Search tips
Search criteria

Results 1-25 (908861)

Clipboard (0)

Related Articles

1.  Improving CSF biomarker accuracy in predicting prevalent and incident Alzheimer disease 
Neurology  2011;76(6):501-510.
To investigate factors, including cognitive and brain reserve, which may independently predict prevalent and incident dementia of the Alzheimer type (DAT) and to determine whether inclusion of identified factors increases the predictive accuracy of the CSF biomarkers Aβ42, tau, ptau181, tau/Aβ42, and ptau181/Aβ42.
Logistic regression identified variables that predicted prevalent DAT when considered together with each CSF biomarker in a cross-sectional sample of 201 participants with normal cognition and 46 with DAT. The area under the receiver operating characteristic curve (AUC) from the resulting model was compared with the AUC generated using the biomarker alone. In a second sample with normal cognition at baseline and longitudinal data available (n = 213), Cox proportional hazards models identified variables that predicted incident DAT together with each biomarker, and the models' concordance probability estimate (CPE), which was compared to the CPE generated using the biomarker alone.
APOE genotype including an ε4 allele, male gender, and smaller normalized whole brain volumes (nWBV) were cross-sectionally associated with DAT when considered together with every biomarker. In the longitudinal sample (mean follow-up = 3.2 years), 14 participants (6.6%) developed DAT. Older age predicted a faster time to DAT in every model, and greater education predicted a slower time in 4 of 5 models. Inclusion of ancillary variables resulted in better cross-sectional prediction of DAT for all biomarkers (p < 0.0021), and better longitudinal prediction for 4 of 5 biomarkers (p < 0.0022).
The predictive accuracy of CSF biomarkers is improved by including age, education, and nWBV in analyses.
PMCID: PMC3053181  PMID: 21228296
2.  Cerebrospinal fluid biomarkers and rate of cognitive decline in very mild dementia of the Alzheimer's type 
Archives of neurology  2009;66(5):638-645.
Cerebrospinal fluid (CSF) levels of Aβ peptide 1-42 (Aβ42), tau, and phosphorylated tau (ptau) are potential biomarkers of Alzheimer's disease (AD). We hypothesized that these biomarkers might predict the rate of cognitive change in individuals with very mild dementia of the Alzheimer type (DAT).
Retrospective analysis of CSF biomarkers and clinical data.
An academic Alzheimer's Disease Research Center.
Research volunteers in a longitudinal study of aging and cognition. Participants (n=49) had a clinical diagnosis of very mild DAT with a Clinical Dementia Rating (CDR) of 0.5 at the time of lumbar puncture. All participants had at least one follow-up assessment (mean years of follow-up = 3.5 ± 1.8 years).
Main outcome measures
Baseline CSF levels of Aβ42, Aβ40, tau and tau phosphorylated at threonine 181 (ptau181), rate of dementia progression as measured by CDR-sum of boxes (CDR-SB) and by psychometric performance,
The rate of dementia progression was significantly more rapid in individuals with lower baseline CSF Aβ42, with higher tau or ptau181, or high tau/Aβ42 ratio. For example, the annual change in CDR-SB was 1.1 for the lowest two tertiles of Aβ42 values and 0.3 for the highest tertile of Aβ42 values.
In individuals with very mild DAT, lower CSF Aβ42, high tau or ptau181, or a high tau/Aβ42 ratio quantitatively predict more rapid progression of cognitive deficits and dementia. CSF biomarkers may be useful prognostically and to identify individuals who are more likely to progress for participation in therapeutic clinical trials.
PMCID: PMC2759394  PMID: 19433664
amyloid beta; Aβ; tau; biomarker; dementia progression
3.  Amyloid imaging and CSF biomarkers in predicting cognitive impairment up to 7.5 years later 
Neurology  2013;80(19):1784-1791.
We compared the ability of molecular biomarkers for Alzheimer disease (AD), including amyloid imaging and CSF biomarkers (Aβ42, tau, ptau181, tau/Aβ42, ptau181/Aβ42), to predict time to incident cognitive impairment among cognitively normal adults aged 45 to 88 years and followed for up to 7.5 years.
Longitudinal data from Knight Alzheimer's Disease Research Center participants (N = 201) followed for a mean of 3.70 years (SD = 1.46 years) were used. Participants with amyloid imaging and CSF collection within 1 year of a clinical assessment indicating normal cognition were eligible. Cox proportional hazards models tested whether the individual biomarkers were related to time to incident cognitive impairment. “Expanded” models were developed using the biomarkers and participant demographic variables. The predictive values of the models were compared.
Abnormal levels of all biomarkers were associated with faster time to cognitive impairment, and some participants with abnormal biomarker levels remained cognitively normal for up to 6.6 years. No differences in predictive value were found between the individual biomarkers (p > 0.074), nor did we find differences between the expanded biomarker models (p > 0.312). Each expanded model better predicted incident cognitive impairment than the model containing the biomarker alone (p < 0.005).
Our results indicate that all AD biomarkers studied here predicted incident cognitive impairment, and support the hypothesis that biomarkers signal underlying AD pathology at least several years before the appearance of dementia symptoms.
PMCID: PMC3719431  PMID: 23576620
4.  CSF biomarkers of Alzheimer disease 
Neurology  2013;81(23):2028-2031.
To test whether CSF Alzheimer disease biomarkers (β-amyloid 42 [Aβ42], tau, phosphorylated tau at threonine 181 [ptau181], tau/Aβ42, and ptau181/Aβ42) predict future decline in noncognitive outcomes among individuals cognitively normal at baseline.
Longitudinal data from participants (N = 430) who donated CSF within 1 year of a clinical assessment indicating normal cognition and were aged 50 years or older were analyzed. Mixed linear models were used to test whether baseline biomarker values predicted future decline in function (instrumental activities of daily living), weight, behavior, and mood. Clinical Dementia Rating Sum of Boxes and Mini-Mental State Examination scores were also examined.
Abnormal levels of each biomarker were related to greater impairment with time in behavior (p < 0.035) and mood (p < 0.012) symptoms, and more difficulties with independent activities of daily living (p < 0.012). However, biomarker levels were unrelated to weight change with time (p > 0.115). As expected, abnormal biomarker values also predicted more rapidly changing Mini-Mental State Examination (p < 0.041) and Clinical Dementia Rating Sum of Boxes (p < 0.001) scores compared with normal values.
