PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (473580)

Clipboard (0)
None

Related Articles

1.  Clinical and neuroanatomical signatures of tissue pathology in frontotemporal lobar degeneration 
Brain  2011;134(9):2565-2581.
Relating clinical symptoms to neuroanatomical profiles of brain damage and ultimately to tissue pathology is a key challenge in the field of neurodegenerative disease and particularly relevant to the heterogeneous disorders that comprise the frontotemporal lobar degeneration spectrum. Here we present a retrospective analysis of clinical, neuropsychological and neuroimaging (volumetric and voxel-based morphometric) features in a pathologically ascertained cohort of 95 cases of frontotemporal lobar degeneration classified according to contemporary neuropathological criteria. Forty-eight cases (51%) had TDP-43 pathology, 42 (44%) had tau pathology and five (5%) had fused-in-sarcoma pathology. Certain relatively specific clinicopathological associations were identified. Semantic dementia was predominantly associated with TDP-43 type C pathology; frontotemporal dementia and motoneuron disease with TDP-43 type B pathology; young-onset behavioural variant frontotemporal dementia with FUS pathology; and the progressive supranuclear palsy syndrome with progressive supranuclear palsy pathology. Progressive non-fluent aphasia was most commonly associated with tau pathology. However, the most common clinical syndrome (behavioural variant frontotemporal dementia) was pathologically heterogeneous; while pathologically proven Pick's disease and corticobasal degeneration were clinically heterogeneous, and TDP-43 type A pathology was associated with similar clinical features in cases with and without progranulin mutations. Volumetric magnetic resonance imaging, voxel-based morphometry and cluster analyses of the pathological groups here suggested a neuroanatomical framework underpinning this clinical and pathological diversity. Frontotemporal lobar degeneration-associated pathologies segregated based on their cerebral atrophy profiles, according to the following scheme: asymmetric, relatively localized (predominantly temporal lobe) atrophy (TDP-43 type C); relatively symmetric, relatively localized (predominantly temporal lobe) atrophy (microtubule-associated protein tau mutations); strongly asymmetric, distributed atrophy (Pick's disease); relatively symmetric, predominantly extratemporal atrophy (corticobasal degeneration, fused-in-sarcoma pathology). TDP-43 type A pathology was associated with substantial individual variation; however, within this group progranulin mutations were associated with strongly asymmetric, distributed hemispheric atrophy. We interpret the findings in terms of emerging network models of neurodegenerative disease: the neuroanatomical specificity of particular frontotemporal lobar degeneration pathologies may depend on an interaction of disease-specific and network-specific factors.
doi:10.1093/brain/awr198
PMCID: PMC3170537  PMID: 21908872
frontotemporal dementia; frontotemporal lobar degeneration; voxel-based morphometry; MRI; neural network
2.  Diagnosis and Management of Behavioral Issues in Frontotemporal Dementia 
Frontotemporal lobar degeneration (FTLD) is an umbrella term for several different disorders. In behavioral variant frontotemporal dementia (bvFTD), patients show deterioration in cognition and social behavior. New diagnostic criteria proposed by the International Behavioral Variant FTD Consortium provide greater sensitivity in diagnosing bvFTD. Current pharmacological management of symptoms relies on medications borrowed from treating Alzheimer’s Disease (AD) and psychiatric disorders. The evidence for using AD medications such as acetylcholinesterase inhibitors is questionable. Psychiatric medications can be helpful. Trazodone or SSRIs can have some efficacy in reducing disinhibition, repetitive behaviors, sexually inappropriate behaviors, and hyperorality. Small doses of atypical antipsychotics may be helpful in decreasing agitation and verbal outbursts. Non-pharmacological management includes caregiver education and support and behavioral interventions. While symptomatic treatments are likely to remain important behavior management tools, targeting the underlying pathology of bvFTD with disease-modifying agents will hopefully be the future of treatment.
doi:10.1007/s11910-012-0302-7
PMCID: PMC3443960  PMID: 22847063
FTLD; frontotemporal lobar degeneration; bvFTD; frontotemporal dementia; diagnosis; differential diagnosis; treatment
3.  Clinical diagnostic criteria and classification controversies in frontotemporal lobar degeneration 
Frontotemporal lobar degeneration (FTLD) can manifest as a spectrum of clinical syndromes, ranging from behavioural impairment to language or motor dysfunction. Recently, revised diagnostic criteria have been proposed for the behavioural and progressive aphasia syndromes associated with frontotemporal degeneration. The present review will summarize these diagnostic guidelines and highlight some lingering controversies in the classification of FTLD clinical syndromes. We will discuss common tools and methods used to identify the insidious changes of behavioural variant frontotemporal dementia (bvFTD), the value of new, patient-based tasks of orbitofrontal function, and the issue of a benign or ‘phenocopy’ variant of bvFTD. With regard to primary progressive aphasia (PPA), we will discuss the scope of the semantic disorder in semantic-variant PPA, the nature of the speech disorder in non-fluent, agrammatic PPA, and the preliminary utility of a logopenic PPA classification.
doi:10.3109/09540261.2013.763341
PMCID: PMC3906583  PMID: 23611345
4.  Development of methodology for conducting clinical trials in frontotemporal lobar degeneration 
Brain  2008;131(11):2957-2968.
