PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (445267)

Clipboard (0)
None

Related Articles

1.  Saccadic Burst Cell Membrane Dysfunction Is Responsible for Saccadic Oscillations 
Saccadic oscillations threaten clear vision by causing image motion on the retina. They are either purely horizontal (ocular flutter) or multidimensional (opsoclonus). We propose that ion channel dysfunction in the burst cell membrane is the underlying abnormality. We have tested this hypothesis by simulating a neuromimetic computational model of the burst neurons. This biologically realistic model mimics the physiologic properties and anatomic connections in the brainstem saccade generator. A rebound firing after sustained inhibition, called post-inhibitory rebound (PIR), and reciprocal inhibition between premotor saccadic burst neurons are the key features of this conceptual scheme. PIR and reciprocal inhibition make the circuits that generate the saccadic burst inherently unstable and can lead to oscillations unless stabilized by external inhibition. Our simulations suggest that alterations in membrane properties that lead to an increase in PIR, a reduction in external glycinergic inhibition, or both can cause saccadic oscillations.
doi:10.1097/WNO.0b013e31818eb3a5
PMCID: PMC2752370  PMID: 19145136
2.  Sustained eye closure slows saccades 
Vision research  2010;50(17):1665-1675.
Saccadic eye movements rapidly orient the line of sight towards the object of interest. Pre-motor burst neurons (BNs) controlling saccades receive excitation from superior colliculus and cerebellum, but inhibition by omnipause neurons (OPNs) prevents saccades. When the OPNs pause, BNs begin to fire. It has been presumed that part of the BN burst comes from post-inhibitory rebound (PIR). We hypothesized that in the absence of prior inhibition from OPNs there would be no PIR, and thus the increase in initial firing rate of BNs would be reduced. Consequently, saccade acceleration would be reduced. We measured eye movements and showed that sustained eye closure, which inhibits the activity of OPNs and thus hypothetically should weaken PIR, reduced the peak velocity, acceleration, and deceleration of saccades in healthy human subjects. Saccades under closed eyelids also had irregular trajectories; the frequency of the oscillations underlying this irregularity was similar to that of high-frequency ocular flutter (back-to-back saccades) often seen in normal subjects during attempted fixation at straight ahead while eyes are closed. Saccades and quick phases of nystagmus are generated by the same pre-motor neurons, and we found that the quick-phase velocity of nystagmus was also reduced by lid closure. These changes were not due to a mechanical hindrance to the eyes, because lid closure did not affect the peak velocities or accelerations of the eyes in the “slow-phase” response to rapid head movements of comparable speeds to those of saccades. These results indicate a role for OPNs in generating the abrupt onset and high velocities of saccades. We hypothesize that the mechanism involved is PIR in pre-motor burst neurons.
doi:10.1016/j.visres.2010.05.019
PMCID: PMC2929924  PMID: 20573593
Omnipause neurons; Burst neurons; Oscillations; Ballistic movement; Post-inhibitory rebound
3.  Do brainstem omnipause neurons terminate saccades? 
Saccade-generating burst neurons (BN) are inhibited by omnipause neurons (OPN), except during saccades. OPN activity pauses before saccade onset and resumes at the saccade end. Microstimulation of OPN stops saccades in mid-flight, which shows that OPN can end saccades. However, OPN pause duration does not correlate well with saccade duration, and saccades are normometric after OPN lesions. We tested whether OPN were responsible for stopping saccades both in late-onset Tay–Sachs, which causes premature saccadic termination, and in individuals with cerebellar hypermetria. We studied gaze shifts between two targets at different distances aligned on one eye, which consist of a disjunctive saccade followed by vergence. High-frequency conjugate oscillations during the vergence movements that followed saccades were present in all subjects studied, indicating OPN silence. Thus, mechanisms other than OPN discharge (e.g., cerebellar caudal fastigial nucleus–promoting inhibitory BN discharge) must contribute to saccade termination.
doi:10.1111/j.1749-6632.2011.06170.x
PMCID: PMC3438674  PMID: 21950975
Tay–Sachs disease; saccades; omnipause neurons; fastigial nucleus; Müller paradigm
4.  Hypothetical membrane mechanisms in essential tremor 
Background
Essential tremor (ET) is the most common movement disorder and its pathophysiology is unknown. We hypothesize that increased membrane excitability in motor circuits has a key role in the pathogenesis of ET. Specifically, we propose that neural circuits controlling ballistic movements are inherently unstable due to their underlying reciprocal innervation. Such instability is enhanced by increased neural membrane excitability and the circuit begins to oscillate. These oscillations manifest as tremor.
