Search tips
Search criteria

Results 1-25 (1174818)

Clipboard (0)

Related Articles

1.  SUV39H1 downregulation induces deheterochromatinization of satellite regions and senescence after exposure to ionizing radiation 
Frontiers in Genetics  2014;5:411.
While the majority of cancer patients are exposed to ionizing radiation during diagnostic and therapeutic procedures, age-dependent differences in radiation sensitivity are not yet well understood. Radiation sensitivity is characterized by the appearance of side effects to radiation therapy, such as secondary malignancies, developmental deficits, and compromised immune function. However, the knowledge of the molecular mechanisms that trigger these side effects is incomplete. Here we used an in vitro system and showed that low-senescent normal human diploid fibroblasts (WI-38) senesce in response to 5 Gy IR, while highly senescent cultures do not show changes in cell cycle regulation and only a slight increase in the percentage of senescent cells. Our study shows that this is associated with changes in the expression of genes responsible for cell cycle progression, apoptosis, DNA repair, and aging, as well as transcriptional and epigenetic regulators. Furthermore, we propose a role of the downregulation of SUV39H1 expression, a histone methyltransferase that specifically trimethylates H3K9, and the corresponding reduction in H3K9me3 levels in the establishment of IR-induced senescence.
PMCID: PMC4240170  PMID: 25484892
senescence; aging; ionizing radiation; epigenetics; SUV39H1; DNA methylation
2.  Chromatin remodeling of human subtelomeres and TERRA promoters upon cellular senescence 
Epigenetics  2013;8(5):512-521.
Subtelomeres are patchworks of evolutionary conserved sequence blocks and harbor the transcriptional start sites for telomere repeat containing RNAs (TERRA). Recent studies suggest that the interplay between telomeres and subtelomeric chromatin is required for maintaining telomere function. To further characterize chromatin remodeling of subtelomeres in relation to telomere shortening and cellular senescence, we systematically quantified histone modifications and DNA methylation at the subtelomeres of chromosomes 7q and 11q in primary human WI-38 fibroblasts. Upon senescence, both subtelomeres were characterized by a decrease in markers of constitutive heterochromatin, suggesting relative chromatin relaxation. However, we did not find increased levels of markers of euchromatin or derepression of the 7q VIPR2 gene. The repressed state of the subtelomeres was maintained upon senescence, which could be attributed to a rise in levels of facultative heterochromatin markers at both subtelomeres. While senescence-induced subtelomeric chromatin remodeling was similar for both chromosomes, chromatin remodeling at TERRA promoters displayed chromosome-specific patterns. At the 7q TERRA promoter, chromatin structure was co-regulated with the more proximal subtelomere. In contrast, the 11q TERRA promoter, which was previously shown to be bound by CCCTC-binding factor CTCF, displayed lower levels of markers of constitutive heterochromatin that did not change upon senescence, whereas levels of markers of facultative heterochromatin decreased upon senescence. In line with the chromatin state data, transcription of 11q TERRA but not 7q TERRA was detected. Our study provides a detailed description of human subtelomeric chromatin dynamics and shows distinct regulation of the TERRA promoters of 7q and 11q upon cellular senescence.
PMCID: PMC3741221  PMID: 23644601
TERRA transcripts; cellular aging; chromatin remodeling; histone modifications; senescence; subtelomere
3.  Molecular Landscape of Modified Histones in Drosophila Heterochromatic Genes and Euchromatin-Heterochromatin Transition Zones 
PLoS Genetics  2008;4(1):e16.
Constitutive heterochromatin is enriched in repetitive sequences and histone H3-methylated-at-lysine 9. Both components contribute to heterochromatin's ability to silence euchromatic genes. However, heterochromatin also harbors hundreds of expressed genes in organisms such as Drosophila. Recent studies have provided a detailed picture of sequence organization of D. melanogaster heterochromatin, but how histone modifications are associated with heterochromatic sequences at high resolution has not been described. Here, distributions of modified histones in the vicinity of heterochromatic genes of normal embryos and embryos homozygous for a chromosome rearrangement were characterized using chromatin immunoprecipitation and genome tiling arrays. We found that H3-di-methylated-at-lysine 9 (H3K9me2) was depleted at the 5′ ends but enriched throughout transcribed regions of heterochromatic genes. The profile was distinct from that of euchromatic genes and suggests that heterochromatic genes are integrated into, rather than insulated from, the H3K9me2-enriched domain. Moreover, the profile was only subtly affected by a Su(var)3–9 null mutation, implicating a histone methyltransferase other than SU(VAR)3–9 as responsible for most H3K9me2 associated with heterochromatic genes in embryos. On a chromosomal scale, we observed a sharp transition to the H3K9me2 domain, which coincided with increased retrotransposon density in the euchromatin-heterochromatin (eu-het) transition zones on the long chromosome arms. Thus, a certain density of retrotransposons, rather than specific boundary elements, may demarcate Drosophila pericentric heterochromatin. We also demonstrate that a chromosome rearrangement that created a new eu-het junction altered H3K9me2 distribution and induced new euchromatic sites of enrichment as far as several megabases away from the breakpoint. Taken together, the findings argue against simple classification of H3K9me as the definitive signature of silenced genes, and clarify roles of histone modifications and repetitive DNAs in heterochromatin. The results are also relevant for understanding the effects of chromosome aberrations and the megabase scale over which epigenetic position effects can operate in multicellular organisms.
Author Summary
The chromosomal domain “heterochromatin” was first defined at the cytological level by its deeply staining appearance compared to more lightly stained domains called “euchromatin.” Abnormal juxtaposition of these two domains by chromosome rearrangements results in silencing of the nearby euchromatic genes. This effect is mediated by heterochromatin-enriched chromosomal proteins and led to the prevalent view of heterochromatin as incompatible with gene expression. Paradoxically, some expressed genes reside within heterochromatin. In this study, we examined how heterochromatic genes fit into a genomic context known for silencing effects. We found that Drosophila heterochromatic genes are integrated into the domain enriched in the modified histone H3K9me2, suggesting that the effect of this protein on gene expression is context-dependent. We also investigated the molecular nature of euchromatin-heterochromatin transition zones in the normal and rearranged chromosomes. The results provide insights into the functions of repetitive DNAs and H3K9me2 in heterochromatin and document the long distance over which a heterochromatic breakpoint can affect the molecular landscape of a chromosomal region. These findings have implications for understanding the consequences of chromosome abnormalities in organisms, including humans.
