fully documented. Using type 2 diabetic rats, we studied the effects of white rice, GBR, and brown rice (BR) on lipid profile and on the regulation of selected genes involved in cholesterol metabolism. Our results showed that the upregulation of apolipoprotein A1 and low-density lipoprotein receptor genes was involved in the hypocholesterolemic effects of GBR. Additionally, in vitro studies using HEPG2 cells showed that acylated steryl glycoside, gamma amino butyric acid, and oryzanol and phenolic extracts of GBR contribute to the nutrigenomic regulation of these genes. Transcriptional and nontranscriptional mechanisms are likely involved in the overall hypocholesterolemic effects of GBR suggesting that it may have an impact on the prevention and/or management of hypercholesterolemia due to a wide variety of metabolic perturbations. However, there is need to conduct long-term clinical trials to determine the clinical relevance of the hypocholesterolemic effects of GBR determined through animal studies.
doi:10.1155/2013/134694
PMCID: PMC3647596  PMID: 23671850
12.  GABAB receptor isoforms GBR1a and GBR1b, appear to be associated with pre- and post-synaptic elements respectively in rat and human cerebellum 
British Journal of Pharmacology  1999;126(6):1387-1392.
Metabotropic γ-aminobutyric acid (GABA) receptors, GABAB, are coupled through G-proteins to K+ and Ca2+ channels in neuronal membranes. Cloning of the GABAB receptor has not uncovered receptor subtypes, but demonstrated two isoforms, designated GBR1a and GBR1b, which differ in their N terminal regions. In the rodent cerebellum GABAB receptors are localized to a greater extent in the molecular layer, and are reported to exist on granule cell parallel fibre terminals and Purkinje cell (PC) dendrites, which may represent pre- and post-synaptic receptors.The objective of this study was to localize the mRNA splice variants, GBR1a and GBR1b for GABAB receptors in rat cerebellum, for comparison with the localization in human cerebellum using in situ hybridization.Receptor autoradiography was performed utilizing [3H]-CGP62349 to localize GABAB receptors in rat and human cerebellum. Radioactively labelled oligonucleotide probes were used to localize GBR1a and GBR1b, and by dipping slides in photographic emulsion, silver grain images were obtained for quantification at the cellular level.Binding of 0.5 nM [3H]-CGP62349 demonstrated significantly higher binding to GABAB receptors in the molecular layer than the granule cell (GC) layer of rat cerebellum (molecular layer binding 200±11% of GC layer; P<0.0001). GBR1a mRNA expression was found to be predominantly in the GC layer (PC layer grains 6±6% of GC layer grains; P<0.05), and GBR1b expression predominantly in PCs (PC layer grains 818±14% of GC layer grains; P<0.0001).The differential distribution of GBR1a and GBR1b mRNA splice variants for GABAB receptors suggests a possible association of GBR1a and GBR1b with pre- and post-synaptic elements respectively.
doi:10.1038/sj.bjp.0702460
PMCID: PMC1565927  PMID: 10217533
GABAB receptors; cerebellum; in situ hybridization; human tissue; [3H]-CGP62349; splice variant
13.  Germinated brown rice and its bioactives modulate the activity of uterine cells in oophorectomised rats as evidenced by gross cytohistological and immunohistochemical changes 
Background
Germinated brown rice (GBR) is gaining momentum in the area of biomedical research due to its increased use as a nutraceutical for the management of diseases. The effect of GBR on the reproductive organs of oophorectomised rats was studied using the gross, cytological, histological and immunohistochemical changes, with the aim of reducing atrophy and dryness of the genital organs in menopause.
Methods
Experimental rats were divided into eight groups of six rats per group. Groups 1, 2 and 3 (sham-operated (SH), oophorectomised without treatment (OVX) and oophorectomised treated with 0.2 mg/kg oestrogen, respectively) served as the controls. The groups 4,5,6,7 and 8 were treated with 20 mg/kg Remifemin, 200 mg/kg of GBR, ASG, oryzanol and GABA, respectively. All treatments were administered orally, once daily for 8 weeks. Vaginal smear cytology was done at the 7th week on all the rats. The weight and dimensions of the uterus and vagina were determined after sacrifice of the rats. Uterine and vaginal tissues were taken for histology and Immunohistochemical examinations.