To design clinical trials for the frontotemporal lobar degenerations (FTLD), knowledge about measurement of disease progression is needed to estimate power and enable the choice of optimal outcome measures. The aim here was to conduct a multicentre, 1 year replica of a clinical trial in patients with one of four FTLD syndromes, behavioural variant frontotemporal dementia (bvFTD), progressive nonfluent aphasia (PNFA), progressive logopenic aphasia (PLA) and semantic dementia (SMD). Patients with one of the four FTLD syndromes were recruited from five academic medical centres over a 2 year period. Standard operationalized diagnostic criteria were used. In addition to clinical inclusion and exclusion criteria, patients were required to exhibit focal frontal, temporal or insular brain atrophy or dysfunction by neuroimaging. Patients underwent neuropsychological, functional, behavioural, neurological and MR imaging assessment at baseline and approximately 12 months later. Potential outcome measures were examined for their rates of floor and ceiling values at baseline and end of study, their mean changes and variances. The neuropsychological tests were combined into two cognitive composites—one for language functions and the other for executive functions. There were 107 patients who underwent baseline assessment and 78 who completed a follow-up assessment within 10–16 months. Two global measures, the FTLD-modified Clinical Dementia Rating (FTLD-modified CDR) and the Clinical Global Impression of Change (CGIC) demonstrated decline in the majority of patients. Several cognitive measures showed negligible floor or ceiling scores either at baseline or follow-up. Scores declined at follow-up in the majority of patients. The cognitive, executive and combined composites were shown to be sensitive to change across all FTLD syndromes. Patients improved at follow-up on the behavioural scales—the Frontal Behavioural Inventory (22%) and the Neuropsychiatric Inventory (28%)—suggesting that these instruments may not be ideal for clinical trial use. It was feasible to recruit FTLD patients in a simulated multi-centre trial. There are several candidate outcome measures—including the FTLD-CDR and the cognitive composites— that could be used in clinical trials across the spectrum of FTLD.
doi:10.1093/brain/awn234
PMCID: PMC2725027  PMID: 18829698
frontotemporal dementia; clinical trials; neuropsychology
5.  Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration 
Acta Neuropathologica  2007;114(1):5-22.
The aim of this study was to improve the neuropathologic recognition and provide criteria for the pathological diagnosis in the neurodegenerative diseases grouped as frontotemporal lobar degeneration (FTLD); revised criteria are proposed. Recent advances in molecular genetics, biochemistry, and neuropathology of FTLD prompted the Midwest Consortium for Frontotemporal Lobar Degeneration and experts at other centers to review and revise the existing neuropathologic diagnostic criteria for FTLD. The proposed criteria for FTLD are based on existing criteria, which include the tauopathies [FTLD with Pick bodies, corticobasal degeneration, progressive supranuclear palsy, sporadic multiple system tauopathy with dementia, argyrophilic grain disease, neurofibrillary tangle dementia, and FTD with microtubule-associated tau (MAPT) gene mutation, also called FTD with parkinsonism linked to chromosome 17 (FTDP-17)]. The proposed criteria take into account new disease entities and include the novel molecular pathology, TDP-43 proteinopathy, now recognized to be the most frequent histological finding in FTLD. TDP-43 is a major component of the pathologic inclusions of most sporadic and familial cases of FTLD with ubiquitin-positive, tau-negative inclusions (FTLD-U) with or without motor neuron disease (MND). Molecular genetic studies of familial cases of FTLD-U have shown that mutations in the progranulin (PGRN) gene are a major genetic cause of FTLD-U. Mutations in valosin-containing protein (VCP) gene are present in rare familial forms of FTD, and some families with FTD and/or MND have been linked to chromosome 9p, and both are types of FTLD-U. Thus, familial TDP-43 proteinopathy is associated with defects in multiple genes, and molecular genetics is required in these cases to correctly identify the causative gene defect. In addition to genetic heterogeneity amongst the TDP-43 proteinopathies, there is also neuropathologic heterogeneity and there is a close relationship between genotype and FTLD-U sub-type. In addition to these recent significant advances in the neuropathology of FTLD-U, novel FTLD entities have been further characterized, including neuronal intermediate filament inclusion disease. The proposed criteria incorporate up-to-date neuropathology of FTLD in the light of recent immunohistochemical, biochemical, and genetic advances. These criteria will be of value to the practicing neuropathologist and provide a foundation for clinical, clinico-pathologic, mechanistic studies and in vivo models of pathogenesis of FTLD.
doi:10.1007/s00401-007-0237-2
PMCID: PMC2827877  PMID: 17579875
Frontotemporal dementia; Semantic dementia; Progressive non-Xuent aphasia; Frontotemporal lobar degeneration; Motor neuron disease; Tauopathy; Ubiquitin; TDP-43 proteinopathy; Progranulin; Valosin-containing protein; Charged multivesicular body protein 2B; Neuronal intermediate filament inclusion disease; Neuropathologic diagnosis
6.  A comparative clinical, pathological, biochemical and genetic study of fused in sarcoma proteinopathies 
Brain  2011;134(9):2548-2564.
Neuronal intermediate filament inclusion disease and atypical frontotemporal lobar degeneration are rare diseases characterized by ubiquitin-positive inclusions lacking transactive response DNA-binding protein-43 and tau. Recently, mutations in the fused in sarcoma gene have been shown to cause familial amyotrophic lateral sclerosis and fused in sarcoma-positive neuronal inclusions have subsequently been demonstrated in neuronal intermediate filament inclusion disease and atypical frontotemporal lobar degeneration with ubiquitinated inclusions. Here we provide clinical, imaging, morphological findings, as well as genetic and biochemical data in 14 fused in sarcoma proteinopathy cases. In this cohort, the age of onset was variable but included cases of young-onset disease. Patients with atypical frontotemporal lobar degeneration with ubiquitinated inclusions all presented with behavioural variant frontotemporal dementia, while the clinical presentation in neuronal intermediate filament inclusion disease was more heterogeneous, including cases with motor neuron disease and extrapyramidal syndromes. Neuroimaging revealed atrophy of the frontal and anterior temporal lobes as well as the caudate in the cases with atypical frontotemporal lobar degeneration with ubiquitinated inclusions, but was more heterogeneous in the cases with neuronal intermediate filament inclusion disease, often being normal to visual inspection early on in the disease. The distribution and severity of fused in sarcoma-positive neuronal cytoplasmic inclusions, neuronal intranuclear inclusions and neurites were recorded and fused in sarcoma was biochemically analysed in both subgroups. Fused in sarcoma-positive neuronal cytoplasmic and intranuclear inclusions were found in the hippocampal granule cell layer in variable numbers. Cortical fused in sarcoma-positive neuronal cytoplasmic inclusions were often ‘Pick body-like’ in neuronal intermediate filament inclusion disease, and annular and crescent-shaped inclusions were seen in both conditions. Motor neurons contained variable numbers of compact, granular or skein-like cytoplasmic inclusions in all fused in sarcoma-positive cases in which brainstem and spinal cord motor neurons were available for study (five and four cases, respectively). No fused in sarcoma mutations were found in any cases. Biochemically, two major fused in sarcoma species were found and shown to be more insoluble in the atypical frontotemporal lobar degeneration with ubiquitinated inclusions subgroup compared with neuronal intermediate filament inclusion disease. There is considerable overlap and also significant differences in fused in sarcoma-positive pathology between the two subgroups, suggesting they may represent a spectrum of the same disease. The co-existence of fused in sarcoma-positive inclusions in both motor neurons and extramotor cerebral structures is a characteristic finding in sporadic fused in sarcoma proteinopathies, indicating a multisystem disorder.