Methods
Postural limb tremor was recorded in 22 ET patients and then the phenotype was simulated with a conductance-based neuromimetic model of ballistic movements. The model neuron was Hodgkin-Huxley type with added hyperpolarization activated cation current (Ih), low threshold calcium current (IT), and GABA and glycine mediated chloride currents. The neurons also featured the neurophysiological property of rebound excitation after release from sustained inhibition (post-inhibitory rebound). The model featured a reciprocally innervated circuit of neurons that project to agonist and antagonist muscle pairs.
Results
Neural excitability was modulated by changing Ih and/or IT. Increasing Ih and/or IT further depolarized the membrane and thus increased excitability. The characteristics of the tremor from all ET patients were simulated when Ih was increased to ~10× the range of physiological values. In contrast, increasing other membrane conductances, while keeping Ih at a physiological value, did not simulate the tremor. Increases in Ih and IT determined the frequency and amplitude of the simulated oscillations.
Conclusion
These simulations support the hypothesis that increased membrane excitability in potentially unstable, reciprocally innervated circuits can produce oscillations that resemble ET. Neural excitability could be increased in a number of ways. In this study membrane excitability was increased by up-regulating Ih and IT. This approach suggests new experimental and clinical ways to understand and treat common tremor disorders.
doi:10.1186/1479-5876-6-68
PMCID: PMC2613385  PMID: 18990221
5.  Saccades during Attempted Fixation in Parkinsonian Disorders and Recessive Ataxia: From Microsaccades to Square-Wave Jerks 
PLoS ONE  2013;8(3):e58535.
During attempted visual fixation, saccades of a range of sizes occur. These “fixational saccades” include microsaccades, which are not apparent in regular clinical tests, and “saccadic intrusions”, predominantly horizontal saccades that interrupt accurate fixation. Square-wave jerks (SWJs), the most common type of saccadic intrusion, consist of an initial saccade away from the target followed, after a short delay, by a “return saccade” that brings the eye back onto target. SWJs are present in most human subjects, but are prominent by their increased frequency and size in certain parkinsonian disorders and in recessive, hereditary spinocerebellar ataxias. Here we asked whether fixational saccades showed distinctive features in various parkinsonian disorders and in recessive ataxia. Although some saccadic properties differed between patient groups, in all conditions larger saccades were more likely to form SWJs, and the intervals between the first and second saccade of SWJs were similar. These findings support the proposal of a common oculomotor mechanism that generates all fixational saccades, including microsaccades and SWJs. The same mechanism also explains how the return saccade in SWJs is triggered by the position error that occurs when the first saccadic component is large, both in the healthy brain and in neurological disease.
doi:10.1371/journal.pone.0058535
PMCID: PMC3596296  PMID: 23516502
6.  The role of H-current in regulating strength and frequency of thalamic network oscillations 
Thalamus & related systems  2001;1(2):95-103.
Intrathalamic oscillations related to sleep and epilepsy depend on interactions between synaptic mechanisms and intrinsic membrane excitability. One intrinsic conductance implicated in the genesis of thalamic oscillations is the H current – a cationic current activated by membrane hyperpolarization. Activation of H current promotes rebound excitation of thalamic relay neurons and can thus enhance recurrent network activity.
We examined the effects of H current modulation on bicuculline-enhanced network oscillations (2-4 Hz) in rat thalamic slices. The adrenergic agonist norepinephrine, a known regulator of H current, caused an alteration of the internal structure of the oscillations – they were enhanced and accelerated as the interval between bursts was shortened. The acceleration was blocked by the β-adrenergic antagonist propranolol. The β agonist isoproterenol mimicked the effect of norepinephrine on oscillation frequency and truncated the responses suggesting that a β-adrenergic upregulation of H current modifies the internal structure (frequency) of thalamic oscillations. Consistent with this, we found that H channel blockade by Cs+ or ZD7288 could decelerate the oscillations and produce more robust (longer lasting) responses. High concentrations of either Cs+ or ZD7288 blocked the oscillations.
These results indicate that a critical amount of H current is necessary for optimal intrathalamic oscillations in the delta frequency range. Up- or downregulation of H current can not only alter the oscillation frequency but also retard or promote the development of thalamic synchronous oscillations. This conclusion has important implications regarding the development of epilepsy in thalamocortical circuits.
doi:10.1016/S1472-9288(01)00009-7
PMCID: PMC2222919  PMID: 18239728
H current; ZD7288; adrenergic; pacemaking
7.  Responses of the Smooth Muscle Membrane of Guinea Pig Jejunum Elicited by Field Stimulation 
The Journal of General Physiology  1969;53(4):471-486.
