Search tips
Search criteria

Results 1-25 (1298892)

Clipboard (0)

Related Articles

1.  Nuclear Receptor Expression Defines a Set of Prognostic Biomarkers for Lung Cancer 
PLoS Medicine  2010;7(12):e1000378.
David Mangelsdorf and colleagues show that nuclear receptor expression is strongly associated with clinical outcomes of lung cancer patients, and this expression profile is a potential prognostic signature for lung cancer patient survival time, particularly for individuals with early stage disease.
The identification of prognostic tumor biomarkers that also would have potential as therapeutic targets, particularly in patients with early stage disease, has been a long sought-after goal in the management and treatment of lung cancer. The nuclear receptor (NR) superfamily, which is composed of 48 transcription factors that govern complex physiologic and pathophysiologic processes, could represent a unique subset of these biomarkers. In fact, many members of this family are the targets of already identified selective receptor modulators, providing a direct link between individual tumor NR quantitation and selection of therapy. The goal of this study, which begins this overall strategy, was to investigate the association between mRNA expression of the NR superfamily and the clinical outcome for patients with lung cancer, and to test whether a tumor NR gene signature provided useful information (over available clinical data) for patients with lung cancer.
Methods and Findings
Using quantitative real-time PCR to study NR expression in 30 microdissected non-small-cell lung cancers (NSCLCs) and their pair-matched normal lung epithelium, we found great variability in NR expression among patients' tumor and non-involved lung epithelium, found a strong association between NR expression and clinical outcome, and identified an NR gene signature from both normal and tumor tissues that predicted patient survival time and disease recurrence. The NR signature derived from the initial 30 NSCLC samples was validated in two independent microarray datasets derived from 442 and 117 resected lung adenocarcinomas. The NR gene signature was also validated in 130 squamous cell carcinomas. The prognostic signature in tumors could be distilled to expression of two NRs, short heterodimer partner and progesterone receptor, as single gene predictors of NSCLC patient survival time, including for patients with stage I disease. Of equal interest, the studies of microdissected histologically normal epithelium and matched tumors identified expression in normal (but not tumor) epithelium of NGFIB3 and mineralocorticoid receptor as single gene predictors of good prognosis.
NR expression is strongly associated with clinical outcomes for patients with lung cancer, and this expression profile provides a unique prognostic signature for lung cancer patient survival time, particularly for those with early stage disease. This study highlights the potential use of NRs as a rational set of therapeutically tractable genes as theragnostic biomarkers, and specifically identifies short heterodimer partner and progesterone receptor in tumors, and NGFIB3 and MR in non-neoplastic lung epithelium, for future detailed translational study in lung cancer.
Please see later in the article for the Editors' Summary
Editors' Summary
Lung cancer, the most common cause of cancer-related death, kills 1.3 million people annually. Most lung cancers are “non-small-cell lung cancers” (NSCLCs), and most are caused by smoking. Exposure to chemicals in smoke causes changes in the genes of the cells lining the lungs that allow the cells to grow uncontrollably and to move around the body. How NSCLC is treated and responds to treatment depends on its “stage.” Stage I tumors, which are small and confined to the lung, are removed surgically, although chemotherapy is also sometimes given. Stage II tumors have spread to nearby lymph nodes and are treated with surgery and chemotherapy, as are some stage III tumors. However, because cancer cells in stage III tumors can be present throughout the chest, surgery is not always possible. For such cases, and for stage IV NSCLC, where the tumor has spread around the body, patients are treated with chemotherapy alone. About 70% of patients with stage I and II NSCLC but only 2% of patients with stage IV NSCLC survive for five years after diagnosis; more than 50% of patients have stage IV NSCLC at diagnosis.
Why Was This Study Done?
Patient responses to treatment vary considerably. Oncologists (doctors who treat cancer) would like to know which patients have a good prognosis (are likely to do well) to help them individualize their treatment. Consequently, the search is on for “prognostic tumor biomarkers,” molecules made by cancer cells that can be used to predict likely clinical outcomes. Such biomarkers, which may also be potential therapeutic targets, can be identified by analyzing the overall pattern of gene expression in a panel of tumors using a technique called microarray analysis and looking for associations between the expression of sets of genes and clinical outcomes. In this study, the researchers take a more directed approach to identifying prognostic biomarkers by investigating the association between the expression of the genes encoding nuclear receptors (NRs) and clinical outcome in patients with lung cancer. The NR superfamily contains 48 transcription factors (proteins that control the expression of other genes) that respond to several hormones and to diet-derived fats. NRs control many biological processes and are targets for several successful drugs, including some used to treat cancer.
What Did the Researchers Do and Find?
The researchers analyzed the expression of NR mRNAs using “quantitative real-time PCR” in 30 microdissected NSCLCs and in matched normal lung tissue samples (mRNA is the blueprint for protein production). They then used an approach called standard classification and regression tree analysis to build a prognostic model for NSCLC based on the expression data. This model predicted both survival time and disease recurrence among the patients from whom the tumors had been taken. The researchers validated their prognostic model in two large independent lung adenocarcinoma microarray datasets and in a squamous cell carcinoma dataset (adenocarcinomas and squamous cell carcinomas are two major NSCLC subtypes). Finally, they explored the roles of specific NRs in the prediction model. This analysis revealed that the ability of the NR signature in tumors to predict outcomes was mainly due to the expression of two NRs—the short heterodimer partner (SHP) and the progesterone receptor (PR). Expression of either gene could be used as a single gene predictor of the survival time of patients, including those with stage I disease. Similarly, the expression of either nerve growth factor induced gene B3 (NGFIB3) or mineralocorticoid receptor (MR) in normal tissue was a single gene predictor of a good prognosis.
What Do These Findings Mean?
These findings indicate that the expression of NR mRNA is strongly associated with clinical outcomes in patients with NSCLC. Furthermore, they identify a prognostic NR expression signature that provides information on the survival time of patients, including those with early stage disease. The signature needs to be confirmed in more patients before it can be used clinically, and researchers would like to establish whether changes in mRNA expression are reflected in changes in protein expression if NRs are to be targeted therapeutically. Nevertheless, these findings highlight the potential use of NRs as prognostic tumor biomarkers. Furthermore, they identify SHP and PR in tumors and two NRs in normal lung tissue as molecules that might provide new targets for the treatment of lung cancer and new insights into the early diagnosis, pathogenesis, and chemoprevention of lung cancer.
Additional Information
Please access these Web sites via the online version of this summary at
The Nuclear Receptor Signaling Atlas (NURSA) is consortium of scientists sponsored by the US National Institutes of Health that provides scientific reagents, datasets, and educational material on nuclear receptors and their co-regulators to the scientific community through a Web-based portal
The Cancer Prevention and Research Institute of Texas (CPRIT) provides information and resources to anyone interested in the prevention and treatment of lung and other cancers
The US National Cancer Institute provides detailed information for patients and professionals about all aspects of lung cancer, including information on non-small-cell carcinoma and on tumor markers (in English and Spanish)
Cancer Research UK also provides information about lung cancer and information on how cancer starts
MedlinePlus has links to other resources about lung cancer (in English and Spanish)
Wikipedia has a page on nuclear receptors (note that Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
PMCID: PMC3001894  PMID: 21179495
2.  Aberrant DNA Methylation of OLIG1, a Novel Prognostic Factor in Non-Small Cell Lung Cancer 
PLoS Medicine  2007;4(3):e108.
Lung cancer is the leading cause of cancer-related death worldwide. Currently, tumor, node, metastasis (TNM) staging provides the most accurate prognostic parameter for patients with non-small cell lung cancer (NSCLC). However, the overall survival of patients with resectable tumors varies significantly, indicating the need for additional prognostic factors to better predict the outcome of the disease, particularly within a given TNM subset.
Methods and Findings
In this study, we investigated whether adenocarcinomas and squamous cell carcinomas could be differentiated based on their global aberrant DNA methylation patterns. We performed restriction landmark genomic scanning on 40 patient samples and identified 47 DNA methylation targets that together could distinguish the two lung cancer subgroups. The protein expression of one of those targets, oligodendrocyte transcription factor 1 (OLIG1), significantly correlated with survival in NSCLC patients, as shown by univariate and multivariate analyses. Furthermore, the hazard ratio for patients negative for OLIG1 protein was significantly higher than the one for those patients expressing the protein, even at low levels.