Results
GBR and its bioactives treated groups significantly increased the weight and length of both the uterus and the vagina when compared to Oophorectomised non-treated group (OVX-non-treated) (p < 0.05). Significant changes were observed in the ratio of cornified epithelial cells and number of leucocytes in the vaginal cytology between the oophorectomised non-treated and treated groups. There was also an increase in the luminal and glandular epithelial cells activity in the treated compared with the untreated groups histologically. Immunohistochemical staining showed specific proliferating cell nuclear antigen (PCNA) in the luminal and glandular epithelium of the treated groups, which was absent in the OVX-non-treated group. GBR improved the length and weight of the uterus and also increased the number of glandular and luminal cells epithelia of the vagina.
Conclusion
GBR and its bioactives could be a potential alternative in improving reproductive system atrophy, dryness and discomfort during menopause.
doi:10.1186/1472-6882-13-198
PMCID: PMC3750460  PMID: 23899096
Germinated brown rice; Menopause; Uterine atrophy; Vagina dryness; Cyto-histology; Immunohistochemistry
14.  Effect of germinated brown rice extracts on pancreatic lipase, adipogenesis and lipolysis in 3T3-L1 adipocytes 
Background
This study investigated anti-obesity effects of seven different solvent (n-hexane, toluene, dicholoromethane, ethyl acetate, absolute methanol, 80% methanol and deionized water) extracts of germinated brown rice (GBR) on pancreatic lipase activity, adipogenesis and lipolysis in 3T3-L1 adipocytes.
Methods
GBR were extracted separately by employing different solvents with ultrasound-assisted. Pancreatic lipase activity was determined spectrophotometrically by measuring the hydrolysis of p-nitrophenyl butyrate (p-NPB) to p-nitrophenol at 405 nm. Adipogenesis and lipolysis were assayed in fully differentiated 3T3-L1 adipocytes by using Oil Red O staining and glycerol release measurement.
Results
GBR extract using hexane showed the highest inhibitory effect (13.58 ± 0.860%) at concentration of 200 μg/ml followed by hexane extract at 100 μg/ml (9.98 ± 1.048%) while ethyl acetate extract showed the lowest (2.62 ± 0.677%) at concentration of 200 μg/ml on pancreatic lipase activity. Water extract at 300 μg/ml showed 61.55 ± 3.824% of Oil Red O staining material (OROSM), a marker of adipogenesis. It significantly decrease (p < 0.05) lipid accumulation than control (OROSM = 100%), follow by ethyl acetate extract at 300 μg/ml (OROSM = 65.17 ± 3.131%). All the GBR extracts induced lipolysis with 1.22-1.83 fold of greater glycerol release than control.
Conclusions
GBR extracts especially the least polar and intermediate polar solvent extracts exhibited inhibitory effect on pancreatic lipase, decrease fat accumulation by adipocyte differentiation inhibition, and stimulate lipolysis on adipocytes. Therefore, GBR could be furthered study and developed as a functional food in helping the treatment and/or prevention of obesity.
doi:10.1186/1476-511X-13-169
PMCID: PMC4232653  PMID: 25367070
Obesity; Germinated brown rice; Pancreatic lipase; 3T3-L1 adipocytes
15.  Mechanistic basis for protection of differentiated SH-SY5Y cells by oryzanol-rich fraction against hydrogen peroxide-induced neurotoxicity 
Background
Apoptosis is often the end result of oxidative damage to neurons. Due to shared pathways between oxidative stress, apoptosis and antioxidant defence systems, an oxidative insult could end up causing cellular apoptosis or survival depending on the severity of the insult and cellular responses. Plant bioresources have received close attention in recent years for their potential role in regulating the pathways involved in apoptosis and oxidative stress in favour of cell survival. Rice bran is a bioactive-rich by-product of rice milling process. It possesses antioxidant properties, making it a promising source of antioxidants that could potentially prevent oxidative stress-induced neurodegenerative diseases.
Methods
Thus, the present study investigated the neuroprotective properties of oryzanol-rich fraction (ORF) against hydrogen peroxide (H2O2)-induced neurotoxicity in differentiated human neuroblastoma SH-SY5Y cells. ORF was extracted from rice bran using a green technology platform, supercritical fluid extraction system. Furthermore, its effects on cell viability, morphological changes, cell cycle, and apoptosis were evaluated. The underlying transcriptomic changes involved in regulation of oxidative stress, apoptosis and antioxidant defence systems were equally studied.