doi:10.1093/brain/awr160
PMCID: PMC3170529  PMID: 21752791
frontotemporal lobar degeneration; FUS; clinical presentation; neuropathology; biochemistry
7.  Distinct anatomical subtypes of the behavioural variant of frontotemporal dementia: a cluster analysis study 
Brain  2009;132(11):2932-2946.
The behavioural variant of frontotemporal dementia is a progressive neurodegenerative syndrome characterized by changes in personality and behaviour. It is typically associated with frontal lobe atrophy, although patterns of atrophy are heterogeneous. The objective of this study was to examine case-by-case variability in patterns of grey matter atrophy in subjects with the behavioural variant of frontotemporal dementia and to investigate whether behavioural variant of frontotemporal dementia can be divided into distinct anatomical subtypes. Sixty-six subjects that fulfilled clinical criteria for a diagnosis of the behavioural variant of frontotemporal dementia with a volumetric magnetic resonance imaging scan were identified. Grey matter volumes were obtained for 26 regions of interest, covering frontal, temporal and parietal lobes, striatum, insula and supplemental motor area, using the automated anatomical labelling atlas. Regional volumes were divided by total grey matter volume. A hierarchical agglomerative cluster analysis using Ward's clustering linkage method was performed to cluster the behavioural variant of frontotemporal dementia subjects into different anatomical clusters. Voxel-based morphometry was used to assess patterns of grey matter loss in each identified cluster of subjects compared to an age and gender-matched control group at P < 0.05 (family-wise error corrected). We identified four potentially useful clusters with distinct patterns of grey matter loss, which we posit represent anatomical subtypes of the behavioural variant of frontotemporal dementia. Two of these subtypes were associated with temporal lobe volume loss, with one subtype showing loss restricted to temporal lobe regions (temporal-dominant subtype) and the other showing grey matter loss in the temporal lobes as well as frontal and parietal lobes (temporofrontoparietal subtype). Another two subtypes were characterized by a large amount of frontal lobe volume loss, with one subtype showing grey matter loss in the frontal lobes as well as loss of the temporal lobes (frontotemporal subtype) and the other subtype showing loss relatively restricted to the frontal lobes (frontal-dominant subtype). These four subtypes differed on clinical measures of executive function, episodic memory and confrontation naming. There were also associations between the four subtypes and genetic or pathological diagnoses which were obtained in 48% of the cohort. The clusters did not differ in behavioural severity as measured by the Neuropsychiatric Inventory; supporting the original classification of the behavioural variant of frontotemporal dementia in these subjects. Our findings suggest behavioural variant of frontotemporal dementia can therefore be subdivided into four different anatomical subtypes.
doi:10.1093/brain/awp232
PMCID: PMC2768663  PMID: 19762452
behavioural variant frontotemporal dementia; atrophy; cluster analysis; voxel-based morphometry
8.  Delusions in frontotemporal lobar degeneration 
Journal of Neurology  2009;256(4):600-607.
We assessed the significance and nature of delusions in frontotemporal lobar degeneration (FTLD), an important cause of young-onset dementia with prominent neuropsychiatric features that remain incompletely characterised. The case notes of all patients meeting diagnostic criteria for FTLD attending a tertiary level cognitive disorders clinic over a three year period were retrospectively reviewed and eight patients with a history of delusions were identified. All patients underwent detailed clinical and neuropsychological evaluation and brain MRI. The diagnosis was confirmed pathologically in two cases. The estimated prevalence of delusions was 14 %. Delusions were an early, prominent and persistent feature. They were phenomenologically diverse; however paranoid and somatic delusions were prominent. Behavioural variant FTLD was the most frequently associated clinical subtype and cerebral atrophy was bilateral or predominantly right-sided in most cases. We conclude that delusions may be a clinical issue in FTLD, and this should be explored further in future work.
doi:10.1007/s00415-009-0128-7
PMCID: PMC2756566  PMID: 19365594
delusions; frontotemporal lobar degeneration; Pick’s disease; dementia
9.  Delusions in frontotemporal lobar degeneration 
Journal of neurology  2009;256(4):600-607.