Multivariate analyses of our data confirmed that OLIG1 protein expression significantly correlates with overall survival in NSCLC patients, with a relative risk of 0.84 (95% confidence interval 0.77–0.91, p < 0.001) along with T and N stages, as indicated by a Cox proportional hazard model. Taken together, our results suggests that OLIG1 protein expression could be utilized as a novel prognostic factor, which could aid in deciding which NSCLC patients might benefit from more aggressive therapy. This is potentially of great significance, as the addition of postoperative adjuvant chemotherapy in T2N0 NSCLC patients is still controversial.
Christopher Plass and colleagues find thatOLIG1 expression correlates with survival in lung cancer patients and suggest that it could be used in deciding which patients are likely to benefit from more aggressive therapy.
Editors' Summary
Lung cancer is the commonest cause of cancer-related death worldwide. Most cases are of a type called non-small cell lung cancer (NSCLC). Like other cancers, treatment of NCSLC depends on the “TNM stage” at which the cancer is detected. Staging takes into account the size and local spread of the tumor (its T classification), whether nearby lymph nodes contain tumor cells (its N classification), and whether tumor cells have spread (metastasized) throughout the body (its M classification). Stage I tumors are confined to the lung and are removed surgically. Stage II tumors have spread to nearby lymph nodes and are treated with a combination of surgery and chemotherapy. Stage III tumors have spread throughout the chest, and stage IV tumors have metastasized around the body; patients with both of these stages are treated with chemotherapy alone. About 70% of patients with stage I or II lung cancer, but only 2% of patients with stage IV lung cancer, survive for five years after diagnosis.
Why Was This Study Done?
TNM staging is the best way to predict the likely outcome (prognosis) for patients with NSCLC, but survival times for patients with stage I and II tumors vary widely. Another prognostic marker—maybe a “molecular signature”—that could distinguish patients who are likely to respond to treatment from those whose cancer will inevitably progress would be very useful. Unlike normal cells, cancer cells divide uncontrollably and can move around the body. These behavioral changes are caused by alterations in the pattern of proteins expressed by the cells. But what causes these alterations? The answer in some cases is “epigenetic changes” or chemical modifications of genes. In cancer cells, methyl groups are aberrantly added to GC-rich gene regions. These so-called “CpG islands” lie near gene promoters (sequences that control the transcription of DNA into mRNA, the template for protein production), and their methylation stops the promoters working and silences the gene. In this study, the researchers have investigated whether aberrant methylation patterns vary between NSCLC subtypes and whether specific aberrant methylations are associated with survival and can, therefore, be used prognostically.
What Did the Researchers Do and Find?
The researchers used “restriction landmark genomic scanning” (RLGS) to catalog global aberrant DNA methylation patterns in human lung tumor samples. In RLGS, DNA is cut into fragments with a restriction enzyme (a protein that cuts at specific DNA sequences), end-labeled, and separated using two-dimensional gel electrophoresis to give a pattern of spots. Because methylation stops some restriction enzymes cutting their target sequence, normal lung tissue and lung tumor samples yield different patterns of spots. The researchers used these patterns to identify 47 DNA methylation targets (many in CpG islands) that together distinguished between adenocarcinomas and squamous cell carcinomas, two major types of NSCLCs. Next, they measured mRNA production from the genes with the greatest difference in methylation between adenocarcinomas and squamous cell carcinomas. OLIG1 (the gene that encodes a protein involved in nerve cell development) had one of the highest differences in mRNA production between these tumor types. Furthermore, three-quarters of NSCLCs had reduced or no expression of OLIG1 protein and, when the researchers analyzed the association between OLIG1 protein expression and overall survival in patients with NSCLC, reduced OLIG1 protein expression was associated with reduced survival.
What Do These Findings Mean?
These findings indicate that different types of NSCLC can be distinguished by examining their aberrant methylation patterns. This suggests that the establishment of different DNA methylation patterns might be related to the cell type from which the tumors developed. Alternatively, the different aberrant methylation patterns might reflect the different routes that these cells take to becoming tumor cells. This research identifies a potential new prognostic marker for NSCLC by showing that OLIG1 protein expression correlates with overall survival in patients with NSCLC. This correlation needs to be tested in a clinical setting to see if adding OLIG1 expression to the current prognostic parameters can lead to better treatment choices for early-stage lung cancer patients and ultimately improve these patients' overall survival.
Additional Information.
Please access these Web sites via the online version of this summary at
Patient and professional information on lung cancer, including staging (in English and Spanish), is available from the US National Cancer Institute
The MedlinePlus encyclopedia has pages on non-small cell lung cancer (in English and Spanish)
Cancerbackup provides patient information on lung cancer
CancerQuest, provided by Emory University, has information about how cancer develops (in English, Spanish, Chinese and Russian)
Wikipedia pages on epigenetics (note that Wikipedia is a free online encyclopedia that anyone can edit)
The Epigenome Network of Excellence gives background information and the latest news about epigenetics (in several European languages)
PMCID: PMC1831740  PMID: 17388669
3.  A Gene Expression Signature Predicts Survival of Patients with Stage I Non-Small Cell Lung Cancer 
PLoS Medicine  2006;3(12):e467.
Lung cancer is the leading cause of cancer-related death in the United States. Nearly 50% of patients with stages I and II non-small cell lung cancer (NSCLC) will die from recurrent disease despite surgical resection. No reliable clinical or molecular predictors are currently available for identifying those at high risk for developing recurrent disease. As a consequence, it is not possible to select those high-risk patients for more aggressive therapies and assign less aggressive treatments to patients at low risk for recurrence.
Methods and Findings
In this study, we applied a meta-analysis of datasets from seven different microarray studies on NSCLC for differentially expressed genes related to survival time (under 2 y and over 5 y). A consensus set of 4,905 genes from these studies was selected, and systematic bias adjustment in the datasets was performed by distance-weighted discrimination (DWD). We identified a gene expression signature consisting of 64 genes that is highly predictive of which stage I lung cancer patients may benefit from more aggressive therapy. Kaplan-Meier analysis of the overall survival of stage I NSCLC patients with the 64-gene expression signature demonstrated that the high- and low-risk groups are significantly different in their overall survival. Of the 64 genes, 11 are related to cancer metastasis (APC, CDH8, IL8RB, LY6D, PCDHGA12, DSP, NID, ENPP2, CCR2, CASP8, and CASP10) and eight are involved in apoptosis (CASP8, CASP10, PIK3R1, BCL2, SON, INHA, PSEN1, and BIK).
Our results indicate that gene expression signatures from several datasets can be reconciled. The resulting signature is useful in predicting survival of stage I NSCLC and might be useful in informing treatment decisions.
Meta-analysis of several lung cancer gene expression studies yields a set of 64 genes whose expression profile is useful in predicting survival of patients with early-stage lung cancer and possibly informing treatment decisions.
Editors' Summary
Lung cancer is the commonest cause of cancer-related death worldwide. Most cases are of a type called non-small cell lung cancer (NSCLC) and are mainly caused by smoking. Like other cancers, how NSCLC is treated depends on the “stage” at which it is detected. Stage IA NSCLCs are small and confined to the lung and can be removed surgically; patients with slightly larger stage IB tumors often receive chemotherapy after surgery. In stage II NSCLC, cancer cells may be present in lymph nodes near the tumor. Surgery plus chemotherapy is the usual treatment for this stage and for some stage III NSCLCs. However, in this stage, the tumor can be present throughout the chest and surgery is not always possible. For such cases and in stage IV NSCLC, where the tumor has spread throughout the body, patients are treated with chemotherapy alone. The stage at which NSCLC is detected also determines how well patients respond to treatment. Those who can be treated surgically do much better than those who can't. So, whereas only 2% of patients with stage IV lung cancer survive for 5 years after diagnosis, about 70% of patients with stage I or II lung cancer live at least this long.
Why Was This Study Done?
Even stage I and II lung cancers often recur and there is no accurate way to identify the patients in which this will happen. If there was, these patients could be given aggressive chemotherapy, so the search is on for a “molecular signature” to help identify which NSCLCs are likely to recur. Unlike normal cells, cancer cells divide uncontrollably and can move around the body. These behavioral differences are caused by changes in their genetic material that alter their patterns of RNA transcription and protein expression. In this study, the researchers have investigated whether data from several microarray studies (a technique used to catalog the genes expressed in cells) can be pooled to construct a gene expression signature that predicts the survival of patients with stage I NSCLC.
What Did the Researchers Do and Find?