PMCID: PMC2211541  PMID: 18208336
4.  Age-associated increase in heterochromatic marks in murine and primate tissues 
Aging cell  2010;10(2):292-304.
Chromatin is highly dynamic and subject to extensive remodeling under many physiological conditions. Changes in chromatin that occur during the aging process are poorly documented and understood in higher organisms, such as mammals. We developed an immunofluorescence assay to quantitatively detect, at the single cell level, changes in the nuclear content of chromatin-associated proteins. We find increased levels of the heterochromatin-associated proteins histone macro H2A (mH2A) and heterochromatin protein 1 beta (HP1β) in human fibroblasts during replicative senescence in culture, and for the first time, an age-associated increase in these heterochromatin marks in several tissues of mice and primates. Mouse lung was characterized by monophasic mH2A expression histograms at both ages, and an increase in mean staining intensity at old age. In the mouse liver we observed increased age-associated localization of mH2A to regions of pericentromeric heterochromatin. In skeletal muscle we found two populations of cells with either low or high mH2A levels. This pattern of expression was similar in mouse and baboon, and showed a clear increase in the proportion of nuclei with high mH2A levels in older animals. The frequencies of cells displaying evidence of increased heterochromatinization are too high to be readily accounted for by replicative or oncogene-induced cellular senescence, and are prominently found in terminally differentiated, post mitotic tissues that are not conventionally thought to be susceptible to senescence. Our findings distinguish specific chromatin states in individual cells of mammalian tissues, and provide a foundation to further investigate the progressive epigenetic changes that occur during aging.
PMCID: PMC3079313  PMID: 21176091
5.  Stress-Induced Activation of Heterochromatic Transcription 
PLoS Genetics  2010;6(10):e1001175.
Constitutive heterochromatin comprising the centromeric and telomeric parts of chromosomes includes DNA marked by high levels of methylation associated with histones modified by repressive marks. These epigenetic modifications silence transcription and ensure stable inheritance of this inert state. Although environmental cues can alter epigenetic marks and lead to modulation of the transcription of genes located in euchromatic parts of the chromosomes, there is no evidence that external stimuli can globally destabilize silencing of constitutive heterochromatin. We have found that heterochromatin-associated silencing in Arabidopsis plants subjected to a particular temperature regime is released in a genome-wide manner. This occurs without alteration of repressive epigenetic modifications and does not involve common epigenetic mechanisms. Such induced release of silencing is mostly transient, and rapid restoration of the silent state occurs without the involvement of factors known to be required for silencing initiation. Thus, our results reveal new regulatory aspects of transcriptional repression in constitutive heterochromatin and open up possibilities to identify the molecular mechanisms involved.
Author Summary
In eukaryotic cells, DNA is packaged into chromatin that is present in two different forms named euchromatin and heterochromatin. Gene-rich euchromatin is relaxed and permissive to transcription compared with heterochromatin that essentially contains transcriptionally inert non-coding repeated DNA. The silent state associated with heterochromatin correlates with the presence of distinctive repressive epigenetic modifications. Mutations in genes required for maintenance of these epigenetic marks reactivate heterochromatin transcription, which is otherwise maintained silent in a highly stable manner. In this paper, we defined a specific temperature stress that leads to genome-wide transcriptional activation of sequences located within heterochromatin of Arabidopsis thaliana. Unexpectedly, release of silencing occurs in spite of conservation of the repressive epigenetic marks and independently of common epigenetic regulators. In addition, we provide evidence that stress-induced transcriptional activation is mostly transient, and silencing is rapidly restored upon return to optimal growth conditions. These results are important in that they disclose the dynamics of silencing associated with heterochromatin as well as the existence of a new level of transcriptional control that might play a role in plant acclimation to changing environmental conditions.
PMCID: PMC2965753  PMID: 21060865
6.  Gerontology research in Georgia 
Biogerontology  2010;12(2):87-91.
Gerontology research carried out in different scientific centers of Georgia follows the basic directions of most work in this field: epidemiology, investigation of the mechanisms of aging, and finding ways to prevent senile pathologies and to prolong life. The genealogy and epidemiology of long-living peaple have been studied in areas with high occurrence of these people by considering the sex ratio and social status of the long-living, the influence of environmental factors, and the development of senile pathologies. According to the centrosome (centriole) model of aging, the centrosomes and the cytoskeleton, important structures in cellular differentiation and morphogenesis, may be involved in the initiation of the replication senescence mechanism. Our analysis of genetic studies shows that progressive chromosome heterochromatinization (condensation of eu- and heterochromatin regions) occurs in aging. Decreases in the repair processes and increases in the frequency of chromosome aberrations during aging are secondary to this progressive chromosome heterochromatinization. Chromosome heterochromatinization is a key factor in aging but may be reversible under the influence of bioregulators, some chemical substances, and heavy metal salts. The study of chromosome heterochromatinization may provide clues to the potential for prolonging the human lifespan.
PMCID: PMC3063552  PMID: 20480236
Aberration; Aging; Centrosome; Chromosome; Co2+; Epidemiology; Heterochromatin; Heterochromatinization; Microcalorimetry
7.  Comparative Analyses of SUV420H1 Isoforms and SUV420H2 Reveal Differences in Their Cellular Localization and Effects on Myogenic Differentiation 
PLoS ONE  2010;5(12):e14447.