We assessed the significance and nature of delusions in frontotemporal lobar degeneration (FTLD), an important cause of young-onset dementia with prominent neuropsychiatric features that remain incompletely characterised. The case notes of all patients meeting diagnostic criteria for FTLD attending a tertiary level cognitive disorders clinic over a three year period were retrospectively reviewed and eight patients with a history of delusions were identified. All patients underwent detailed clinical and neuropsychological evaluation and brain MRI. The diagnosis was confirmed pathologically in two cases. The estimated prevalence of delusions was 14 %. Delusions were an early, prominent and persistent feature. They were phenomenologically diverse; however paranoid and somatic delusions were prominent. Behavioural variant FTLD was the most frequently associated clinical subtype and cerebral atrophy was bilateral or predominantly right-sided in most cases. We conclude that delusions may be a clinical issue in FTLD, and this should be explored further in future work.
doi:10.1007/s00415-009-0128-7
PMCID: PMC2756566  PMID: 19365594
delusions; frontotemporal lobar degeneration; Pick’s disease; dementia
10.  TDP-43 subtypes are associated with distinct atrophy patterns in frontotemporal dementia 
Neurology  2010;75(24):2204-2211.
Background:
We sought to describe the antemortem clinical and neuroimaging features among patients with frontotemporal lobar degeneration with TDP-43 immunoreactive inclusions (FTLD-TDP).
Methods:
Subjects were recruited from a consecutive series of patients with a primary neuropathologic diagnosis of FTLD-TDP and antemortem MRI. Twenty-eight patients met entry criteria: 9 with type 1, 5 with type 2, and 10 with type 3 FTLD-TDP. Four patients had too sparse FTLD-TDP pathology to be subtyped. Clinical, neuropsychological, and neuroimaging features of these cases were reviewed. Voxel-based morphometry was used to assess regional gray matter atrophy in relation to a group of 50 cognitively normal control subjects.
Results:
Clinical diagnosis varied between the groups: semantic dementia was only associated with type 1 pathology, whereas progressive nonfluent aphasia and corticobasal syndrome were only associated with type 3. Behavioral variant frontotemporal dementia and frontotemporal dementia with motor neuron disease were seen in type 2 or type 3 pathology. The neuroimaging analysis revealed distinct patterns of atrophy between the pathologic subtypes: type 1 was associated with asymmetric anterior temporal lobe atrophy (either left- or right-predominant) with involvement also of the orbitofrontal lobes and insulae; type 2 with relatively symmetric atrophy of the medial temporal, medial prefrontal, and orbitofrontal-insular cortices; and type 3 with asymmetric atrophy (either left- or right-predominant) involving more dorsal areas including frontal, temporal, and inferior parietal cortices as well as striatum and thalamus. No significant atrophy was seen among patients with too sparse pathology to be subtyped.
Conclusions:
FTLD-TDP subtypes have distinct clinical and neuroimaging features, highlighting the relevance of FTLD-TDP subtyping to clinicopathologic correlation.
GLOSSARY
= behavioral variant frontotemporal dementia;
= corticobasal syndrome;
= Clinical Dementia Rating;
= false discovery rate;
= frontotemporal dementia;
= frontotemporal lobar degeneration;
= frontotemporal lobar degeneration with TDP-43 immunoreactive inclusions;
= fused in sarcoma;
= Mini-Mental State Examination;
= motor neuron disease;
= progressive nonfluent aphasia;
= TAR DNA-binding protein of 43 kDa;
= University of California, San Francisco;
= voxel-based morphometry.
doi:10.1212/WNL.0b013e318202038c
PMCID: PMC3013589  PMID: 21172843
11.  Frontotemporal Dementia, Manifested as Schizophrenia, with Decreased Heterochromatin on Chromosome 1 
Case Reports in Psychiatry  2012;2012:937518.
Introduction. Frontotemporal dementia is a disorder of complex etiology, with genetic components contributing to the disease. The aim of this report is to describe a young patient suffering from frontotemporal dementia, misdiagnosed as schizophrenia, related to a genetic defect on chromosome 1. Case Presentation. A 29-year-old female patient, previously diagnosed as having schizophrenia, was hospitalized with severe behavioural disturbances. She demonstrated severe sexual disinhibition, hyperphagia, lack of motivation, apathy, psychotic symptoms, suicidal thoughts, and cognitive deterioration. Focal atrophy of frontal and anterior temporal structures bilaterally was found on brain MRI, as well as bifrontal hypo perfusion of the brain on SPECT scan. The diagnosis of frontotemporal dementia was made clinically, according to Lund and Manchester groups and Neary diagnostic criteria. Chromosomal analysis was conducted and revealed decrease in length of heterochromatin on the long arm of chromosome 1 (46, XX, 1qh-). Parental karyotypes were normal. Discussion. Frontotemporal dementia, and particularly early-onset cases, can be often misdiagnosed as schizophrenia, with negative impact on case management. Genetic testing could be an aid to the correct diagnosis, which is crucial for optimal patient care.
doi:10.1155/2012/937518
PMCID: PMC3467798  PMID: 23082270
12.  Sensitivity of current criteria for the diagnosis of behavioral variant frontotemporal dementia 
Neurology  2009;72(8):732-737.
Background:
Diagnosis of behavioral variant frontotemporal dementia (bvFTD) relies on criteria that are constraining and potentially ambiguous. Some features are open to clinical interpretation and their prevalence unknown. This study investigated the sensitivity of current diagnostic criteria in a large group of patients with bvFTD.
Methods:
Forty-five patients with clear evidence of bvFTD as judged by progressive clinical decline (>3 years) with marked frontal features and significant frontal brain atrophy on brain MRI were included. Thirty-two have died; pathologic confirmation of frontotemporal lobar degeneration was found in all 18 coming to autopsy. We established the prevalence of core and supportive diagnostic features at presentation and with disease progression.
Results:
Only 25/45 patients (56%) showed all five core features necessary for a diagnosis of bvFTD at initial presentation and 33/45 (73%) as their disease progressed. Two core features, emotional blunting and loss of insight, were never observed in 25% and 13% of cases. Executive dysfunction, hyperorality, mental inflexibility, and distractibility were the only supportive features present in >50% of cases at initial presentation. Although not a diagnostic feature, impaired activities of daily living was present in 33/45 patients (73%).
