Search tips
Search criteria

Results 1-25 (475760)

Clipboard (0)

Related Articles

1.  Untreated HIV Infection and Large and Small Artery Elasticity 
Untreated HIV infection may increase risk for cardiovascular disease, and arterial elasticity is a marker of cardiovascular risk and early disease.
HIV-infected participants not taking antiretroviral therapy (n = 32) were compared with HIV-negative controls (n = 30). Large and small artery elasticity (LAE and SAE) were estimated via analysis of radial pulse waveforms. Differences in LAE and SAE by HIV status were compared using analysis of covariance, with and without adjustment for Framingham risk (model 1); covariates that differed between groups [smoking, injection drug use, hepatitis C, and high-density lipoprotein cholesterol (HDLc); model 2]; or age, sex, race/ethnicity, smoking, injection drug use, hepatitis C, HDLc, and non-HDLc (model 3).
HIV infection was associated with impaired LAE (−2.55 mL/mm Hg × 10; P = 0.02) and SAE (−1.50 mL/mm Hg × 100; P = 0.02). Associations with traditional risk factors were often stronger for SAE than LAE, including with Framingham score (per 1% higher; SAE −0.18, P = 0.01; LAE −0.19, P = 0.13). Fasting lipid levels were not significantly associated with LAE and SAE. After adjustment, differences between HIV-infected and HIV-uninfected participants were similar in model 1 (−2.36 for LAE, P = 0.04; −1.31 for SAE, P = 0.04), model 2 (−2.67 for LAE, P = 0.02; −1.13 for SAE, P = 0.07) and model 3 (−2.91 for LAE, P = 0.02; −1.34 for SAE, P = 0.03). CD4 count and HIV RNA level were not associated with LAE and SAE among HIV-infected participants.
Untreated HIV infection is associated with impaired arterial elasticity, of both the large and small vasculature, after controlling for additional risk factors. Pulse waveform analysis is a noninvasive technique to assess cardiovascular disease risk that should be evaluated in larger studies of HIV-infected persons.
PMCID: PMC2764552  PMID: 19731451
arterial elasticity; arterial stiffness; cardiovascular disease; endothelial dysfunction; HIV; untreated HIV infection
2.  Are Markers of Inflammation More Strongly Associated with Risk for Fatal Than for Nonfatal Vascular Events? 
PLoS Medicine  2009;6(6):e1000099.
In a secondary analysis of a randomized trial comparing pravastatin versus placebo for the prevention of coronary and cerebral events in an elderly at-risk population, Naveed Sattar and colleagues find that inflammatory markers may be more strongly associated with risk of fatal vascular events than nonfatal vascular events.
Circulating inflammatory markers may more strongly relate to risk of fatal versus nonfatal cardiovascular disease (CVD) events, but robust prospective evidence is lacking. We tested whether interleukin (IL)-6, C-reactive protein (CRP), and fibrinogen more strongly associate with fatal compared to nonfatal myocardial infarction (MI) and stroke.
Methods and Findings
In the Prospective Study of Pravastatin in the Elderly at Risk (PROSPER), baseline inflammatory markers in up to 5,680 men and women aged 70–82 y were related to risk for endpoints; nonfatal CVD (i.e., nonfatal MI and nonfatal stroke [n = 672]), fatal CVD (n = 190), death from other CV causes (n = 38), and non-CVD mortality (n = 300), over 3.2-y follow-up. Elevations in baseline IL-6 levels were significantly (p = 0.0009; competing risks model analysis) more strongly associated with fatal CVD (hazard ratio [HR] for 1 log unit increase in IL-6 1.75, 95% confidence interval [CI] 1.44–2.12) than with risk of nonfatal CVD (1.17, 95% CI 1.04–1.31), in analyses adjusted for treatment allocation. The findings were consistent in a fully adjusted model. These broad trends were similar for CRP and, to a lesser extent, for fibrinogen. The results were also similar in placebo and statin recipients (i.e., no interaction). The C-statistic for fatal CVD using traditional risk factors was significantly (+0.017; p<0.0001) improved by inclusion of IL-6 but not so for nonfatal CVD events (p = 0.20).
In PROSPER, inflammatory markers, in particular IL-6 and CRP, are more strongly associated with risk of fatal vascular events than nonfatal vascular events. These novel observations may have important implications for better understanding aetiology of CVD mortality, and have potential clinical relevance.
Please see later in the article for Editors' Summary
Editors' Summary
Cardiovascular disease (CVD)—disease that affects the heart and/or the blood vessels—is a common cause of death in developed countries. In the USA, for example, the leading cause of death is coronary heart disease (CHD), a CVD in which narrowing of the heart's blood vessels by “atherosclerotic plaques” (fatty deposits that build up with age) slows the blood supply to the heart and may eventually cause a heart attack (myocardial infarction). Other types of CVD include stroke (in which atherosclerotic plaques interrupt the brain's blood supply) and heart failure (a condition in which the heart cannot pump enough blood to the rest of the body). Smoking, high blood pressure, high blood levels of cholesterol (a type of fat), having diabetes, and being overweight all increase a person's risk of developing CVD. Tools such as the “Framingham risk calculator” take these and other risk factors into account to assess an individual's overall risk of CVD, which can be reduced by taking drugs to reduce blood pressure or cholesterol levels (for example, pravastatin) and by making lifestyle changes.
Why Was This Study Done?
Inflammation (an immune response to injury) in the walls of blood vessels is thought to play a role in the development of atherosclerotic plaques. Consistent with this idea, several epidemiological studies (investigations of the causes and distribution of disease in populations) have shown that people with high circulating levels of markers of inflammation such as interleukin-6 (IL-6), C-reactive protein (CRP), and fibrinogen are more likely to have a stroke or a heart attack (a CVD event) than people with low levels of these markers. Although these studies have generally lumped together fatal and nonfatal CVD events, some evidence suggests that circulating inflammatory markers may be more strongly associated with fatal than with nonfatal CVD events. If this is the case, the mechanisms that lead to fatal and nonfatal CVD events may be subtly different and knowing about these differences could improve both the prevention and treatment of CVD. In this study, the researchers investigate this possibility using data collected in the Prospective Study of Pravastatin in the Elderly at Risk (PROSPER; a trial that examined pravastatin's effect on CVD development among 70–82 year olds with pre-existing CVD or an increased risk of CVD because of smoking, high blood pressure, or diabetes).
What Did the Researchers Do and Find?
The researchers used several statistical models to examine the association between baseline levels of IL-6, CRP, and fibrinogen in the trial participants and nonfatal CVD events (nonfatal heart attacks and nonfatal strokes), fatal CVD events, death from other types of CVD, and deaths from other causes during 3.2 years of follow-up. Increased levels of all three inflammatory markers were more strongly associated with fatal CVD than with nonfatal CVD after adjustment for treatment allocation and for other established CVD risk factors but this pattern was strongest for IL-6. Thus, a unit increase in the log of IL-6 levels increased the risk of fatal CVD by half but increased the risk of nonfatal CVD by significantly less. The researchers also investigated whether including these inflammatory markers in tools designed to predict an individual's CVD risk could improve the tool's ability to distinguish between individuals with a high and low risk. The addition of IL-6 to established risk factors, they report, increased this discriminatory ability for fatal CVD but not for nonfatal CVD.
What Do These Findings Mean?
These findings indicate that, at least for the elderly at-risk patients who were included in PROSPER, inflammatory markers are more strongly associated with the risk of a fatal heart attack or stroke than with nonfatal CVD events. These findings need to be confirmed in younger populations and larger studies also need to be done to discover whether the same association holds when fatal heart attacks and fatal strokes are considered separately. Nevertheless, the present findings suggest that inflammation may specifically help to promote the development of serious, potentially fatal CVD and should stimulate improved research into the use of inflammation markers to predict risk of deaths from CVD.
Additional Information
Please access these Web sites via the online version of this summary at
The MedlinePlus Encyclopedia has pages on coronary heart disease, stroke, and atherosclerosis (in English and Spanish)
MedlinePlus provides links to many other sources of information on heart diseases, vascular diseases, and stroke (in English and Spanish)
Information for patients and caregivers is provided by the American Heart Association on all aspects of cardiovascular disease, including information on inflammation and heart disease
Information is available from the British Heart Foundation on heart disease and keeping the heart healthy
More information about PROSPER is available on the Web site of the Vascular Biochemistry Department of the University of Glasgow
PMCID: PMC2694359  PMID: 19554082
3.  Associations among Lung Function, Arterial Elasticity and Circulating Endothelial and Inflammation Markers: the Multi-Ethnic Study of Atherosclerosis 
Hypertension  2013;61(2):542-548.
A parallel physiologic pathway for elastic changes is hypothesized for declines in arterial elasticity and lung function. Endothelial dysfunction and inflammation could potentially decrease elasticity of both vasculature and lung tissue. We examined biomarkers, large (LAE) and small (SAE) arterial elasticity, and forced vital capacity (FVC) in a period cross-sectional design in the Multi-Ethnic Study of Atherosclerosis, which recruited 1,823 women and 1,803 men, age range 45–84 years, black, white, Hispanic, and Chinese, free of clinically recognized CVD. Radial artery tonometric pulse waveform registration was performed and LAE and SAE were derived from diastole. Spirometric data and markers of endothelial dysfunction and inflammation (soluble intracellular adhesion molecule-1, fibrinogen, hs-C-reactive protein, and interleukin-6) were obtained. Mean LAE was 13.7 ± 5.5 ml/mmHgx10 and SAE was 4.6 ± 2.6 ml/mmHgx100. Mean FVC was 3,192 ± 956.0 mL and FEV1 was 2,386 ± 734.5 mL. FVC was about 40 ± 5 mL higher per SD of SAE, stronger in men than women. The association was slightly weaker with LAE, with no sex interaction. After regression adjustment for demographic, anthropometric, and cardiovascular risk factors, the biomarkers tended to be related to reduced SAE and FVC, particularly in men. These biomarker associations suggest important CVD risk alterations that occur concurrently with lower arterial elasticity and lung function. The observed positive association of SAE with FVC and with FEV1 in middle-aged to older free-living people is consistent with the hypothesis of parallel physiologic pathways for elastic changes in the vasculature and in lung parenchymal tissue.
PMCID: PMC3586233  PMID: 23283358
arterial stiffness; endothelial markers; inflammatory markers; large and small artery elasticity; lung function; MESA Study
4.  Race/Ethnic And Sex Differences In Large And Small Artery Elasticity – Results Of The Multi-Ethnic Study Of Atherosclerosis (MESA) 
Ethnicity & disease  2009;19(3):243-250.
Reduction in arterial elasticity marks progression toward cardiovascular morbidity and mortality. Variability in arterial elasticity may help account for race/ethnic and gender differences in cardiovascular risk.
Cross-sectional study.
Whites, African Americans, Hispanics and Chinese aged 45–84 years free of clinically recognized cardiovascular disease were recruited in six US communities.
We examined 3,316 women and 3,020 men according to race/ethnicity and sex.
Main Outcome Measures
Large (LAE) and small artery (SAE) elasticity, derived from radial artery diastolic pulse wave contour registration in all subjects in a supine position using tonometry. LAE and SAE were adjusted for ethnicity, age, clinical site, height, heart rate, blood pressure, antihypertensive medication and body mass index, diabetes, smoking, and circulating lipids.