CSF biomarkers among cognitively normal individuals are associated with future decline in some, but not all, noncognitive Alzheimer disease symptoms studied. Additional work is needed to determine the extent to which these findings generalize to other samples.
PMCID: PMC3854826  PMID: 24212387
5.  Phosphorylated tau/amyloid beta 1-42 ratio in ventricular cerebrospinal fluid reflects outcome in idiopathic normal pressure hydrocephalus 
Idiopathic normal pressure hydrocephalus (iNPH) is a potentially reversible cause of dementia and gait disturbance that is typically treated by operative placement of a ventriculoperitoneal shunt. The outcome from shunting is variable, and some evidence suggests that the presence of comorbid Alzheimer's disease (AD) may impact shunt outcome. Evidence also suggests that AD biomarkers in cerebrospinal fluid (CSF) may predict the presence of AD. The aim of this study was to investigate the relationship between the phosphorylated tau/amyloid beta 1-42 (ptau/Aβ1-42) ratio in ventricular CSF and shunt outcome in patients with iNPH.
We conducted a prospective trial with a cohort of 39 patients with suspected iNPH. Patients were clinically and psychometrically assessed prior to and approximately 4 months after ventriculoperitoneal shunting. Lumbar and ventricular CSF obtained intraoperatively, and tissue from intraoperative cortical biopsies were analyzed for AD biomarkers. Outcome measures included performance on clinical symptom scales, supplementary gait measures, and standard psychometric tests. We investigated relationships between the ptau/Aβ1-42 ratio in ventricular CSF and cortical AD pathology, initial clinical features, shunt outcome, and lumbar CSF ptau/Aβ1-42 ratios in the patients in our cohort.
We found that high ptau/Aβ1-42 ratios in ventricular CSF correlated with the presence of cortical AD pathology. At baseline, iNPH patients with ratio values most suggestive of AD presented with better gait performance but poorer cognitive performance. Patients with high ptau/Aβ1-42 ratios also showed a less robust response to shunting on both gait and cognitive measures. Finally, in a subset of 18 patients who also underwent lumbar puncture, ventricular CSF ratios were significantly correlated with lumbar CSF ratios.
Levels of AD biomarkers in CSF correlate with the presence of cortical AD pathology and predict aspects of clinical presentation in iNPH. Moreover, preliminary evidence suggests that CSF biomarkers of AD may prove useful for stratifying shunt prognosis in patients being evaluated and treated for this condition.
PMCID: PMC3353832  PMID: 22444461
Alzheimer's disease; Normal pressure hydrocephalus; Ventriculoperitoneal shunting; Tau; Amyloid beta 1-42; Cerebrospinal fluid
6.  A data-driven model of biomarker changes in sporadic Alzheimer's disease 
Brain  2014;137(9):2564-2577.
Young et al. reformulate an event-based model for the progression of Alzheimer's disease to make it applicable to a heterogeneous sporadic disease population. The enhanced model predicts the ordering of biomarker abnormality in sporadic Alzheimer's disease independently of clinical diagnoses or biomarker cut-points, and shows state-of-the-art diagnostic classification performance.
We demonstrate the use of a probabilistic generative model to explore the biomarker changes occurring as Alzheimer’s disease develops and progresses. We enhanced the recently introduced event-based model for use with a multi-modal sporadic disease data set. This allows us to determine the sequence in which Alzheimer’s disease biomarkers become abnormal without reliance on a priori clinical diagnostic information or explicit biomarker cut points. The model also characterizes the uncertainty in the ordering and provides a natural patient staging system. Two hundred and eighty-five subjects (92 cognitively normal, 129 mild cognitive impairment, 64 Alzheimer’s disease) were selected from the Alzheimer’s Disease Neuroimaging Initiative with measurements of 14 Alzheimer’s disease-related biomarkers including cerebrospinal fluid proteins, regional magnetic resonance imaging brain volume and rates of atrophy measures, and cognitive test scores. We used the event-based model to determine the sequence of biomarker abnormality and its uncertainty in various population subgroups. We used patient stages assigned by the event-based model to discriminate cognitively normal subjects from those with Alzheimer’s disease, and predict conversion from mild cognitive impairment to Alzheimer’s disease and cognitively normal to mild cognitive impairment. The model predicts that cerebrospinal fluid levels become abnormal first, followed by rates of atrophy, then cognitive test scores, and finally regional brain volumes. In amyloid-positive (cerebrospinal fluid amyloid-β1–42 < 192 pg/ml) or APOE-positive (one or more APOE4 alleles) subjects, the model predicts with high confidence that the cerebrospinal fluid biomarkers become abnormal in a distinct sequence: amyloid-β1–42, phosphorylated tau, total tau. However, in the broader population total tau and phosphorylated tau are found to be earlier cerebrospinal fluid markers than amyloid-β1–42, albeit with more uncertainty. The model’s staging system strongly separates cognitively normal and Alzheimer’s disease subjects (maximum classification accuracy of 99%), and predicts conversion from mild cognitive impairment to Alzheimer’s disease (maximum balanced accuracy of 77% over 3 years), and from cognitively normal to mild cognitive impairment (maximum balanced accuracy of 76% over 5 years). By fitting Cox proportional hazards models, we find that baseline model stage is a significant risk factor for conversion from both mild cognitive impairment to Alzheimer’s disease (P = 2.06 × 10−7) and cognitively normal to mild cognitive impairment (P = 0.033). The data-driven model we describe supports hypothetical models of biomarker ordering in amyloid-positive and APOE-positive subjects, but suggests that biomarker ordering in the wider population may diverge from this sequence. The model provides useful disease staging information across the full spectrum of disease progression, from cognitively normal to mild cognitive impairment to Alzheimer’s disease. This approach has broad application across neurodegenerative disease, providing insights into disease biology, as well as staging and prognostication.
PMCID: PMC4132648  PMID: 25012224
event-based model; disease progression; Alzheimer’s disease; biomarkers; biomarker ordering
7.  Low levels of cerebrospinal fluid complement 3 and factor H predict faster cognitive decline in mild cognitive impairment 
Alzheimer’s disease (AD) is characterized by the deposition of tau and amyloid in the brain. Although the core cerebrospinal fluid (CSF) AD biomarkers amyloid β peptide 1–42 (Aβ1–42), total tau (t-tau) and phosphorylated tau 181 (p-tau181) show good diagnostic sensitivity and specificity, additional biomarkers that can aid in preclinical diagnosis or better track disease progression are needed. Activation of the complement system, a pivotal part of inflammation, occurs at very early stages in the AD brain. Therefore, CSF levels of complement proteins that could be linked to cognitive and structural changes in AD may have diagnostic and prognostic value.