Conclusions:
Strict application of the criteria misses a significant proportion of patients. Many supportive features have low prevalence and are clinically not useful. Revision of the criteria to include level of certainty (definite, probable, possible) dependent on the number of features present and the presence of ancillary information (e.g., brain atrophy, neuropsychological abnormalities, impaired activities of daily living) is encouraged.
GLOSSARY
= Addenbrooke’s Cognitive Examination;
= activities of daily living;
= behavioral variant frontotemporal dementia;
= Mini-Mental State Examination.
doi:10.1212/01.wnl.0000343004.98599.45
PMCID: PMC2821829  PMID: 19237702
13.  Mapping the progression of progranulin-associated frontotemporal lobar degeneration 
Summary
Background
A 55-year-old woman was followed over a 13-year period as part of a longitudinal study of people at risk for familial dementia. She was a member of a family with an autosomal dominant familial dementia that fulfilled consensus criteria for frontotemporal lobar degeneration. She was initially asymptomatic but developed progressive behavioral and cognitive decline characterized by early apathy, impaired emotion recognition, mixed aphasia and parietal lobe dysfunction.
Investigations
Clinical assessments, neuropsychometry, volumetric brain MRI, genetic mutation screening.
Diagnosis
Progranulin-associated frontotemporal lobar degeneration.
Management
Explanation of the patient's condition and genetic counseling for her family.
doi:10.1038/ncpneuro0869
PMCID: PMC2567307  PMID: 18648346
dementia; frontotemporal dementia; progranulin; progressive aphasia
14.  The structural neuroanatomy of music emotion recognition: Evidence from frontotemporal lobar degeneration 
Neuroimage  2011;56(3):1814-1821.
Despite growing clinical and neurobiological interest in the brain mechanisms that process emotion in music, these mechanisms remain incompletely understood. Patients with frontotemporal lobar degeneration (FTLD) frequently exhibit clinical syndromes that illustrate the effects of breakdown in emotional and social functioning. Here we investigated the neuroanatomical substrate for recognition of musical emotion in a cohort of 26 patients with FTLD (16 with behavioural variant frontotemporal dementia, bvFTD, 10 with semantic dementia, SemD) using voxel-based morphometry. On neuropsychological evaluation, patients with FTLD showed deficient recognition of canonical emotions (happiness, sadness, anger and fear) from music as well as faces and voices compared with healthy control subjects. Impaired recognition of emotions from music was specifically associated with grey matter loss in a distributed cerebral network including insula, orbitofrontal cortex, anterior cingulate and medial prefrontal cortex, anterior temporal and more posterior temporal and parietal cortices, amygdala and the subcortical mesolimbic system. This network constitutes an essential brain substrate for recognition of musical emotion that overlaps with brain regions previously implicated in coding emotional value, behavioural context, conceptual knowledge and theory of mind. Musical emotion recognition may probe the interface of these processes, delineating a profile of brain damage that is essential for the abstraction of complex social emotions.
Research highlights
► Emotion recognition from music is impaired in frontotemporal lobar degeneration. ► This deficit is associated with atrophy in a distributed cerebral network. ► This network includes cortical and mesolimbic areas likely to code social emotions.
doi:10.1016/j.neuroimage.2011.03.002
PMCID: PMC3092986  PMID: 21385617
Music; Emotion; Dementia; Frontotemporal; FTLD; VBM
15.  Frontotemporal Lobar Degeneration 
CNS drugs  2010;24(5):375-398.
Frontotemporal lobar degeneration (FTLD) is a clinically and pathologically heterogeneous syndrome, characterized by progressive decline in behaviour or language associated with degeneration of the frontal and anterior temporal lobes. While the seminal cases were described at the turn of the 20th century, FTLD has only recently been appreciated as a leading cause of dementia, particularly in patients presenting before the age of 65 years. Three distinct clinical variants of FTLD have been described: (i) behavioural-variant frontotemporal dementia, characterized by changes in behaviour and personality in association with frontal-predominant cortical degeneration; (ii) semantic dementia, a syndrome of progressive loss of knowledge about words and objects associated with anterior temporal neuronal loss; and (iii) progressive nonfluent aphasia, characterized by effortful language output, loss of grammar and motor speech deficits in the setting of left perisylvian cortical atrophy.
The majority of pathologies associated with FTLD clinical syndromes include either tau-positive (FTLD-TAU) or TAR DNA-binding protein 43 (TDP-43)-positive (FTLD-TDP) inclusion bodies. FTLD overlaps clinically and pathologically with the atypical parkinsonian disorders corticobasal degeneration and progressive supranuclear palsy, and with amyotrophic lateral sclerosis. The majority of familial FTLD cases are caused by mutations in the genes encoding microtubule-associated protein tau (leading to FTLD-TAU) or progranulin (leading to FTLD-TDP). The clinical and pathologic heterogeneity of FTLD poses a significant diagnostic challenge, and in vivo prediction of underlying histopathology can be significantly improved by supplementing the clinical evaluation with genetic tests and emerging biological markers. Current pharmacotherapy for FTLD focuses on manipulating serotonergic or dopaminergic neurotransmitter systems to ameliorate behavioural or motor symptoms. However, recent advances in FTLD genetics and molecular pathology make the prospect of biologically driven, disease-specific therapies for FTLD seem closer than ever.
doi:10.2165/11533100-000000000-00000
PMCID: PMC2916644  PMID: 20369906
16.  Flavour identification in frontotemporal lobar degeneration 
Background
Deficits of flavour processing may be clinically important in frontotemporal lobar degeneration (FTLD).
Objective
To examine  flavour processing in FTLD.