The researchers took the data from seven independent microarray studies (including a new study of their own) that recorded gene expression profiles related to survival time (less than 2 years and greater than 5 years) for stage I NSCLC. Because these studies had been done in different places with slightly different techniques, the researchers applied a statistical tool called distance-weighted discrimination to smooth out any systematic differences among the studies before identifying 64 genes whose expression was associated with survival. Most of these genes are involved in cell adhesion, cell motility, cell proliferation, and cell death, all processes that are altered in cancer cells. The researchers then developed a statistical model that allowed them to use the gene expression and survival data to calculate risk scores for nearly 200 patients in five of the datasets. When they separated the patients into high and low risk groups on the basis of these scores, the two groups were significantly different in terms of survival time. Indeed, the gene expression signature was better at predicting outcome than routine staging. Finally, the researchers validated the gene expression signature by showing that it predicted survival with more than 85% accuracy in two independent datasets.
What Do These Findings Mean?
The 64 gene expression signature identified here could help clinicians prepare treatment plans for patients with stage I NSCLC. Because it accurately predicts survival in patients with adenocarcinoma or squamous cell cancer (the two major subtypes of NSCLC), it potentially indicates which of these patients should receive aggressive chemotherapy and which can be spared this unpleasant treatment. Previous attempts to establish gene expression signatures to predict outcome have used data from small groups of patients and have failed when tested in additional patients. In contrast, this new signature seems to be generalizable. Nevertheless, its ability to predict outcomes must be confirmed in further studies before it is routinely adopted by oncologists for treatment planning.
Additional Information.
Please access these Web sites via the online version of this summary at
US National Cancer Institute information on lung cancer for patients and health professionals.
MedlinePlus encyclopedia entries on small-cell and non-small-cell lung cancer.
Cancer Research UK, information on patients about all aspects of lung cancer.
Wikipedia pages on DNA microarrays and expression profiling (note that Wikipedia is a free online encyclopedia that anyone can edit).
PMCID: PMC1716187  PMID: 17194181
4.  Dysfunctional KEAP1–NRF2 Interaction in Non-Small-Cell Lung Cancer 
PLoS Medicine  2006;3(10):e420.
Nuclear factor erythroid-2 related factor 2 (NRF2) is a redox-sensitive transcription factor that positively regulates the expression of genes encoding antioxidants, xenobiotic detoxification enzymes, and drug efflux pumps, and confers cytoprotection against oxidative stress and xenobiotics in normal cells. Kelch-like ECH-associated protein 1 (KEAP1) negatively regulates NRF2 activity by targeting it to proteasomal degradation. Increased expression of cellular antioxidants and xenobiotic detoxification enzymes has been implicated in resistance of tumor cells against chemotherapeutic drugs.
Methods and Findings
Here we report a systematic analysis of the KEAP1 genomic locus in lung cancer patients and cell lines that revealed deletion, insertion, and missense mutations in functionally important domains of KEAP1 and a very high percentage of loss of heterozygosity at 19p13.2, suggesting that biallelic inactivation of KEAP1 in lung cancer is a common event. Sequencing of KEAP1 in 12 cell lines and 54 non-small-cell lung cancer (NSCLC) samples revealed somatic mutations in KEAP1 in a total of six cell lines and ten tumors at a frequency of 50% and 19%, respectively. All the mutations were within highly conserved amino acid residues located in the Kelch or intervening region domain of the KEAP1 protein, suggesting that these mutations would likely abolish KEAP1 repressor activity. Evaluation of loss of heterozygosity at 19p13.2 revealed allelic losses in 61% of the NSCLC cell lines and 41% of the tumor samples. Decreased KEAP1 activity in cancer cells induced greater nuclear accumulation of NRF2, causing enhanced transcriptional induction of antioxidants, xenobiotic metabolism enzymes, and drug efflux pumps.
This is the first study to our knowledge to demonstrate that biallelic inactivation of KEAP1 is a frequent genetic alteration in NSCLC. Loss of KEAP1 function leading to constitutive activation of NRF2-mediated gene expression in cancer suggests that tumor cells manipulate the NRF2 pathway for their survival against chemotherapeutic agents.
Biallelic inactivation ofKEAP1, a frequent genetic alteration in NSCLC, is associated with activation of the NRF2 pathway which leads to expression of genes that contribute to resistance against chemotherapeutic drugs.
Editors' Summary
Lung cancer is the most common cause of cancer-related death worldwide. More than 150,000 people in the US alone die every year from this disease, which can be split into two basic types—small cell lung cancer and non-small-cell lung cancer (NSCLC). Four out of five lung cancers are NSCLCs, but both types are mainly caused by smoking. Exposure to chemicals in smoke produces changes (or mutations) in the genetic material of the cells lining the lungs that cause the cells to grow uncontrollably and to move around the body. In more than half the people who develop NSCLC, the cancer has spread out of the lungs before it is diagnosed, and therefore can't be removed surgically. Stage IV NSCLC, as this is known, is usually treated with chemotherapy—toxic chemicals that kill the fast-growing cancer cells. However, only 2% of people with stage IV NSCLC are still alive two years after their diagnosis, mainly because their cancer cells become resistant to chemotherapy. They do this by making proteins that destroy cancer drugs (detoxification enzymes) or that pump them out of cells (efflux pumps) and by making antioxidants, chemicals that protect cells against the oxidative damage caused by many chemotherapy agents.
Why Was This Study Done?
To improve the outlook for patients with lung cancer, researchers need to discover exactly how cancer cells become resistant to chemotherapy drugs. Detoxification enzymes, efflux pumps, and antioxidants normally protect cells from environmental toxins and from oxidants produced by the chemical processes of life. Their production is regulated by nuclear factor erythroid-2 related factor 2 (NRF2). The activity of this transcription factor (a protein that controls the expression of other proteins) is controlled by the protein Kelch-like ECH-associated protein 1 (KEAP1). KEAP1 holds NRF2 in the cytoplasm of the cell (the cytoplasm surrounds the cell's nucleus, where the genetic material is stored) when no oxidants are present and targets it for destruction. When oxidants are present, KEAP1 no longer interacts with NRF2, which moves into the nucleus and induces the expression of the proteins that protect the cell against oxidants and toxins. In this study, the researchers investigated whether changes in KEAP1 might underlie the drug resistance seen in lung cancer.
What Did the Researchers Do and Find?
The researchers looked carefully at the gene encoding KEAP1 in tissue taken from lung tumors and in several lung cancer cell lines—tumor cells that have been grown in a laboratory. They found mutations in parts of KEAP1 known to be important for its function in half the cell lines and a fifth of the tumor samples. They also found that about half of the samples had lost part of one copy of the KEAP1 gene—cells usually have two copies of each gene. Five of the six tumors with KEAP1 mutations had also lost one copy of KEAP1—geneticists call this biallelic inactivation. This means that these tumors should have no functional KEAP1. When the researchers checked this by staining the tumors for NRF2, they found that the tumor cells had more NRF2 than normal cells and that it accumulated in the nucleus. In addition, the tumor cells made more detoxification enzymes, efflux proteins, and antioxidants than normal cells. Finally, the researchers showed that lung cancer cells with KEAP1 mutations were more resistant to chemotherapy drugs than normal lung cells were.
What Do These Findings Mean?
These results indicate that biallelic inactivation of KEAP1 is a frequent genetic alteration in NSCLC and suggest that the loss of KEAP1 activity is one way that lung tumors can increase their NRF2 activity and develop resistance to chemotherapeutic drugs. More lung cancer samples need to be examined to confirm this result, and similar studies need to be done in other cancers to see whether loss of KEAP1 activity is a common mechanism by which tumors become resistant to chemotherapy. If such studies confirm that high NRF2 activity (either through mutation or by some other route) is often associated with a poor tumor response to chemotherapy, then the development of NRF2 inhibitors might help to improve treatment outcomes in patients with chemotherapy-resistant tumors.
Additional Information.
Please access these Web sites via the online version of this summary at
US National Cancer Institute information on lung cancer and on cancer treatment
MedlinePlus entries on small cell lung cancer and NSCLC Cancer Research UK information on lung cancer
Wikipedia entries on lung cancer and chemotherapy (note that Wikipedia is a free online encyclopedia that anyone can edit)
PMCID: PMC1584412  PMID: 17020408
5.  Collagen XXIII—a potential biomarker for the detection of primary and recurrent non-small cell lung cancer 
Collagen XXIII is a transmembrane collagen previously shown to be upregulated in metastatic prostate cancer. This study’s purpose was to determine the protein expression of collagen XXIII in tumor tissues from a variety of cancers and to assess collagen XXIII’s utility as a biomarker for non small-cell lung cancer (NSCLC).
A multi-cancer tissue microarray (TMA) was used for immunohistochemical examination of collagen XXIII protein expression in a variety of cancers. Subsequently, collagen XXIII expression was analyzed in three separate cohorts using TMAs with representative tumor and control lung tissues from NSCLC patients. In addition, NSCLC patient urine samples were analyzed for the presence of collagen XXIII via Western blot.