Field stimulation of the jejunum elicited successively an action potential of spike form, a slow excitatory depolarization, a slow inhibitory hyperpolarization, and a postinhibitory depolarization as a rebound excitation. The slow depolarization often triggered the spike. The inhibitory potential showed lower threshold than did the excitatory potential. Both the excitatory potentials were abolished by atropine and tetrodotoxin. Effective membrane resistance measured by the intracellular polarizing method was reduced during the peak of the excitatory potential, but the degree of reduction was smaller than that evoked by iontophoretic application of acetylcholine. Conditioning hyperpolarization of the muscle membrane modified the amplitude of the excitatory potential. The estimated reversal potential level for the excitatory potenialt was about 0 mv. No changes could be observed in the amplitude of the inhibitory potential when hyperpolarization was induced with intracellularly applied current. Low [K]o and [Ca]o blocked the generation of the excitatory potential but the amplitude of the inhibitory potential was enhanced in low [K]o. Low [Ca]o and high [Mg]o had no effect on the inhibitory potential.
PMCID: PMC2202871  PMID: 5778319
8.  Teaching Basic Principles of Neuroscience with Computer Simulations 
It is generally believed that students learn best through activities that require their direct participation. By using simulations as a tool for learning neuroscience, students are directly engaged in the activity and obtain immediate feedback and reinforcement. This paper describes a series of biophysical models and computer simulations that can be used by educators and students to explore a variety of basic principles in neuroscience. The paper also suggests ‘virtual laboratory’ exercises that students may conduct to further examine biophysical processes underlying neural function. First, the Hodgkin and Huxley (HH) model is presented. The HH model is used to illustrate the action potential, threshold phenomena, and nonlinear dynamical properties of neurons (e.g., oscillations, postinhibitory rebound excitation). Second, the Morris-Lecar (ML) model is presented. The ML model is used to develop a model of a bursting neuron and to illustrate modulation of neuronal activity by intracellular ions. Lastly, principles of synaptic transmission are presented in small neural networks, which illustrate oscillatory behavior, excitatory and inhibitory postsynaptic potentials, and temporal summation.
PMCID: PMC3592631  PMID: 23493644
undergraduate; graduate; neurons; synapses; neural networks; modeling; SNNAP; Hodgkin-Huxley
9.  Ocular-Motor Profile and Effects of Memantine in a Familial Form of Adult Cerebellar Ataxia with Slow Saccades and Square Wave Saccadic Intrusions 
PLoS ONE  2013;8(7):e69522.
Fixation instability due to saccadic intrusions is a feature of autosomal recessive spinocerebellar ataxias, and includes square wave intrusions (SWI) and macrosaccadic oscillations (MSO). A recent report suggested that the non-competitive antagonist of NMDA receptors, memantine, could decrease MSO and improve fixation in patients with spinocerebellar ataxia with saccadic intrusions (SCASI). We similarly tested two sisters, respectively of 58 and 60 years, with an unrecognized form of recessive, adult-onset cerebellar ataxia, peripheral neuropathy and slow saccades, who showed prominent SWI and also complained with difficulty in reading. We tested horizontal visually guided saccades (10°–18°) and three minutes of steady fixation in each patient and in thirty healthy controls. Both patients showed a significant reduction of peak and mean velocity compared with control subjects. Large SWI interrupting steady fixation were prominent during steady fixation and especially following visually guided saccades. Eye movements were recorded before and during the treatment with memantine, 20 mg/daily for 6 months. The treatment with memantine reduced both the magnitude and frequency of SWI (the former significantly), but did not modified neurological conditions or saccade parameters. Thus, our report suggests that memantine may have some general suppressive effect on saccadic intrusions, including both SWI and MSO, thereby restoring the capacity of reading and visual attention in these and in other recessive forms of ataxia, including Friedreich’s, in which saccadic intrusions are prominent.
doi:10.1371/journal.pone.0069522
PMCID: PMC3718679  PMID: 23894498
10.  Local Control of Postinhibitory Rebound Spiking in CA1 Pyramidal Neuron Dendrites 
The Journal of Neuroscience  2010;30(18):6434-6442.