Much of the sex difference in arterial elasticity was explained by height. After adjustment, LAE did not differ by race/ethnicity, but mean SAE in African Americans was 4.2 mL/mm Hg × 100 and 4.4 mL/mm Hg × 100 in Hispanics compared to means of 4.6 mL/mm Hg × 100 in Whites, and 4.8 mL/mm Hg × 100 in Chinese.
Reduced SAE may indicate earlier vascular disease in African Americans and Hispanics than other groups.
PMCID: PMC2924814  PMID: 19769004
Blood Pressure; Arterial Elasticity; MESA Study
5.  Association between Endothelial Biomarkers and Arterial Elasticity in Young Adults – The CARDIA Study 
Reduced arterial elasticity and endothelial dysfunction both may indicate early cardiovascular (CV) disease in young adults. Pulse waveform analysis estimates large (LAE) and small (SAE) artery elasticity noninvasively. We assessed the associations between LAE and SAE and markers of endothelial dysfunction and CV risk factors.
The Coronary Artery Risk Development in Young Adults (CARDIA) assessed arterial elasticity and other characteristics cross-sectionally in 389 men and 381 women aged 27–42 years in 1995 (CARDIA year 10) and circulating levels of P-selectin and soluble intercellular adhesion molecule 1 (sICAM-1) in 2000. We adjusted for variables included in the estimation of arterial elasticity (year 10 height, body mass index, age, heart rate, and blood pressure) and other year 10 characteristics.
Mean adjusted SAE was 8.5 vs. 7.6 ml/mmHg ×100 in those with urine albumin/creatinine ratio ≤4 vs. microalbuminuria (ratio > 25; ptrend =0.008). Mean LAE was 25.6 vs. 24.2 ml/mmHg ×10 in the lowest vs. highest quintile of P-selectin (ptrend =0.004). sICAM-1 was unrelated to either LAE or SAE. Plasma triglycerides were inversely related to LAE (ptrend =0.029). Cigarette smokers had lower SAE than nonsmokers (ptrend = 0.009).
In addition to smoking and triglycerides, biomarkers for endothelial dysfunction were associated with impaired LAE and SAE in young adults.
PMCID: PMC2390876  PMID: 19343081
Blood lipids; smoking; albuminuria; endothelial dysfunction
6.  Association of Self-Reported Race/Ethnicity and Genetic Ancestry with Arterial Elasticity: The Multi-Ethnic Study of Atherosclerosis (MESA) 
African-Americans have a disproportionate burden of hypertension compared to Caucasians, while data on Hispanics is less well-defined. Mechanisms underlying these differences are unclear, but could be due in part to ancestral background and vascular function.
Methods and Results
660 African-Americans and 635 Hispanics from the Multi-Ethnic Study of Atherosclerosis (MESA) with complete data on genetic ancestry, pulse pressure (PP), and large and small arterial elasticity (LAE, SAE) were studied. LAE and SAE were obtained using the HDI PulseWave CR-2000 Research CardioVascular Profiling Instrument. Among African-Americans higher European ancestry was marginally associated with higher LAE (p=0.05) and lower PP (p=0.05) among African-Americans; results for LAE were attenuated after adjustment for potential mediators (p=0.30). Ancestry was not associated with SAE in African-Americans. Among Hispanics, higher Native American ancestry was associated with higher SAE (p=0.0006); higher African ancestry was marginally associated with lower SAE (p=0.07). Ancestry was not significantly associated with LAE or PP in Hispanics.
Among African-Americans, higher European ancestry may be associated with less large artery damage as measured by LAE and PP, although these associations warrant further study. Among Hispanics, ancestry is strongly associated with SAE. Future studies should consider information on genetic ancestry when studying hypertension burden in race/ethnic minorities, particularly among Hispanics.
PMCID: PMC3218223  PMID: 21890448
large artery elasticity; small artery elasticity; admixture; pulse pressure
7.  Reduced Glomerular Filtration Rate and Its Association with Clinical Outcome in Older Patients at Risk of Vascular Events: Secondary Analysis 
PLoS Medicine  2009;6(1):e1000016.
Reduced glomerular filtration rate (GFR) is associated with increased cardiovascular risk in young and middle aged individuals. Associations with cardiovascular disease and mortality in older people are less clearly established. We aimed to determine the predictive value of the GFR for mortality and morbidity using data from the 5,804 participants randomized in the Prospective Study of Pravastatin in the Elderly at Risk (PROSPER).
Methods and Findings
Glomerular filtration rate was estimated (eGFR) using the Modification of Diet in Renal Disease equation and was categorized in the ranges ([20–40], [40–50], [50–60]) ≥ 60 ml/min/1.73 m2. Baseline risk factors were analysed by category of eGFR, with and without adjustment for other risk factors. The associations between baseline eGFR and morbidity and mortality outcomes, accrued after an average of 3.2 y, were investigated using Cox proportional hazard models adjusting for traditional risk factors. We tested for evidence of an interaction between the benefit of statin treatment and baseline eGFR status. Age, low-density lipoprotein (LDL) and high-density lipoprotein (HDL) cholesterol, C-reactive protein (CRP), body mass index, fasting glucose, female sex, histories of hypertension and vascular disease were associated with eGFR (p = 0.001 or less) after adjustment for other risk factors. Low eGFR was independently associated with risk of all cause mortality, vascular mortality, and other noncancer mortality and with fatal and nonfatal coronary and heart failure events (hazard ratios adjusted for CRP and other risk factors (95% confidence intervals [CIs]) for eGFR < 40 ml/min/1.73m2 relative to eGFR ≥ 60 ml/min/1.73m2 respectively 2.04 (1.48–2.80), 2.37 (1.53–3.67), 3.52 (1.78–6.96), 1.64 (1.18–2.27), 3.31 (2.03–5.41). There were no nominally statistically significant interactions (p < 0.05) between randomized treatment allocation and eGFR for clinical outcomes, with the exception of the outcome of coronary heart disease death or nonfatal myocardial infarction (p = 0.021), with the interaction suggesting increased benefit of statin treatment in subjects with impaired GFRs.
We have established that, in an elderly population over the age of 70 y, impaired GFR is associated with female sex, with presence of vascular disease, and with levels of other risk factors that would be associated with increased risk of vascular disease. Further, impaired GFR is independently associated with significant levels of increased risk of all cause mortality and fatal vascular events and with composite fatal and nonfatal coronary and heart failure outcomes. Our analyses of the benefits of statin treatment in relation to baseline GFR suggest that there is no reason to exclude elderly patients with impaired renal function from treatment with a statin.
Using data from the PROSPER trial, Ian Ford and colleagues investigate whether reduced glomerular filtration rate is associated with cardiovascular and mortality risk among elderly people.
Editors' Summary
Cardiovascular disease (CVD)—disease that affects the heart and/or the blood vessels—is a common cause of death in developed countries. In the USA, for example, the single leading cause of death is coronary heart disease, a CVD in which narrowing of the heart's blood vessels slows or stops the blood supply to the heart and eventually causes a heart attack. Other types of CVD include stroke (in which narrowing of the blood vessels interrupts the brain's blood supply) and heart failure (a condition in which the heart can no longer pump enough blood to the rest of the body). Many factors increase the risk of developing CVD, including high blood pressure (hypertension), high blood cholesterol, having diabetes, smoking, and being overweight. Tools such as the “Framingham risk calculator” assess an individual's overall CVD risk by taking these and other risk factors into account. CVD risk can be minimized by taking drugs to reduce blood pressure or cholesterol levels (for example, pravastatin) and by making lifestyle changes.
Why Was This Study Done?
Another potential risk factor for CVD is impaired kidney (renal) function. In healthy people, the kidneys filter waste products and excess fluid out of the blood. A reduced “estimated glomerular filtration rate” (eGFR), which indicates impaired renal function, is associated with increased CVD in young and middle-aged people and increased all-cause and cardiovascular death in people who have vascular disease. But is reduced eGFR also associated with CVD and death in older people? If it is, it would be worth encouraging elderly people with reduced eGFR to avoid other CVD risk factors. In this study, the researchers determine the predictive value of eGFR for all-cause and vascular mortality (deaths caused by CVD) and for incident vascular events (a first heart attack, stroke, or heart failure) using data from the Prospective Study of Pravastatin in the Elderly at Risk (PROSPER). This clinical trial examined pravastatin's effects on CVD development among 70–82 year olds with pre-existing vascular disease or an increased risk of CVD because of smoking, hypertension, or diabetes.
What Did the Researchers Do and Find?
The trial participants were divided into four groups based on their eGFR at the start of the study. The researchers then investigated the association between baseline CVD risk factors and baseline eGFR and between baseline eGFR and vascular events and deaths that occurred during the 3-year study. Several established CVD risk factors were associated with a reduced eGFR after allowing for other risk factors. In addition, people with a low eGFR (between 20 and 40 units) were twice as likely to die from any cause as people with an eGFR above 60 units (the normal eGFR for a young person is 100 units; eGFR decreases with age) and more than three times as likely to have nonfatal coronary heart disease or heart failure. A low eGFR also increased the risk of vascular mortality, other noncancer deaths, and fatal coronary heart disease and heart failure. Finally, pravastatin treatment reduced coronary heart disease deaths and nonfatal heart attacks most effectively among participants with the greatest degree of eGFR impairment.
What Do These Findings Mean?
These findings suggest that, in elderly people, impaired renal function is associated with levels of established CVD risk factors that increase the risk of vascular disease. They also suggest that impaired kidney function increases the risk of all-cause mortality, fatal vascular events, and fatal and nonfatal coronary heat disease and heart failure. Because the study participants were carefully chosen for inclusion in PROSPER, these findings may not be generalizable to all elderly people with vascular disease or vascular disease risk factors. Nevertheless, increased efforts should probably be made to encourage elderly people with reduced eGFR and other vascular risk factors to make lifestyle changes to reduce their overall CVD risk. Finally, although the effect of statins in elderly patients with renal dysfunction needs to be examined further, these findings suggest that this group of patients should benefit at least as much from statins as elderly patients with healthy kidneys.
Additional Information.
Please access these Web sites via the online version of this summary at
The MedlinePlus Encyclopedia has pages on coronary heart disease, stroke, and heart failure (in English and Spanish)
MedlinePlus provides links to many other sources of information on heart disease, vascular disease, and stroke (in English and Spanish)
The US National Institute of Diabetes and Digestive and Kidney Diseases provides information on how the kidneys work and what can go wrong with them, including a list of links to further information about kidney disease
The American Heart Association provides information on all aspects of cardiovascular disease for patients, caregivers, and professionals (in several languages)
More information about PROSPER is available on the Web site of the Vascular Biochemistry Department of the University of Glasgow
PMCID: PMC2628400  PMID: 19166266
8.  Associations of Aortic Distensibility and Arterial Elasticity With Long-Term Visit-to-Visit Blood Pressure Variability: The Multi-Ethnic Study of Atherosclerosis (MESA) 
American Journal of Hypertension  2013;26(7):896-902.
Although higher visit-to-visit variability (VVV) of blood pressure (BP) is associated with increased cardiovascular disease risk, the physiological basis for VVV of BP is incompletely understood.
We examined the associations of aortic distensibility (assessed by magnetic resonance imaging) and artery elasticity indices (determined by radial artery pulse contour analysis) with VVV of BP in 2,640 and 4,560 participants, respectively, from the Multi-Ethnic Study of Atherosclerosis. Arterial measures were obtained at exam 1. BP readings were taken at exam 1 and at 3 follow-up visits at 18-month intervals (exams 2, 3, and 4). VVV was defined as the SD about each participant’s mean systolic BP (SBP) across visits.