Collagen XXIII was present in tissue samples from a variety of cancers. Within lung cancer tissues, collagen XXIII staining was enriched in NSCLC subtypes. Collagen XXIII was present in 294 of 333 (88%) lung adenocarcinomas and 97 of 133 (73%) squamous cell carcinomas (SqCC). In urine, collagen XXIII was present in 23 of 29 (79%) NSCLC patient samples but only in 15 of 54 (28%) control samples. High collagen XXIII staining intensity correlated with shorter recurrence-free survival in NSCLC patients.
We demonstrate the capability of collagen XXIII as a tissue and urinary biomarker for NSCLC, where positivity in tissue or urine significantly correlates with presence of NSCLC and high staining intensity is a significant recurrence predictor.
Inclusion of collagen XXIII in a tissue or urine-based cancer biomarker panel could inform NSCLC patient treatment decisions.
PMCID: PMC2880394  PMID: 20447926
tissue microarray; fluid biomarker; cancer surveillance and screening
6.  Simultaneous Multi-Antibody Staining in Non-Small Cell Lung Cancer Strengthens Diagnostic Accuracy Especially in Small Tissue Samples 
PLoS ONE  2013;8(2):e56333.
Histological subclassification of non-small cell lung cancer (NSCLC) has growing therapeutic impact. In advanced cancer stages tissue specimens are usually bioptically collected. These small samples are of extraordinary value since molecular analyses are gaining importance for targeted therapies. We therefore studied the feasibility, diagnostic accuracy, economic and prognostic effects of a tissue sparing simultaneous multi-antibody assay for subclassification of NSCLC. Of 265 NSCLC patients tissue multi arrays (TMA) were constructed to simulate biopsy samples. TMAs were stained by a simultaneous bi-color multi-antibody assay consisting of TTF1, Vimentin, p63 and neuroendocrine markers (CD56, chromogranin A, synaptophysin). Classification was based mainly on the current proposal of the IASLC with a hierarchical decision tree for subclassification into adenocarcinoma (LAC), squamous cell carcinoma (SCC), large cell neuroendocrine carcinoma (LCNEC) and NSCLC not otherwise specified. Investigation of tumor heterogeneity showed an explicit lower variation for immunohistochemical analyses compared to conventional classification. Furthermore, survival analysis of our combined immunohistochemical classification revealed distinct separation of each entity's survival curve. This was statistically significant for therapeutically important subgroups (p = 0.045). As morphological and molecular cancer testing is emerging, our multi-antibody assay in combination with standardized classification delivers accurate and reliable separation of histomorphological diagnoses. Additionally, it permits clinically relevant subtyping of NSCLC including LCNEC. Our multi-antibody assay may therefore be of special value, especially in diagnosing small biopsies. It futher delivers substantial prognostic information with therapeutic consequences. Integration of immunohistochemical subtyping including investigation of neuroendocrine differentiation into standard histopathological classification of NSCLC must, therefore, be considered.
PMCID: PMC3572034  PMID: 23418554
7.  Expression of THOP1 and Its Relationship to Prognosis in Non-Small Cell Lung Cancer 
PLoS ONE  2014;9(9):e106665.
The study was designed to detect the expression level of thimet oligopeptidase (THOP1) protein in non-small cell lung cancer (NSCLC) and investigate its correlation with clinicopathologic features and prognosis.
Immunohistochemical staining was used to determine the expression of THOP1 protein in 120 NSCLC specimens and 53 distant normal lung tissues. Quantitative real-time PCR and western blotting were employed to measure the expression of THOP1 in 16 pairs of primary NSCLC and corresponding normal tissues.
Analysis of immunohistochemical staining suggested low THOP1 expression was found in 71 (59.2%) of the 120 NSCLC specimens and significantly correlated with positive lymph node metastasis (P = 0.048). However, low THOP1 expression was found in 22 (41.5%) of the 53 normal lung tissues. Chi-square test suggested that the expression of THOP1 was significantly higher in the normal lung tissues than that in the NSCLC specimens (P = 0.032). Real-Time PCR and western blotting showed that NSCLC specimens had decreased THOP1 mRNA and protein expression compared to corresponding normal tissues. Univariate analysis demonstrated that low THOP1 expression significantly predicted decreased 5-year disease-free survival (P = 0.038) and overall survival (P = 0.017). In addition, positive lymph node metastasis (P = 0.025) and advanced TNM stage (P = 0.009) significantly predicted decreased 5-year overall survival. However, multivariate Cox regression analysis showed that only low THOP1 expression retained its significance as an independent prognostic factor for unfavorable 5-year disease-free survival (P = 0.046) and overall survival (P = 0.021).
THOP1 may have clinical potentials to be employed as a promising biomarker to identify individuals with better prognosis and a novel antitumor agent for therapy of patients with NSCLC.
PMCID: PMC4152321  PMID: 25180910
8.  Prognostic significance of RNA-dependent protein kinase (PKR) on non-small cell lung cancer patients 
The role of RNA-dependent protein kinase (PKR) in antiviral defence mechanisms and in cellular differentiation, growth, and apoptosis is well known, but the role of PKR in human lung cancer remains poorly understood. To explore the role of PKR in human lung cancer, we evaluated PKR’s expression in tissue microarray specimens from both non-small cell lung cancer (NSCLC) and normal human bronchial epithelium tissue.
Experimental Design
Tissue microarray samples (TMA-1) from 231 lung cancers were stained with PKR antibody and validated on TMA-2 from 224 lung cancers. Immunohistochemical expression score was quantified by three pathologists independently. Survival probability was computed by the Kaplan-Meier method.
The NSCLC cells showed lower levels of PKR expression than normal bronchial epithelium cells did. We also found a significant association between lower levels of PKR expression and lymph node metastasis. We found that loss of PKR expression is correlated with a more aggressive behavior, and that a high PKR expression predicts a subgroup of patients with a favorable outcome. Univariate and multivariate Cox proportional hazards regression models showed that a lower level of PKR expression was significantly associated with shorter survival in NSCLC patients. We further validated and confirmed that PKR to be a powerful prognostic factor in TMA-2 lung cancer (HR=0.22, P<0.0001).
Our findings first indicate that PKR expression is an independent prognostic variable in NSCLC patients.
PMCID: PMC3070287  PMID: 20930042
PKR; Biomarker; Lung cancer
9.  Protein signature for non-small cell lung cancer prognosis 
Background: Current histopathological classification and TNM staging have limited accuracy in predicting survival and stratifying patients for appropriate treatment. The goal of the study is to determine whether the expression pattern of functionally important regulatory proteins can add additional values for more accurate classification and prognostication of non-small lung cancer (NSCLC). Methods: The expression of 108 proteins and phosphoproteins in 30 paired NSCLC samples were assessed using Protein Pathway Array (PPA). The differentially expressed proteins were further confirmed using a tissue microarray (TMA) containing 94 NSCLC samples and were correlated with clinical data and survival. Results: Twelve of 108 proteins (p-CREB(Ser133), p-ERK1/2(Thr202/Tyr204), Cyclin B1, p-PDK1(Ser241), CDK4, CDK2, HSP90, CDC2p34, β-catenin, EGFR, XIAP and PCNA) were selected to build the predictor to classify normal and tumor samples with 97% accuracy. Five proteins (CDC2p34, HSP90, XIAP, CDK4 and CREB) were confirmed to be differentially expressed between NSCLC (n=94) and benign lung tumor (n=19). Over-expression of CDK4 and HSP90 in tumors correlated with a favorable overall survival in all NSCLC patients and the over-expression of p-CREB(Ser133) and CREB in NSCLC correlated with a favorable survival in smokers and those with squamous cell carcinoma, respectively. Finally, the four proteins (CDK4, HSP90, p-CREB and CREB) were used to calculate the risk score of each individual patient with NSCLC to predict survival. Conclusion: In summary, our data demonstrated a broad disturbance of functionally important regulatory proteins in NSCLC and some of these can be selected as clinically useful biomarkers for diagnosis, classification and prognosis.
PMCID: PMC4065406  PMID: 24959380
Lung cancer; biology marker; survival analysis
10.  Prognostic significance of different immunohistochemical S100A2 protein expression patterns in patients with operable nonsmall cell lung carcinoma 
OncoTargets and therapy  2012;5:363-373.