Postinhibitory rebound spiking is characteristic of several neuron types and brain regions, where it sustains spontaneous activity and central pattern generation. However, rebound spikes are rarely observed in the principal cells of the hippocampus under physiological conditions. We report that CA1 pyramidal neurons support rebound spikes mediated by hyperpolarization-activated inward current (Ih), and normally masked by A-type potassium channels (KA). In both experiments and computational models, KA blockage or reduction consistently resulted in a somatic action potential upon release from hyperpolarizing injections in the soma or main apical dendrite. Rebound spiking was systematically abolished by the additional blockage or reduction of Ih. Since the density of both KA and Ih increases in these cells with the distance from the soma, such “latent” mechanism may be most effective in the distal dendrites, which are targeted by a variety of GABAergic interneurons. Detailed computer simulations, validated against the experimental data, demonstrate that rebound spiking can result from activation of distal inhibitory synapses. In particular, partial KA reduction confined to one or few branches of the apical tuft may be sufficient to elicit a local spike following a train of synaptic inhibition. Moreover, the spatial extent and amount of KA reduction determines whether the dendritic spike propagates to the soma. These data suggest that the plastic regulation of KA can provide a dynamic switch to unmask postinhibitory spiking in CA1 pyramidal neurons. This newly discovered local modulation of postinhibitory spiking further increases the signal processing power of the CA1 synaptic microcircuitry.
doi:10.1523/JNEUROSCI.4066-09.2010
PMCID: PMC3319664  PMID: 20445069
11.  Saccade Adaptation Abnormalities Implicate Dysfunction of Cerebellar-Dependent Learning Mechanisms in Autism Spectrum Disorders (ASD) 
PLoS ONE  2013;8(5):e63709.
The cerebellar vermis (lobules VI-VII) has been implicated in both postmortem and neuroimaging studies of autism spectrum disorders (ASD). This region maintains the consistent accuracy of saccadic eye movements and plays an especially important role in correcting systematic errors in saccade amplitudes such as those induced by adaptation paradigms. Saccade adaptation paradigms have not yet been used to study ASD. Fifty-six individuals with ASD and 53 age-matched healthy controls performed an intrasaccadic target displacement task known to elicit saccadic adaptation reflected in an amplitude reduction. The rate of amplitude reduction and the variability of saccade amplitude across 180 adaptation trials were examined. Individuals with ASD adapted slower than healthy controls, and demonstrated more variability of their saccade amplitudes across trials prior to, during and after adaptation. Thirty percent of individuals with ASD did not significantly adapt, whereas only 6% of healthy controls failed to adapt. Adaptation rate and amplitude variability impairments were related to performance on a traditional neuropsychological test of manual motor control. The profile of impaired adaptation and reduced consistency of saccade accuracy indicates reduced neural plasticity within learning circuits of the oculomotor vermis that impedes the fine-tuning of motor behavior in ASD. These data provide functional evidence of abnormality in the cerebellar vermis that converges with previous reports of cellular and gross anatomic dysmorphology of this brain region in ASD.
doi:10.1371/journal.pone.0063709
PMCID: PMC3660571  PMID: 23704934
12.  Disruption of Saccadic Adaptation with Repetitive Transcranial Magnetic Stimulation of the Posterior Cerebellum in Humans 
Cerebellum (London, England)  2010;9(4):548-555.
Saccadic eye movements are driven by motor commands that are continuously modified so that errors created by eye muscle fatigue, injury, or—in humans—wearing spectacles can be corrected. It is possible to rapidly adapt saccades in the laboratory by introducing a discrepancy between the intended and actual saccadic target. Neurophysiological and lesion studies in the non-human primate as well as neuroimaging and patient studies in humans have demonstrated that the oculomotor vermis (lobules VI and VII of the posterior cerebellum) is critical for saccadic adaptation. We studied the effect of transiently disrupting the function of posterior cerebellum with repetitive transcranial magnetic stimulation (rTMS) on the ability of healthy human subjects to adapt saccadic eye movements. rTMS significantly impaired the adaptation of the amplitude of saccades, without modulating saccadic amplitude or variability in baseline conditions. Moreover, increasing the intensity of rTMS produced a larger impairment in the ability to adapt saccadic size. These results provide direct evidence for the role of the posterior cerebellum in man and further evidence that TMS can modulate cerebellar function.
doi:10.1007/s12311-010-0193-6
PMCID: PMC2996540  PMID: 20665254
Cerebellum; Saccades; Adaptation; Physiological; Eye movements/physiology; Transcranial magnetic stimulation; Repetitive
13.  Slow and persistent postinhibitory rebound acts as an intrinsic short-term memory mechanism 
Many neurons display post-inhibitory rebound (PIR), in which neurons display enhanced excitability following inhibition. PIR can strongly influence the timing of spikes on rebound from an inhibitory input. We studied PIR in the Lateral Pyloric (LP) neuron, part of the stomatogastric ganglion of the crab Cancer borealis. The LP neuron is part of the pyloric network, a central pattern generator that normally oscillates with a period of ~ 1 s. We used the dynamic clamp to create artificial rhythmic synaptic inputs of various periods and duty cycles in the LP neuron. Surprisingly, we found that the strength of PIR increased slowly over multiple cycles of synaptic input. Moreover, this increased excitability persisted for 10–20 s after the rhythmic inhibition was removed. These effects are considerably slower than the rhythmic activity typically observed in LP. Thus this slow postinhibitory rebound allows the neuron to adjust its level of excitability to the average level of inhibition over many cycles, and is another example of an intrinsic “short-term memory” mechanism.