The mean SDs of SBP were inversely associated with aortic distensibility: 7.7, 9.9, 10.9, and 13.2mm Hg for quartiles 4, 3, 2, and 1 of aortic distensibility, respectively (P trend < 0.001). This association remained significant after adjustment for demographics, cardiovascular risk factors, mean SBP, and antihypertensive medication use (P trend < 0.01). In a fully adjusted model, lower quartiles of large artery and small artery elasticity (LAE and SAE) indices were also associated with higher mean SD of SBP (P trend = 0.02 for LAE; P trend < 0.001 for SAE).
In this multiethnic cohort, functional alterations of central and peripheral arteries were associated with greater long-term VVV of SBP.
PMCID: PMC3693480  PMID: 23537891
arteries; blood pressure; epidemiology; hypertension; vasculature.
9.  Mortality in Pharmacologically Treated Older Adults with Diabetes: The Cardiovascular Health Study, 1989–2001 
PLoS Medicine  2006;3(10):e400.
Diabetes mellitus (DM) confers an increased risk of mortality in young and middle-aged individuals and in women. It is uncertain, however, whether excess DM mortality continues beyond age 75 years, is related to type of hypoglycemic therapy, and whether women continue to be disproportionately affected by DM into older age.
Methods and Findings
From the Cardiovascular Health Study, a prospective study of 5,888 adults, we examined 5,372 participants aged 65 y or above without DM (91.2%), 322 with DM treated with oral hypoglycemic agents (OHGAs) (5.5%), and 194 with DM treated with insulin (3.3%). Participants were followed (1989–2001) for total, cardiovascular disease (CVD), coronary heart disease (CHD), and non-CVD/noncancer mortality. Compared with non-DM participants, those treated with OHGAs or insulin had adjusted hazard ratios (HRs) for total mortality of 1.33 (95% confidence interval [CI], 1.10 to 1.62) and 2.04 (95% CI, 1.62 to 2.57); CVD mortality, 1.99 (95% CI, 1.54 to 2.57) and 2.16 (95% CI, 1.54 to 3.03); CHD mortality, 2.47 (95% CI, 1.89 to 3.24) and 2.75 (95% CI, 1.95 to 3.87); and infectious and renal mortality, 1.35 (95% CI, 0.70 to 2.59) and 6.55 (95% CI, 4.18 to 10.26), respectively. The interaction of age (65–74 y versus ≥75 y) with DM was not significant. Women treated with OHGAs had a similar HR for total mortality to men, but a higher HR when treated with insulin.
DM mortality risk remains high among older adults in the current era of medical care. Mortality risk and type of mortality differ between OHGA and insulin treatment. Women treated with insulin therapy have an especially high mortality risk. Given the high absolute CVD mortality in older people, those with DM warrant aggressive CVD risk factor reduction.
The negative impact on mortality of diabetes persists into old age. Elderly people with diabetes might be twice as likely to die from CVD as people without diabetes. More aggressive treatment of CVD risk factors in older patients should be considered.
Editors' Summary
Diabetes is a growing global health problem. By 2030, 300 million people worldwide may have this chronic, incurable disorder, double the current number. People with diabetes have dangerously high amounts of sugar in their blood. Blood-sugar levels are normally controlled by insulin, a hormone made by the pancreas that tells cells to absorb sugar from the blood. This control fails in people with diabetes, either because they make no insulin (type 1 diabetes) or because their cells are insensitive to insulin (type 2 diabetes). Type 1 diabetes is controlled with insulin injections; type 2 diabetes is controlled with diet, exercise, and pills that reduce blood-sugar levels. Long-term complications of diabetes include kidney failure, blindness, and nerve damage. Individuals with diabetes also have an increased risk of developing cardiovascular disease (CVD)—heart problems, strokes, and poor circulation—because of damage to their blood vessels.
Why Was This Study Done?
Epidemiological studies (investigations of disease patterns, causes, and control in populations) have indicated that diabetes increases the risk of death (mortality) from CVD in young and middle-aged people, but it is not known whether this is also true for old people. It is also not known what effect long-term treatment for diabetes has on mortality or whether the risk of death from CVD is decreasing in diabetic people as it is in the general US population. This information would help physicians provide health care and lifestyle advice to people with diabetes. In this study, the researchers have investigated mortality patterns in elderly diabetic people by looking at data collected between 1989 and 2001 by the US Cardiovascular Health Study, an observational study of nearly 6,000 people aged over 65 years (in this type of study participants are observed without imposing any specific changes to their lifestyle, behavior, medical care, or treatments).
What Did the Researchers Do and Find?
Participants were screened at the start of the Cardiovascular Health Study for CVD and diabetes (defined as drug-treated disease), for established CVD risk factors such as high blood pressure and smoking, for recently recognized CVD risk factors (for example, subclinical CVD), and for psychosocial factors associated with diabetes that might influence mortality, such as frailty and depression. At this time, about 5% of the participants were taking oral hypoglycemic agents for diabetes and about 3% were taking insulin. During the 11-year study, 40% of the participants died. After adjusting for CVD risk factors and psychosocial factors, the researchers calculated that people treated with oral hypoglycemic agents were 1.3 times as likely to die from all causes and people treated with insulin were twice as likely to die as people without diabetes. The risk of death from CVD was about twice as high in both groups of diabetic participants as in non-diabetic participants; the risk of death from coronary heart disease was increased about 2.5-fold. These adjusted relative risks are very similar to those found in previous studies. The researchers also report that participants treated with insulin were six times more likely to die from infectious diseases or renal failure than nondiabetic participants, and women treated with insulin had a particularly high mortality risk.
What Do These Findings Mean?
These findings indicate that the negative impact on mortality of diabetes persists into old age and that death from CVD is currently declining in both older diabetic people and nondiabetic people. In addition, they show that diabetic people treated with insulin are at a greater risk of dying relative to people without diabetes and those taking oral hypoglycemic agents. This might reflect the type of diabetes that these people had, but this was not investigated. How long participants had had diabetes was also not considered, nor how many people developed diabetes during the study. These and other limitations might mean that the reported excess mortality due to diabetes is an underestimate. Nevertheless, the estimate that elderly people with diabetes are twice as likely to die from CVD as people without diabetes is important. Many elderly people die anyway because of CVD, so this increased risk represents many more deaths than the similar increased risk in younger diabetic populations. Yet, elderly people often receive less-intensive management of CVD risk factors than younger people. The results of this study suggest that rectifying this situation could prolong the lives of many elderly people with diabetes.
Additional Information.
Please access these Web sites via the online version of this summary at
MedlinePlus encyclopedia has pages on diabetes, heart disease, stroke and poor circulation
The US National Institute of Diabetes and Digestive and Kidney Diseases provides patient information on diabetes
Information for patients on prevention, diagnosis, and management of diabetes is available from the America Diabetes Association
Patient information is available from the American Heart Association on all aspects of heart disease, including its association with diabetes
Wikipedia pages on diabetes and cardiovascular disease (note that Wikipedia is a free online encyclopedia that anyone can edit)
Further information is available about the Cardiovascular Health Study
PMCID: PMC1609124  PMID: 17048978
10.  Associations of Pentraxin 3 with Cardiovascular Disease: The Multi-Ethnic Study of Atherosclerosis 
Pentraxin 3 (PTX3) is likely a specific marker of vascular inflammation. However, associations of PTX3 with cardiovascular disease (CVD) risk have not been well studied in healthy adults or multi-ethnic populations. We examined associations of PTX3 with CVD risk factors, measures of subclinical CVD, coronary artery calcification (CAC) and CVD events in the Multi-Ethnic Study of Atherosclerosis (MESA).
Approach and Results
2838 participants free of prevalent CVD with measurements of PTX3 were included in the present study. Adjusting for age, sex and ethnicity, PTX3 was positively associated with age, obesity, insulin, systolic blood pressure, C-reactive protein (CRP) and carotid intima media thickness (all p<0.045). A one standard deviation increase in PTX3 (1.62 ng/ml) was associated with the presence of CAC in fully adjusted models including multiple CVD risk factors (relative risk; 95% confidence interval 1.05; 1-01-1.08). In fully adjusted models, a standard deviation higher level of PTX3 was associated with an increased risk of myocardial infarction (hazard ratio; 95% confidence interval 1.51; 1.16-1.97), combined CVD events (1.23; 1.05-1.45) and combined CHD events (1.33; 1.10-1.60) but not stroke, CVD-related mortality or all cause death.
In these apparently healthy adults, PTX3 was associated with CVD risk factors, subclinical CVD, CAC and incident coronary heart disease events independent of CRP and CVD risk factors. These results support the hypothesis that PTX3 reflects different aspects of inflammation than CRP and may provide additional insight into the development and progression of atherosclerosis.
PMCID: PMC4055511  PMID: 24628740
Atherosclerosis; Cardiovascular Diseases; Epidemiology; Inflammation; Pentraxin 3
11.  Personalized Prediction of Lifetime Benefits with Statin Therapy for Asymptomatic Individuals: A Modeling Study 
PLoS Medicine  2012;9(12):e1001361.
In a modeling study conducted by Myriam Hunink and colleagues, a population-based cohort from Rotterdam is used to predict the possible lifetime benefits of statin therapy, on a personalized basis.
Physicians need to inform asymptomatic individuals about personalized outcomes of statin therapy for primary prevention of cardiovascular disease (CVD). However, current prediction models focus on short-term outcomes and ignore the competing risk of death due to other causes. We aimed to predict the potential lifetime benefits with statin therapy, taking into account competing risks.
Methods and Findings
A microsimulation model based on 5-y follow-up data from the Rotterdam Study, a population-based cohort of individuals aged 55 y and older living in the Ommoord district of Rotterdam, the Netherlands, was used to estimate lifetime outcomes with and without statin therapy. The model was validated in-sample using 10-y follow-up data. We used baseline variables and model output to construct (1) a web-based calculator for gains in total and CVD-free life expectancy and (2) color charts for comparing these gains to the Systematic Coronary Risk Evaluation (SCORE) charts. In 2,428 participants (mean age 67.7 y, 35.5% men), statin therapy increased total life expectancy by 0.3 y (SD 0.2) and CVD-free life expectancy by 0.7 y (SD 0.4). Age, sex, smoking, blood pressure, hypertension, lipids, diabetes, glucose, body mass index, waist-to-hip ratio, and creatinine were included in the calculator. Gains in total and CVD-free life expectancy increased with blood pressure, unfavorable lipid levels, and body mass index after multivariable adjustment. Gains decreased considerably with advancing age, while SCORE 10-y CVD mortality risk increased with age. Twenty-five percent of participants with a low SCORE risk achieved equal or larger gains in CVD-free life expectancy than the median gain in participants with a high SCORE risk.
We developed tools to predict personalized increases in total and CVD-free life expectancy with statin therapy. The predicted gains we found are small. If the underlying model is validated in an independent cohort, the tools may be useful in discussing with patients their individual outcomes with statin therapy.