Using xMAP® technology based assays we measured complement 3 (C3) and factor H (FH) in the CSF of 110 controls (CN), 187 mild cognitive impairment (MCI) and 92 AD subjects of the AD Neuroimaging Initiative (ADNI) at baseline. All ADNI participants underwent clinical follow-up at 12 month intervals and MCI subjects had additional visits at 6 and 18 months. The association between CSF biomarkers and different outcome measures were analyzed using Cox proportional hazard models (conversion from MCI to AD), logistic regression models (classification of clinical groups) and mixed-effects models adjusted for age, gender, education, t-tau/Aβ1–42 and APOE ϵ4 presence (baseline and longitudinal association between biomarkers and cognitive scores).
Although no association was found between the complement proteins and clinical diagnosis or cognitive measures, lower levels of C3 (β = −0.12, p = 0.041) and FH (β = −0.075, p = 0.041) were associated with faster cognitive decline in MCI subjects as measured by the AD Assessment Scale-cognitive subscale (ADAS-Cog) test. Furthermore, lower FH levels were associated with larger lateral ventricular volume (p = 0.024), which is indicative of brain atrophy.
Our study confirms a lack of suitability of CSF C3 and FH as diagnostic biomarkers of AD, but points to their modest potential as prognostic biomarkers and therapeutic targets in cognitively impaired patients.
PMCID: PMC4255518  PMID: 25478014
8.  Decreased CSF Aβ42 correlates with brain atrophy in cognitively normal elderly 
Annals of neurology  2009;65(2):176-183.
In order for therapies for Alzheimer's disease (AD) to have the greatest impact, it will likely be necessary to treat individuals in the “preclinical” (presymptomatic) stage. Fluid and neuroimaging measures are being explored as possible biomarkers of AD pathology that could aid in identifying individuals in this stage in order to target them for clinical trials and to direct and monitor therapy. The objective of this study was to determine if cerebrospinal fluid biomarkers for AD suggest the presence of brain damage in the preclinical stage of AD.
We investigated the relationship between structural neuroimaging measures (whole brain volume) and levels of cerebrospinal fluid (CSF) amyloid-β (Aβ)40, Aβ42, tau, and phosphorylated tau181 (ptau181), and plasma Aβ40 and Aβ42 in well-characterized research subjects with very mild and mild dementia of the Alzheimer type (DAT; n=29) and age-matched, cognitively normal controls (n=69).
Levels of CSF tau and ptau181, but not Aβ42, correlated inversely with whole brain volume in very mild/mild DAT, whereas levels of CSF Aβ42, but not tau or ptau181, was positively correlated with whole brain volume in non-demented controls.
Reduction in CSF Aβ42, likely reflecting Aβ aggregation in the brain, is associated with brain atrophy in the preclinical phase of AD. This suggests that there is toxicity associated with Aβ aggregation prior to the onset of clinically detectable disease. Increases in CSF tau (and ptau181) are later events that correlate with further structural damage and occur with clinical onset and progression.
PMCID: PMC2763631  PMID: 19260027
Alzheimer's disease; amyloid-β; biomarker; brain atrophy; cerebrospinal fluid; MRI; preclinical AD; tau
JAMA neurology  2014;71(4):442-448.
An increasingly varied clinical spectrum of cases with amyotrophic lateral sclerosis (ALS) has been identified, and objective criteria for clinical trial eligibility is necessary.
We sought to develop a cerebrospinal fluid (CSF) biomarker sensitive and specific for the diagnosis of ALS.
Case-control study.
Academic medical center.
51 individuals with ALS and 23 individuals with a disorder associated with a four-repeat tauopathy (4R-tau).
CSF level of tau phosophorylated at threonine 181 (ptau), and ratio of ptau to total tau (ttau).
Using a cross-validation prediction procedure, we found significantly reduced CSF levels of ptau and ptau:ttau in ALS relative to 4R-tau and to controls. In the validation cohort, the receiver operating characteristic area under the curve for the ptau:ttau ratio was 0.916, and the comparison of ALS to 4R-tau showed sensitivity=92% and specificity=91.7%. Correct classification based on low CSF ptau:ttau was confirmed in 18 (85.7%) of 21 cases with autopsy-proven or genetically-determined disease. In patients with available measures, ptau:ttau in ALS correlated with clinical measures of disease severity such as Mini Mental State Exam (n=51) and ALS Functional Rating Scale-Revised (n=42), and regression analyses related ptau:ttau to MRI (n=10) evidence of disease in the corticospinal tract and white matter projections involving prefrontal cortex.
CSF ptau:ttau may be a candidate biomarker to provide objective support for the diagnosis of ALS.
PMCID: PMC3989393  PMID: 24492862
amyotrophic lateral sclerosis; cerebrospinal fluid; phosphorylated tau; biomarker
10.  CSF biomarker changes precede symptom onset of mild cognitive impairment 
Neurology  2013;81(20):1753-1758.
This study evaluated longitudinal CSF biomarker measures collected when participants were cognitively normal to determine the magnitude and time course of biomarker changes before the onset of clinical symptoms in subjects with mild cognitive impairment (MCI).
Longitudinal CSF collection and cognitive assessments were performed on a cohort of 265 participants who were cognitively normal at their baseline assessment and subsequently developed MCI or dementia. CSF β-amyloid 1–42 (Aβ1–42), total tau (t-tau), and phosphorylated tau (p-tau) were determined longitudinally. Consensus diagnoses were completed annually. Cox regression analyses were performed, with baseline CSF values and time-dependent rate of change in CSF values as covariates (adjusted by baseline age, race, and education), in relation to time to onset of mild cognitive symptoms.
The mean time from baseline to onset of mild cognitive symptoms was 5.41 years. Increased risk of progressing from normal cognition to onset of clinical symptoms was associated with baseline values of Aβ1–42, p-tau, and the ratios of p-tau/Aβ1–42 and t-tau/Aβ1–42 (p < 0.002). Additionally, the rate of change in the ratios of t-tau/Aβ1–42 (p < 0.004) and p-tau/Aβ1–42 (p < 0.02) was greater among participants who were subsequently diagnosed with MCI.