Methylation of histone H4 on lysine 20 plays critical roles in chromatin structure and function via mono- (H4K20me1), di- (H4K20me2), and trimethyl (H4K20me3) derivatives. In previous analyses of histone methylation dynamics in mid-gestation mouse embryos, we documented marked changes in H4K20 methylation during cell differentiation. These changes were particularly robust during myogenesis, both in vivo and in cell culture, where we observed a transition from H4K20me1 to H4K20me3. To assess the significance of this change, we used a gain-of-function strategy involving the lysine methyltransferases SUV420H1 and SUV420H2, which catalyze H4K20me2 and H4K20me3. At the same time, we characterized a second isoform of SUV420H1 (designated SUV420H1_i2) and compared the activity of all three SUV420H proteins with regard to localization and H4K20 methylation.
Principal Findings
Immunofluorescence revealed that exogenous SUV420H1_i2 was distributed throughout the cell, while a substantial portion of SUV420H1_i1 and SUV420H2 displayed the expected association with constitutive heterochromatin. Moreover, SUV420H1_i2 distribution was unaffected by co-expression of heterochromatin protein-1α, which increased the targeting of SUV420H1_i1 and SUV420H2 to regions of pericentromeric heterochromatin. Consistent with their distributions, SUV420H1_i2 caused an increase in H4K20me3 levels throughout the nucleus, whereas SUV420H1_i1 and SUV420H2 facilitated an increase in pericentric H4K20me3. Striking differences continued when the SUV420H proteins were tested in the C2C12 myogenic model system. Specifically, although SUV420H1_i2 induced precocious appearance of the differentiation marker Myogenin in the presence of mitogens, only SUV420H2 maintained a Myogenin-enriched population over the course of differentiation. Paradoxically, SUV420H1_i1 could not be expressed in C2C12 cells, which suggests it is under post-transcriptional or post-translational control.
These data indicate that SUV420H proteins differ substantially in their localization and activity. Importantly, SUV420H2 can induce a transition from H4K20me1 to H4K20me3 in regions of constitutive heterochromatin that is sufficient to enhance myogenic differentiation, suggesting it can act an as epigenetic ‘switch’ in this process.
PMCID: PMC3012056  PMID: 21206904
8.  CAF-1 Is Essential for Heterochromatin Organization in Pluripotent Embryonic Cells 
PLoS Genetics  2006;2(11):e181.
During mammalian development, chromatin dynamics and epigenetic marking are important for genome reprogramming. Recent data suggest an important role for the chromatin assembly machinery in this process. To analyze the role of chromatin assembly factor 1 (CAF-1) during pre-implantation development, we generated a mouse line carrying a targeted mutation in the gene encoding its large subunit, p150CAF-1. Loss of p150CAF-1 in homozygous mutants leads to developmental arrest at the 16-cell stage. Absence of p150CAF-1 in these embryos results in severe alterations in the nuclear organization of constitutive heterochromatin. We provide evidence that in wild-type embryos, heterochromatin domains are extensively reorganized between the two-cell and blastocyst stages. In p150CAF-1 mutant 16-cell stage embryos, the altered organization of heterochromatin displays similarities to the structure of heterochromatin in two- to four-cell stage wild-type embryos, suggesting that CAF-1 is required for the maturation of heterochromatin during preimplantation development. In embryonic stem cells, depletion of p150CAF-1 using RNA interference results in the mislocalization, loss of clustering, and decondensation of pericentric heterochromatin domains. Furthermore, loss of CAF-1 in these cells results in the alteration of epigenetic histone methylation marks at the level of pericentric heterochromatin. These alterations of heterochromatin are not found in p150CAF-1-depleted mouse embryonic fibroblasts, which are cells that are already lineage committed, suggesting that CAF-1 is specifically required for heterochromatin organization in pluripotent embryonic cells. Our findings underline the role of the chromatin assembly machinery in controlling the spatial organization and epigenetic marking of the genome in early embryos and embryonic stem cells.
Chromatin is the support of our genetic information. It is composed of numerous repeated units called nucleosomes, in which DNA wraps around a core of histone proteins. Modifications in the composition and biochemical properties of nucleosomes play major roles in the regulation of genome function. Such modifications are termed “epigenetic” when they are inherited across cell divisions and confer new information to chromatin, in addition to the genetic information provided by DNA. It is usually believed that during genome replication, the basic chromatin assembly machinery builds up “naïve” nucleosomes, and, in a subsequent step, nucleosomes are selectively modified by a series of enzymes to acquire epigenetic information. Here, the authors studied the role of a basic chromatin assembly factor (CAF-1) in mouse embryonic stem cells and early embryos. Surprisingly, they show that CAF-1 confers epigenetic information to specific genomic regions. In addition, this study revealed that CAF-1 is required for the proper spatial organization of chromosomes in the nucleus. This new knowledge may contribute to better understanding the role of chromatin in the maintenance of embryonic stem cell identity and plasticity.
PMCID: PMC1630711  PMID: 17083276
9.  Association of ATRX with pericentric heterochromatin and the Y chromosome of neonatal mouse spermatogonia 
Establishment of chromosomal cytosine methylation and histone methylation patterns are critical epigenetic modifications required for heterochromatin formation in the mammalian genome. However, the nature of the primary signal(s) targeting DNA methylation at specific genomic regions is not clear. Notably, whether histone methylation and/or chromatin remodeling proteins play a role in the establishment of DNA methylation during gametogenesis is not known. The chromosomes of mouse neonatal spermatogonia display a unique pattern of 5-methyl cytosine staining whereby centromeric heterochromatin is hypo-methylated whereas chromatids are strongly methylated. Thus, in order to gain some insight into the relationship between global DNA and histone methylation in the germ line we have used neonatal spermatogonia as a model to determine whether these unique chromosomal DNA methylation patterns are also reflected by concomitant changes in histone methylation.