doi:10.1523/JNEUROSCI.2998-09.2010
PMCID: PMC2885135  PMID: 20357119
stomatogastric; pylorus; central pattern generator; slow; channel; memory
14.  Amplitudes and Directions of Individual Saccades Can Be Adjusted by Corollary Discharge 
Journal of vision  2010;10(2):22.1-2212.
There is strong evidence that the brain can use an internally generated copy of motor commands, a corollary discharge, to guide rapid sequential saccades. Much of this evidence comes from the double-step paradigm: after two briefly flashed visual targets have disappeared, the subject makes two sequential saccades to the targets. Recent studies on the monkey revealed that amplitude variations of the first saccade led to compensation by the second saccade, mediated by a corollary discharge. Here, we investigated whether such saccade-by-saccade compensation occurs in humans, and we made three new observations. First, we replicated previous findings from the monkey: following first saccade amplitude variations, the direction of the second saccade compensated for the error. Second, the change in direction of the second saccade followed variations in vertical as well as horizontal first saccades although the compensation following horizontal saccades was significantly more accurate. Third, by examining oblique saccades, we are able to show that first saccade variations are compensated by adjustment in saccade amplitude in addition to direction. Together, our results demonstrate that it is likely that a corollary discharge in humans can be used to adjust both saccade direction and amplitude following variations in individual saccades.
doi:10.1167/10.2.22
PMCID: PMC2932478  PMID: 20462323
Corollary Discharge; Saccadic Eye Movement; Movement Vector
15.  Cerebellar contributions to adaptive control of saccades in humans 
The cerebellum may monitor motor commands and through internal feedback corrects for anticipated errors. Saccades provide a test of this idea because these movements are completed too quickly for sensory feedback to be useful. Earlier we reported that motor commands that accelerate the eyes toward a constant amplitude target showed variability. Here, we demonstrate that this variability is not random noise, but is due to the cognitive state of the subject. Healthy people showed within saccade compensation for this variability with commands that arrived later in the same saccade. However, in people with cerebellar damage, the same variability resulted in dysmetria. This ability to correct for variability in the motor commands that initiated a saccade was a predictor of each subject’s ability to learn from endpoint errors. In a paradigm in which a target on the horizontal meridian jumped vertically during the saccade (resulting in an endpoint error), the adaptive response exhibited two timescales: a fast timescale that learned quickly from endpoint error but had poor retention, and a slow timescale that learned slowly but had strong retention. With cortical cerebellar damage, the fast timescale of adaptation was effectively absent, but the slow timescale was less impaired. Therefore the cerebellum corrects for variability in the motor commands that initiate saccades within the same movement via an adaptive response that not only exhibits strong sensitivity to previous endpoint errors, but also rapid forgetting.
doi:10.1523/JNEUROSCI.3115-09.2009
PMCID: PMC2994243  PMID: 19828807
saccade adaptation; forward model; SCA-6; fatigue; saccade repetition; saccade kinematics; repetition attenuation
16.  Oculomotor evidence for neocortical systems but not cerebellar dysfunction in autism 
Neurology  1999;52(5):917-922.
Objective
To investigate the functional integrity of cerebellar and frontal system in autism using oculomotor paradigms.
Background
Cerebellar and neocortical systems models of autism have been proposed. Courchesne and colleagues have argued that cognitive deficits such as shifting attention disturbances result from dysfunction of vermal lobules VI and VII. Such a vermal deficit should be associated with dysmetric saccadic eye movements because of the major role these areas play in guiding the motor precision of saccades. In contrast, neocortical models of autism predict intact saccade metrics, but impairments on tasks requiring the higher cognitive control of saccades.
Methods
A total of 26 rigorously diagnosed nonmentally retarded autistic subjects and 26 matched healthy control subjects were assessed with a visually guided saccade task and two volitional saccade tasks, the oculomotor delayed-response task and the antisaccade task.
Results
Metrics and dynamic of the visually guided saccades were normal in autistic subjects, documenting the absence of disturbances in cerebellar vermal lobules VI and VII and in automatic shifts of visual attention. Deficits were demonstrated on both volitional saccade tasks, indicating dysfunction in the circuitry of prefrontal cortex and its connections with the parietal cortex, and associated cognitive impairments in spatial working memory and in the ability to voluntarily suppress context-inappropriate responses.