Baseline differences in CSF values were predictive of clinical symptoms that were a harbinger of a diagnosis of MCI more than 5 years before symptom onset, and continue to show longitudinal changes as cognitive symptoms develop, demonstrating that baseline and longitudinal changes in CSF biomarkers are evident during the preclinical phase of Alzheimer disease.
PMCID: PMC3821715  PMID: 24132375
11.  Evidence for Elevated Cerebrospinal Fluid ERK1/2 Levels in Alzheimer Dementia 
Cerebrospinal fluid (CSF) samples from 33 patients with Alzheimer dementia (AD), 21 patients with mild cognitive impairment who converted to AD during followup (MCI-AD), 25 patients with stable mild cognitive impairment (MCI-stable), and 16 nondemented subjects (ND) were analyzed with a chemiluminescence immunoassay to assess the levels of the mitogen-activated protein kinase ERK1/2 (extracellular signal-regulated kinase 1/2). The results were evaluated in relation to total Tau (tTau), phosphorylated Tau (pTau), and beta-amyloid 42 peptide (Aβ42). CSF-ERK1/2 was significantly increased in the AD group as compared to stable MCI patients and the ND group. Western blot analysis of a pooled cerebrospinal fluid sample revealed that both isoforms, ERK1 and ERK2, and low amounts of doubly phosphorylated ERK2 were detectable. As a predictive diagnostic AD biomarker, CSF-ERK1/2 was inferior to tTau, pTau, and Aβ42.
PMCID: PMC3227514  PMID: 22145083
12.  Cognitive reserve and Alzheimer's disease biomarkers are independent determinants of cognition 
Brain  2011;134(5):1479-1492.
The objective of this study was to investigate how a measure of educational and occupational attainment, a component of cognitive reserve, modifies the relationship between biomarkers of pathology and cognition in Alzheimer's disease. The biomarkers evaluated quantified neurodegeneration via atrophy on magnetic resonance images, neuronal injury via cerebral spinal fluid t-tau, brain amyloid-β load via cerebral spinal fluid amyloid-β1–42 and vascular disease via white matter hyperintensities on T2/proton density magnetic resonance images. We included 109 cognitively normal subjects, 192 amnestic patients with mild cognitive impairment and 98 patients with Alzheimer's disease, from the Alzheimer's Disease Neuroimaging Initiative study, who had undergone baseline lumbar puncture and magnetic resonance imaging. We combined patients with mild cognitive impairment and Alzheimer's disease in a group labelled ‘cognitively impaired’ subjects. Structural Abnormality Index scores, which reflect the degree of Alzheimer's disease-like anatomic features on magnetic resonance images, were computed for each subject. We assessed Alzheimer's Disease Assessment Scale (cognitive behaviour section) and mini-mental state examination scores as measures of general cognition and Auditory–Verbal Learning Test delayed recall, Boston naming and Trails B scores as measures of specific domains in both groups of subjects. The number of errors on the American National Adult Reading Test was used as a measure of environmental enrichment provided by educational and occupational attainment, a component of cognitive reserve. We found that in cognitively normal subjects, none of the biomarkers correlated with the measures of cognition, whereas American National Adult Reading Test scores were significantly correlated with Boston naming and mini-mental state examination results. In cognitively impaired subjects, the American National Adult Reading Test and all biomarkers of neuronal pathology and amyloid load were independently correlated with all cognitive measures. Exceptions to this general conclusion were absence of correlation between cerebral spinal fluid amyloid-β1–42 and Boston naming and Trails B. In contrast, white matter hyperintensities were only correlated with Boston naming and Trails B results in the cognitively impaired. When all subjects were included in a flexible ordinal regression model that allowed for non-linear effects and interactions, we found that the American National Adult Reading Test had an independent additive association such that better performance was associated with better cognitive performance across the biomarker distribution. Our main conclusions included: (i) that in cognitively normal subjects, the variability in cognitive performance is explained partly by the American National Adult Reading Test and not by biomarkers of Alzheimer's disease pathology; (ii) in cognitively impaired subjects, the American National Adult Reading Test, biomarkers of neuronal pathology (structural magnetic resonance imaging and cerebral spinal fluid t-tau) and amyloid load (cerebral spinal fluid amyloid-β1–42) all independently explain variability in general cognitive performance; and (iii) that the association between cognition and the American National Adult Reading Test was found to be additive rather than to interact with biomarkers of Alzheimer's disease pathology.
PMCID: PMC3097887  PMID: 21478184
Alzheimer's disease; mild cognitive impairment; CSF biomarkers; MRI; cognitive reserve
13.  Hypocretin and brain β-amyloid peptide interactions in cognitive disorders and narcolepsy 
Objective: To examine relationships between cerebrospinal fluid (CSF) Alzheimer' disease (AD) biomarkers and hypocretin-1 levels in patients with cognitive abnormalities and hypocretin-deficient narcolepsy-cataplexy (NC), estimate diagnostic accuracy, and determine correlations with sleep disturbances.
Background: Sleep disturbances are frequent in AD. Interactions between brain β-amyloid (Aβ) aggregation and a wake-related neurotransmitter hypocretin have been reported in a mouse model of AD.
Methods: Ninety-one cognitive patients (37 AD, 16 mild cognitive impairment—MCI that converts to AD, 38 other dementias) and 15 elderly patients with NC were recruited. Patients were diagnosed blind to CSF results. CSF Aβ42, total tau, ptau181, and hypocretin-1 were measured. Sleep disturbances were assessed with questionnaires in 32 cognitive patients.
Results: Lower CSF Aβ42 but higher tau and P-tau levels were found in AD and MCI compared to other dementias. CSF hypocretin-1 levels were higher in patients with MCI due to AD compared to other dementias, with a similar tendency for patients with advanced AD. CSF hypocretin-1 was significantly and independently associated with AD/MCI due to AD, with an OR of 2.70 after full adjustment, exceeding that for Aβ42. Aβ42 correlated positively with hypocretin-1 levels in advanced stage AD. No association was found between sleep disturbances and CSF biomarkers. No patients with NC achieved pathological cutoffs for Aβ42, with respectively one and four patients with NC above tau and P-tau cutoffs and no correlations between hypocretin-1 and other biomarkers.
Conclusions: Our results suggest a pathophysiological relationship between Aβ42 and hypocretin-1 in the AD process, with higher CSF hypocretin-1 levels in early disease stages. Further longitudinal studies are needed to validate these biomarker interactions and to determine the cause-effect relationship and the role of wake/sleep behavior in amyloid plaque regulation.