Results
ORF protected differentiated SH-SY5Y cells against H2O2-induced neurotoxicity through preserving the mitochondrial metabolic enzyme activities, thus reducing apoptosis. The mechanistic basis for the neuroprotective effects of ORF included upregulation of antioxidant genes (catalase, SOD 1 and SOD 2), downregulation of pro-apoptotic genes (JNK, TNF, ING3, BAK1, BAX, p21 and caspase-9), and upregulation of anti-apoptotic genes (ERK1/2, AKT1 and NF-Kβ).
Conclusion
These findings suggest ORF may be an effective antioxidant that could prevent oxidative stress-induced neurodegenerative disorders.
doi:10.1186/1472-6882-14-467
PMCID: PMC4528700  PMID: 25475556
Neuroprotective; Rice bran; Oryzanol-rich fraction; Hydrogen peroxide; Supercritical fluid extraction system; Multiplex GeXP; SH-SY5Y cells
16.  Effects of Germinated Brown Rice and Its Bioactive Compounds on the Expression of the Peroxisome Proliferator-Activated Receptor Gamma Gene 
Nutrients  2013;5(2):468-477.
Dysregulated metabolism is implicated in obesity and other disease conditions like type 2 diabetes mellitus and cardiovascular diseases, which are linked to abnormalities of peroxisome proliferator-activated receptor gamma (PPARγ). PPARγ has been the focus of much research aimed at managing these diseases. Also, germinated brown rice (GBR) is known to possess antidiabetic, antiobesity and hypocholesterolemic effects. We hypothesized that GBR bioactive compounds may mediate some of the improvements in metabolic indices through PPARγ modulation. Cultured HEP-G2 cells were treated with 50 ppm and 100 ppm of extracts from GBR (GABA, ASG and oryzanol) after determination of cell viabilities using MTT assays. Results showed that all extracts upregulated the expression of the PPARγ. However, combination of all three extracts showed downregulation of the gene, suggesting that, in combination, the effects of these bioactives differ from their individual effects likely mediated through competitive inhibition of the gene. Upregulation of the gene may have therapeutic potential in diabetes mellitus and cardiovascular diseases, while its downregulation likely contributes to GBR’s antiobesity effects. These potentials are worth studying further.
doi:10.3390/nu5020468
PMCID: PMC3635206  PMID: 23389305
peroxisome proliferator activated receptor gamma; germinated brown rice; oryzanol; gamma amino butyric acid; acylated steryl glycoside
17.  Estrogen receptor modulatory effects of germinated brown rice bioactives in the uterus of rats through the regulation of estrogen-induced genes 
Purpose
The expression of genes regulated by estrogen in the uterus was studied in ovariectomized (OVX) rats treated with germinated brown rice (GBR) bioactives, and compared to Remifemin or estrogen at different doses to identify the regulation of these genes in the uterus and their molecular mechanisms.
Methods
Rats were treated orally with GBR bioactives (phenolics), acylated steryl glucosides (ASG), γ-amino butyric acid (GABA), and γ-oryzanol (ORZ) at 100 and 200 mg/kg, Remifemin (REM) at 10 mg/kg and 20 mg/kg, or estrogen (EST) at 0.2 mg/kg. Ribonucleic acid (RNA) was extracted from the uterus, and messenger (m)RNA expression of selected genes encoding estrogen receptor-beta (ER-β), calcium-binding protein (CaBP9k), complement protein (C3), heat shock protein 70 kDa (HSP70), and interleukin (IL)-4 receptor were quantified. Similarly, serum steroid hormone concentration was monitored at 2, 4, and 8 weeks after treatments. ER-β antibody binding to the uterus sections was also studied using immunohistochemistry.
Results
The group treated with EST (0.2 mg/kg) upregulated ER-β, C3, and IL-4 receptor genes compared to other groups (P<0.001). GBR phenolics (200 mg/kg) treatment upregulated the ER-β gene almost to the level of the sham non-treated group. The CaBP9k gene showed upregulation in groups treated with ASG (200 mg/kg), EST (0.2 mg/kg), and ORZ (200 mg/kg) (P<0.05). Estrogen levels increased in groups treated with EST, ASG, and ORZ (200 mg/kg) compared to the OVX untreated group (P<0.05), and there was a slight non-significant decrease (P>0.05) in the progesterone levels in the OVX untreated group compared to the sham and other treated groups. There was a significant increase at 8 weeks in the level of FSH (P<0.05) in the treated groups compared to the OVX untreated group. There was no significant difference (P>0.05) in serum luteinizing hormone (LH) between the OVX untreated group and other groups. The sham and GBR phenolics treated group showed ER-β reactivity at the glandular epithelium, while the group treated with EST showed immunoreactivity at the glandular, luminal, and stromal epithelium.