Our results demonstrate that histone H3 tri-methylated at lysine 9 (H3K9me3), a hallmark of constitutive heterochromatin, as well as the chromatin remodeling protein ATRX remained associated with pericentric heterochromatin regions in spite of their extensive hypo-methylation. This suggests that in neonatal spermatogonia, chromosomal 5-methyl cytosine patterns are regulated independently of changes in histone methylation, potentially reflecting a crucial mechanism to maintain pericentric heterochromatin silencing. Furthermore, chromatin immunoprecipitation and fluorescence in situ hybridization, revealed that ATRX as well as H3K9me3 associate with Y chromosome-specific DNA sequences and decorate both arms of the Y chromosome, suggesting a possible role in heterochromatinization and the predominant transcriptional quiescence of this chromosome during spermatogenesis.
These results are consistent with a role for histone modifications and chromatin remodeling proteins such as ATRX in maintaining transcriptional repression at constitutive heterochromatin domains in the absence of 5-methyl cytosine and provide evidence suggesting that the establishment and/or maintenance of repressive histone and chromatin modifications at pericentric heterochromatin following genome-wide epigenetic reprogramming in the germ line may precede the establishment of chromosomal 5-methyl cytosine patterns as a genomic silencing strategy in neonatal spermatogonia.
PMCID: PMC2275742  PMID: 18366812
10.  Chromatin differentiation of white blood cells decreases DSB damage induction, prevents functional assembly of repair foci, but has no influence on protrusion of heterochromatic DSBs into the low-dense chromatin 
Journal of Radiation Research  2014;55(Suppl 1):i81-i82.
Purpose: Higher order chromatin structure progressively changes with cell differentiation and seems to play an important role in DNA double-strand break (DSB) induction and repair (reviewed in [1]). We compared DNA damage in heterochromatin (Hc) upon the action of qualitatively different radiations. We also studied, how is the sensitivity to DSB induction, assembly of repair foci and processing of DSBs influenced by the differentiation-induced changes in chromatin structure and composition.
Materials and methods: Formation, localization (relative to higher-order chromatin domains) and mutual colocalization of γH2AX and p53BP1 repair foci have been studied together with DSB repair kinetics in spatially fixed human skin fibroblast and differently differentiated white blood cells (WBC) irradiated with gamma rays, protons of different energies [2, 3], and 20Ne ions (submitted). Immunostaining and ImmunoFISH were used in combination with high-resolution confocal microscopy [2, 3] and living cell imaging [4].
Results: We found that less DSBs appear in Hc after irradiating cells with gamma rays and protons but not 20Ne ions (preliminary results). In addition, contrary to γ-irradiated human skin fibroblasts and lymphocytes, mature granulocytes neither express DSB repair proteins nor form functional repair foci [5]. At least some DSB repair proteins (e.g. 53BP1) are expressed and γH2AX foci still occur in immature granulocytes and monocytes [2, 5]; however, the colocalization of γH2AX with 53BP1 is low and the majority of DSBs are not repaired. Despite this fact, γH2AX foci protrude from Hc into nuclear subcompartments with low chromatin density. Our living cell observations suggest that 53BP1 can penetrate into the interior of dense Hc domains only after their decondensation [2].
Conclusions: We show that Hc is less sensitive to DSB induction by gamma rays but not heavy ions; lower Hc hydratation and higher protein density (when compared with euchromatin) probably reduce formation of free radicals and increase their sequestration, respectively. This mechanism can protect cells against the indirect effect of ionizing radiation (marked for gamma rays and protons but not heavy ions). Hc features, however, preclude DSB repair, which is best illustrated by its absence in differentiated WBC but not their immature precursors. The protrusion of Hc-DSBs into low-density chromatin nuclear subdomains, however, appears also in differentiated WBC, so the process might simply follow physical forces (e.g. as suggested by M Durante's group).
There is no Clinical Trial Registration number.
PMCID: PMC3941545
DNA double-strand breaks (DSB); DSB repair; white blood cells differentiation; higher-order chromatin structure; ionizing radiations of different quality; ionizing radiation-induced repair foci (IRIF)
11.  Analysis of Active and Inactive X Chromosome Architecture Reveals the Independent Organization of 30 nm and Large-Scale Chromatin Structures 
Molecular Cell  2010;40(3):397-409.
Using a genetic model, we present a high-resolution chromatin fiber analysis of transcriptionally active (Xa) and inactive (Xi) X chromosomes packaged into euchromatin and facultative heterochromatin. Our results show that gene promoters have an open chromatin structure that is enhanced upon transcriptional activation but the Xa and the Xi have similar overall 30 nm chromatin fiber structures. Therefore, the formation of facultative heterochromatin is dependent on factors that act at a level above the 30 nm fiber and transcription does not alter bulk chromatin fiber structures. However, large-scale chromatin structures on Xa are decondensed compared with the Xi and transcription inhibition is sufficient to promote large-scale chromatin compaction. We show a link between transcription and large-scale chromatin packaging independent of the bulk 30 nm chromatin fiber and propose that transcription, not the global compaction of 30 nm chromatin fibers, determines the cytological appearance of large-scale chromatin structures.
Graphical Abstract
► High-resolution chromatin analysis of active and inactive X chromosomes ► Gene promoters have a transcription-dependent open chromatin structure ► Active and inactive X chromosomes have similar bulk 30 nm chromatin fiber structures ► Transcription promotes the decompaction of large-scale chromatin structures
PMCID: PMC3038259  PMID: 21070966
12.  Centromere-Independent Accumulation of Cohesin at Ectopic Heterochromatin Sites Induces Chromosome Stretching during Anaphase 
PLoS Biology  2014;12(10):e1001962.
Live imaging of cells carrying rearranged chromosomes shows that misplaced heterochromatin is sufficient to induce ectopic cohesion and chromosome stretching during mitosis, and may compromise genetic stability.