PMCID: PMC4052448  PMID: 24966833
hypocretin; β-amyloid; Alzheimer's disease; cognition; sleep; CSF; tau
14.  Characterization of Novel CSF Tau and ptau Biomarkers for Alzheimer’s Disease 
PLoS ONE  2013;8(10):e76523.
Cerebral spinal fluid (CSF) Aβ42, tau and p181tau are widely accepted biomarkers of Alzheimer’s disease (AD). Numerous studies show that CSF tau and p181tau levels are elevated in mild-to-moderate AD compared to age-matched controls. In addition, these increases might predict preclinical AD in cognitively normal elderly. Despite their importance as biomarkers, the molecular nature of CSF tau and ptau is not known. In the current study, reverse-phase high performance liquid chromatography was used to enrich and concentrate tau prior to western-blot analysis. Multiple N-terminal and mid-domain fragments of tau were detected in pooled CSF with apparent sizes ranging from <20 kDa to ~40 kDa. The pattern of tau fragments in AD and control samples were similar. In contrast, full-length tau and C-terminal-containing fragments were not detected. To quantify levels, five tau ELISAs and three ptau ELISAs were developed to detect different overlapping regions of the protein. The discriminatory potential of each assay was determined using 20 AD and 20 age-matched control CSF samples. Of the tau ELISAs, the two assays specific for tau containing N-terminal sequences, amino acids 9-198 (numbering based on tau 441) and 9-163, exhibited the most significant differences between AD and control samples. In contrast, CSF tau was not detected with an ELISA specific for a more C-terminal region (amino acids 159-335). Significant discrimination was also observed with ptau assays measuring amino acids 159-p181 and 159-p231. Interestingly, the discriminatory potential of p181 was reduced when measured in the context of tau species containing amino acids 9-p181. Taken together, these results demonstrate that tau in CSF occurs as a series of fragments and that discrimination of AD from control is dependent on the subset of tau species measured. These assays provide novel tools to investigate CSF tau and ptau as biomarkers for other neurodegenerative diseases.
PMCID: PMC3792042  PMID: 24116116
15.  SNPs Associated with Cerebrospinal Fluid Phospho-Tau Levels Influence Rate of Decline in Alzheimer's Disease 
PLoS Genetics  2010;6(9):e1001101.
Alzheimer's Disease (AD) is a complex and multifactorial disease. While large genome-wide association studies have had some success in identifying novel genetic risk factors for AD, case-control studies are less likely to uncover genetic factors that influence progression of disease. An alternative approach to identifying genetic risk for AD is the use of quantitative traits or endophenotypes. The use of endophenotypes has proven to be an effective strategy, implicating genetic risk factors in several diseases, including anemia, osteoporosis and heart disease. In this study we identify a genetic factor associated with the rate of decline in AD patients and present a methodology for identification of other such factors. We have used an established biomarker for AD, cerebrospinal fluid (CSF) tau phosphorylated at threonine 181 (ptau181) levels as an endophenotype for AD, identifying a SNP, rs1868402, in the gene encoding the regulatory sub-unit of protein phosphatase B, associated with CSF ptau181 levels in two independent CSF series . We show no association of rs1868402 with risk for AD or age at onset, but detected a very significant association with rate of progression of disease that is consistent in two independent series . Our analyses suggest that genetic variants associated with CSF ptau181 levels may have a greater impact on rate of progression, while genetic variants such as APOE4, that are associated with CSF Aβ42 levels influence risk and onset but not the rate of progression. Our results also suggest that drugs that inhibit or decrease tau phosphorylation may slow cognitive decline in individuals with very mild dementia or delay the appearance of memory problems in elderly individuals with low CSF Aβ42 levels. Finally, we believe genome-wide association studies of CSF tau/ptau181 levels should identify novel genetic variants which will likely influence rate of progression of AD.
Author Summary
Alzheimer's disease (AD) is the most common neurodegenerative disease affecting more than 4.5 million people in the US. Genetic studies of AD have previously identified pathogenic mutations in three genes (APP, PSEN1 and PSEN2) and polymorphisms in APOE as risk factors. These findings have led to a better understanding of the underlying disease mechanisms. However, half of all AD cases have no known genetic risk factors for disease. Most studies are designed to identify variants associated with risk or age at onset, but rarely cover other important facets of AD, such as disease progression or duration. In this study we have used an established AD biomarker (cerebrospinal fluid tau phosphorylated at threonine 181, ptau181) to find genetic variants that influence levels of ptau181 in the cerebrospinal fluid. This novel and powerful approach has allowed us to identify a genetic factor located in the regulatory subunit of the calcineurin that is also strongly associated with rate of progression of AD. This study is important because it defines a strategy to find novel genetic factors influencing different facets of AD pathobiology including risk, onset and progression.
PMCID: PMC2940763  PMID: 20862329
16.  Exercise and Alzheimer's Disease Biomarkers in Cognitively Normal Older Adults 
Annals of neurology  2010;68(3):311-318.
In addition to the increasingly recognized role of physical exercise in maintaining cognition, exercise may influence Alzheimer's disease (AD) pathology as transgenic mouse studies show lowered levels of AD pathology in exercise groups. The objective of this study was to elucidate the association between exercise and AD pathology in humans using Pittsburgh Compound B (PIB), amyloid-β (Aβ)42, tau, and phosphorylated tau (ptau)181 biomarkers.
Sixty-nine older adults (17 males, 52 females) aged 55–88 were recruited and confirmed to be cognitively normal. A questionnaire on physical exercise levels over the last decade was administered to all. Cerebrospinal fluid (CSF) samples were collected from 56 participants, and amyloid imaging with PIB was performed on 54 participants.
Participants were classified based on biomarker levels. Those with elevated PIB (p=.030), tau (p=.040) and ptau181 ((p=.044) had significantly lower exercise with a non-significant trend for lower Aβ42 (p=.135) to be associated with less exercise. Results were similar for PIB after controlling for covariates; tau (p=.115) and ptau181 (p=.123) differences were reduced to non-significant trends. Additional analyses also demonstrated that active individuals who met the exercise guidelines set by the American Heart Association (AHA) had significantly lower PIB binding and higher Aβ42 levels with and without controlling for covariates (PIB: p=.006 and p=.001; Aβ42: p=.042 and p=.046). Lastly, the associations between exercise engagement and PIB levels were more prominent in APOE epsilon 4 non-carriers.
Collectively, these results are supportive of an association between exercise engagement and AD biomarkers in cognitively normal older adults.