Please see later in the article for the Editors' Summary
Editors' Summary
Cardiovascular disease (CVD) affects the heart and/or the blood vessels and is a major cause of illness and death worldwide. In the US, for example, coronary heart disease—a CVD in which narrowing of the heart's blood vessels by fatty deposits slows the blood supply to the heart and may eventually cause a heart attack—is the leading cause of death, and stroke—a CVD in which the brain's blood supply is interrupted—is the fourth leading cause of death. Established risk factors for CVD include smoking, high blood pressure, obesity, and high blood levels of a fat called low-density lipoprotein (“bad cholesterol”). Because many of these risk factors can be modified by lifestyle changes and by drugs, CVD can be prevented. Thus, physicians can assess a healthy individual's risk of developing CVD using a CVD prediction model (equations that take into account the CVD risk factors to which the individual is exposed) and can then recommend lifestyle changes and medications to reduce that individual's CVD risk.
Why Was This Study Done?
Current guidelines recommend that asymptomatic (healthy) individuals whose likely CVD risk is high should be encouraged to take statins—cholesterol-lowering drugs—as a preventative measure. Statins help to prevent CVD in healthy people with a high predicted risk of CVD, but, like all medicines, they have some unwanted side effects, so it is important that physicians can communicate both the benefits and drawbacks of statins to their patients in a way that allows them to make an informed decision about taking these drugs. Telling a patient that statins will reduce his or her short-term risk of CVD is not always helpful—patients really need to know the potential lifetime benefits of statin therapy. That is, they need to know how much longer they might live if they take statins. Here, the researchers use a mathematical model to predict the personalized lifetime benefits (increased total and CVD-free life expectancy) of statin therapy for individuals without a history of CVD.
What Did the Researchers Do and Find?
The researchers used the Rotterdam Ischemic Heart Disease & Stroke Computer Simulation (RISC) model, which simulates the life courses of individuals through six health states, from well through to CVD or non-CVD death, to estimate lifetime outcomes with and without statin therapy in a population of healthy elderly individuals. They then used these outcomes and information on baseline risk factors to develop a web-based calculator suitable for personalized prediction of the lifetime benefits of statins in routine clinical practice. The model estimated that statin therapy increases average life expectancy in the study population by 0.3 years and average CVD-free life expectancy by 0.7 years. The gains in total and CVD-free life expectancy associated with statin therapy increased with blood pressure, unfavorable cholesterol levels, and body mass index (an indicator of body fat) but decreased with age. Notably, the web-based calculator predicted that some individuals with a low ten-year CVD risk might achieve a similar or larger gain in CVD-free life expectancy with statin therapy than some individuals with a high ten-year risk. So, for example, both a 55-year-old non-smoking woman with a ten-year CVD mortality risk of 2% (a two in a hundred chance of dying of CVD within ten years) and a 65-year-old male smoker with a ten-year CVD mortality risk of 15% might both gain one year of CVD-free life expectancy with statin therapy.
What Do These Findings Mean?
These findings suggest that statin therapy can lead on average to small gains in total life expectancy and slightly larger gains in CVD-free life expectancy among healthy individuals, and show that life expectancy benefits can be predicted using an individual's risk factor profile. The accuracy and generalizability of these findings is limited by the assumptions included in the model (in particular, the model did not allow for the known side effects of statin therapy) and by the data fed into it—importantly, the risk prediction model needs to be validated using an independent dataset. If future research confirms the findings of this study, the researchers' web-based calculator could provide complementary information to the currently recommended ten-year CVD mortality risk assessment. Whether communication of personalized outcomes will ultimately result in better clinical outcomes remains to be seen, however, because patients may be less likely to choose statin therapy when provided with more information about its likely benefits.
Additional Information
Please access these websites via the online version of this summary at
The web-based calculator for personalized prediction of lifetime benefits with statin therapy is available (after agreement to software license)
The American Heart Association provides information about many types of cardiovascular disease for patients, carers, and professionals, including information about drug therapy for cholesterol and a heart attack risk calculator
The UK National Health Service Choices website provides information about cardiovascular disease and about statins
Information is available from the British Heart Foundation on heart disease and keeping the heart healthy; information is also available on statins, including personal stories about deciding to take statins
The US National Heart Lung and Blood Institute provides information on a wide range of cardiovascular diseases
The European Society of Cardiology's cardiovascular disease risk assessment model (SCORE) is available
MedlinePlus provides links to many other sources of information on heart diseases, vascular diseases, stroke, and statins (in English and Spanish)
PMCID: PMC3531501  PMID: 23300388
12.  The Role of Adiposity in Cardiometabolic Traits: A Mendelian Randomization Analysis 
Fall, Tove | Hägg, Sara | Mägi, Reedik | Ploner, Alexander | Fischer, Krista | Horikoshi, Momoko | Sarin, Antti-Pekka | Thorleifsson, Gudmar | Ladenvall, Claes | Kals, Mart | Kuningas, Maris | Draisma, Harmen H. M. | Ried, Janina S. | van Zuydam, Natalie R. | Huikari, Ville | Mangino, Massimo | Sonestedt, Emily | Benyamin, Beben | Nelson, Christopher P. | Rivera, Natalia V. | Kristiansson, Kati | Shen, Huei-yi | Havulinna, Aki S. | Dehghan, Abbas | Donnelly, Louise A. | Kaakinen, Marika | Nuotio, Marja-Liisa | Robertson, Neil | de Bruijn, Renée F. A. G. | Ikram, M. Arfan | Amin, Najaf | Balmforth, Anthony J. | Braund, Peter S. | Doney, Alexander S. F. | Döring, Angela | Elliott, Paul | Esko, Tõnu | Franco, Oscar H. | Gretarsdottir, Solveig | Hartikainen, Anna-Liisa | Heikkilä, Kauko | Herzig, Karl-Heinz | Holm, Hilma | Hottenga, Jouke Jan | Hyppönen, Elina | Illig, Thomas | Isaacs, Aaron | Isomaa, Bo | Karssen, Lennart C. | Kettunen, Johannes | Koenig, Wolfgang | Kuulasmaa, Kari | Laatikainen, Tiina | Laitinen, Jaana | Lindgren, Cecilia | Lyssenko, Valeriya | Läärä, Esa | Rayner, Nigel W. | Männistö, Satu | Pouta, Anneli | Rathmann, Wolfgang | Rivadeneira, Fernando | Ruokonen, Aimo | Savolainen, Markku J. | Sijbrands, Eric J. G. | Small, Kerrin S. | Smit, Jan H. | Steinthorsdottir, Valgerdur | Syvänen, Ann-Christine | Taanila, Anja | Tobin, Martin D. | Uitterlinden, Andre G. | Willems, Sara M. | Willemsen, Gonneke | Witteman, Jacqueline | Perola, Markus | Evans, Alun | Ferrières, Jean | Virtamo, Jarmo | Kee, Frank | Tregouet, David-Alexandre | Arveiler, Dominique | Amouyel, Philippe | Ferrario, Marco M. | Brambilla, Paolo | Hall, Alistair S. | Heath, Andrew C. | Madden, Pamela A. F. | Martin, Nicholas G. | Montgomery, Grant W. | Whitfield, John B. | Jula, Antti | Knekt, Paul | Oostra, Ben | van Duijn, Cornelia M. | Penninx, Brenda W. J. H. | Davey Smith, George | Kaprio, Jaakko | Samani, Nilesh J. | Gieger, Christian | Peters, Annette | Wichmann, H.-Erich | Boomsma, Dorret I. | de Geus, Eco J. C. | Tuomi, TiinaMaija | Power, Chris | Hammond, Christopher J. | Spector, Tim D. | Lind, Lars | Orho-Melander, Marju | Palmer, Colin Neil Alexander | Morris, Andrew D. | Groop, Leif | Järvelin, Marjo-Riitta | Salomaa, Veikko | Vartiainen, Erkki | Hofman, Albert | Ripatti, Samuli | Metspalu, Andres | Thorsteinsdottir, Unnur | Stefansson, Kari | Pedersen, Nancy L. | McCarthy, Mark I. | Ingelsson, Erik | Prokopenko, Inga
PLoS Medicine  2013;10(6):e1001474.
In this study, Prokopenko and colleagues provide novel evidence for causal relationship between adiposity and heart failure and increased liver enzymes using a Mendelian randomization study design.
Please see later in the article for the Editors' Summary
The association between adiposity and cardiometabolic traits is well known from epidemiological studies. Whilst the causal relationship is clear for some of these traits, for others it is not. We aimed to determine whether adiposity is causally related to various cardiometabolic traits using the Mendelian randomization approach.
Methods and Findings
We used the adiposity-associated variant rs9939609 at the FTO locus as an instrumental variable (IV) for body mass index (BMI) in a Mendelian randomization design. Thirty-six population-based studies of individuals of European descent contributed to the analyses.
Age- and sex-adjusted regression models were fitted to test for association between (i) rs9939609 and BMI (n = 198,502), (ii) rs9939609 and 24 traits, and (iii) BMI and 24 traits. The causal effect of BMI on the outcome measures was quantified by IV estimators. The estimators were compared to the BMI–trait associations derived from the same individuals. In the IV analysis, we demonstrated novel evidence for a causal relationship between adiposity and incident heart failure (hazard ratio, 1.19 per BMI-unit increase; 95% CI, 1.03–1.39) and replicated earlier reports of a causal association with type 2 diabetes, metabolic syndrome, dyslipidemia, and hypertension (odds ratio for IV estimator, 1.1–1.4; all p<0.05). For quantitative traits, our results provide novel evidence for a causal effect of adiposity on the liver enzymes alanine aminotransferase and gamma-glutamyl transferase and confirm previous reports of a causal effect of adiposity on systolic and diastolic blood pressure, fasting insulin, 2-h post-load glucose from the oral glucose tolerance test, C-reactive protein, triglycerides, and high-density lipoprotein cholesterol levels (all p<0.05). The estimated causal effects were in agreement with traditional observational measures in all instances except for type 2 diabetes, where the causal estimate was larger than the observational estimate (p = 0.001).
We provide novel evidence for a causal relationship between adiposity and heart failure as well as between adiposity and increased liver enzymes.
Please see later in the article for the Editors' Summary
Editors' Summary
Cardiovascular disease (CVD)—disease that affects the heart and/or the blood vessels—is a major cause of illness and death worldwide. In the US, for example, coronary heart disease—a CVD in which narrowing of the heart's blood vessels by fatty deposits slows the blood supply to the heart and may eventually cause a heart attack—is the leading cause of death, and stroke—a CVD in which the brain's blood supply is interrupted—is the fourth leading cause of death. Globally, both the incidence of CVD (the number of new cases in a population every year) and its prevalence (the proportion of the population with CVD) are increasing, particularly in low- and middle-income countries. This increasing burden of CVD is occurring in parallel with a global increase in the incidence and prevalence of obesity—having an unhealthy amount of body fat (adiposity)—and of metabolic diseases—conditions such as diabetes in which metabolism (the processes that the body uses to make energy from food) is disrupted, with resulting high blood sugar and damage to the blood vessels.
Why Was This Study Done?