S100 proteins are involved in carcinogenesis, metastasis, and survival. S100A2 is a member of the S100 family, and its expression and precise role in patients with non-small cell lung carcinoma (NSCLC) has been debated. Therefore, we examined the immunohistochemical expression patterns of S100A2 in NSCLC in relation to clinicopathological parameters, important molecular biomarkers, and patient outcome. Microarray data for 74 paraffin-embedded specimens from patients with NSCLC were immunostained for S100A2 and p53 proteins. Immunohistochemical staining patterns of S100A2 in the NSCLC tissue samples examined were either nuclear (nS100A2), cytoplasmic (cS100A2), or both. A significant association between nS100A2 positivity and better disease-free interval was observed (hazards ratio 0.47; 95% confidence interval 0.23–0.99; P = 0.047). Similarly, cS100A2 negativity was marginally associated with shorter overall survival (P = 0.07). Patients without lymphatic infiltration and an earlier disease stage had significantly better overall survival and disease-free interval. The S100A2 expression pattern in operable NSCLC varies widely, and this differential expression (nuclear, cytoplasmic or both) seems to correlate with prognosis. Intensity of expression was highest in the early and advanced stages, and equally distributed in the middle stages. This observation may be indicative of a dual role for this protein both during earlier and advanced disease stages, and may also explain the differential immunoexpression of S100A2. Analysis of the disease-free interval showed that nS100A2-negative and p53-positive expression was associated with a statistically significant (P = 0.003) shorter disease-free interval in comparison with nS100A2-positive and p53-negative expression (12 versus 30 months, respectively). Further studies are required to establish whether S100A2 protein may have a substantial role as a prognostic or predictive indicator in this unfavorable group of patients.
PMCID: PMC3507318  PMID: 23189031
S100A2; expression; lung cancer; thoracic surgery
11.  Prognostic value of the MicroRNA regulators Dicer and Drosha in non-small-cell lung cancer: co-expression of Drosha and miR-126 predicts poor survival 
BMC Clinical Pathology  2014;14(1):45.
Dicer and Drosha are important enzymes for processing microRNAs. Recent studies have exhibited possible links between expression of different miRNAs, levels of miRNA processing enzymes, and cancer prognosis. We have investigated the prognostic impact of Dicer and Drosha and their correlation with miR-126 expression in a large cohort of non-small cell lung cancer (NSCLC) patients. We aimed to find patient groups within the cohort that might have an advantage of receiving adjunctive therapies.
Dicer expression in the cytoplasm and Drosha expression in the nucleus were evaluated by manual immunohistochemistry of tissue microarrays (TMAs), including tumor tissue samples from 335 patients with resected stages I to IIIA NSCLC. In addition, in situ hybridizations of TMAs for visualization of miR-126 were performed. Kaplan–Meier analysis was performed, and the log-rank test via SPSS v.22 was used for estimating significance levels.
In patients with normal performance status (ECOG = 0, n = 197), high Dicer expression entailed a significantly better prognosis than low Dicer expression (P = 0.024). Dicer had no significant prognostic value in patients with reduced performance status (ECOG = 1–2, n = 138). High Drosha expression was significantly correlated with high levels of the microRNA 126 (miR-126) (P = 0.004). Drosha/miR-126 co-expression had a significant negative impact on the disease-specific survival (DSS) rate (P < 0.001). Multivariate analyses revealed that the interaction Dicer*Histology (P = 0.049) and Drosha/miR-126 co-expression (P = 0.033) were independent prognostic factors.
In NSCLC patients with normal performance status, Dicer is a positive prognostic factor. The importance of Drosha as a prognostic factor in our material seems to be related to miR-126 and possibly other microRNAs.
Electronic supplementary material
The online version of this article (doi:10.1186/1472-6890-14-45) contains supplementary material, which is available to authorized users.
PMCID: PMC4269969  PMID: 25525410
NSCLC; Dicer; Drosha; microRNA; miR-126; Immunohistochemistry
12.  Sex Determining Region Y-Box 2 (SOX2) Is a Potential Cell-Lineage Gene Highly Expressed in the Pathogenesis of Squamous Cell Carcinomas of the Lung 
PLoS ONE  2010;5(2):e9112.
Non-small cell lung cancer (NSCLC) represents the majority (85%) of lung cancers and is comprised mainly of adenocarcinomas and squamous cell carcinomas (SCCs). The sequential pathogenesis of lung adenocarcinomas and SCCs occurs through dissimilar phases as the former tumors typically arise in the lung periphery whereas the latter normally arise near the central airway.
Methodology/Principal Findings
We assessed the expression of SOX2, an embryonic stem cell transcriptional factor that also plays important roles in the proliferation of basal tracheal cells and whose expression is restricted to the main and central airways and bronchioles of the developing and adult mouse lung, in NSCLC by various methodologies. Here, we found that SOX2 mRNA levels, from various published datasets, were significantly elevated in lung SCCs compared to adenocarcinomas (all p<0.001). Moreover, a previously characterized OCT4/SOX2/NANOG signature effectively separated lung SCCs from adenocarcinomas in two independent publicly available datasets which correlated with increased SOX2 mRNA in SCCs. Immunohistochemical analysis of various histological lung tissue specimens demonstrated marked nuclear SOX2 protein expression in all normal bronchial epithelia, alveolar bronchiolization structures and premalignant lesions in SCC development (hyperplasia, dysplasia and carcinoma in situ) and absence of expression in all normal alveoli and atypical adenomatous hyperplasias. Moreover, SOX2 protein expression was greatly higher in lung SCCs compared to adenocarcinomas following analyses in two independent large TMA sets (TMA set I, n = 287; TMA set II, n = 511 both p<0.001). Furthermore, amplification of SOX2 DNA was detected in 20% of lung SCCs tested (n = 40) and in none of the adenocarcinomas (n = 17).
Our findings highlight a cell-lineage gene expression pattern for the stem cell transcriptional factor SOX2 in the pathogenesis of lung SCCs and suggest a differential activation of stem cell-related pathways between squamous cell carcinomas and adenocarcinomas of the lung.
PMCID: PMC2817751  PMID: 20161759
13.  Examination of thromboxane synthase as a prognostic factor and therapeutic target in non-small cell lung cancer 
Molecular Cancer  2011;10:25.
Thromboxane synthase (TXS) metabolises prostaglandin H2 into thromboxanes, which are biologically active on cancer cells. TXS over-expression has been reported in a range of cancers, and associated with a poor prognosis. TXS inhibition induces cell death in-vitro, providing a rationale for therapeutic intervention. We aimed to determine the expression profile of TXS in NSCLC and if it is prognostic and/or a survival factor in the disease.
TXS expression was examined in human NSCLC and matched controls by western analysis and IHC. TXS metabolite (TXB2) levels were measured by EIA. A 204-patient NSCLC TMA was stained for COX-2 and downstream TXS expression. TXS tissue expression was correlated with clinical parameters, including overall survival. Cell proliferation/survival and invasion was examined in NSCLC cells following both selective TXS inhibition and stable TXS over-expression.
TXS was over-expressed in human NSCLC samples, relative to matched normal controls. TXS and TXB2 levels were increased in protein (p < 0.05) and plasma (p < 0.01) NSCLC samples respectively. TXS tissue expression was higher in adenocarcinoma (p < 0.001) and female patients (p < 0.05). No significant correlation with patient survival was observed. Selective TXS inhibition significantly reduced tumour cell growth and increased apoptosis, while TXS over-expression stimulated cell proliferation and invasiveness, and was protective against apoptosis.
TXS is over-expressed in NSCLC, particularly in the adenocarcinoma subtype. Inhibition of this enzyme inhibits proliferation and induces apoptosis. Targeting thromboxane synthase alone, or in combination with conventional chemotherapy is a potential therapeutic strategy for NSCLC.
PMCID: PMC3074522  PMID: 21388528
14.  Prognostic implications of ezrin and phosphorylated ezrin expression in non-small cell lung cancer 
BMC Cancer  2014;14:191.
The cytoskeletal organizer ezrin is a member of the ezrin-radixin-moesin (ERM) family and plays important roles in not only cell motility, cell adhesion, and apoptosis, but also in various cell signaling pathways. Phosphorylation at Thr-567 and Tyr-353 are key regulatory events in the transition of the dormant to active form of ezrin. This study investigated the prognostic implications of ezrin and phosphorylated ezrin (p-ezrin) expression in non-small cell lung carcinoma (NSCLC).
Ezrin and p-ezrin protein expressions were examined by immunohistochemistry in 150 NSCLC and adjacent non-tumor tissues and 14 normal lung tissues. qRT-PCR was used to determine ezrin mRNA expression levels in fresh tissues. The correlations between overexpression of ezrin and p-ezrin and the clinicopathological features of NSCLC were analyzed. The survival rates were calculated by the Kaplan-Meier method for 108 NSCLC cases.