PMCID: PMC2936720  PMID: 20818789
17.  GWAS of cerebrospinal fluid tau levels identifies novel risk variants for Alzheimer’s disease 
Neuron  2013;78(2):256-268.
Cerebrospinal fluid (CSF) tau, tau phosphorylated at threonine 181 (ptau) and Aβ42 are established biomarkers for Alzheimer’s Disease (AD), and have been used as quantitative traits for genetic analyses. We performed the largest genome-wide association study for cerebrospinal fluid (CSF) tau/ptau levels published to date (n=1,269), identifying three novel genome-wide significant loci for CSF tau and ptau: rs9877502 (P=4.89×10−9 for tau) located at 3q28 between GEMC1 and OSTN, rs514716 (P=1.07×10−8 and P=3.22×10−9 for tau and ptau respectively), located at 9p24.2 within GLIS3 and rs6922617 (P = 3.58×10−8 for CSF ptau) at 6p21.1 within the TREM gene cluster, a region recently reported to harbor rare variants that increase AD risk. In independent datasets rs9877502 showed a strong association with risk for AD, tangle pathology and global cognitive decline (P=2.67×10−4, 0.039, 4.86×10−5 respectively) illustrating how this endophenotype-based approach can be used to identify new AD risk loci.
PMCID: PMC3664945  PMID: 23562540
18.  Correlation of Specific Amyloid-β Oligomers With Tau in Cerebrospinal Fluid From Cognitively Normal Older Adults 
JAMA neurology  2013;70(5):594-599.
To investigate two specific amyloid-β (Aβ) oligomers, Aβ trimers and Aβ*56, in human cerebrospinal fluid (CSF), evaluate the effects of aging and Alzheimer's disease (AD), and obtain support for the hypothesis that they may be pathogenic by determining their relationships to CSF tau.
A CSF sampling study.
The University of Minnesota Medical School in Minneapolis, Minnesota, and the Salhgrenska University Hospital, Sweden.
Older adults with mild cognitive impairment or Alzheimer's disease (Impaired), age-matched cognitively intact controls (Unimpaired), and younger, normal controls.
Main outcome measures
Measurements of CSF Aβ trimers, Aβ*56, Aβ1-42, total tau (T-tau), and phospho-tau (ptau-181).
We observed that Aβ trimers and Aβ*56 levels increased with age, and within the Unimpaired group were elevated in subjects with T-tau/Aβ1-42 ratios above a cutoff that distinguished the Unimpaired group from AD subjects. In the Unimpaired group, T-tau and ptau-181 were found to correlate strongly with Aβ trimers and Aβ*56 (r > 0.63), but not with Aβ(1-42) (-0.10 < r < -0.01). The strong correlations were found to be attenuated in the Impaired group.
In cognitively intact older adults CSF Aβ trimers and Aβ*56 are elevated in individuals at risk for AD, and show stronger relationships with tau than does Aβ1-42, a surrogate for amyloid deposition. These data support the hypothesis that Aβ trimers or Aβ*56 are pathogenic in preclinical AD. However, the attenuation of these associations in symptomatic subjects suggests an uncoupling between the Aβ oligomers and tau in later stages of AD.
PMCID: PMC3725752  PMID: 23479202
19.  The PSEN1, p.E318G Variant Increases the Risk of Alzheimer's Disease in APOE-ε4 Carriers 
PLoS Genetics  2013;9(8):e1003685.
The primary constituents of plaques (Aβ42/Aβ40) and neurofibrillary tangles (tau and phosphorylated forms of tau [ptau]) are the current leading diagnostic and prognostic cerebrospinal fluid (CSF) biomarkers for AD. In this study, we performed deep sequencing of APP, PSEN1, PSEN2, GRN, APOE and MAPT genes in individuals with extreme CSF Aβ42, tau, or ptau levels. One known pathogenic mutation (PSEN1 p.A426P), four high-risk variants for AD (APOE p.L46P, MAPT p.A152T, PSEN2 p.R62H and p.R71W) and nine novel variants were identified. Surprisingly, a coding variant in PSEN1, p.E318G (rs17125721-G) exhibited a significant association with high CSF tau (p = 9.2×10−4) and ptau (p = 1.8×10−3) levels. The association of the p.E318G variant with Aβ deposition was observed in APOE-ε4 allele carriers. Furthermore, we found that in a large case-control series (n = 5,161) individuals who are APOE-ε4 carriers and carry the p.E318G variant are at a risk of developing AD (OR = 10.7, 95% CI = 4.7–24.6) that is similar to APOE-ε4 homozygous (OR = 9.9, 95% CI = 7.2.9–13.6), and double the risk for APOE-ε4 carriers that do not carry p.E318G (OR = 3.9, 95% CI = 3.4–4.4). The p.E318G variant is present in 5.3% (n = 30) of the families from a large clinical series of LOAD families (n = 565) and exhibited a higher frequency in familial LOAD (MAF = 2.5%) than in sporadic LOAD (MAF = 1.6%) (p = 0.02). Additionally, we found that in the presence of at least one APOE-ε4 allele, p.E318G is associated with more Aβ plaques and faster cognitive decline. We demonstrate that the effect of PSEN1, p.E318G on AD susceptibility is largely dependent on an interaction with APOE-ε4 and mediated by an increased burden of Aβ deposition.
Author Summary
Alzheimer's disease (AD) is the most common neurodegenerative disease affecting more than 5.3 million people in the US. AD-causing mutations have been identified in APP, PSEN1 and PSEN2 genes. Heterozygous carriers of APOE-ε4 allele exhibit a 3-fold increased risk for developing AD, while homozygous carriers show a 10-fold greater risk than non-carriers. Here, we sequenced individuals with extreme levels of well-established AD cerebrospinal fluid (CSF) biomarkers in order to identify variants in APOE, APP, PSEN1, PSEN2, GRN and MAPT genes associated with AD risk. This approach allowed us to identify known pathogenic variants, additional AD risk genetic factors and identify a low frequency variant in PSEN1, p.E318G (rs17125721-G) that increases risk for AD in a gene-gene interaction with APOE. These findings were replicated in three large (>4,000 individuals) and independent datasets. This finding is particularly important because we demonstrated that a currently considered non-pathogenic variant is associated with higher levels of neuronal degeneration, and with Aβ deposition, more Aβ plaques and faster cognitive decline in an APOE-ε4-dependent fashion. APOE-ε4 heterozygous individuals who carry this variant are at similar AD risk as APOE-ε4 homozygous individuals.