Conclusions
These findings demonstrate intrinsic neocortical, not cerebellar, dysfunction in autism, and parallel deficits in higher order cognitive mechanisms and not in elementary attentional and sensorimotor systems in autism.
PMCID: PMC2995853  PMID: 10102406
17.  Tremorgenesis: a new conceptual scheme using reciprocally innervated circuit of neurons 
Neural circuits controlling fast movements are inherently unsteady as a result of their reciprocal innervation. This instability is enhanced by increased membrane excitability. Recent studies indicate that the loss of external inhibition is an important factor in the pathogenesis of several tremor disorders such as essential tremor, cerebellar kinetic tremor or parkinsonian tremor. Shaikh and colleagues propose a new conceptual scheme to analyze tremor disorders. Oscillations are simulated by changing the intrinsic membrane properties of burst neurons. The authors use a model neuron of Hodgkin-Huxley type with added hyperpolarization activated cation current (Ih), low threshold calcium current (It), and GABA/glycine mediated chloride currents. Post-inhibitory rebound is taken into account. The model includes a reciprocally innervated circuit of neurons projecting to pairs of agonist and antagonist muscles. A set of four burst neurons has been simulated: inhibitory agonist, inhibitory antagonist, excitatory agonist, and excitatory antagonist. The model fits well with the known anatomical organization of neural circuits for limb movements in premotor/motor areas, and, interestingly, this model does not require any structural modification in the anatomical organization or connectivity of the constituent neurons. The authors simulate essential tremor when Ih is increased. Membrane excitability is augmented by up-regulating Ih and It. A high level of congruence with the recordings made in patients exhibiting essential tremor is reached. These simulations support the hypothesis that increased membrane excitability in potentially unsteady circuits generate oscillations mimicking tremor disorders encountered in daily practice. This new approach opens new perspectives for both the understanding and the treatment of neurological tremor. It provides the rationale for decreasing membrane excitability by acting on a normal ion channel in a context of impaired external inhibition.
doi:10.1186/1479-5876-6-71
PMCID: PMC2607264  PMID: 19036142
18.  The role of auditory feedback in sustaining vocal vibratoa) 
Vocal vibrato and tremor are characterized by oscillations in voice fundamental frequency (F0). These oscillations may be sustained by a control loop within the auditory system. One component of the control loop is the pitch-shift reflex (PSR). The PSR is a closed loop negative feedback reflex that is triggered in response to discrepancies between intended and perceived pitch with a latency of ~ 100 ms. Consecutive compensatory reflexive responses lead to oscillations in pitch every ~200 ms, resulting in ~5-Hz modulation of F0. Pitch-shift reflexes were elicited experimentally in six subjects while they sustained /u/ vowels at a comfortable pitch and loudness. Auditory feedback was sinusoidally modulated at discrete integer frequencies (1 to 10 Hz) with ±25 cents amplitude. Modulated auditory feedback induced oscillations in voice F0 output of all subjects at rates consistent with vocal vibrato and tremor. Transfer functions revealed peak gains at 4 to 7 Hz in all subjects, with an average peak gain at 5 Hz. These gains occurred in the modulation frequency region where the voice output and auditory feedback signals were in phase. A control loop in the auditory system may sustain vocal vibrato and tremorlike oscillations in voice F0.
doi:10.1121/1.1603230
PMCID: PMC1769352  PMID: 14514211
19.  Modeling and Automatic Feedback Control of Tremor: Adaptive Estimation of Deep Brain Stimulation 
PLoS ONE  2013;8(4):e62888.
This paper discusses modeling and automatic feedback control of (postural and rest) tremor for adaptive-control-methodology-based estimation of deep brain stimulation (DBS) parameters. The simplest linear oscillator-based tremor model, between stimulation amplitude and tremor, is investigated by utilizing input-output knowledge. Further, a nonlinear generalization of the oscillator-based tremor model, useful for derivation of a control strategy involving incorporation of parametric-bound knowledge, is provided. Using the Lyapunov method, a robust adaptive output feedback control law, based on measurement of the tremor signal from the fingers of a patient, is formulated to estimate the stimulation amplitude required to control the tremor. By means of the proposed control strategy, an algorithm is developed for estimation of DBS parameters such as amplitude, frequency and pulse width, which provides a framework for development of an automatic clinical device for control of motor symptoms. The DBS parameter estimation results for the proposed control scheme are verified through numerical simulations.
doi:10.1371/journal.pone.0062888
PMCID: PMC3634768  PMID: 23638163
20.  Quantifying the effects of the electrode-brain interface on the crossing electric currents in deep brain recording and stimulation 
Neuroscience  2008;152(3):683-691.