Methods
We studied flavour identification prospectively in 25 patients with FTLD (12 with behavioural variant frontotemporal dementia (bvFTD), eight with semantic variant primary progressive aphasia (svPPA), five with non-fluent variant primary progressive aphasia (nfvPPA)) and 17 healthy control subjects, using a new test based on cross-modal matching of flavours to words and pictures. All subjects completed a general neuropsychological assessment, and odour identification was also assessed using a modified University of Pennsylvania Smell Identification Test. Brain MRI volumes from the patient cohort were analysed using voxel-based morphometry to identify regional grey matter associations of flavour identification.
Results
Relative to the healthy control group, the bvFTD and svPPA subgroups showed significant (p<0.05) deficits of flavour identification and all three FTLD subgroups showed deficits of odour identification. Flavour identification performance did not differ significantly between the FTLD syndromic subgroups. Flavour identification performance in the combined FTLD cohort was significantly (p<0.05 after multiple comparisons correction) associated with grey matter volume in the left entorhinal cortex, hippocampus, parahippocampal gyrus and temporal pole.
Conclusions
Certain FTLD syndromes are associated with impaired flavour identification and this is underpinned by grey matter atrophy in an anteromedial temporal lobe network. These findings may have implications for our understanding of abnormal eating behaviour in these diseases.
doi:10.1136/jnnp-2012-303853
PMCID: PMC3534254  PMID: 23138765
Cognition; Dementia; Neuropsychology; MRI; Neuroanatomy
17.  Brain and ventricular volumetric changes in frontotemporal lobar degeneration over 1 year 
Neurology  2009;72(21):1843-1849.
Background:
Measurement of volumetric changes with MR might be a useful surrogate endpoint for clinical trials in frontotemporal lobar degeneration (FTLD). Because there is only limited longitudinal imaging data currently available, we measured the rate of change over 1 year of whole brain volume (WBV) and ventricular volume (VV) in patients with FTLD.
Methods:
Subjects with an FTLD cognitive syndrome were recruited from five centers using standard clinical diagnostic criteria for behavioral variant frontotemporal dementia (bvFTD), progressive nonfluent aphasia (PNFA), semantic dementia (SMD), and progressive logopenic aphasia. Structural brain imaging, using three-dimensional T1-weighted sequences at 1.5 teslas, and cognitive, behavioral, and functional assessments were performed at baseline and approximately 1 year later. The boundary shift integral algorithm was used to determine change in WBV and VV.
Results:
There were 76 patients (mean age 64 years; 41 men and 35 women) who had usable baseline and annual scans. The group-wise annualized change was −1.62% (SD 1.03, range +0.69 to −3.6) for WBV and 11.6% (SD 5.9, range −1.3 to 23.9) for VV. Rates of change were similar among bvFTD, PNFA, and SMD groups. Longitudinal changes in WBV and VV were correlated with decline on clinical global and cognitive measures.
Conclusions:
Multicenter, serial measurements of whole brain volume (WBV) and ventricular volume (VV) from magnetic resonance scans were feasible in patients with frontotemporal lobar degeneration (FTLD). Using WBV or VV as outcome measures would require recruiting (at 80% power) 139 or 55 subjects per group to detect a small (25%) or medium-sized (40%) effect in a randomized, placebo-controlled trial of a putative agent for FTLD.
GLOSSARY
= Alzheimer disease;
= boundary shift integral;
= behavioral variant frontotemporal dementia;
= corticobasal degeneration;
= confidence interval;
= frontotemporal lobar degeneration;
= frontotemporal lobar degeneration modified Clinical Dementia Rating Scale;
= Mini-Mental State Examination;
= magnetic resonance;
= not significant;
= progressive logopenic aphasia;
= progressive nonfluent aphasia;
= progressive supranuclear palsy;
= semantic dementia;
= total intracranial volume;
= ventricular volume;
= whole brain volume.
doi:10.1212/WNL.0b013e3181a71236
PMCID: PMC2690986  PMID: 19470967
18.  FUS pathology defines the majority of tau- and TDP-43-negative frontotemporal lobar degeneration 
Acta neuropathologica  2010;120(1):33-41.
Through an international consortium, we have collected 37 tau- and TAR DNA-binding protein 43 (TDP-43)-negative frontotemporal lobar degeneration (FTLD) cases, and present here the first comprehensive analysis of these cases in terms of neuropathology, genetics, demographics and clinical data. 92% (34/37) had fused in sarcoma (FUS) protein pathology, indicating that FTLD-FUS is an important FTLD subtype. This FTLD-FUS collection specifically focussed on aFTLD-U cases, one of three recently defined subtypes of FTLD-FUS. The aFTLD-U subtype of FTLD-FUS is characterised clinically by behavioural variant frontotemporal dementia (bvFTD) and has a particularly young age of onset with a mean of 41 years. Further, this subtype had a high prevalence of psychotic symptoms (36% of cases) and low prevalence of motor symptoms (3% of cases). We did not find FUS mutations in any aFTLD-U case. To date, the only subtype of cases reported to have ubiquitin-positive but tau-, TDP-43- and FUS-negative pathology, termed FTLD-UPS, is the result of charged multivesicular body protein 2B gene (CHMP2B) mutation. We identified three FTLD-UPS cases, which are negative for CHMP2B mutation, suggesting that the full complement of FTLD pathologies is yet to be elucidated.
doi:10.1007/s00401-010-0698-6
PMCID: PMC2887939  PMID: 20490813
FTLD; FUS; FTLD-UPS; Frontotemporal; FTD
19.  FUS pathology defines the majority of tau- and TDP-43-negative frontotemporal lobar degeneration 
Acta Neuropathologica  2010;120(1):33-41.