PMCID: PMC3750021  PMID: 23990795
20.  The Brain Injury Biomarker, VLP-1, is Increased in the CSF of Alzheimer's Disease Patients 
Clinical chemistry  2008;54(10):1617-1623.
Definitive diagnosis of Alzheimer's disease (AD) can only be made by histopathological examination of brain tissue, prompting the search for premortem disease biomarkers. We sought to determine if the novel brain injury biomarker, Visinin-like protein 1 (VLP-1), is altered in the CSF of AD patients compared to controls, and to compare its values to the other well-studied CSF biomarkers 42-amino acid amyloid-β peptide (Aβ 1-42), total Tau (tTau), and hyperphosphorylated Tau (pTau).
CSF samples from 33 AD patients and 24 controls were analyzed by ELISA to measure concentrations of Aβ1-42, tTau, pTau, and VLP-1. The diagnostic performance of these biomarkers was compared using receiver operating characteristic (ROC) curves.
CSF VLP-1 concentrations were significantly higher in AD patients (365 ± 166 ng/L, median ± inter-quartile range) compared to controls (244 ± 142.5). While the diagnostic performance of VLP-1 alone was comparable to that of Aβ, tTau, or pTau alone, the combination of the 4 biomarkers demonstrated better performance than each individually. VLP-1 concentrations were higher in AD subjects with APOEε4/ε4 genotype (599 ± 240 ng/L) compared to ε3/ε4 (376 ± 127) and ε3/ε3 genotypes (280 ± 115.5). Furthermore, VLP-1 values demonstrated a high degree of correlation with pTau (r = 0.809) and tTau (r = 0.635) but not Aβ1-42 (r = -0.233). VLP-1 was the only biomarker that correlated with MMSE score (r=-0.384, p=0.030).
These results suggest that neuronal injury markers like VLP-1 may have utility as biomarkers for AD.
PMCID: PMC2672199  PMID: 18703769
21.  Rates of Decline in Alzheimer Disease Decrease with Age 
PLoS ONE  2012;7(8):e42325.
Age is the strongest risk factor for sporadic Alzheimer disease (AD), yet the effects of age on rates of clinical decline and brain atrophy in AD have been largely unexplored. Here, we examined longitudinal rates of change as a function of baseline age for measures of clinical decline and structural MRI-based regional brain atrophy, in cohorts of AD, mild cognitive impairment (MCI), and cognitively healthy (HC) individuals aged 65 to 90 years (total n = 723). The effect of age was modeled using mixed effects linear regression. There was pronounced reduction in rates of clinical decline and atrophy with age for AD and MCI individuals, whereas HCs showed increased rates of clinical decline and atrophy with age. This resulted in convergence in rates of change for HCs and patients with advancing age for several measures. Baseline cerebrospinal fluid densities of AD-relevant proteins, Aβ1–42, tau, and phospho-tau181p (ptau), showed a similar pattern of convergence with advanced age across cohorts, particularly for ptau. In contrast, baseline clinical measures did not differ by age, indicating uniformity of clinical severity at baseline. These results imply that the phenotypic expression of AD is relatively mild in individuals older than approximately 85 years, and this may affect the ability to distinguish AD from normal aging in the very old. Our findings show that inclusion of older individuals in clinical trials will substantially reduce the power to detect disease-modifying therapeutic effects, leading to dramatic increases in required clinical trial sample sizes with age of study sample.
PMCID: PMC3410919  PMID: 22876315
22.  Comparing the Effects of Various Whole-Body Vibration Accelerations on Counter-Movement Jump Performance 
While it seems that whole body vibration (WBV) might be an effective modality to enhance physical performance, the proper prescription of WBV for performance enhancement remains unknown. The purpose of this study was to compare the immediate effect of various WBV accelerations on counter movement jump (CMJ) height, the duration of any effect, and differences between men and women. Forty-four participants (33 men, 11 women) participated in no less than four CMJ familiarization sessions and completed all vibration sessions. Participants performed a pre-test (three maximal CMJs), followed randomly by one of five WBV accelerations; 1g (no-WBV control), 2.16g, 2.80g, 4.87g, and 5.83g. Participants performed three maximal CMJs immediately, five, and 10 minutes following each 45 sec WBV session. The mean of the three performances was used and calculated as a percentage of the pre-vibration mean value. A Repeated Measures Analysis of Variance (ANOVA; acceleration x time x gender) model was used to analyze the data. The two-way interactions of acceleration-gender (p = 0.033) and time-gender (p = 0.050) were significant. Women performed significantly better following the 2.80g (p = 0.0064) and 5.83g (p = 0. 0125) WBV sessions compared to the 1g (control) session. Men, however, did not experience performance enhancing effects following any of the vibration sessions. While significant differences did not occur between time in either gender, the effects of the 45 sec WBV session in women were transient, lasting approximately five minutes. During the prescription of WBV, gender should be considered given that the results of this study seem to indicate that men and women respond differently to WBV. The results of this study suggest that WBV might be a useful modality as applied during the pre-competition warm-up.
Key pointsWBV accelerations of 2.80g (40 Hz, 2-4 mm) and 5.83g (50 Hz, 4-6 mm) seem to elicit a performance enhancement effect following short-duration (45 sec) exposure in untrained women.The performance enhancement effect of a short-duration is transient, lasting less than 10 minutes following exposure.Men and women might differ in their response to the WBV stimulus, as measured by countermovement jump.
PMCID: PMC3763339  PMID: 24150147
Vertical jump; frequency; amplitude; gender
23.  Brain and ventricular volumetric changes in frontotemporal lobar degeneration over 1 year 
Neurology  2009;72(21):1843-1849.
Measurement of volumetric changes with MR might be a useful surrogate endpoint for clinical trials in frontotemporal lobar degeneration (FTLD). Because there is only limited longitudinal imaging data currently available, we measured the rate of change over 1 year of whole brain volume (WBV) and ventricular volume (VV) in patients with FTLD.
Subjects with an FTLD cognitive syndrome were recruited from five centers using standard clinical diagnostic criteria for behavioral variant frontotemporal dementia (bvFTD), progressive nonfluent aphasia (PNFA), semantic dementia (SMD), and progressive logopenic aphasia. Structural brain imaging, using three-dimensional T1-weighted sequences at 1.5 teslas, and cognitive, behavioral, and functional assessments were performed at baseline and approximately 1 year later. The boundary shift integral algorithm was used to determine change in WBV and VV.