Pericentric heterochromatin, while often considered as “junk” DNA, plays important functions in chromosome biology. It contributes to sister chromatid cohesion, a process mediated by the cohesin complex that ensures proper genome segregation during nuclear division. Long stretches of heterochromatin are almost exclusively placed at centromere-proximal regions but it remains unclear if there is functional (or mechanistic) importance in linking the sites of sister chromatid cohesion to the chromosomal regions that mediate spindle attachment (the centromere). Using engineered chromosomes in Drosophila melanogaster, we demonstrate that cohesin enrichment is dictated by the presence of heterochromatin rather than centromere proximity. This preferential accumulation is caused by an enrichment of the cohesin-loading factor (Nipped-B/NIPBL/Scc2) at dense heterochromatic regions. As a result, chromosome translocations containing ectopic pericentric heterochromatin embedded in euchromatin display additional cohesin-dependent constrictions. These ectopic cohesion sites, placed away from the centromere, disjoin abnormally during anaphase and chromosomes exhibit a significant increase in length during anaphase (termed chromatin stretching). These results provide evidence that long stretches of heterochromatin distant from the centromere, as often found in many cancers, are sufficient to induce abnormal accumulation of cohesin at these sites and thereby compromise the fidelity of chromosome segregation.
Author Summary
During cell division, chromosomes acquire their characteristic X-shaped morphology by having well-resolved chromosome arms while still remaining connected at the heterochromatic regions around the centromere. This connection is mediated by the cohesin complex, a “molecular glue” that keeps the two DNA molecules stuck together and ensures that the chromosomes are properly segregated. However, it is unclear how important it is for efficient chromosome segregation that these cohesive forces are specifically positioned near the centromere. In this study, we tested several strains of the fruit fly Drosophila melanogaster carrying chromosomal rearrangements in which long stretches of heterochromatin from near the centromere have been misplaced within distant euchromatic regions. We find that such inappropriately located heterochromatin is enough to promote increased levels of cohesin complex loading and the formation of additional constrictions, regardless of proximity to the centromere. Importantly, we further show that as cell division proceeds and the sister chromatids move to opposite poles of the cell, the presence of ectopic heterochromatin (and hence ectopic cohesion) leads to significant chromosome stretching due to impaired resolution of the ectopic cohesion sites. These results highlight the possibility that chromosome rearrangements involving heterochromatin regions near the centromeres, often seen in many cancers, can induce additional errors in cell division and thereby compromise genetic stability.
PMCID: PMC4188515  PMID: 25290697
13.  Methylation of histone H3K23 blocks DNA damage in pericentric heterochromatin during meiosis 
eLife  2014;3:e02996.
Despite the well-established role of heterochromatin in protecting chromosomal integrity during meiosis and mitosis, the contribution and extent of heterochromatic histone posttranslational modifications (PTMs) remain poorly defined. Here, we gained novel functional insight about heterochromatic PTMs by analyzing histone H3 purified from the heterochromatic germline micronucleus of the model organism Tetrahymena thermophila. Mass spectrometric sequencing of micronuclear H3 identified H3K23 trimethylation (H3K23me3), a previously uncharacterized PTM. H3K23me3 became particularly enriched during meiotic leptotene and zygotene in germline chromatin of Tetrahymena and C. elegans. Loss of H3K23me3 in Tetrahymena through deletion of the methyltransferase Ezl3p caused mislocalization of meiosis-induced DNA double-strand breaks (DSBs) to heterochromatin, and a decrease in progeny viability. These results show that an evolutionarily conserved developmental pathway regulates H3K23me3 during meiosis, and our studies in Tetrahymena suggest this pathway may function to protect heterochromatin from DSBs.
eLife digest
Inside the nucleus of a cell, the DNA is wound around histone proteins. This forms a structure called chromatin that allows the long DNA strands to fit inside the cell. Variations in chromatin structure also help the cell to control the functional properties of DNA. For example, a large proportion of chromatin in the cell is in the form of heterochromatin, which is very densely packed, and is associated with many roles such as gene silencing and keeping DNA intact during reproduction.
Many animals and plants have two copies of each DNA molecule: one inherited from the mother, and one from the father of the organism. Reproductive cells undergo a process called recombination when they form, where the matching copies of each DNA molecule break in a number of places and rejoin to form a new ‘blend’ of their mother's and their father's DNA, which is passed on to their own offspring. In contrast, most heterochromatin is inherited without recombining, preserving it in an unaltered form. This is important since recombination in heterochromatin can create genetic abnormalities.
Adding small chemical modifications—such as methyl groups—to the histone proteins at the core of the chromatin can change how the DNA is packed. However, the histone modifications that yield different chromatin structures, and the effect of these modifications, are not very well understood.
Papazyan et al. have taken advantage of a distinct feature of the protozoan Tetrahymena thermophila: a single-celled organism that divides its chromatin into two different nuclei. The smaller micronuclei contain only heterochromatin, and Papazyan et al. discovered that the histone H3 protein in the micronuclei is modified by methyl groups at a specific site that had not been studied before. Furthermore, this protozoan makes more of these modifications when it reproduces. An enzyme called Ezl3p adds these methyl groups, and without this enzyme T. thermophila reproduces more slowly and has offspring that are less likely to survive and more likely to be infertile. Papazyan et al. provide evidence that these characteristics arise because the cells without the histone modification are unable to prevent DNA breaks from occurring in heterochromatin during recombination.
The same histone modification also occurs when the microscopic worm Caenorhabditis elegans reproduces, suggesting that this method of DNA protection has been conserved throughout evolution. Papazyan et al. propose that the histone modification may prevent another enzyme that induces DNA breaks from accessing the heterochromatin in reproductive cells; but more work is required to support this hypothesis.
These findings reveal the importance of a new histone modification during reproduction, and could provide new directions for infertility research.
PMCID: PMC4141274  PMID: 25161194
Tetrahymena thermophila; histones; chromatin; methylation; meiosis; DNA damage; C. elegans; other
14.  Retrotransposon-Induced Heterochromatin Spreading in the Mouse Revealed by Insertional Polymorphisms 
PLoS Genetics  2011;7(9):e1002301.