A depth electrode-brain interface (EBI) is formed once electrodes are implanted into the brain. We investigated the impact of the EBI on the crossing electric currents during both deep brain recording (DBR) and deep brain stimulation (DBS) over the acute, chronic and transitional stages post-implantation, in order to investigate and quantify the effect which changes at the EBI have on both DBR and DBS. We combined two complementary methods: (1) physiological recording of local field potentials via the implanted electrode in patients; and (2) computational simulations of an EBI model. Our depth recordings revealed that the physiological modulation of the EBI in the acute stage via brain pulsation selectively affected the crossing neural signals in a frequency-dependent manner, as the amplitude of the electrode potential was inversely correlated with that of the tremor-related oscillation, but not the beta oscillation. Computational simulations of DBS during the transitional period showed that the shielding effect of partial giant cell growth on the injected current could shape the field in an unpredictable manner. These results quantitatively demonstrated that physiological modulation of the EBI significantly affected the crossing currents in both DBR and DBS. Studying the microenvironment of the EBI may be a key step in investigating the mechanisms of DBR and DBS, as well as brain-computer interactions in general.
doi:10.1016/j.neuroscience.2008.01.023
PMCID: PMC2729990  PMID: 18304747
Local field potentials; Computational simulation; Finite element model
21.  Long term size-increasing adaptation of saccades in macaques 
Neuroscience  2012;224C:38-47.
Motor learning adjusts movement size and direction to keep movements accurate. A useful model of motor learning, saccade adaptation, uses intra-saccade target movement to make saccades seem inaccurate and elicit adaptive changes in saccades. In the most studied saccade adaptation procedure, which we call short-term saccade adaptation (STSA), monkeys decrease or increase the size of their saccades by tracking 1000 – 2000 adapting target movements in a single saccade session. STSA elicits rapid changes of limited size and duration. Larger, more persistent reduction in saccade size results from adapting saccades daily for 19 days, a procedure that we call long-term saccade adaptation (LTSA). LTSA mimics the demands of rehabilitation more closely than does STSA and, unlike STSA, produces changes that could maintain long-term accuracy. Previous work describes LTSA that reduces saccade size in monkeys. Though convenient to study, size-reducing LTSA is not a good model for rehabilitation because few injuries necessitate making movements smaller. Here we characterize size-increasing LTSA and compare it, in the same monkeys, to size-reducing LTSA. We found that size-increasing LTSA can double saccade gain in ~21 days, and is slower than size-decreasing LTSA. In contrast to a single size-decreasing STSA, a single size-increasing STSA does not prevent additional saccade size increase at the normal rate when a monkey continues to track adapting target movements. We conclude that size-increasing LTSA is slower than size-decreasing LTSA but can make larger changes in saccade size. Size-increasing and size-decreasing LTSA use distinct mechanisms with different performance characteristics.
doi:10.1016/j.neuroscience.2012.08.012
PMCID: PMC3468708  PMID: 22902543
long term saccade adaptation; gain; eye movements; macaque
22.  Gravitational force modulates muscle activity during mechanical oscillation of the tibia in humans 
Mechanical oscillation (vibration) is an osteogenic stimulus for bone in animal models and may hold promise as an anti-osteoporosis measure in humans with spinal cord injury (SCI). However, the level of reflex induced muscle contractions associated with various loads (g force) during limb segment oscillation is uncertain. The purpose of this study was to determine whether certain gravitational loads (g forces) at a fixed oscillation frequency (30 Hz) increases muscle reflex activity in individuals with and without SCI. Nine healthy subjects and two individuals with SCI sat with their hip and knee joints at 90° and the foot secured on an oscillation platform. Vertical mechanical oscillations were introduced at 0.3, 0.6, 1.2, 3 and 5g force for 20 seconds at 30 Hz. Non-SCI subjects received the oscillation with and without a 5% MVC background contraction. Peak soleus and tibialis anterior (TA) EMG were normalized to M-max. Soleus and TA EMG were < 2.5% of M-max in both SCI and non-SCI subjects. The greatest EMG occurred at the highest acceleration (5g). Low magnitude mechanical oscillation, shown to enhance bone anabolism in animal models, did not elicit high levels of reflex muscle activity in individuals with and without SCI. These findings support the g force modulated background muscle activity during fixed frequency vibration. The magnitude of muscle activity was low and likely does not influence the load during fixed frequency oscillation of the tibia.
doi:10.1016/j.jelekin.2011.06.001
PMCID: PMC3355375  PMID: 21708472
Mechanical oscillation; Reflex; Spinal cord injury
23.  Propagating wave and irregular dynamics: Spatiotemporal patterns of cholinergic theta oscillations in neocortex, in vitro 
Journal of neurophysiology  2003;90(1):333-341.