Through an international consortium, we have collected 37 tau- and TAR DNA-binding protein 43 (TDP-43)-negative frontotemporal lobar degeneration (FTLD) cases, and present here the first comprehensive analysis of these cases in terms of neuropathology, genetics, demographics and clinical data. 92% (34/37) had fused in sarcoma (FUS) protein pathology, indicating that FTLD-FUS is an important FTLD subtype. This FTLD-FUS collection specifically focussed on aFTLD-U cases, one of three recently defined subtypes of FTLD-FUS. The aFTLD-U subtype of FTLD-FUS is characterised clinically by behavioural variant frontotemporal dementia (bvFTD) and has a particularly young age of onset with a mean of 41 years. Further, this subtype had a high prevalence of psychotic symptoms (36% of cases) and low prevalence of motor symptoms (3% of cases). We did not find FUS mutations in any aFTLD-U case. To date, the only subtype of cases reported to have ubiquitin-positive but tau-, TDP-43- and FUS-negative pathology, termed FTLD-UPS, is the result of charged multivesicular body protein 2B gene (CHMP2B) mutation. We identified three FTLD-UPS cases, which are negative for CHMP2B mutation, suggesting that the full complement of FTLD pathologies is yet to be elucidated.
doi:10.1007/s00401-010-0698-6
PMCID: PMC2887939  PMID: 20490813
FTLD; FUS; FTLD-UPS; Frontotemporal; FTD
20.  Neuropathological background of phenotypical variability in frontotemporal dementia 
Acta Neuropathologica  2011;122(2):137-153.
Frontotemporal lobar degeneration (FTLD) is the umbrella term encompassing a heterogeneous group of pathological disorders. With recent discoveries, the FTLDs have been show to classify nicely into three main groups based on the major protein deposited in the brain: FTLD-tau, FTLD-TDP and FTLD-FUS. These pathological groups, and their specific pathologies, underlie a number of well-defined clinical syndromes, including three frontotemporal dementia (FTD) variants [behavioral variant frontotemporal dementia (bvFTD), progressive non-fluent aphasia, and semantic dementia (SD)], progressive supranuclear palsy syndrome (PSPS) and corticobasal syndrome (CBS). Understanding the neuropathological background of the phenotypic variability in FTD, PSPS and CBS requires large clinicopathological studies. We review current knowledge on the relationship between the FTLD pathologies and clinical syndromes, and pool data from a number of large clinicopathological studies that collectively provide data on 544 cases. Strong relationships were identified as follows: FTD with motor neuron disease and FTLD-TDP; SD and FTLD-TDP; PSPS and FTLD-tau; and CBS and FTLD-tau. However, the relationship between some of these clinical diagnoses and specific pathologies is not so clear cut. In addition, the clinical diagnosis of bvFTD does not have a strong relationship to any FTLD subtype or specific pathology and therefore remains a diagnostic challenge. Some evidence suggests improved clinicopathological association of bvFTD by further refining clinical characteristics. Unlike FTLD-tau and FTLD-TDP, FTLD-FUS has been less well characterized, with only 69 cases reported. However, there appears to be some associations between clinical phenotypes and FTLD-FUS pathologies. Clinical diagnosis is therefore promising in predicting molecular pathology.
doi:10.1007/s00401-011-0839-6
PMCID: PMC3232515  PMID: 21614463
Frontotemporal lobar degeneration; Progressive supranuclear palsy; Tau; TDP-43; FUS
21.  The Spectrum of Mutations in Progranulin 
Archives of neurology  2010;67(2):161-170.
Background
Mutation in the progranulin gene (GRN) can cause frontotemporal dementia (FTD). However, it is unclear whether some rare FTD-related GRN variants are pathogenic and whether neurodegenerative disorders other than FTD can also be caused by GRN mutations.
Objectives
To delineate the range of clinical presentations associated with GRN mutations and to define pathogenic candidacy of rare GRN variants.
Design
Case-control study.
Setting
Clinical and neuropathology dementia research studies at 8 academic centers.
Participants
Four hundred thirty-four patients with FTD, including primary progressive aphasia, semantic dementia, FTD/amyotrophic lateral sclerosis (ALS), FTD/motor neuron disease, corticobasal syndrome/corticobasal degeneration, progressive supranuclear palsy, Pick disease, dementia lacking distinctive histopathology, and pathologically confirmed cases of frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U); and 111 non-FTD cases (controls) in which TDP-43 deposits were a prominent neuropathological feature, including subjects with ALS, Guam ALS and/or parkinsonism dementia complex, Guam dementia, Alzheimer disease, multiple system atrophy, and argyrophilic grain disease.
Main Outcome Measures
Variants detected on sequencing of all 13 GRN exons and at least 80 base pairs of flanking introns, and their pathogenic candidacy determined by in silico and ex vivo splicing assays.
Results
We identified 58 genetic variants that included 26 previously unknown changes. Twenty-four variants appeared to be pathogenic, including 8 novel mutations. The frequency of GRN mutations was 6.9% (30 of 434) of all FTD-spectrum cases, 21.4% (9 of 42) of cases with a pathological diagnosis of FTLD-U, 16.0% (28 of 175) of FTD-spectrum cases with a family history of a similar neurodegenerative disease, and 56.2% (9 of 16) of cases of FTLD-U with a family history.
Conclusions
Pathogenic mutations were found only in FTD-spectrum cases and not in other related neurodegenerative diseases. Haploinsufficiency of GRN is the predominant mechanism leading to FTD.
doi:10.1001/archneurol.2009.328
PMCID: PMC2901991  PMID: 20142524
22.  Frontotemporal Dementia: Clinicopathological Correlations 
Annals of neurology  2006;59(6):952-962.
Objective
Frontotemporal lobar degeneration (FTLD) is characterized by impairments in social, behavioral, and/or language function, but postmortem studies indicate that multiple neuropathological entities lead to FTLD. This study assessed whether specific clinical features predict the underlying pathology.
Methods
A clinicopathological correlation was performed on 90 consecutive patients with a pathological diagnosis of frontotemporal dementia and was compared with an additional 24 cases accrued during the same time period with a clinical diagnosis of FTLD, but with pathology not typically associated with frontotemporal dementia.