Epidemiological studies—investigations that record the patterns and causes of disease in populations—have reported an association between adiposity (indicated by an increased body mass index [BMI], which is calculated by dividing body weight in kilograms by height in meters squared) and cardiometabolic traits such as coronary heart disease, stroke, heart failure (a condition in which the heart is incapable of pumping sufficient amounts of blood around the body), diabetes, high blood pressure (hypertension), and high blood cholesterol (dyslipidemia). However, observational studies cannot prove that adiposity causes any particular cardiometabolic trait because overweight individuals may share other characteristics (confounding factors) that are the real causes of both obesity and the cardiometabolic disease. Moreover, it is possible that having CVD or a metabolic disease causes obesity (reverse causation). For example, individuals with heart failure cannot do much exercise, so heart failure may cause obesity rather than vice versa. Here, the researchers use “Mendelian randomization” to examine whether adiposity is causally related to various cardiometabolic traits. Because gene variants are inherited randomly, they are not prone to confounding and are free from reverse causation. It is known that a genetic variant (rs9939609) within the genome region that encodes the fat-mass- and obesity-associated gene (FTO) is associated with increased BMI. Thus, an investigation of the associations between rs9939609 and cardiometabolic traits can indicate whether obesity is causally related to these traits.
What Did the Researchers Do and Find?
The researchers analyzed the association between rs9939609 (the “instrumental variable,” or IV) and BMI, between rs9939609 and 24 cardiometabolic traits, and between BMI and the same traits using genetic and health data collected in 36 population-based studies of nearly 200,000 individuals of European descent. They then quantified the strength of the causal association between BMI and the cardiometabolic traits by calculating “IV estimators.” Higher BMI showed a causal relationship with heart failure, metabolic syndrome (a combination of medical disorders that increases the risk of developing CVD), type 2 diabetes, dyslipidemia, hypertension, increased blood levels of liver enzymes (an indicator of liver damage; some metabolic disorders involve liver damage), and several other cardiometabolic traits. All the IV estimators were similar to the BMI–cardiovascular trait associations (observational estimates) derived from the same individuals, with the exception of diabetes, where the causal estimate was higher than the observational estimate, probably because the observational estimate is based on a single BMI measurement, whereas the causal estimate considers lifetime changes in BMI.
What Do These Findings Mean?
Like all Mendelian randomization studies, the reliability of the causal associations reported here depends on several assumptions made by the researchers. Nevertheless, these findings provide support for many previously suspected and biologically plausible causal relationships, such as that between adiposity and hypertension. They also provide new insights into the causal effect of obesity on liver enzyme levels and on heart failure. In the latter case, these findings suggest that a one-unit increase in BMI might increase the incidence of heart failure by 17%. In the US, this corresponds to 113,000 additional cases of heart failure for every unit increase in BMI at the population level. Although additional studies are needed to confirm and extend these findings, these results suggest that global efforts to reduce the burden of obesity will likely also reduce the occurrence of CVD and metabolic disorders.
Additional Information
Please access these websites via the online version of this summary at
The American Heart Association provides information on all aspects of cardiovascular disease and tips on keeping the heart healthy, including weight management (in several languages); its website includes personal stories about stroke and heart attacks
The US Centers for Disease Control and Prevention has information on heart disease, stroke, and all aspects of overweight and obesity (in English and Spanish)
The UK National Health Service Choices website provides information about cardiovascular disease and obesity, including a personal story about losing weight
The World Health Organization provides information on obesity (in several languages)
The International Obesity Taskforce provides information about the global obesity epidemic
Wikipedia has a page on Mendelian randomization (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
MedlinePlus provides links to other sources of information on heart disease, on vascular disease, on obesity, and on metabolic disorders (in English and Spanish)
The International Association for the Study of Obesity provides maps and information about obesity worldwide
The International Diabetes Federation has a web page that describes types, complications, and risk factors of diabetes
PMCID: PMC3692470  PMID: 23824655
13.  Association of Pulse Pressure, Arterial Elasticity, and Endothelial Function With Kidney Function Decline Among Adults With Estimated GFR > 60 mL/min/1.73 m2: The Multi-Ethnic Study of Atherosclerosis 
The association of subclinical vascular disease and early declines in kidney function has not been well studied.
Study Design
Prospective cohort study
Setting & Participants
MESA participants with eGFR ≥60 ml/min/1.73m2 with follow-up of 5 years
Pulse pressure (pulse pressure), small and large arterial elasticity (SAE, LAE), and flow mediated dilation.
kidney function decline
SAE and LAE were measured by pulse contour analysis of the radial artery. Kidney function was measured by serum creatinine- and cystatin C-based eGFR.
Among 4,853 adults, higher pulse pressure and lower SAE and LAE had independent and linear associations with faster rates of kidney function decline. Compared to persons with pulse pressure 40–50mmHg, eGFRSCysC decline was 0.29 (p=0.006), 0.56 (p<0.001), and 0.91 (p<0.001) ml/min/1.73m2/year faster among persons with pulse pressure 50–60, 60–70, and >70mmHg, respectively. Compared to the highest quartile of SAE (most elastic), eGFRSCysC decline was 0.26 (p=0.009), 0.35 (p=0.001), and 0.70 (p<0.001) ml/min/1.73m2/year faster for the second, third and fourth quartiles respectively. For LAE, compared to the highest quartile, eGFRSCysC decline was 0.28 (p=0.004), 0.58 (p<0.001), and 0.83 (p<0.001) ml/min/1.73m2/year faster for each decreasing quartile of LAE. Findings were similar with creatinine-based eGFR. In contrast, among 2,997 adults with flow-mediated dilation and kidney function measures, flow-mediated dilation was not significantly associated with kidney function decline. For every 1-SD greater flow-mediated dilation, eGFRSCysC and eGFRSCr changed by 0.05 ml/min/1.73m2/year (p=0.3) and 0.06 ml/min/1.73m2/year (p=0.04), respectively.
We had no direct measure of GFR, in common with nearly all large population based studies.
Higher pulse pressure and lower arterial elasticity, but not flow-mediated dilation, were linearly and independently associated with faster kidney function decline among persons with eGFR ≥60 ml/min/1.73m2. Future studies investigate whether treatments to lower stiffness of large and small arteries may slow the rate of kidney function loss.
PMCID: PMC3242889  PMID: 22000727
kidney function; arterial elasticity; chronic kidney disease; atherosclerosis
14.  Associations Between Renal Duplex Parameters and Adverse Cardiovascular Events in the Elderly: A Prospective Cohort Study 
Atherosclerotic renovascular disease is associated with an increased risk of cardiovascular disease (CVD) events. This study examines associations between Doppler-derived parameters from the renal artery and renal parenchyma and all-cause mortality and fatal and nonfatal CVD events in a cohort of elderly Americans.
Study Design
Cohort study.
A subset of participants from the Cardiovascular Health Study (CHS). Through an ancillary study, 870 (70% recruitment) Forsyth County, NC, CHS participants consented to undergo renal duplex sonography to define the prevalence of renovascular disease in the elderly, resulting in 726 (36% men; mean age, 77 years) technically adequate complete studies included in this investigation.
Renal duplex sonography–derived Doppler signals from the main renal arteries and renal parenchyma. Spectral analysis from Doppler-shifted frequencies and angle of insonation were used to estimate renal artery peak systolic and end diastolic velocity (both in meters per second). Color Doppler was used to identify the corticomedullary junction. Using a 3-mm Doppler sample, the parenchymal peak systolic and end diastolic frequency shift (both in kilohertz) were obtained. Resistive index was calculated as (1 – [end diastolic frequency shift/peak systolic frequency shift]) using Doppler samples from the hilar arteries of the left or right kidney with the higher main renal artery peak systolic velocity.
Outcomes & Measurements
Proportional hazard regression analysis was used to determine associations between renal duplex sonography–derived Doppler signals and CVD events and all-cause mortality adjusted for accepted cardiovascular risk factors. Index CVD outcomes were defined as coronary events (angina, myocardial infarction, and coronary artery bypass grafting/percutaneous coronary intervention), cerebrovascular events (stroke or transient ischemic attack), and any CVD event (angina, congestive heart failure, myocardial infarction, stroke, transient ischemic attack, and coronary artery bypass grafting [CABG]/percutaneous transluminal coronary intervention [PTCI]).
During follow-up, 221 deaths (31%), 229 CVD events (32%), 122 coronary events (17%), and 92 cerebrovascular events (13%) were observed. Renal duplex sonography–derived Doppler signals from the renal parenchyma were associated independently with all-cause mortality and CVD outcomes. In particular, increased parenchymal end diastolic frequency shift was associated significantly with any CVD event (HR, 0.73; 95% CI, 0.62-0.87; P < 0.001). Marginally significant associations were observed between increases in parenchymal end diastolic frequency shift and decreased risk of death (HR, 0.86; 95% CI, 0.73-1.00; P = 0.06) and decreased risk of cerebrovascular events (HR, 0.78; 95% CI, 0.61-1.01; P = 0.06). Parenchymal end diastolic frequency shift was not significantly predictive of coronary events (HR, 0.84; 95% CI, 0.67-1.06; P = 0.1).
CHS participants showed a “healthy cohort” effect that may underestimate the rate of CVD events in the general population.
Renal duplex sonographic Doppler signals from the renal parenchyma showed significant associations with subsequent CVD events after controlling for other significant risk factors. In particular, a standard deviation increase in parenchymal end diastolic frequency shift was associated with 27% risk reduction in any CVD event.
PMCID: PMC2933103  PMID: 20116688
Renovascular disease; resistive index; intrarenal Doppler; renal duplex sonography; prospective; population based; cardiovascular events; Cardiovascular Health Study (CHS)
15.  Air Pollution and the Microvasculature: A Cross-Sectional Assessment of In Vivo Retinal Images in the Population-Based Multi-Ethnic Study of Atherosclerosis (MESA) 
PLoS Medicine  2010;7(11):e1000372.
Sara Adar and colleagues show that residing in locations with higher air pollution concentrations and experiencing daily increases in air pollution are associated with narrower retinal arteriolar diameters in older individuals, thus providing a link between air pollution and cardiovascular disease.
Long- and short-term exposures to air pollution, especially fine particulate matter (PM2.5), have been linked to cardiovascular morbidity and mortality. One hypothesized mechanism for these associations involves microvascular effects. Retinal photography provides a novel, in vivo approach to examine the association of air pollution with changes in the human microvasculature.
Methods and Findings
Chronic and acute associations between residential air pollution concentrations and retinal vessel diameters, expressed as central retinal arteriolar equivalents (CRAE) and central retinal venular equivalents (CRVE), were examined using digital retinal images taken in Multi-Ethnic Study of Atherosclerosis (MESA) participants between 2002 and 2003. Study participants (46 to 87 years of age) were without clinical cardiovascular disease at the baseline examination (2000–2002). Long-term outdoor concentrations of PM2.5 were estimated at each participant's home for the 2 years preceding the clinical exam using a spatio-temporal model. Short-term concentrations were assigned using outdoor measurements on the day preceding the clinical exam. Residential proximity to roadways was also used as an indicator of long-term traffic exposures. All associations were examined using linear regression models adjusted for subject-specific age, sex, race/ethnicity, education, income, smoking status, alcohol use, physical activity, body mass index, family history of cardiovascular disease, diabetes status, serum cholesterol, glucose, blood pressure, emphysema, C-reactive protein, medication use, and fellow vessel diameter. Short-term associations were further controlled for weather and seasonality. Among the 4,607 participants with complete data, CRAE were found to be narrower among persons residing in regions with increased long- and short-term levels of PM2.5. These relationships were observed in a joint exposure model with −0.8 µm (95% confidence interval [CI] −1.1 to −0.5) and −0.4 µm (95% CI −0.8 to 0.1) decreases in CRAE per interquartile increases in long- (3 µg/m3) and short-term (9 µg/m3) PM2.5 levels, respectively. These reductions in CRAE are equivalent to 7- and 3-year increases in age in the same cohort. Similarly, living near a major road was also associated with a −0.7 µm decrease (95% CI −1.4 to 0.1) in CRAE. Although the chronic association with CRAE was largely influenced by differences in exposure between cities, this relationship was generally robust to control for city-level covariates and no significant differences were observed between cities. Wider CRVE were associated with living in areas of higher PM2.5 concentrations, but these findings were less robust and not supported by the presence of consistent acute associations with PM2.5.