Neocortical “theta” oscillation (5- 12 Hz) has been observed in animals and human subjects but little is known about how the oscillation is organized in the cortical intrinsic networks. Here we use voltage-sensitive dye and optical imaging to study a carbachol/bicuculline induced theta (~8 Hz) oscillation in rat neocortical slices. The imaging has large signal-to-noise ratio, allowing us to map the phase distribution over the neocortical tissue during the oscillation. The oscillation was organized as spontaneous epochs and each epoch was composed of a “first spike”, a “regular” period (with relatively stable frequency and amplitude) and an “irregular” period (with variable frequency and amplitude) of oscillations. During each cycle of the regular oscillation one wave of activation propagated horizontally (parallel to the cortical lamina) across the cortical section at a velocity of ~50 mm/sec. Vertically the activity was synchronized through all cortical layers. This pattern of one propagating wave associated with one oscillation cycle was seen during all the regular cycles. The oscillation frequency varied noticeably at two neighboring horizontal locations (330 μm apart), suggesting that the oscillation is locally organized and each local oscillator is about equal or less than 300 μm wide horizontally. During irregular oscillations the spatiotemporal patterns were complex and sometimes the vertical synchronization decomposed, suggesting a de-coupling among local oscillators. Our data suggested that neocortical theta oscillation is sustained by multiple local oscillators. The coupling regime among the oscillators may determine the spatiotemporal pattern and switching between propagating waves and irregular patterns.
doi:10.1152/jn.00715.2002
PMCID: PMC2941800  PMID: 12612003
Voltage-sensitive dye; optical recordings; brain slice; acetyl choline; carbachol
24.  The Saccadic and Neurological Deficits in Type 3 Gaucher Disease 
PLoS ONE  2011;6(7):e22410.
Our objective was to characterize the saccadic eye movements in patients with type 3 Gaucher disease (chronic neuronopathic) in relationship to neurological and neurophysiological abnormalities. For approximately 4 years, we prospectively followed a cohort of 15 patients with Gaucher type 3, ages 8–28 years, by measuring saccadic eye movements using the scleral search coil method. We found that patients with type 3 Gaucher disease had a significantly higher regression slope of duration vs amplitude and peak duration vs amplitude compared to healthy controls for both horizontal and vertical saccades. Saccadic latency was significantly increased for horizontal saccades only. Downward saccades were more affected than upward saccades. Saccade abnormalities increased over time in some patients reflecting the slowly progressive nature of the disease. Phase plane plots showed individually characteristic patterns of abnormal saccade trajectories. Oculo-manual dexterity scores on the Purdue Pegboard test were low in virtually all patients, even in those with normal cognitive function. Vertical saccade peak duration vs amplitude slope significantly correlated with IQ and with the performance on the Purdue Pegboard but not with the brainstem and somatosensory evoked potentials. We conclude that, in patients with Gaucher disease type 3, saccadic eye movements and oculo-manual dexterity are representative neurological functions for longitudinal studies and can probably be used as endpoints for therapeutic clinical trials.
Trial Registration
ClinicalTrials.gov NCT00001289
doi:10.1371/journal.pone.0022410
PMCID: PMC3140522  PMID: 21799847
25.  Visual Fixation in Chiari Type II Malformation 
Journal of child neurology  2009;24(2):161-165.
Chiari type II malformation is a congenital deformity of the hindbrain. Square wave jerks are horizontal involuntary saccades that interrupt fixation. Cerebellar disorders may be associated with frequent square wave jerks or saccadic oscillations such as ocular flutter. The effects of Chiari type II malformation on visual fixation are unknown. We recorded eye movements using an eye tracker in 21 participants with Chiari type II malformation, aged 8 to 19 years while they fixated a target for 1 minute. Thirty-eight age-matched healthy participants served as controls. Square wave jerks’ parameters were similar in the 2 groups. Saccadic oscillations were not seen. Chiari type II malformation is not associated with pathological square wave jerks or abnormal saccadic oscillations. The congenital nature of this deformity may permit compensation that preserves stable visual fixation. Alternatively, the deformity of Chiari type II malformation may spare parts of the cerebellum that usually cause fixation instability when damaged.
doi:10.1177/0883073808322326
PMCID: PMC3050044  PMID: 19182152
visual fixation; square wave jerks; saccadic intrusions; saccadic oscillations; Chiari type II malformation

Results 1-25 (445267)