Ezrin and ezrinThr-567 proteins showed cytosolic and membranous staining patterns; however, ezrinTyr-353 protein only showed cytosolic staining. Ezrin and p-ezrin were significantly upregulated in NSCLC compared with the normal counterparts. Increased ezrin, ezrinThr-567, and ezrinTyr-353 levels were correlated with the late stage and poor differentiation of NSCLC. However, only ezrinThr-567 was correlated with the presence of lymph node metastasis. In regard to survival, only ezrinThr-567 was related with the overall survival time of patients with NSCLC, and both ezrin and ezrinThr-567 were associated with shortened survival time for patients with early stage NSCLC.
Ezrin and p-ezrin, especially ezrinThr-567, may prove to be useful as a novel prognostic biomarker of NSCLC.
PMCID: PMC3985600  PMID: 24629131
Lung cancer; Ezrin; Phosphorylated ezrin; Immunohistochemistry; Survival analysis
15.  Down-regulation of NKD1 increases the invasive potential of non-small-cell lung cancer and correlates with a poor prognosis 
BMC Cancer  2011;11:186.
As a negative modulator of the canonical Wnt signaling pathway, Naked1 (NKD1) is widely expressed in many normal tissues. However, the expression pattern and clinicopathological significance of NKD1 in patients with non-small-cell lung cancer (NSCLC) is still unclear.
Immunohistochemical studies were performed on 35 cases of normal lung tissues and 100 cases of NSCLC, including 66 cases with complete follow-up records. The NKD1 protein and mRNA expressions were detected by western blot and Real-time PCR, respectively. To examine the effect of NKD1 on the invasiveness of lung cancer cells, NKD1 was down-regulated by siRNA in lung cancer cell lines and the invasive ability was then evaluated by the Matrigel invasion assay. In addition, the expressions of Dishevelled-1 and β-catenin proteins, as well as MMP mRNA were also examined in NKD1 knockdown cells.
In 35 fresh lung cancer tissues examined, 27(79%) of them exhibited lower levels of NKD1 protein in comparison with their corresponding normal tissue (P = 0.009). However, the NKD1 mRNA level was significantly higher in cancerous lung tissues, compared with the adjacent normal tissues. In 100 NSCLC tissues, NKD1 was significantly lower in 78 cases (78%) than in the normal specimens, determined by immunohistochemical staining. The reduced NKD1 expression was correlated with histological type (P = 0.003), poor differentiation (P = 0.004), lymph node metastasis (P = 0.013), TNM stage (P = 0.002) and poor survival (62.88 ± 3.23 versus 23.61 ± 2.18 months, P = 0.03). In addition, NKD1 knockdown could up-regulate Dishevelled-1 and β-catenin protein levels, as well as increased MMP-7 transcription and the invasive ability of lung cancer cells. Furthermore, when the NKD1-knockdown cells were treated with Dishevelled-1 antibody, their invasive potential was significantly reduced.
NKD1 protein is reduced but NKD1 mRNA is elevated in NSCLC. Reduced NKD1 protein expression correlates with a poor prognosis in NSCLC. NKD1 might inhibit the activity of the canonical Wnt pathway through Dishevelled-1.
PMCID: PMC3118196  PMID: 21599923
16.  Cytoplasmic Kaiso is associated with poor prognosis in non-small cell lung cancer 
BMC Cancer  2009;9:178.
Kaiso has been identified as a new member of the POZ-zinc finger family of transcription factors that are implicated in development and cancer. Although controversy still exists, Kaiso is supposed to be involved in human cancer. However, there is limited information regarding the clinical significance of cytoplasmic/nuclear Kaiso in human lung cancer.
In this study, immunohistochemical studies were performed on 20 cases of normal lung tissues and 294 cases of non-small cell lung cancer (NSCLC), including 50 cases of paired lymph node metastases and 88 cases with complete follow-up records. Three lung cancer cell lines showing primarily nuclear localization of Kaiso were selected to examine whether roles of Kaiso in cytoplasm and in nucleus are identical. Nuclear Kaiso was down-regulated by shRNA technology or addition a specific Kaiso antibody in these cell lines. The proliferative and invasive abilities were evaluated by MTT and Matrigel invasive assay, transcription of Kaiso's target gene matrilysin was detected by RT-PCR.
Kaiso was primarily expressed in the cytoplasm of lung cancer tissues. Overall positive cytoplasmic expression rate was 63.61% (187/294). The positive cytoplasmic expression of Kaiso was higher in advanced TNM stages (III+IV) of NSCLC, compared to lower stages (I+II) (p = 0.019). A correlation between cytoplasmic Kaiso expression and lymph node metastasis was found (p = 0.003). In 50 paired cases, cytoplasmic expression of Kaiso was 78.0% (41/50) in primary sites and 90.0% (45/50) in lymph node metastases (p = 0.001). The lung cancer-related 5-year survival rate was significantly lower in patients who were cytoplasmic Kaiso-positive (22.22%), compared to those with cytoplasmic Kaiso-negative tumors (64.00%) (p = 0.005). Nuclear Kaiso staining was seen in occasional cases with only a 5.10% (15/294) positive rate and was not associated with any clinicopathological features of NSCLC. Furthermore, after the down-regulation of the nuclear expresses Kaiso in vitro, both proliferative and invasive abilities of three cancer cell lines were significantly enhanced, along with the up-regulation of Kaiso target gene, matrilysin.
Our data suggest cytoplasmic Kaiso expression is associated with poor prognosis of NSCLC and various subcellular localizations of Kaiso may play differential biological roles in NSCLC.
PMCID: PMC2701439  PMID: 19508730
17.  Analysis of GAGE, NY-ESO-1 and SP17 cancer/testis antigen expression in early stage non-small cell lung carcinoma 
BMC Cancer  2013;13:466.
The unique expression pattern and immunogenic properties of cancer/testis antigens make them ideal targets for immunotherapy of cancer. The MAGE-A3 cancer/testis antigen is frequently expressed in non-small cell lung cancer (NSCLC) and vaccination with MAGE-A3 in patients with MAGE-A3-positive NSCLC has shown promising results. However, little is known about the expression of other cancer/testis antigens in NSCLC. In the present study the expression of cancer/testis antigens GAGE, NY-ESO-1 and SP17 was investigated in patients with completely resected, early stage, primary NSCLC.
Tumor biopsies from normal lung tissue and from a large cohort (n = 169) of NSCLC patients were examined for GAGE, NY-ESO-1 and SP17 protein expression by immunohistochemical analysis. The expression of these antigens was further matched to clinical and pathological features using univariate cox regression analysis.
GAGE and NY-ESO-1 cancer/testis antigens were not expressed in normal lung tissue, while SP17 was expressed in ciliated lung epithelia. The frequency of GAGE, NY-ESO-1 and SP17 expression in NSCLC tumors were 26.0% (44/169), 11.8% (20/169) and 4.7% (8/169), respectively, and 33.1% (56/169) of the tumors expressed at least one of these antigens. In general, the expression of GAGE, NY-ESO-1 and SP17 was not significantly associated with a specific histotype (adenocarcinoma vs. squamous cell carcinoma), but high-level GAGE expression (>50%) was more frequent in squamous cell carcinoma (p = 0.02). Furthermore, the frequency of GAGE expression was demonstrated to be significantly higher in stage II-IIIa than stage I NSCLC (17.0% vs. 35.8%; p = 0.02). Analysis of the relation between tumor expression of GAGE and NY-ESO-1 and survival endpoints revealed no significant associations.
Our study demonstrates that GAGE, NY-ESO-1 and SP17 cancer/testis antigens are candidate targets for immunotherapy of NSCLC and further suggest that multi-antigen vaccines may be beneficial.
PMCID: PMC3851761  PMID: 24103781
Cancer/testis antigen; Immunotherapy; GAGE; NY-ESO-1; SP17; Lung cancer
18.  Biological and prognostic role of acid cysteine proteinase inhibitor (ACPI, cystatin A) in non‐small‐cell lung cancer 
Journal of Clinical Pathology  2006;60(5):515-519.
Acid cysteine protease inhibitor (ACPI) is an intracellular protein, often linked to neoplastic changes in epithelium and thought to have an inhibitory role in malignant transformation.
To analyse the expression and prognostic role of ACPI in non‐small‐cell lung cancer (NSCLC).
Histological samples from 199 patients with resected NSCLC were stained immunohistochemically for the expression of ACPI in normal and preneoplastic bronchial epithelium, and in various types of lung carcinomas.