Results
Postmortem examination showed multiple pathologies including tauopathies (46%), FTLD with ubiquitin-positive inclusions (29%), and Alzheimer’s disease (17%). The pathological groups manifested some distinct demographic, clinical, and neuropsychological features, although these attributes showed only a statistical association with the underlying pathology. FTLD with ubiquitin-positive inclusions was more likely to present with both social and language dysfunction, and motor neuron disease was more likely to emerge in these patients. Tauopathies were more commonly associated with an extrapyramidal disorder. Alzheimer’s disease was associated with relatively greater deficits in memory and executive function.
Interpretation
Clinical and neuropsychological features contribute to delineating the spectrum of pathology underlying a patient diagnosed with FTLD, but biomarkers are needed that, together with the clinical phenotype, can predict the underlying neuropathology.
doi:10.1002/ana.20873
PMCID: PMC2629792  PMID: 16718704
23.  Does TDP-43 type confer a distinct pattern of atrophy in frontotemporal lobar degeneration? 
Neurology  2010;75(24):2212-2220.
Objective:
To determine whether TDP-43 type is associated with distinct patterns of brain atrophy on MRI in subjects with pathologically confirmed frontotemporal lobar degeneration (FTLD).
Methods:
In this case-control study, we identified all subjects with a pathologic diagnosis of FTLD with TDP-43 immunoreactive inclusions (FTLD-TDP) and at least one volumetric head MRI scan (n = 42). In each case we applied published criteria for subclassification of FTLD-TDP into FTLD-TDP types 1-3. Voxel-based morphometry was used to compare subjects with each of the different FTLD-TDP types to age- and gender-matched normal controls (n = 30). We also assessed different pathologic and genetic variants within, and across, the different types.
Results:
Twenty-two subjects were classified as FTLD-TDP type 1, 9 as type 2, and 11 as type 3. We identified different patterns of atrophy across the types with type 1 showing frontotemporal and parietal atrophy, type 2 predominantly anterior temporal lobe atrophy, and type 3 predominantly posterior frontal atrophy. Within the FTLD-TDP type 1 group, those with a progranulin mutation had significantly more lateral temporal lobe atrophy than those without. All type 2 subjects were diagnosed with semantic dementia. Subjects with a pathologic diagnosis of FTLD with motor neuron degeneration had a similar pattern of atrophy, regardless of whether they were type 1 or type 3.
Conclusions:
Although there are different patterns of atrophy across the different FTLD-TDP types, it appears that genetic and pathologic factors may also affect the patterns of atrophy.
GLOSSARY
= Alzheimer disease;
= Alzheimer's Disease Research Center;
= behavioral variant frontotemporal dementia;
= corticobasal syndrome;
= Clinical Dementia Rating scale sum of boxes;
= frontotemporal lobar degeneration;
= frontotemporal lobar degeneration with motor neuron degeneration;
= frontotemporal lobar degeneration with TDP-43 immunoreactive inclusions;
= Mini-Mental State Examination;
= neuronal cytoplasmic inclusion;
= progressive nonfluent aphasia;
= semantic dementia;
= Short Test of Mental Status;
= voxel-based morphometry.
doi:10.1212/WNL.0b013e31820203c2
PMCID: PMC3013590  PMID: 21172844
24.  Novel L284R MAPT Mutation in a Family with an Autosomal Dominant Progressive Supranuclear Palsy Syndrome 
Neuro-Degenerative Diseases  2010;8(3):149-152.
Background
MAPT mutations are associated with disorders within the frontotemporal lobar degeneration spectrum. The usual presenting syndrome is behavioural variant frontotemporal dementia, although some patients present with parkinsonism. In a number of these cases the dominant clinical features have been consistent with a progressive supranuclear palsy (PSP) syndrome.
Objective
To describe a family with an autosomal dominant PSP syndrome with a novel L284R mutation in the MAPT gene.
Methods
A retrospective case review and genetic analysis of the MAPT gene. A literature review of PSP syndromes associated with mutations in the MAPT gene.
Results
Multiple members of family DRC292 across different generations had a PSP syndrome with 1 member of the family being found to have a novel L284R mutation in the MAPT gene. Behavioural features were also prominent in most cases. A PSP syndrome is only a rare finding associated with MAPT mutations and many of these cases have atypical clinical features.
Conclusion
Although rare, MAPT mutations should be considered when there is an autosomal dominant family history of a PSP syndrome, particularly of young onset and with prominent behavioural features.
doi:10.1159/000319454
PMCID: PMC3078284  PMID: 20838030
Frontotemporal dementia; Progressive supranuclear palsy; Tau
25.  Frontotemporal dementia and Alzheimer's disease: retrospective differentiation using information from informants. 
The study examined the feasibility of differentiating frontotemporal dementia from Alzheimer's disease on the basis of retrospective historical information obtained from relatives of patients. A structured questionnaire was devised of patients' symptoms, with emphasis on those cognitive and neuropsychiatric features found in earlier prospective clinical studies to distinguish the two conditions. The questionnaire was given to close relatives of deceased patients in whom the diagnosis of non-Alzheimer's frontotemporal degeneration of Alzheimer's disease had been verified at necropsy. The interviewer had no previous contact or knowledge of those patients, nor clinical experience of patients with frontotemporal dementia. The questionnaire elicited a distinct profile of responses for the two diagnostic groups with emphasis on early personality change, unconcern, and socially inappropriate behaviour in frontotemporal dementia and disturbance in memory and topographical orientation prominent in patients with Alzheimer's disease. A scoring system separated out individual patients with frontotemporal dementia from those with Alzheimer's disease. It is concluded that it is possible to obtain useful information about the precise pattern of dementia from informants even many years after the patient's death. The questionnaire provides the foundation of a diagnostic instrument for use in family history studies of dementia.
PMCID: PMC1073603  PMID: 7608712

Results 1-25 (473580)