Conclusion
GBR phenolics moderately regulate the expression of ER-β, HSP70, and IL-4 receptor genes, and gave a positive immunoreaction to ER-β antigen in the uterus. ASG regulates the expression of CaBP9k and IL-4 receptor genes, and ORZ regulates the expression of the CaBP9k gene, while GABA at 100 mg/kg regulates the expression of the HSP70 gene. GBR and its bioactives might have an effect on estrogen-regulated genes in the uterus of rats.
doi:10.2147/DDDT.S50861
PMCID: PMC3854924  PMID: 24324328
estrogen receptor-β gene; GBR-bioactives; serum hormonal level; uterine tissue
18.  Bone mass density estimation: Archimede’s principle versus automatic X-ray histogram and edge detection technique in ovariectomized rats treated with germinated brown rice bioactives 
Background
Bone mass density is an important parameter used in the estimation of the severity and depth of lesions in osteoporosis. Estimation of bone density using existing methods in experimental models has its advantages as well as drawbacks.
Materials and methods
In this study, the X-ray histogram edge detection technique was used to estimate the bone mass density in ovariectomized rats treated orally with germinated brown rice (GBR) bioactives, and the results were compared with estimated results obtained using Archimede’s principle. New bone cell proliferation was assessed by histology and immunohistochemical reaction using polyclonal nuclear antigen. Additionally, serum alkaline phosphatase activity, serum and bone calcium and zinc concentrations were detected using a chemistry analyzer and atomic absorption spectroscopy. Rats were divided into groups of six as follows: sham (nonovariectomized, nontreated); ovariectomized, nontreated; and ovariectomized and treated with estrogen, or Remifemin®, GBR-phenolics, acylated steryl glucosides, gamma oryzanol, and gamma amino-butyric acid extracted from GBR at different doses.
Results
Our results indicate a significant increase in alkaline phosphatase activity, serum and bone calcium, and zinc and ash content in the treated groups compared with the ovariectomized nontreated group (P < 0.05). Bone density increased significantly (P < 0.05) in groups treated with estrogen, GBR, Remifemin®, and gamma oryzanol compared to the ovariectomized nontreated group. Histological sections revealed more osteoblasts in the treated groups when compared with the untreated groups. A polyclonal nuclear antigen reaction showing proliferating new cells was observed in groups treated with estrogen, Remifemin®, GBR, acylated steryl glucosides, and gamma oryzanol. There was a good correlation between bone mass densities estimated using Archimede’s principle and the edge detection technique between the treated groups (r2 = 0.737, P = 0.004).
Conclusion
Our study shows that GBR bioactives increase bone density, which might be via the activation of zinc formation and increased calcium content, and that X-ray edge detection technique is effective in the measurement of bone density and can be employed effectively in this respect.
doi:10.2147/CIA.S49704
PMCID: PMC3810202  PMID: 24187491
Archimede’s principle; atomic absorption spectrophotometry; X-ray edge detection technique; bone mass density; germinated brown rice bioactives
19.  Angiotensin II increases GABA B receptor expression in the nucleus tractus solitarius of rats 
Increasing evidence indicates that both the angiotensin II (Ang II) and γ-aminobutyric acid (GABA) systems play a very important role in the regulation of blood pressure (BP). However, there is little information concerning the interactions between these two systems in the nucleus tractus solitarius (NTS). In the present study, we examined the effects of Ang II on GABA receptor (GAR and GBR) expression in the NTS of Sprague Dawley rats. The direct effect of Ang II on GBR expression was determined in neurons cultured from NTS. Treatment of neuronal cultures with Ang II (100 nM, 5 hrs) induced a 2-fold increase in GBR1 expression, as detected with real-time RT-PCR and Western Blots, but had no effect on GBR2 or GAR expression. In electrophysiological experiments, perfusion of neuronal cultures with a GBR agonist, baclofen, decreased neuronal firing rate by 39% and 63% in neurons treated with either PBS (control) or Ang II, respectively, indicating that chronic Ang II treatment significantly enhanced the neuronal response to GBR activation. In contrast, Ang II had no significant effect on the inhibitory action of the GAR agonist, muscimol. In whole animal studies, intracerebroventricular infusion of Ang II induced a sustained increase in mean BP and an elevation of GBR1 mRNA and protein levels in the NTS. These results indicate that Ang II stimulates GBR expression in NTS neurons and this could contribute to the CNS actions of Ang II that result in dampening of baroreflexes and elevated BP in the central actions of Ang II.