A normal bronchial epithelium showed positive staining for ACPI in the basal cells, whereas the upper two‐thirds of the dysplastic epithelium was ACPI positive. High staining for ACPI was found in 74% (91/123) of squamous‐cell carcinomas, whereas 16% (8/49) of adenocarcinomas and 30% of (8/27) large‐cell carcinomas showed the high expression of ACPI (p<0.001). Among squamous‐cell carcinomas, low expression of ACPI was correlated with poor tumour differentiation (p = 0.032). In the whole tissue, reduced expression of ACPI was associated with tumour recurrence (p = 0.024). In overall survival (OS) and disease‐free survival (DFS) analyses, the histological type of the tumour (both p<0.001) and stage of the tumour (p = 0.001, p = 0.013, respectively) were related to patient outcome. Low expression of ACPI in tumour cells was associated with poor OS and DFS (p<0.041, p = 0.004, respectively). In multivariate analysis, ACPI did not retain its prognostic value, whereas the traditional factors were the most important prognostic factors.
ACPI expression is linked with the malignant transformation of the bronchial epithelium and predicts a risk of tumour recurrence as well as poor rate of survival for the patients. However, ACPI does not have any independent prognostic value in NSCLC.
PMCID: PMC1994551  PMID: 16790691
19.  High expression of a disintegrin and metalloproteinase-9 predicts a shortened survival time in completely resected stage I non-small cell lung cancer 
Oncology Letters  2013;5(5):1461-1466.
The aim of this study was to investigate the abnormal expression of a disintegrin and metalloproteinase-9 (ADAM9) in human resected non-small cell lung cancer (NSCLC) tissue, in order to evaluate the significance of ADAM9 expression in surgically resected NSCLC. Sixty-four cases of completely resected stage I NSCLC with mediastinal N2 lymph node dissection were immunohistochemically analyzed for ADAM9 protein expression. Survival, univariate and multivariate analyses were conducted to assess the significance of ADAM9 expression and its correlation with other clinicopathological characteristics. ADAM9 was observed to be significantly more highly expressed in NSCLC tissue compared with normal control lung tissue (P=0.001). The 5-year survival rate for patients with NSCLC tissues highly expressing ADAM9 was significantly lower when compared with NSCLC tissues of patients exhibiting low expression of ADAM9 (56.9 vs. 88.9%, P= 0.012). Multivariate analysis identified that high expression of ADAM9 is an independent factor of shortened survival time in resected stage I NSCLC (HR, 3.385; 95% CI, 1.224–9.360; P=0.019). These results clearly demonstrate that ADAM9 is highly expressed in NSCLC and highly expressed ADAM9 correlates with shortened survival time, suggesting that ADAM9 is a novel biomarker for predicting prognosis in resected stage I NSCLC. ADAM9 may also become a useful predictive biomarker for the selection of adjuvant chemotherapy treatment of NSCLC.
PMCID: PMC3678878  PMID: 23761811
ADAM9; lung neoplasm; immunohistochemistry; prognosis; lobectomy
20.  Expression and clinical significance of the phosphatidylinositol 3-kinase/protein kinase B signal transduction pathway in non-small cell lung carcinoma 
Oncology Letters  2014;8(2):601-607.
The overactivation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signal transduction pathway has been examined in various carcinomas and is reported to be significantly correlated with prognosis. However, little is known with regard to the PI3K/Akt signal transduction pathway in advanced non-small cell lung carcinoma (NSCLC). The present study investigated the expression of PI3K and phosphorylated (p)-Akt protein and its clinical significance in NSCLC. The clinical records of 157 patients with NSCLC (70 stage I–IIIA and 87 stage IIIB–IV cases), consisting of 75 cases of squamous cell carcinoma and 82 cases of adenocarcinoma, together with 30 resected lung cancer tumor-adjacent tissue samples, were retrospectively evaluated. PI3K and p-Akt expression in the NSCLC and tumor-adjacent tissues were measured using an immunohistochemical method, and its correlation with the clinicopathological data and prognosis in advanced NSCLC was evaluated. PI3K and p-Akt expression was significantly higher in the cancer tissues (χ2=14.8455; P=0.001) than in the tumor-adjacent tissues (χ2=14.2615; P=0.001). The overexpression of p-Akt in stage I–IIIA NSCLC was associated with lymph node metastasis (χ2=6.1189; P=0.013) and tumor-node-metastasis (TNM) stage (χ2=8.9752; P=0.011), however, no correlation was observed with gender, age, pathological type and histological grade. The overexpression of p-Akt in stage IIIB–IV NSCLC was only associated with TNM stage (χ2=5.7501; P=0.016), and no correlation was observed with gender, age, pathological type, histological grade and Eastern Cooperative Oncology Group (ECOG) performance status (PS). The overexpression of PI3K was not found to correlate with the aforementioned clinicopathological variables in all patients. Survival was significantly improved in advanced NSCLC with PI3K- and p-Akt-negative expression compared with PI3K- and p-Akt-positive expression [P13K: 17.70 months (95% confidence interval (CI), 15.11–20.28 months) vs. 13.43 months (95% CI, 11.83–15.02 months); P=0.004; and p-Akt: 17.13 months (95% CI, 14.93–19.34 months) vs. 13.07 months (95% CI, 11.32–14.82 months); P=0.007]. Multivariate analysis showed that PI3K [hazard ratio (HR)=2.143; 95% CI, 1.211–3.790; P=0.009], p-Akt (HR=1.991; 95% CI, 1.009–3.927; P=0.047), TNM stage (HR=4.788; 95% CI, 2.591–8.848; P=0.001) and ECOG-PS (HR=3.272; 95% CI, 1.701–6.296; P=0.001) were independent predictors for survival in stage IIIB–IV NSCLC. These results indicated that p-Akt overexpression closely correlates with factors of an unfavorable prognosis in NSCLC. PI3K and p-Akt overexpression are independent markers of a poor prognosis in advanced NSCLC.
PMCID: PMC4081182  PMID: 25013474
non-small cell lung carcinoma; prognosis; phosphatidylinositol 3-kinase; protein kinase B
21.  Relation of hypoxia inducible factor 1α and 2α in operable non-small cell lung cancer to angiogenic/molecular profile of tumours and survival 
British Journal of Cancer  2001;85(6):881-890.
Hypoxia inducible factors HIF1α and HIF2α are important proteins involved in the regulation of the transcription of a variety of genes related to erythropoiesis, glycolysis and angiogenesis. Hypoxic stimulation results in rapid increase of the HIF1α and 2α protein levels, as a consequence of a redox-sensitive stabilization. The HIFαs enter the nucleus, heterodimerize with the HIF1β protein, and bind to DNA at the hypoxia response elements (HREs) of target genes. In this study we evaluated the immunohistochemical expression of these proteins in 108 tissue samples from non-small-cell lung cancer (NSCLC) and in normal lung tissues. Both proteins showed a mixed cytoplasmic/nuclear pattern of expression in cancer cells, tumoural vessels and tumour-infiltrating macrophages, as well as in areas of metaplasia, while normal lung components showed negative or very weak cytoplasmic staining. Positive HIF1α and HIF2α expression was noted in 68/108 (62%) and in 54/108 (50%) of cases respectively. Correlation analysis of HIF2α expression with HIF1α expression showed a significant association (P < 0.0001, r = 0.44). A strong association of the expression of both proteins with the angiogenic factors VEGF (P < 0.004), PD-ECGF (P < 0.003) and bFGF (P < 0.04) was noted. HIF1α correlated with the expression of bek-bFGF receptor expression (P = 0.01), while HIF2α was associated with intense VEGF/KDR-activated vascularization (P = 0.002). HIF2α protein was less frequently expressed in cases with a medium microvessel density (MVD); a high rate of expression was noted in cases with both low and high MVD (P = 0.006). Analysis of overall survival showed that HIF2α expression was related to poor outcome (P = 0.008), even in the group of patients with low MVD (P = 0.009). HIF1α expression was marginally associated with poor prognosis (P = 0.08). In multivariate analysis HIF2α expression was an independent prognostic indicator (P = 0.006, t-ratio 2.7). We conclude that HIF1α and HIF2α overexpression is a common event in NSCLC, which is related to the up-regulation of various angiogenic factors and with poor prognosis. Targeting the HIF pathway may prove of importance in the treatment of NSCLC. © 2001 Cancer Research Campaign
PMCID: PMC2375073  PMID: 11556841
non-small-cell lung cancer; hypoxia inducible factors; angiogenesis; prognosis
22.  The overexpression of glypican-5 promotes cancer cell migration and is associated with shorter overall survival in non-small cell lung cancer 
Oncology Letters  2013;6(6):1565-1572.