The “arms race” relationship between transposable elements (TEs) and their host has promoted a series of epigenetic silencing mechanisms directed against TEs. Retrotransposons, a class of TEs, are often located in repressed regions and are thought to induce heterochromatin formation and spreading. However, direct evidence for TE–induced local heterochromatin in mammals is surprisingly scarce. To examine this phenomenon, we chose two mouse embryonic stem (ES) cell lines that possess insertionally polymorphic retrotransposons (IAP, ETn/MusD, and LINE elements) at specific loci in one cell line but not the other. Employing ChIP-seq data for these cell lines, we show that IAP elements robustly induce H3K9me3 and H4K20me3 marks in flanking genomic DNA. In contrast, such heterochromatin is not induced by LINE copies and only by a minority of polymorphic ETn/MusD copies. DNA methylation is independent of the presence of IAP copies, since it is present in flanking regions of both full and empty sites. Finally, such spreading into genes appears to be rare, since the transcriptional start sites of very few genes are less than one Kb from an IAP. However, the B3galtl gene is subject to transcriptional silencing via IAP-induced heterochromatin. Hence, although rare, IAP-induced local heterochromatin spreading into nearby genes may influence expression and, in turn, host fitness.
Author Summary
Transposable elements (TEs) are often thought to be harmful because of their potential to spread heterochromatin (repressive chromatin) into nearby sequences. However, there are few examples of spreading of heterochromatin caused by TEs, even though they are often found within repressive chromatin. We exploited natural variation in TE integrations to study heterochromatin induction. Specifically, we compared chromatin states of two mouse embryonic stem cell lines harboring polymorphic retrotransposons of three families, such that one line possesses a particular TE copy (full site) while the other does not (empty site). Nearly all IAP copies, a family of retroviral-like elements, are able to strongly induce repressive chromatin surrounding their insertion sites, with repressive histone modifications extending at least one kb from the IAP. This heterochromatin induction was not observed for the LINE family of non-viral retrotransposons and for only a minority of copies of the ETn/MusD retroviral-like family. We found only one gene that was partly silenced by IAP-induced chromatin. Therefore, while induction of repressive chromatin occurs after IAP insertion, measurable impacts on host gene expression are rare. Nonetheless, this phenomenon may play a role in rapid change in gene expression and therefore in host adaptive potential.
PMCID: PMC3183085  PMID: 21980304
15.  Genome mapping and characterization of the Anopheles gambiae heterochromatin 
BMC Genomics  2010;11:459.
Heterochromatin plays an important role in chromosome function and gene regulation. Despite the availability of polytene chromosomes and genome sequence, the heterochromatin of the major malaria vector Anopheles gambiae has not been mapped and characterized.
To determine the extent of heterochromatin within the An. gambiae genome, genes were physically mapped to the euchromatin-heterochromatin transition zone of polytene chromosomes. The study found that a minimum of 232 genes reside in 16.6 Mb of mapped heterochromatin. Gene ontology analysis revealed that heterochromatin is enriched in genes with DNA-binding and regulatory activities. Immunostaining of the An. gambiae chromosomes with antibodies against Drosophila melanogaster heterochromatin protein 1 (HP1) and the nuclear envelope protein lamin Dm0 identified the major invariable sites of the proteins' localization in all regions of pericentric heterochromatin, diffuse intercalary heterochromatin, and euchromatic region 9C of the 2R arm, but not in the compact intercalary heterochromatin. To better understand the molecular differences among chromatin types, novel Bayesian statistical models were developed to analyze genome features. The study found that heterochromatin and euchromatin differ in gene density and the coverage of retroelements and segmental duplications. The pericentric heterochromatin had the highest coverage of retroelements and tandem repeats, while intercalary heterochromatin was enriched with segmental duplications. We also provide evidence that the diffuse intercalary heterochromatin has a higher coverage of DNA transposable elements, minisatellites, and satellites than does the compact intercalary heterochromatin. The investigation of 42-Mb assembly of unmapped genomic scaffolds showed that it has molecular characteristics similar to cytologically mapped heterochromatin.
Our results demonstrate that Anopheles polytene chromosomes and whole-genome shotgun assembly render the mapping and characterization of a significant part of heterochromatic scaffolds a possibility. These results reveal the strong association between characteristics of the genome features and morphological types of chromatin. Initial analysis of the An. gambiae heterochromatin provides a framework for its functional characterization and comparative genomic analyses with other organisms.
PMCID: PMC3091655  PMID: 20684766
16.  Efficient transcriptional silencing in Saccharomyces cerevisiae requires a heterochromatin histone acetylation pattern. 
Molecular and Cellular Biology  1996;16(8):4349-4356.
Heterochromatin in metazoans induces transcriptional silencing, as exemplified by position effect variegation in Drosophila melanogaster and X-chromosome inactivation in mammals. Heterochromatic DNA is packaged in nucleosomes that are distinct in their acetylation pattern from those present in euchromatin, although the role these differences play in the structure of heterochromatin or in the effects of heterochromatin on transcriptional activity is unclear. Here we report that, as observed in the facultative heterochromatin of the inactive X chromosome in female mammalian cells, histones H3 and H4 in chromatin spanning the transcriptionally silenced mating-type cassettes of the yeast Saccharomyces cerevisiae are hypoacetylated relative to histones H3 and H4 of transcriptionally active regions of the genome. By immunoprecipitation of chromatin fragments with antibodies specific for H4 acetylated at particular lysine residues, we found that only three of the four lysine residues in the amino-terminal domain of histone H4 spanning the silent cassettes are hypoacetylated. Lysine 12 shows significant acetylation levels. This is identical to the pattern of histone H4 acetylation observed in centric heterochromatin of D. melanogaster. These two observations provide additional evidence that the silent cassettes are encompassed in the yeast equivalent of metazoan heterochromatin. Further, mutational analysis of the amino-terminal domain of histone H4 in S. cerevisiae demonstrated that this observed pattern of histone H4 acetylation is required for transcriptional silencing. This result, in conjunction with prior mutational analyses of yeast histones H3 and H4, indicates that the particular pattern of nucleosome acetylation found in heterochromatin is required for its effects on transcription and is not simply a side effect of heterochromatin formation.
PMCID: PMC231433  PMID: 8754835
17.  Histone hypoacetylation is required to maintain late replication timing of constitutive heterochromatin 
Nucleic Acids Research  2011;40(1):159-169.