doi:10.1152/ajpheart.00729.2007
PMCID: PMC4422374  PMID: 18424635
Angiotensin; GABA; NTS; blood pressure
20.  Upregulation of genes related to bone formation by γ-amino butyric acid and γ-oryzanol in germinated brown rice is via the activation of GABAB-receptors and reduction of serum IL-6 in rats 
Background
Osteoporosis and other bone degenerative diseases are among the most challenging non-communicable diseases to treat. Previous works relate bone loss due to osteoporosis with oxidative stress generated by free radicals and inflammatory cytokines. Alternative therapy to hormone replacement has been an area of interest to researchers for almost three decades due to hormone therapy-associated side effects.
Methods
In this study, we investigated the effects of gamma-amino butyric acid (GABA), gamma-oryzanol (ORZ), acylated steryl glucosides (ASG), and phenolic extracts from germinated brown rice (GBR) on the expression of genes related to bone metabolism, such as bone morphogenic protein-2 (BMP-2), secreted protein acidic and rich in cysteine (SPARC), runt-related transcription factor 2 (RUNX-2), osteoblast-specific transcription factor osterix (Osx), periostin, osteoblast specific factor (Postn), collagen 1&2 (Col1&2), calcitonin receptor gene (CGRP); body weight measurement and also serum interleukin-6 (IL-6) and osteocalcin, in serum and bone. Rats were treated with GBR, ORZ, GABA, and ASG at (100 and 200 mg/kg); estrogen (0.2 mg/kg), or remifemin (10 and 20 mg/kg), compared to ovariectomized non-treated group as well as non-ovariectomized non-treated (sham) group. Enzyme-linked immunosorbent assay was used to measure the IL-6 and osteocalcin levels at week 2, 4, and 8, while the gene expression in the bone tissue was determined using the Genetic Analysis System (Beckman Coulter Inc., Brea, CA, USA).
Results
The results indicate that groups treated with GABA (100 and 200 mg/kg) showed significant upregulation of SPARC, calcitonin receptor, and BMP-2 genes (P < 0.05), while the ORZ-treated group (100 and 200 mg/kg) revealed significant (P < 0.05) upregulation of Osx, Postn, RUNX-2, and Col1&2. Similarly, IL-6 concentration decreased, while osteocalcin levels increased significantly (P < 0.05) in the treated groups as compared to ovariectomized non-treated groups.
Conclusion
GABA and ORZ from GBR stimulates osteoblastogenesis by upregulation of bone formation genes, possibly via the activation of GABAB receptors and by inhibiting the activity of inflammatory cytokines and reactive oxygen species. Therefore, it could be used effectively in the management of osteoporosis.
doi:10.2147/CIA.S45943
PMCID: PMC3789840  PMID: 24098073
gene expression; GBR-bioactive compounds; osteocalcin; ovariectomized rats
21.  Serum antibody response to recombinant major inner capsid protein following human infection with group B rotavirus. 
Journal of Clinical Microbiology  1994;32(6):1599-1603.