There were 76 patients (mean age 64 years; 41 men and 35 women) who had usable baseline and annual scans. The group-wise annualized change was −1.62% (SD 1.03, range +0.69 to −3.6) for WBV and 11.6% (SD 5.9, range −1.3 to 23.9) for VV. Rates of change were similar among bvFTD, PNFA, and SMD groups. Longitudinal changes in WBV and VV were correlated with decline on clinical global and cognitive measures.
Multicenter, serial measurements of whole brain volume (WBV) and ventricular volume (VV) from magnetic resonance scans were feasible in patients with frontotemporal lobar degeneration (FTLD). Using WBV or VV as outcome measures would require recruiting (at 80% power) 139 or 55 subjects per group to detect a small (25%) or medium-sized (40%) effect in a randomized, placebo-controlled trial of a putative agent for FTLD.
= Alzheimer disease;
= boundary shift integral;
= behavioral variant frontotemporal dementia;
= corticobasal degeneration;
= confidence interval;
= frontotemporal lobar degeneration;
= frontotemporal lobar degeneration modified Clinical Dementia Rating Scale;
= Mini-Mental State Examination;
= magnetic resonance;
= not significant;
= progressive logopenic aphasia;
= progressive nonfluent aphasia;
= progressive supranuclear palsy;
= semantic dementia;
= total intracranial volume;
= ventricular volume;
= whole brain volume.
PMCID: PMC2690986  PMID: 19470967
24.  Biomarker-based prediction of progression in MCI: Comparison of AD signature and hippocampal volume with spinal fluid amyloid-β and tau 
Objective: New diagnostic criteria for mild cognitive impairment (MCI) due to Alzheimer's disease (AD) have been developed using biomarkers aiming to establish whether the clinical syndrome is likely due to underlying AD. We investigated the utility of magnetic resonance imaging (MRI) and cerebrospinal fluid (CSF) biomarkers in predicting progression from amnesic MCI to dementia, testing the hypotheses that (1) markers of amyloid and neurodegeneration provide distinct and complementary prognostic information over different time intervals, and that (2) evidence of neurodegeneration in amyloid-negative MCI individuals would be useful prognostically.
Methods: Data were obtained from the ADNI-1 (Alzheimer's Disease Neuroimaging Initiative Phase 1) database on all individuals with a baseline diagnosis of MCI, baseline MRI and CSF data, and at least one follow-up visit. MRI data were processed using a published set of a priori regions of interest to derive a measure known as the ``AD signature,'' as well as hippocampal volume. The CSF biomarkers amyloid-β, total tau, and phospho tau were also examined. We performed logistic regression analyses to identify the best baseline biomarker predictors of progression to dementia over 1 or 3 years, and Cox regression models to test the utility of these markers for predicting time-to-dementia.
Results: For prediction of dementia in MCI, the AD signature cortical thickness biomarker performed better than hippocampal volume. Although CSF tau measures were better than CSF amyloid-β at predicting dementia within 1 year, the AD signature was better than all CSF measures at prediction over this relatively short-term interval. CSF amyloid-β was superior to tau and AD signature at predicting dementia over 3 years. When CSF amyloid-β was dichotomized using previously published cutoff values and treated as a categorical variable, a multivariate stepwise Cox regression model indicated that both the AD signature MRI marker and the categorical CSF amyloid-β marker were useful in predicting time-to-event diagnosis of AD dementia.
Conclusion: In amnesic MCI, short-term (1 year) prognosis of progression to dementia relates strongly to baseline markers of neurodegeneration, with the AD signature MRI biomarker of cortical thickness performing the best among MRI and CSF markers studied here. Longer-term (3 year) prognosis in these individuals was better predicted by a marker indicative of brain amyloid. Prediction of time-to-event in a survival model was predicted by the combination of these biomarkers. These results provide further support for emerging models of the temporal relationship of pathophysiologic events in AD and demonstrate the utility of these biomarkers at the prodromal stage of the illness.
PMCID: PMC3795312  PMID: 24130528
Alzheimer's disease; MRI; biomarkers; mild cognitive impairment; CSF biomarkers
25.  Comparing predictors of conversion and decline in mild cognitive impairment(Podcast)(e–Pub ahead of print) 
Neurology  2010;75(3):230-238.
A variety of measurements have been individually linked to decline in mild cognitive impairment (MCI), but the identification of optimal markers for predicting disease progression remains unresolved. The goal of this study was to evaluate the prognostic ability of genetic, CSF, neuroimaging, and cognitive measurements obtained in the same participants.
APOE ε4 allele frequency, CSF proteins (Aβ1-42, total tau, hyperphosphorylated tau [p-tau181p]), glucose metabolism (FDG-PET), hippocampal volume, and episodic memory performance were evaluated at baseline in patients with amnestic MCI (n = 85), using data from a large multisite study (Alzheimer's Disease Neuroimaging Initiative). Patients were classified as normal or abnormal on each predictor variable based on externally derived cutoffs, and then variables were evaluated as predictors of subsequent conversion to Alzheimer disease (AD) and cognitive decline (Alzheimer's Disease Assessment Scale–Cognitive Subscale) during a variable follow-up period (1.9 ± 0.4 years).
Patients with MCI converted to AD at an annual rate of 17.2%. Subjects with MCI who had abnormal results on both FDG-PET and episodic memory were 11.7 times more likely to convert to AD than subjects who had normal results on both measures (p ≤ 0.02). In addition, the CSF ratio p-tau181p/Aβ1-42 (β = 1.10 ± 0.53; p = 0.04) and, marginally, FDG-PET predicted cognitive decline.
Baseline FDG-PET and episodic memory predict conversion to AD, whereas p-tau181p/Aβ1-42 and, marginally, FDG-PET predict longitudinal cognitive decline. Complementary information provided by these biomarkers may aid in future selection of patients for clinical trials or identification of patients likely to benefit from a therapeutic intervention.
= Alzheimer disease;
= Alzheimer's Disease Assessment Scale–Cognitive Subscale;
= Alzheimer's Disease Neuroimaging Initiative;
= Auditory Verbal Learning Test;
= Clinical Dementia Rating;
= confidence interval;
= [18F]fluorodeoxyglucose;
= mild cognitive impairment;
= Montreal Neurological Institute;
= hyperphosphorylated tau;
= receiver operating characteristic;
= total tau.
PMCID: PMC2906178  PMID: 20592257

Results 1-25 (908861)