The replication of the genome is a spatio-temporally highly organized process. Yet, its flexibility throughout development suggests that this process is not genetically regulated. However, the mechanisms and chromatin modifications controlling replication timing are still unclear. We made use of the prominent structure and defined heterochromatic landscape of pericentric regions as an example of late replicating constitutive heterochromatin. We manipulated the major chromatin markers of these regions, namely histone acetylation, DNA and histone methylation, as well as chromatin condensation and determined the effects of these altered chromatin states on replication timing. Here, we show that manipulation of DNA and histone methylation as well as acetylation levels caused large-scale heterochromatin decondensation. Histone demethylation and the concomitant decondensation, however, did not affect replication timing. In contrast, immuno-FISH and time-lapse analyses showed that lowering DNA methylation, as well as increasing histone acetylation, advanced the onset of heterochromatin replication. While dnmt1−/− cells showed increased histone acetylation at chromocenters, histone hyperacetylation did not induce DNA demethylation. Hence, we propose that histone hypoacetylation is required to maintain normal heterochromatin duplication dynamics. We speculate that a high histone acetylation level might increase the firing efficiency of origins and, concomitantly, advances the replication timing of distinct genomic regions.
PMCID: PMC3245938  PMID: 21908399
18.  Is HP1 an RNA detector that functions both in repression and activation? 
The Journal of Cell Biology  2003;161(4):671-672.
Heterochromatin is defined as regions of compact chromatin that persist throughout the cell cycle (Heitz, 1928). The earliest cytological observations of heterochromatin were followed by ribonucleotide labeling experiments that showed it to be transcriptionally inert relative to the more typical euchromatic regions that decondense during interphase. Genetic studies of rearrangements that place euchromatic genes next to blocks of heterochromatin also pointed out the repressive nature of heterochromatin (Grigliatti, 1991; and references therein). The discovery of the heterochromatin-enriched protein heterochromatin protein 1 (HP1)* by Elgin and co-workers in the mid-1980s suggested that the distinct cytological features of this chromatin may be related to its unique nucleoprotein composition (James and Elgin, 1986; James et al., 1989). HP1 immunostaining on polytene chromosomes from Drosophila larval salivary glands was used to show enrichment of the protein in pericentric heterochromatin. Since that initial discovery, HP1 homologues have been found in species ranging from fission yeast to humans where it is associated with gene silencing (Eissenberg and Elgin, 2000; and references therein). A number of euchromatic sites of localization were also reported in this original study. It has been generally assumed that these sites might constitute euchromatic sites of transcriptional repression by HP1. Indeed, several genes located at one of these sites (cytological region 31) have increased transcript levels in mutants for HP1 (Hwang et al., 2001).
PMCID: PMC2199371  PMID: 12771122
19.  Histone acetylation controls the inactive X chromosome replication dynamics 
Nature Communications  2011;2:222-.
In mammals, dosage compensation between male and female cells is achieved by inactivating one female X chromosome (Xi). Late replication of Xi was proposed to be involved in the maintenance of its silenced state. Here, we show a highly synchronous replication of the Xi within 1 to 2 h during early-mid S-phase by following DNA replication in living mammalian cells with green fluorescent protein-tagged replication proteins. The Xi was replicated before or concomitant with perinuclear or perinucleolar facultative heterochromatin and before constitutive heterochromatin. Ectopic expression of the X-inactive-specific transcript (Xist) gene from an autosome imposed the same synchronous replication pattern. We used mutations and chemical inhibition affecting different epigenetic marks as well as inducible Xist expression and we demonstrate that histone hypoacetylation has a key role in controlling Xi replication. The epigenetically controlled, highly coordinated replication of the Xi is reminiscent of embryonic genome replication in flies and frogs before genome activation and might be a common feature of transcriptionally silent chromatin.
How one copy of the X chromosome is silenced in replicating female somatic cells is poorly understood. Here, the authors demonstrate that the inactive X chromosome is replicated before constitutive heterochromatin and that histone hypoacetylation has a role in controlling replication of the inactive X chromosome.
PMCID: PMC3072080  PMID: 21364561
20.  Drosophila linker histone H1 coordinates STAT-dependent organization of heterochromatin and suppresses tumorigenesis caused by hyperactive JAK-STAT signaling 
Within the nucleus of eukaryotic cells, chromatin is organized into compact, silent regions called heterochromatin and more loosely packaged regions of euchromatin where transcription is more active. Although the existence of heterochromatin has been known for many years, the cellular factors responsible for its formation have only recently been identified. Two key factors involved in heterochromatin formation in Drosophila are the H3 lysine 9 methyltransferase Su(var)3-9 and heterochromatin protein 1 (HP1). The linker histone H1 also plays a major role in heterochromatin formation in Drosophila by interacting with Su(var)3-9 and helping to recruit it to heterochromatin. Drosophila STAT (Signal transducer and activator of transcription) (STAT92E) has also been shown to be involved in the maintenance of heterochromatin, but its relationship to the H1-Su(var)3-9 heterochromatin pathway is unknown. STAT92E is also involved in tumor formation in flies. Hyperactive Janus kinase (JAK)-STAT signaling due to a mutation in Drosophila JAK (Hopscotch) causes hematopoietic tumors
We show here that STAT92E is a second partner of H1 in the regulation of heterochromatin structure. H1 physically interacts with STAT92E and regulates its ectopic localization in the chromatin. Mis-localization of STAT92E due to its hyperphosphorylation or H1 depletion disrupts heterochromatin integrity. The contribution of the H1-STAT pathway to heterochromatin formation is mechanistically distinct from that of H1 and Su(var)3-9. The recruitment of STAT92E to chromatin by H1 also plays an important regulatory role in JAK-STAT induced tumors in flies. Depleting the linker histone H1 in flies carrying the oncogenic hopscotch Tum-l allele enhances tumorigenesis, and H1 overexpression suppresses tumorigenesis.