Although the correlation between glypican-5 (GPC5) and lung cancer is well known, the effect of GPC5 expression on non-small cell lung cancer (NSCLC) survival remains to be determined. In the present study, GPC5 expression in A549, H3255, and SPC-A1 NSCLC cell lines was evaluated by reverse transcription-polymerase chain reaction (RT-PCR) and western blot analysis. GPC5 mRNA and protein expression levels were found to be higher in A549 and H3255 cells compared with SPC-A1 cells. The role of GPC5 in NSCLC cell migration was evaluated in vitro by shRNA-mediated knockdown or the overexpression of GPC5 through scratch and transwell assays. The mean migration rates of cancer cells transfected with pRNAT-shRNA-GPC5-1 were reduced compared with the controls in A549 (P<0.001) and H3255 (P=0.001), while the migration rate of SPC-A1 with GPC5 overexpression was higher than that of the control (P=0.001). The downregulation of GPC5 impeded the transmigration of A549 and H3255 while the upregulation of GPC5 expression promoted the transmembrane invasion of SPC-A1. Furthermore, a panel of formalin-fixed paraffin-embedded NSCLC tissues from 127 patients undergoing curative resection (stages I, II and III) between January, 2003 and December, 2008 were obtained in order to investigate the correlation between GPC5 expression and clinicopathological factors using immunohistochemical methods. The results demonstrated that high GPC5 expression levels in NSCLC were associated with respiratory symptoms in lung cancer diagnosis, poor differentiation, vascular invasion, regional lymph node metastasis and a higher TNM stage. Using the Kaplan-Meier method, NSCLC patients with high levels of GPC5 expression demonstrated a significantly shorter overall survival time compared with those with low GPC5 expression levels (median postsurgical survival time: 14.0 months vs. 59.0 months, P=0.001). GPC5 expression was also identified as an independent prognostic factor by Cox regression analysis [adjusted hazard ratio: 2.18; 95% confidence interval (CI): 1.35–3.52; P=0.001]. This study suggested that increased levels of GPC5 expression are a poor prognostic marker for NSCLC.
PMCID: PMC3833948  PMID: 24260047
glypican-5; non-small cell lung carcinoma; survival; prognosis; metastasis
23.  Association of thymidylate synthase gene 3'-untranslated region polymorphism with sensitivity of non-small cell lung cancer to pemetrexed treatment: TS gene polymorphism and pemetrexed sensitivity in NSCLC 
Thymidylate synthase (TS) is a key enzyme responsible for DNA synthesis and repair. Altered expression of TS protein or TS gene polymorphisms has been associated with cancer progression and treatment response. This study investigated the expressions of TS and its gene SNPs in non-small cell lung cancer (NSCLC), and then its association with sensitivity to pemetrexed treatment. Immunohistochemistry and qRT-PCR were performed on 160 resected NSCLC specimens and corresponding normal tissues to assess the expressions of TS protein and TS mRNA, and for associations with clinicopathological data. Blood samples of 106 lung adenocarcinoma patients were examined for polymorphisms of the TS gene 3’-UTR 1494del 6 bp, which was then investigated for associations with responses of the patients to pemetrexed treatment and survival.
Expression of both TS protein and its mRNA was elevated in NSCLC tissues compared with matched normal tissues, and significantly higher in lung squamous cell carcinoma than in lung adenocarcinoma. TS expression was associated with poor tumor differentiation. Furthermore, the genotyping data showed that 56% of lung adenocarcinoma patients had the TS gene 3’-UTR 1494 bp (−6 bp/-6 bp) genotype and the rest had TS gene 3’-UTR 1494 bp (−6 bp/+6 bp). There was no TS 3’-UTR 1494 bp (+6 bp/+6 bp) genotype in any patients. Statistical analysis revealed that gender, tumor stage, and TS 3’-UTR 1494del 6 bp polymorphism were significant prognostic factors after short-term pemetrexed treatment. Log-rank analysis revealed that patients with the (−6 bp/-6 bp) genotype had significantly better progression-free and overall survival than patients with (−6 bp/+6 bp).
This study showed that TS protein is highly expressed in NSCLC and that polymorphisms of TS 3’-UTR 1494del 6 bp are associated with sensitivity of lung adenocarcinoma patients to pemetrexed treatment. This suggests that TS gene polymorphisms should be further evaluated as prognostic markers for personalized therapy in lung adenocarcinoma.
PMCID: PMC3577430  PMID: 23350714
Lung adenocarcinoma; Non-small cell lung cancer; Pemetrexed treatment; Thymidylate synthase; TS gene polymorphism
24.  Long non-coding RNA MEG3 inhibits NSCLC cells proliferation and induces apoptosis by affecting p53 expression 
BMC Cancer  2013;13:461.
Long non-coding RNAs play an important role in tumorigenesis, hence, identification of cancer-associated lncRNAs and investigation of their biological functions and molecular mechanisms are important for understanding the development and progression of cancer. Recently, the downregulation of lncRNA MEG3 has been observed in various human cancers. However, its role in non-small cell lung cancer (NSCLC) is unknown. The aim of this study was to examine the expression pattern of MEG3 in NSCLC and to evaluate its biological role and clinical significance in tumor progression.
Expression of MEG3 was analyzed in 44 NSCLC tissues and 7 NSCLC cell lines by qRT-PCR. Over-expression approaches were used to investigate the biological functions of MEG3 in NSCLC cells. Bisulfite sequencing was used to investigate DNA methylation on MEG3 expression. The effect of MEG3 on proliferation was evaluated by MTT and colony formation assays, and cell apoptosis was evaluated by Hoechst staining and Flow-cytometric analysis. NSCLC cells transfected with pCDNA-MEG3 were injection into nude mice to study the effect of MEG3 on tumorigenesis in vivo . Protein levels of MEG3 targets were determined by western blot analysis. Differences between groups were tested for significance using Student’s t-test (two-tailed).
MEG3 expression was decreased in non-small cell lung cancer (NSCLC) tumor tissues compared with normal tissues, and associated with advanced pathologic stage, and tumor size. Moreover, patients with lower levels of MEG3 expression had a relatively poor prognosis. Overexpression of MEG3 decreased NSCLC cells proliferation and induced apoptosis in vitro and impeded tumorigenesis in vivo. MDM2 and p53 protein levels were affected by MEG3 over-expression in vitro.
Our findings indicate that MEG3 is significantly down-regulated in NSCLC tissues that could be affected by DNA methylation, and regulates NSCLC cell proliferation and apoptosis, partially via the activition of p53. Thus, MEG3 may represent a new marker of poor prognosis and is a potential therapeutic target for NSCLC intervention.
PMCID: PMC3851462  PMID: 24098911
Long non-coding RNA; MEG3; NSCLC; Proliferation; p53
25.  Genome-Wide Analysis of Survival in Early-Stage Non–Small-Cell Lung Cancer 
Journal of Clinical Oncology  2009;27(16):2660-2667.
Lung cancer, of which 85% is non–small-cell (NSCLC), is the leading cause of cancer-related death in the United States. We used genome-wide analysis of tumor tissue to investigate whether single nucleotide polymorphisms (SNPs) in tumors are prognostic factors in early-stage NSCLC.
Patients and Methods
One hundred early-stage NSCLC patients from Massachusetts General Hospital (MGH) were used as a discovery set and 89 NSCLC patients collected by the National Institute of Occupational Health, Norway, were used as a validation set. DNA was extracted from flash-frozen lung tissue with at least 70% tumor cellularity. Genome-wide genotyping was done using the high-density SNP chip. Copy numbers were inferred using median smoothing after intensity normalization. Cox models were used to screen and validate significant SNPs associated with the overall survival.
Copy number gains in chromosomes 3q, 5p, and 8q were observed in both MGH and Norwegian cohorts. The top 50 SNPs associated with overall survival in the MGH cohort (P ≤ 2.5 × 10−4) were selected and examined using the Norwegian cohort. Five of the top 50 SNPs were validated in the Norwegian cohort with false discovery rate lower than 0.05 (P < .016) and all five were located in known genes: STK39, PCDH7, A2BP1, and EYA2. The numbers of risk alleles of the five SNPs showed a cumulative effect on overall survival (Ptrend = 3.80 × 10−12 and 2.48 × 10−7 for MGH and Norwegian cohorts, respectively).
Five SNPs were identified that may be prognostic of overall survival in early-stage NSCLC.
PMCID: PMC2690391  PMID: 19414679

Results 1-25 (1298892)