Residing in regions with higher air pollution concentrations and experiencing daily increases in air pollution were each associated with narrower retinal arteriolar diameters in older individuals. These findings support the hypothesis that important vascular phenomena are associated with small increases in short-term or long-term air pollution exposures, even at current exposure levels, and further corroborate reported associations between air pollution and the development and exacerbation of clinical cardiovascular disease.
Please see later in the article for the Editors' Summary
Editors' Summary
Cardiovascular disease (CVD)—disease that affects the heart and/or the blood vessels—is a common cause of illness and death among adults in developed countries. In the United States, for example, the leading cause of death is coronary heart disease, a CVD in which narrowing of the heart's arteries by atherosclerotic plaques (fatty deposits that build up with age) slows the blood supply to the heart and may eventually cause a heart attack (myocardial infarction). Other types of CVD include stroke (in which atherosclerotic plaques interrupt the brain's blood supply) and peripheral arterial disease (in which the blood supply to the limbs is blocked). Smoking, high blood pressure, high blood levels of cholesterol (a type of fat), having diabetes, being overweight, and being physically inactive all increase a person's risk of developing CVD. Treatments for CVD include lifestyle changes and taking drugs that lower blood pressure or blood cholesterol levels.
Why Was This Study Done?
Another risk factor for CVD is exposure to long-term and/or short-term air pollution. Fine particle pollution or PM2.5 is particularly strongly associated with an increased risk of CVD. PM2.5—particulate matter 2.5 µm in diameter or 1/30th the diameter of a human hair—is mainly produced by motor vehicles, power plants, and other combustion sources. Why PM2.5 increases CVD risk is not clear but one possibility is that it alters the body's microvasculature (fine blood vessels known as capillaries, arterioles, and venules), thereby impairing the blood flow through the heart and brain. In this study, the researchers use noninvasive digital retinal photography to investigate whether there is an association between air pollution and changes in the human microvasculature. The retina—a light-sensitive layer at the back of the eye that converts images into electrical messages and sends them to the brain—has a dense microvasculature. Retinal photography is used to check the retinal microvasculature for signs of potentially blinding eye diseases such as diabetic retinopathy. Previous studies have found that narrower than normal retinal arterioles and wider than normal retinal venules are associated with CVD.
What Did the Researchers Do and Find?
The researchers used digital retinal photography to measure the diameters of retinal blood vessels in the participants of the Multi-Ethnic Study of Atherosclerosis (MESA). This study is investigating CVD progression in people aged 45–84 years of various ethnic backgrounds who had no CVD symptoms when they enrolled in the study in 2000–2002. The researchers modeled the long-term outdoor concentration of PM2.5 at each participant's house for the 2-year period preceding the retinal examination (which was done between 2002 and 2003) using data on PM2.5 levels collected by regulatory monitoring stations as well as study-specific air samples collected outside of the homes and in the communities of study participants. Outdoor PM2.5 measurements taken the day before the examination provided short-term PM2.5 levels. Among the 4,607 MESA participants who had complete data, retinal arteriolar diameters were narrowed among those who lived in regions with increased long- and short-term PM2.5 levels. Specifically, an increase in long-term PM2.5 concentrations of 3 µg/m3 was associated with a 0.8 µm decrease in arteriolar diameter, a reduction equivalent to that seen for a 7-year increase in age in this group of people. Living near a major road, another indicator of long-term exposure to PM2.5 pollution, was also associated with narrowed arterioles. Finally, increased retinal venular diameters were weakly associated with long-term high PM2.5 concentrations.
What Do These Findings Mean?
These findings indicate that living in areas with long-term air pollution or being exposed to short-term air pollution is associated with narrowing of the retinal arterioles in older individuals. They also show that widening of retinal venules is associated with long-term (but not short-term) PM2.5 pollution. Together, these findings support the hypothesis that long- and short-term air pollution increases CVD risk through effects on the microvasculature. However, they do not prove that PM2.5 is the constituent of air pollution that drives microvascular changes—these findings could reflect the toxicity of another pollutant or the pollution mixture as a whole. Importantly, these findings show that microvascular changes can occur at the PM2.5 levels that commonly occur in developed countries, which are well below those seen in developing countries. Worryingly, they also suggest that the deleterious cardiovascular effects of air pollution could occur at levels below existing regulatory standards.
Additional Information
Please access these Web sites via the online version of this summary at 10.1371/journal.pmed.1000372.
The American Heart Association provides information for patients and caregivers on all aspects of cardiovascular disease (in several languages), including information on air pollution, heart disease, and stroke
The US Centers for Disease Control and Prevention has information on heart disease and on stroke
Information is available from the British Heart Foundation on cardiovascular disease
The UK National Health Service Choices website provides information for patients and caregivers about cardiovascular disease
MedlinePlus provides links to other sources of information on heart disease and on vascular disease (in English and Spanish)
The AIRNow site provides information about US air quality and about air pollution and health
The Air Quality Archive has up-to-date information about air pollution in the UK and information about the health effects of air pollution
The US Environmental Protection Agency has information on PM2.5
The following Web sites contain information available on the MESA and MESA Air studies
PMCID: PMC2994677  PMID: 21152417
16.  Comparison of Novel Risk Markers for Improvement in Cardiovascular Risk Assessment in Intermediate Risk Individuals. The Multi-Ethnic Study of Atherosclerosis 
Risk markers including coronary artery calcium (CAC), carotid intima-media thickness (CIMT), ankle-brachial Index (ABI), brachial flow-mediated dilation (FMD), high sensitivity C -reactive protein (hs-CRP) and family history (FH) of coronary heart disease (CHD) have been reported to improve on the Framingham risk score (FRS) for prediction of CHD. However, there are no direct comparisons of these markers for risk prediction in a single cohort.
We compared improvement in prediction of incident CHD/cardiovascular disease (CVD) of these 6 risk markers within intermediate risk participants (5 % < FRS < 20%) in the Multi-Ethnic Study of Atherosclerosis (MESA).
Design, Setting and Participants
Of 6814 MESA participants from 6 US field centers, 1330 were intermediate risk, without diabetes mellitus, and had complete data on all 6 markers. Recruitment spanned July 2000 to September 2002; follow-up extended through May 2011. Probability- weighted Cox proportional hazard models were used to estimate hazard ratios (HR). Area under the receiver operator characteristic curve (AUC) and net reclassification improvement (NRI) were used to compare incremental contributions of each marker when added to the FRS + race/ethnicity.
Main Outcome Measures
Incident CHD defined as MI, angina followed by revascularization, resuscitated cardiac arrest or CHD death. Incident CVD additionally included stroke or CVD death.
After median follow-up of 7.6 years (IQR 7.3 – 7.8 years), 94 CHD and 123 CVD events occurred. CAC, ABI, hs-CRP and FH were independently associated with incident CHD in multivariable analyses [HR (95%CI: 2.60(1.94-3.50), 0.79(0.66-0.95), 1.28(1.00-1.64) and 2.18(1.38-3.42) respectively]. CIMT and FMD were not associated with incident CHD in multivariable analyses [HR (95%CI) 1.17(0.95- 1.45) and 0.95(0.78 −1.14) respectively]. Although the addition of the markers individually to the FRS +race/ethnicity improved the AUC, CAC afforded the highest increment (0.623 vs. 0.784) while FMD afforded the least [0.623 vs. 0.639]. For incident CHD, the NRI with CAC was 0.659, FMD 0.024, ABI 0.036, CIMT 0.102, FH 0.160 and hs-CRP 0.079. Similar results were obtained for incident CVD.
CAC, ABI, hs-CRP and FH are independent predictors of incident CHD/CVD in intermediate risk individuals. CAC provides superior discrimination and risk reclassification compared with other risk markers.
PMCID: PMC4141475  PMID: 22910756
17.  Sex‐Specific Differences in the Predictive Value of Cholesterol Homeostasis Markers and 10‐Year Cardiovascular Disease Event Rate in Framingham Offspring Study Participants 
Available data are inconsistent regarding factors influencing plasma cholesterol homeostasis marker concentrations and their value in predicting subsequent cardiovascular disease (CVD) events.
Methods and Results
To address this issue, the relationship between markers of cholesterol absorption (campesterol, sitosterol, cholestanol) and synthesis (squalene, desmosterol, lathosterol) and 10‐year CVD incidence was assessed in Framingham Offspring Study participants (cycle 6) who were without CVD at baseline and not taking lipid‐lowering medications (N=2616). The primary end point was “hard” coronary heart disease (HCHD; coronary death and myocardial infarction), and the secondary end point was full CVD (HCHD plus stroke, coronary insufficiency, angina pectoris, peripheral artery disease, and congestive heart failure). In cross‐sectional analysis, significant differences by sex, age, body mass index, blood pressure, and smoking status were observed. In both women and men, lower cholesterol absorption was associated with higher triglyceride and lower high‐density lipoprotein (HDL) cholesterol concentrations, whereas lower cholesterol synthesis was associated with higher low‐density lipoprotein (LDL) cholesterol concentrations (P for trend <0.05). In women only, lower cholesterol synthesis and absorption were associated with higher non–HDL cholesterol concentrations. Using Cox proportional hazards model adjusting for standard CVD risk factors, squalene concentrations were associated with lower HCHD in women (hazard ratio=0.70 [0.5 to 0.9]). In contrast, squalene (hazard ratio=1.40 [1.1 to 1.8]) concentrations were associated with higher HCHD in men (P<0.0001 for interaction). The cholesterol absorption markers were not predictive of HCHD or full CVD in either women or men.
These data suggest significant sex differences in the 10‐year prognostic value of cholesterol synthesis markers and HCHD, specifically coronary death and incidence of myocardial infarction.
Clinical Trial Registration
URL: Unique identifier: NCT00074464.
PMCID: PMC3603247  PMID: 23525441
cardiovascular disease; lipids; metabolism; mortality; myocardial infarction; risk factors
18.  Prognostic value of cardiovascular disease status: the Leiden 85-plus study 
Age  2012;35(4):1433-1444.
This study aimed to explore the prognosis of very old people depending on their cardiovascular disease (CVD) history. This observational prospective cohort study included 570 participants aged 85 years from the general population with 5-year follow-up for morbidity, functional status, and mortality. At baseline, participants were assigned to three groups: no CVD history, “minor” CVD (angina pectoris, transient ischemic attack, intermittent claudication, and/or heart failure), or “major” CVD (myocardial infarction [MI], stroke, and/or arterial surgery). Follow-up data were collected on MI, stroke, functional status, and cause-specific mortality. The composite endpoint included cardiovascular events (MI or stroke) and cardiovascular mortality. At baseline, 270 (47.4 %) participants had no CVD history, 128 (22.4 %) had minor CVD, and 172 (30.2 %) had major CVD. Compared to the no CVD history group, the risk of the composite endpoint increased from 1.6 (95 % confidence interval [CI], 1.1–2.4) for the minor CVD group to 2.7 (95 % CI, 2.0–3.9) for the major CVD group. Similar trends were observed for cardiovascular and all-cause mortality risks. In a direct comparison, the major CVD group had a nearly doubled risk of the composite endpoint (hazard ratio, 1.8; 95 % CI, 1.2–2.7), compared to the minor CVD group. Both minor and major CVD were associated with an accelerated decline in cognitive function and accelerated increase of disability score (all p < 0.05), albeit most pronounced in participants with major CVD. CVD disease status in very old age is still of important prognostic value: a history of major CVD (mainly MI or stroke) leads to a nearly doubled risk of poor outcome, including cardiovascular events, functional decline, and mortality, compared with a history of minor CVD.