Recombinant major inner capsid protein (VP6) of the IDIR strain of group B rotavirus (GBR) was incorporated in a solid-phase immunoassay to access antibody response to infection in humans. Expression of VP6 in insect cells permitted design of a highly sensitive assay that avoided the contaminants present in GBR antigens obtained from fecal specimens. Among patients infected with the ADRV strain of GBR in China, increased reactivity with recombinant VP6 was observed in convalescent-phase sera in comparison with sera obtained shortly after infection (P = 0.0084). Anti-VP6 antibodies were detectable as soon as 7 days after onset of gastrointestinal symptoms, and serum reactivity persisted in specimens drawn more than 1 year after infection. Solid-phase immunoassay with recombinant VP6 was next employed in order to assess anti-GBR antibody in 513 serum specimens obtained from 423 Maryland residents (ages, 7 months to 96 years; median age, 42 years). Four individuals (< 1%) exhibited serum antibodies directed against the recombinant VP6 (ages, 54 to 95 years; mean age, 77 years). Examination of 129 additional serum specimens including some from other geographic regions of the United States failed to reveal the presence of anti-GBR antibody. Anti-GBR antibody was also not detected in any of 131 serum specimens from 60 staff and residents of a nursing home in Switzerland. While infection of humans with GBR has been uncommon in these locations outside of China, the detection of serum antibodies in older individuals in the United States either indicated an unknown, age-related risk factor or may have indicated infection in the more distant past. The availability of these reagents should allow surveys for GBR infection among additional populations that have not previously been investigated.
PMCID: PMC264049  PMID: 8077413
22.  Neuroprotective effects of Liriope platyphylla extract against hydrogen peroxide-induced cytotoxicity in human neuroblastoma SH-SY5Y cells 
Background
Oxidative stress is involved in neuronal cell death and mitochondrial dysfunction in neurodegenerative diseases. Liriope platyphylla (LP) has been suggested to have anti-inflammation, anti-bacterial, and anti-cancer effects. However, whether LP exerts neuroprotective effects on neuronal cells is unknown.
Methods
The present study was performed to investigate the neuroprotective effects of LP extract (LPE) against hydrogen peroxide (H2O2)-induced injury in human neuroblastoma cells SH-SY5Y. To test neuroprotective effects of LPE, we performed cell viability assay, flow cytometry analysis and western blot analysis. In addition, mitochondrial membrane potential (MMP) and oxidative stress were performed to evaluate the anti-apoptotic and anti-oxidant effects.
Results
LPE pretreatment conferred significant protection against the H2O2-induced decrease of SH-SY5Y cell viability. H2O2-induced increases of intracellular oxidative stress and mitochondrial dysfunction were attenuated by LPE pretreatment. Therefore, LPE pretreatment prevented SH-SY5Y cell injury. Treatment with H2O2 significantly induced poly(ADP ribose) polymerase (PARP) and caspase-3 cleavage, which was blocked by LPE. We found that p38 activation was involved in the neuroprotective effects of LPE.
Conclusions
Current findings suggest that LPE exerts neuroprotective effects against H2O2-induced apoptotic cell death by modulating p38 activation in SH-SY5Y cells. Therefore, LPE has potential anti-apoptotic effects that may be neuroprotective in neurodegenerative diseases and aging-related dementia.
doi:10.1186/s12906-015-0679-3
PMCID: PMC4459069  PMID: 26054856
Liriope platyphylla; Neuroprotective effects; Antioxidant activity; Antiapoptotic effect
23.  Peroxiredoxin Tsa1 Is the Key Peroxidase Suppressing Genome Instability and Protecting against Cell Death in Saccharomyces cerevisiae 
PLoS Genetics  2009;5(6):e1000524.
Peroxiredoxins (Prxs) constitute a family of thiol-specific peroxidases that utilize cysteine (Cys) as the primary site of oxidation during the reduction of peroxides. To gain more insight into the physiological role of the five Prxs in budding yeast Saccharomyces cerevisiae, we performed a comparative study and found that Tsa1 was distinguished from the other Prxs in that by itself it played a key role in maintaining genome stability and in sustaining aerobic viability of rad51 mutants that are deficient in recombinational repair. Tsa2 and Dot5 played minor but distinct roles in suppressing the accumulation of mutations in cooperation with Tsa1. Tsa2 was capable of largely complementing the absence of Tsa1 when expressed under the control of the Tsa1 promoter. The presence of peroxidatic cysteine (Cys47) was essential for Tsa1 activity, while Tsa1C170S lacking the resolving Cys was partially functional. In the absence of Tsa1 activity (tsa1 or tsa1CCS lacking the peroxidatic and resolving Cys) and recombinational repair (rad51), dying cells displayed irregular cell size/shape, abnormal cell cycle progression, and significant increase of phosphatidylserine externalization, an early marker of apoptosis-like cell death. The tsa1CCS rad51– or tsa1 rad51–induced cell death did not depend on the caspase Yca1 and Ste20 kinase, while the absence of the checkpoint protein Rad9 accelerated the cell death processes. These results indicate that the peroxiredoxin Tsa1, in cooperation with appropriate DNA repair and checkpoint mechanisms, acts to protect S. cerevisiae cells against toxic levels of DNA damage that occur during aerobic growth.