PMCID: PMC3705125  PMID: 22760858
Aged 80 and over; Cardiovascular disease; Prevention; Cardiovascular morbidity; Functional status; Mortality
19.  HIV Infection and Cardiovascular Disease in Women 
HIV infection is associated with increased risk of cardiovascular disease (CVD) in men. Whether HIV is an independent risk factor for CVD in women has not yet been established.
Methods and Results
We analyzed data from the Veterans Aging Cohort Study on 2187 women (32% HIV infected [HIV+]) who were free of CVD at baseline. Participants were followed from their first clinical encounter on or after April 01, 2003 until a CVD event, death, or the last follow‐up date (December 31, 2009). The primary outcome was CVD (acute myocardial infarction [AMI], unstable angina, ischemic stroke, and heart failure). CVD events were defined using clinical data, International Classification of Diseases, Ninth Revision, Clinical Modification codes, and/or death certificate data. We used Cox proportional hazards models to assess the association between HIV and incident CVD, adjusting for age, race/ethnicity, lipids, smoking, blood pressure, diabetes, renal disease, obesity, hepatitis C, and substance use/abuse. Median follow‐up time was 6.0 years. Mean age at baseline of HIV+ and HIV uninfected (HIV−) women was 44.0 versus 43.2 years (P<0.05). Median time to CVD event was 3.1 versus 3.7 years (P=0.11). There were 86 incident CVD events (53%, HIV+): AMI, 13%; unstable angina, 8%; ischemic stroke, 22%; and heart failure, 57%. Incident CVD/1000 person‐years was significantly higher among HIV+ (13.5; 95% confidence interval [CI]=10.1, 18.1) than HIV− women (5.3; 95% CI=3.9, 7.3; P<0.001). HIV+ women had an increased risk of CVD, compared to HIV− (hazard ratio=2.8; 95% CI=1.7, 4.6; P<0.001).
HIV is associated with an increased risk of CVD in women.
PMCID: PMC4323817  PMID: 25324353
AIDS; CVD risk factors; Women
20.  Predictive Value of Brachial Flow-Mediated Dilation for Incident Cardiovascular Events in a Population-Based Study: The Multi-Ethnic Study of Atherosclerosis 
Circulation  2009;120(6):502-509.
Although brachial artery flow-mediated dilation (FMD) predicts recurrent cardiovascular events, its predictive value for incident cardiovascular disease (CVD) events in adults free of CVD is not well established. We assessed the predictive value of FMD for incident CVD events in the Multi Ethnic Study of Atherosclerosis (MESA).
Methods and Results
Brachial artery FMD was measured in a nested case- cohort sample of 3026 out of 6814 subjects (mean ± SD age 61.2 ± 9.9 years), in MESA, a population-based cohort study of adults free of clinical CV disease at baseline recruited at six clinic sites in the USA. The sample comprised 50.2% females, 34.3% Caucasian, 19.7% Chinese, 20.8% African Americans and 25.1% Hispanics. Probability-weighted Cox proportional hazard analysis was used to examine the association between FMD and five years of adjudicated incident CVD events, including incident myocardial infarction, definite angina, coronary revascularization (coronary artery bypass grafting, percutaneous transluminal coronary angioplasty or other revascularization), stroke, resuscitated cardiac arrest and CVD death.
Mean (SD) FMD of the cohort was 4.4 (2.8) %. In probability-weighted Cox models, FMD/unit SD was significantly associated with incident cardiovascular events in both the univariate(adjusted for age and gender) [hazard ratio; 0.79(95% CI, 0.65–0.97), p=0.01], after adjusting for the Framingham Risk Score (FRS) [hazard ratio; 0.80(95%CI, 0.62–0.97), p=0.025] and also in multivariable models [hazard ratio; 0.84(95%CI, 0.71–0.99), p=0.04] after adjusting for age, gender, diabetes mellitus, cigarette smoking status, systolic blood pressure, HDL, LDL, triglycerides, heart rate, statin use and blood pressure medication use. The c statistic (AUC) of FMD, FRS, FRS + FMD) were 0.65, 0.74 and 0.74 respectively. Compared with the FRS alone, the addition of FMD to the FRS net correctly re-classifies 52% of subjects with no incident CVD event, but net incorrectly reclassifies 23% of subjects with an incident CVD event; an overall net correct re-classification of 29% (p < 0.001).
Brachial FMD is a predictor of incident cardiovascular events in population based adults. Even though the addition of FMD to the FRS did not improve discrimination of subjects at risk of CVD events in ROC analysis, it did improve the classification of subjects as low, intermediate and high CVD risk compared to the FRS.
PMCID: PMC2740975  PMID: 19635967
Endothelial dysfunction; brachial flow-mediated dilation; incident cardiovascular event; healthy adults
21.  Cardiovascular Imaging for Assessing Cardiovascular Risk in Asymptomatic Men Versus Women 
Coronary artery calcium (CAC), carotid intima-media thickness, and left ventricular (LV) mass and geometry offer the potential to characterize incident cardiovascular disease (CVD) risk in clinically asymptomatic individuals. The objective of the study was to compare these cardiovascular imaging measures for their overall and sex-specific ability to predict CVD.
Methods and Results
The study sample consisted of 4965 Multi-Ethnic Study of Atherosclerosis participants (48% men; mean age, 62±10 years). They were free of CVD at baseline and were followed for a median of 5.8 years. There were 297 CVD events, including 187 coronary heart disease (CHD) events, 65 strokes, and 91 heart failure (HF) events. CAC was most strongly associated with CHD (hazard ratio [HR], 2.3 per 1 SD; 95% CI, 1.9 to 2.8) and all CVD events (HR, 1.7; 95% CI, 1.5 to 1.9). Most strongly associated with stroke were LV mass (HR, 1.3; 95% CI, 1.1 to 1.7) and LV mass/volume ratio (HR, 1.3; 95% CI, 1.1 to 1.6). LV mass showed the strongest association with HF (HR, 1.8; 95% CI, 1.6 to 2.1). There were no significant interactions for imaging measures with sex and ethnicity for any CVD outcome. Compared with traditional risk factors alone, overall risk prediction (C statistic) for future CHD, HF, and all CVD was significantly improved by adding CAC, LV mass, and CAC, respectively (all P<0.05).
There was no evidence that imaging measures differed in association with incident CVD by sex. CAC was most strongly associated with CHD and CVD; LV mass and LV concentric remodeling best predicted stroke; and LV mass best predicted HF.
PMCID: PMC3037859  PMID: 21068189
imaging; cardiovascular diseases; sex
22.  C-Reactive Protein and Reclassification of Cardiovascular Risk In the Framingham Heart Study 
The relationship of circulating levels of high sensitivity C-reactive protein (CRP) with cardiovascular disease (CVD) risk, particularly with consideration of effects at intermediate levels of risk, has not been fully assessed.
Among 3006 Offspring participants in the Framingham Heart Study free of CVD (mean age 46 years at baseline), there were 129 Hard coronary heart disease (CHD) events and 286 Total CVD events during 12 years of follow up. Cox regression, discrimination with area under the receiver operating characteristic curve, and net reclassification improvement were used to assess the role of CRP on vascular risk.
In an age-adjusted model that included both sexes the hazard ratios for new Hard CHD and Total CVD were significantly associated with higher CRP levels. Similar analyses according to increasing homocysteine (Hcys) level showed significant protective associations for Hard CHD but not for Total CVD. In multivariable analyses that included age, sex, systolic blood pressure, total cholesterol, HDL-cholesterol, diabetes mellitus, current smoking, hypertension treatment and homocysteine, the log CRP level remained significantly related to developing Hard CHD and Total CVD and provided moderate improvement in the discrimination of events. The net reclassification improvement when CRP was added to traditional factors was 5.6% for Total CVD (P=0.014) and 11.8% for Hard CHD (P=0.009).
Circulating levels of CRP help to estimate risk for initial cardiovascular events and may be used most effectively in persons at intermediate risk for vascular events, offering moderate improvement in reclassification of risk.
PMCID: PMC3033831  PMID: 20031795
risk factors; coronary disease; homocysteine; C-reactive protein
23.  Association between serum uric acid levels and cardiovascular disease in middle-aged and elderly Chinese individuals 
A link between uric acid (UA) levels and cardiovascular diseases has been previously reported. However, its importance as a risk factor is still controversial. This study sought to determine whether elevated serum uric acid levels are associated with cardiovascular disease (CVD) in middle-aged and elderly Chinese individuals.
We conducted a population-based cross-sectional study in Shanghai, with a total of 8510 participants aged ≥40 years. The CVD included diagnosed coronary heart disease (CHD) and stroke. MetS was defined according to the updated National Cholesterol Education Program Adult Treatment Panel III criteria for Asian Americans.
Uric acid levels were positively associated with BMI, waist circumference, triglycerides, systolic blood pressure, diastolic blood pressure, glycohemoglobin, fasting plasma glucose, postprandial 2-hour plasma glucose (all P < 0.05), and negatively associated with HDL-cholesterol (P < 0.001). The prevalence of CVD significantly increased with increasing quartiles of UA in those without MetS group (p trend < 0.001), but not necessarily increased in those with MetS. After adjustment for metabolic syndrome and other cardiovascular risk factors, multivariate logistic regression analysis showed that odds ratios (OR) for CHD, stroke, and CVD in those in the fourth quartiles were 2.34 (95% confidence interval [CI] 1.73 to 3.45), 2.18 (95% CI 1.86 to 3.28), and 2.16 (95% CI 1.80 to 3.29), respectively, compared with those in the first quartile of UA.
Elevated serum uric acid level was associated with CVD, independent of conventional cardiovascular disease risk factors and metabolic syndrome.
PMCID: PMC3974065  PMID: 24568132
Uric acid; Cardiovascular disease; Metabolic syndrome; Stroke; Coronary heart disease
24.  Predictors of Residual Cardiovascular Risk in Patients on Statin Therapy for Primary Prevention 
Cardiology  2011;119(4):187-190.
Low-density lipoprotein cholesterol-lowering therapy is an important aspect of primary prevention of cardiovascular disease (CVD). Statins are the most widely used drug therapy for achieving low-density lipoprotein goals based on an individual's 10-year risk. However, substantial risk of CVD events still exists even when a person is on statins. We sought to explore the predictors of future CVD events in individuals on statins with no pre-existing CVD.
The analysis was done on subjects who were on statins (n = 919) at baseline in the Multi-Ethnic Study of Atherosclerosis limited access dataset from the National Heart, Lung and Blood Institute. The primary outcome variable was all-cause CVD events (n = 67). Multivariate regression Cox proportional hazard analysis was done to identify potential independent predictors of all-cause CVD.
Our cohort consisted of 47% males, with a mean age of 66 ± 9 years. Sixty-seven participants (7.3%) experienced CVD events during a mean follow-up of 4.4 years. A higher coronary artery calcium score, homocysteine levels, waist circumference and a lower large arterial elasticity index were identified as independent predictors of CVD events.
Homocysteine, waist circumference, coronary artery calcification and the large artery elasticity index appear to be the major independent predictors of CVD events in individuals on statins with no pre-existing CVD. In addition to emphasizing weight loss, alternative approaches beyond lipid reduction may need to be explored to better characterize and attenuate the residual risk in subjects on statin therapy for primary prevention.
PMCID: PMC3221246  PMID: 21968436
Statin; Primary prevention; Residual risk; Coronary artery calcium; Homocysteine; Waist circumference; Large artery elasticity index
25.  Heart Disease and Stroke Statistics—2011 Update 
Circulation  2010;123(4):e18-e209.
Each year, the American Heart Association (AHA), in conjunction with the Centers for Disease Control and Prevention, the National Institutes of Health, and other government agencies, brings together the most up-to-date statistics on heart disease, stroke, other vascular diseases, and their risk factors and presents them in its Heart Disease and Stroke Statistical Update. The Statistical Update is a valuable resource for researchers, clinicians, healthcare policy makers, media professionals, the lay public, and many others who seek the best national data available on disease morbidity and mortality and the risks, quality of care, medical procedures and operations, and costs associated with the management of these diseases in a single document. Indeed, since 1999, the Statistical Update has been cited more than 8700 times in the literature (including citations of all annual versions). In 2009 alone, the various Statistical Updates were cited ≈1600 times (data from ISI Web of Science). In recent years, the Statistical Update has undergone some major changes with the addition of new chapters and major updates across multiple areas. For this year’s edition, the Statistics Committee, which produces the document for the AHA, updated all of the current chapters with the most recent nationally representative data and inclusion of relevant articles from the literature over the past year and added a new chapter detailing how family history and genetics play a role in cardiovascular disease (CVD) risk. Also, the 2011 Statistical Update is a major source for monitoring both cardiovascular health and disease in the population, with a focus on progress toward achievement of the AHA’s 2020 Impact Goals. Below are a few highlights from this year’s Update.
Death Rates From CVD Have Declined, Yet the Burden of Disease Remains High
The 2007 overall death rate from CVD (International Classification of Diseases 10, I00–I99) was 251.2 per 100 000. The rates were 294.0 per 100 000 for white males, 405.9 per 100 000 for black males, 205.7 per 100 000 for white females, and 286.1 per 100 000 for black females. From 1997 to 2007, the death rate from CVD declined 27.8%. Mortality data for 2007 show that CVD (I00–I99; Q20–Q28) accounted for 33.6% (813 804) of all 2 243 712 deaths in 2007, or 1 of every 2.9 deaths in the United States.
On the basis of 2007 mortality rate data, more than 2200 Americans die of CVD each day, an average of 1 death every 39 seconds. More than 150 000 Americans killed by CVD (I00–I99) in 2007 were <65 years of age. In 2007, nearly 33% of deaths due to CVD occurred before the age of 75 years, which is well before the average life expectancy of 77.9 years.
Coronary heart disease caused ≈1 of every 6 deaths in the United States in 2007. Coronary heart disease mortality in 2007 was 406 351. Each year, an estimated 785 000 Americans will have a new coronary attack, and ≈470 000 will have a recurrent attack. It is estimated that an additional 195 000 silent first myocardial infarctions occur each year. Approximately every 25 seconds, an American will have a coronary event, and approximately every minute, someone will die of one.
Each year, ≈795 000 people experience a new or recurrent stroke. Approximately 610 000 of these are first attacks, and 185 000 are recurrent attacks. Mortality data from 2007 indicate that stroke accounted for ≈1 of every 18 deaths in the United States. On average, every 40 seconds, someone in the United States has a stroke. From 1997 to 2007, the stroke death rate fell 44.8%, and the actual number of stroke deaths declined 14.7%.
In 2007, 1 in 9 death certificates (277 193 deaths) in the United States mentioned heart failure.
Prevalence and Control of Traditional Risk Factors Remains an Issue for Many Americans
Data from the National Health and Nutrition Examination Survey (NHANES) 2005–2008 indicate that 33.5% of US adults ≥20 years of age have hypertension (Table 7-1). This amounts to an estimated 76 400 000 US adults with hypertension. The prevalence of hypertension is nearly equal between men and women. African American adults have among the highest rates of hypertension in the world, at 44%. Among hypertensive adults, ≈80% are aware of their condition, 71% are using antihypertensive medication, and only 48% of those aware that they have hypertension have their condition controlled.
Despite 4 decades of progress, in 2008, among Americans ≥18 years of age, 23.1% of men and 18.3% of women continued to be cigarette smokers. In 2009, 19.5% of students in grades 9 through 12 reported current tobacco use. The percentage of the nonsmoking population with detectable serum cotinine (indicating exposure to secondhand smoke) was 46.4% in 1999 to 2004, with declines occurring, and was highest for those 4 to 11 years of age (60.5%) and those 12 to 19 years of age (55.4%).
An estimated 33 600 000 adults ≥20 years of age have total serum cholesterol levels ≥240 mg/dL, with a prevalence of 15.0% (Table 13-1).
In 2008, an estimated 18 300 000 Americans had diagnosed diabetes mellitus, representing 8.0% of the adult population. An additional 7 100 000 had undiagnosed diabetes mellitus, and 36.8% had prediabetes, with abnormal fasting glucose levels. African Americans, Mexican Americans, Hispanic/Latino individuals, and other ethnic minorities bear a strikingly disproportionate burden of diabetes mellitus in the United States (Table 16-1).
The 2011 Update Expands Data Coverage of the Obesity Epidemic and Its Antecedents and Consequences
The estimated prevalence of overweight and obesity in US adults (≥20 years of age) is 149 300 000, which represents 67.3% of this group in 2008. Fully 33.7% of US adults are obese (body mass index ≥30 kg/m2). Men and women of all race/ethnic groups in the population are affected by the epidemic of overweight and obesity (Table 15-1).
Among children 2 to 19 years of age, 31.9% are overweight and obese (which represents 23 500 000 children), and 16.3% are obese (12 000 000 children). Mexican American boys and girls and African American girls are disproportionately affected. Over the past 3 decades, the prevalence of obesity in children 6 to 11 years of age has increased from ≈4% to more than 20%.
Obesity (body mass index ≥30 kg/m2) is associated with marked excess mortality in the US population. Even more notable is the excess morbidity associated with overweight and obesity in terms of risk factor development and incidence of diabetes mellitus, CVD end points (including coronary heart disease, stroke, and heart failure), and numerous other health conditions, including asthma, cancer, degenerative joint disease, and many others.
The prevalence of diabetes mellitus is increasing dramatically over time, in parallel with the increases in prevalence of overweight and obesity.
On the basis of NHANES 2003–2006 data, the age-adjusted prevalence of metabolic syndrome, a cluster of major cardiovascular risk factors related to overweight/obesity and insulin resistance, is 34% (35.1% among men and 32.6% among women).
The proportion of youth (≤18 years of age) who report engaging in no regular physical activity is high, and the proportion increases with age. In 2007, among adolescents in grades 9 through 12, 29.9% of girls and 17.0% of boys reported that they had not engaged in 60 minutes of moderate-to-vigorous physical activity, defined as any activity that increased heart rate or breathing rate, even once in the previous 7 days, despite recommendations that children engage in such activity ≥5 days per week.
Thirty-six percent of adults reported engaging in no vigorous activity (activity that causes heavy sweating and a large increase in breathing or heart rate).
Data from NHANES indicate that between 1971 and 2004, average total energy consumption among US adults increased by 22% in women (from 1542 to 1886 kcal/d) and by 10% in men (from 2450 to 2693 kcal/d; see Chart 19-1).
The increases in calories consumed during this time period are attributable primarily to greater average carbohydrate intake, in particular, of starches, refined grains, and sugars. Other specific changes related to increased caloric intake in the United States include larger portion sizes, greater food quantity and calories per meal, and increased consumption of sugar-sweetened beverages, snacks, commercially prepared (especially fast food) meals, and higher energy-density foods.
The 2011 Update Provides Critical Data Regarding Cardiovascular Quality of Care, Procedure Utilization, and Costs
In light of the current national focus on healthcare utilization, costs, and quality, it is critical to monitor and understand the magnitude of healthcare delivery and costs, as well as the quality of healthcare delivery, related to CVDs. The Update provides these critical data in several sections.
Quality-of-Care Metrics for CVDs
Chapter 20 reviews many metrics related to the quality of care delivered to patients with CVDs, as well as healthcare disparities. In particular, quality data are available from the AHA’s “Get With The Guidelines” programs for coronary artery disease and heart failure and the American Stroke Association/ AHA’s “Get With the Guidelines” program for acute stroke. Similar data from the Veterans Healthcare Administration, national Medicare and Medicaid data and National Cardiovascular Data Registry Acute Coronary Treatment and Intervention Outcomes Network - “Get With The Guidelines” Registry data are also reviewed. These data show impressive adherence with guideline recommendations for many, but not all, metrics of quality of care for these hospitalized patients. Data are also reviewed on screening for cardiovascular risk factor levels and control.
Cardiovascular Procedure Utilization and Costs
Chapter 21 provides data on trends and current usage of cardiovascular surgical and invasive procedures. For example, the total number of inpatient cardiovascular operations and procedures increased 27%, from 5 382 000 in 1997 to 6 846 000 in 2007 (National Heart, Lung, and Blood Institute computation based on National Center for Health Statistics annual data).
Chapter 22 reviews current estimates of direct and indirect healthcare costs related to CVDs, stroke, and related conditions using Medical Expenditure Panel Survey data. The total direct and indirect cost of CVD and stroke in the United States for 2007 is estimated to be $286 billion. This figure includes health expenditures (direct costs, which include the cost of physicians and other professionals, hospital services, prescribed medications, home health care, and other medical durables) and lost productivity resulting from mortality (indirect costs). By comparison, in 2008, the estimated cost of all cancer and benign neoplasms was $228 billion ($93 billion in direct costs, $19 billion in morbidity indirect costs, and $116 billion in mortality indirect costs). CVD costs more than any other diagnostic group.
The AHA, through its Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current data available in the Statistics Update. The 2007 mortality data have been released. More information can be found at the National Center for Health Statistics Web site,
Finally, it must be noted that this annual Statistical Update is the product of an entire year’s worth of effort by dedicated professionals, volunteer physicians and scientists, and outstanding AHA staff members, without whom publication of this valuable resource would be impossible. Their contributions are gratefully acknowledged. Véronique L. Roger, MD, MPH, FAHAMelanie B. Turner, MPHOn behalf of the American Heart Association Heart Disease and Stroke Statistics Writing Group
Note: Population data used in the compilation of NHANES prevalence estimates is for the latest year of the NHANES survey being used. Extrapolations for NHANES prevalence estimates are based on the census resident population for 2008 because this is the most recent year of NHANES data used in the Statistical Update.
PMCID: PMC4418670  PMID: 21160056
AHA Statistical Update; cardiovascular diseases; epidemiology; risk factors; statistics; stroke

Results 1-25 (475760)