Author Summary
Aerobically growing cells are continuously challenged by potent oxidants produced during normal cellular metabolism. These oxidants, including hydrogen peroxide and organic peroxides, are important components mediating various cell functions. However, they can also cause cell damage when present at toxic levels. Aerobic organisms possess extensive antioxidant systems to regulate oxidant levels. Among these, peroxiredoxins have received considerable attention in recent years as an expanding protein family involved in the enzymatic degradation of hydrogen peroxide and organic peroxides. To better understand the physiological role of the five peroxiredoxins in budding yeast S. cerevisiae, we performed a comparative study and found that one, Tsa1, played a key role in preventing DNA damage and assuring genome stability. Tsa1 also cooperated with other peroxiredoxins in antioxidant defense. These functions of Tsa1 required the presence of a cysteine at the catalytic site of this enzyme. Additional studies revealed that Tsa1 activity, in cooperation with appropriate DNA repair and checkpoint mechanisms, acts to protect cells against toxic levels of DNA damage that occur during aerobic growth.
doi:10.1371/journal.pgen.1000524
PMCID: PMC2688748  PMID: 19543365
24.  Processing Conditions, Rice Properties, Health and Environment 
Rice is the staple food for nearly two-thirds of the world’s population. Food components and environmental load of rice depends on the rice form that is resulted by different processing conditions. Brown rice (BR), germinated brown rice (GBR) and partially-milled rice (PMR) contains more health beneficial food components compared to the well milled rice (WMR). Although the arsenic concentration in cooked rice depends on the cooking methods, parboiled rice (PBR) seems to be relatively prone to arsenic contamination compared to that of untreated rice, if contaminated water is used for parboiling and cooking. A change in consumption patterns from PBR to untreated rice (non-parboiled), and WMR to PMR or BR may conserve about 43–54 million tons of rice and reduce the risk from arsenic contamination in the arsenic prone area. This study also reveals that a change in rice consumption patterns not only supply more food components but also reduces environmental loads. A switch in production and consumption patterns would improve food security where food grains are scarce, and provide more health beneficial food components, may prevent some diseases and ease the burden on the Earth. However, motivation and awareness of the environment and health, and even a nominal incentive may require for a method switching which may help in building a sustainable society.
doi:10.3390/ijerph8061957
PMCID: PMC3138007  PMID: 21776212
rice processing; rice properties; CO2 emission; health; environment
25.  The cell death factor, cell wall elicitor of rice blast fungus (Magnaporthe grisea) causes metabolic alterations including GABA shunt in rice cultured cells 
Plant Signaling & Behavior  2008;3(11):945-953.
An elicitor derived from the cell wall of rice blast fungus (Magnaporthe grisea) causes cell death in suspension cultured cells of rice (Oryza sativa L.). To elucidate the role of M. grisea elicitor on metabolic pathway of rice cells, we performed metabolite profiling using capillary electrophoresis-mass spectrometry (CE/MS). Treatment with M. grisea elicitor increased the amounts of antioxidants and free amino acids and decreased the amount of metabolites in the tricarboxylic acid (TCA) cycle. Lower ATP concentration caused aberrant energy charge, concurrently with reduced amount of NAD(P)H in elicitor treated cells. Among free amino acids detected in this study, the level of gamma-aminobutyric acid (GABA) increased. GABA is metabolized through a bypass pathway of the TCA cycle called GABA shunt, which is composed of glutamate decarboxylase (GAD), GABA transaminase (GABA-T) and succinic semialdehyde dehydrogenase (SSADH). While M. grisea elicitor negligibly affected GAD and SSADH, GABA-T activity significantly decreased. The decrease in GABA-T activity was recovered by NADPH oxidase inhibitor, which prevents cell death induced by M. grisea elicitor. Thus, GABA accumulation observed in rice cells under elicitor stress is partly associated with GABA-T activity.
PMCID: PMC2633740  PMID: 19513197
metabolome; Magnaporthe grisea; capillary electrophoresis; mass spectrometry; gamma-aminobutyric acid; GABA transaminase; Oryza sativa

Results 1-25 (1178324)