Our results suggest the existence of two independent pathways for heterochromatin formation in Drosophila, one involving Su(var)3-9 and HP1 and the other involving STAT92E and HP1. The H1 linker histone directs both pathways through physical interactions with Su(var)3-9 and STAT92E, as well with HP1. The physical interaction of H1 and STAT92E confers a regulatory role on H1 in JAK-STAT signaling. H1 serves as a molecular reservoir for STAT92E in chromatin, enabling H1 to act as a tumor suppressor and oppose an oncogenic mutation in the JAK-STAT signaling pathway.
PMCID: PMC4149798  PMID: 25177369
Heterochromatin; Linker histone H1; JAK-STAT signaling; Tumor suppressor; Melanotic tumors; Drosophila melanogaster
21.  Loss of Maternal ATRX Results in Centromere Instability and Aneuploidy in the Mammalian Oocyte and Pre-Implantation Embryo 
PLoS Genetics  2010;6(9):e1001137.
The α-thalassemia/mental retardation X-linked protein (ATRX) is a chromatin-remodeling factor known to regulate DNA methylation at repetitive sequences of the human genome. We have previously demonstrated that ATRX binds to pericentric heterochromatin domains in mouse oocytes at the metaphase II stage where it is involved in mediating chromosome alignment at the meiotic spindle. However, the role of ATRX in the functional differentiation of chromatin structure during meiosis is not known. To test ATRX function in the germ line, we developed an oocyte-specific transgenic RNAi knockdown mouse model. Our results demonstrate that ATRX is required for heterochromatin formation and maintenance of chromosome stability during meiosis. During prophase I arrest, ATRX is necessary to recruit the transcriptional regulator DAXX (death domain associated protein) to pericentric heterochromatin. At the metaphase II stage, transgenic ATRX-RNAi oocytes exhibit abnormal chromosome morphology associated with reduced phosphorylation of histone 3 at serine 10 as well as chromosome segregation defects leading to aneuploidy and severely reduced fertility. Notably, a large proportion of ATRX-depleted oocytes and 1-cell stage embryos exhibit chromosome fragments and centromeric DNA–containing micronuclei. Our results provide novel evidence indicating that ATRX is required for centromere stability and the epigenetic control of heterochromatin function during meiosis and the transition to the first mitosis.
Author Summary
The transmission of an abnormal chromosome complement from the gametes to the early embryo, a condition called aneuploidy, is a major cause of congenital birth defects and pregnancy loss. Human embryos are particularly susceptible to aneuploidy, which in the majority of cases is the result of abnormal meiosis in the female gamete. However, the molecular mechanisms involved in the onset of aneuploidy in mammalian oocytes are not fully understood. We show here that, the α-thalassemia/mental retardation X-linked protein (ATRX) is essential for the maintenance of chromosome stability during female meiosis. ATRX is required to recruit the transcriptional regulator DAXX to pericentric heterochromatin at prophase I of meiosis. Notably, lack of ATRX function at the metaphase II stage interferes with the establishment of chromatin modifications associated with chromosome condensation leading to segregation defects, chromosome fragmentation, and severely reduced fertility. Our results provide direct evidence for a role of ATRX in the regulation of pericentric heterochromatin structure and function in mammalian oocytes and have important implications for our understanding of the epigenetic factors contributing to the onset of aneuploidy in the female gamete.
PMCID: PMC2944790  PMID: 20885787
22.  Primary and secondary clustering of DSB repair foci and repair kinetics compared for γ-rays, protons of different energies and high-LET 20Ne ions 
Journal of Radiation Research  2014;55(Suppl 1):i79-i80.
Purpose: Ionizing radiations of different qualities (e.g. high-LET and low-LET) might differently interact with structurally and functionally distinct higher order chromatin domains (discussed in [ 1] and citations therein); this might be reflected by DNA double strand break (DSB) repair efficiency and the mechanism of how cancerogenous chromosomal translocations (CHT) form. Therefore, we compared the DSB repair kinetics and formation of γH2AX/p53BP1 repair clusters upon the action of γ-rays [ 2, 3], protons (15 and 30 MeV) [ 4], and 20Ne ions (preliminary data). Consequently, we discuss biological impacts of these clusters.
Material and methods: Immunostaining methods in combination with high-resolution confocal microscopy, performed on 3D-fixed normal human skin fibroblasts [ 2– 4], were used to study initial distributions of γH2AX and p53BP1 repair foci and their changes during the post-irradiation (PI) time, with a special concern on foci clustering. Irradiations with γ-rays, protons of different energies (15 and 30 MeV), and high-LET 20Ne ions was performed in IBP ASCR Brno (CR), NPI AVCR Řež (CR) and JINR Dubna (Russia), respectively.
Results: Upon irradiating cells with 20Ne ions, tracks of multiple clustered γH2AX and p53BP1 repair foci appeared immediately after the irradiation; these clusters, called here as the ‘primary clusters’, were rare in cells irradiated with γ-rays or protons (submitted). Though γH2AX/p53BP1 foci were positionally quite stable [ 2], ‘secondary clusters’ occasionally appeared after all kinds of irradiation during about 30 min PI. The formation of secondary clusters usually appeared due to the heterochromatin decondensation at the sites of heterochromatic DNA double-strand breaks (hcDSBs), followed by their protrusion into a limited space of nuclear subdomains of low density-chromatin (discussed in [ 1, 2, 5]).
Conclusions: Primary clusters appear in cell nuclei immediately PI as the consequence of highly localized energy deposition, while secondary clusters develop during (and because of) DSB repair. Primary DSB clusters probably represent the main cause of chromosomal translocations induced with high-LET radiations while secondary clusters seem to be more important for low-LET γ-rays and protons. Secondary clusters of primary clusters (higher-order clusters) observed for 20Ne ions might explain frequent formation of complex translocations upon the action of high-LET radiations. Finally, we suggest [ 1, 2, 4] a model that describes the relationship between the higher order chromatin structure, DSB formation, repair and misrepair.
PMCID: PMC3941551
DNA double-strand breaks (DSB); DSB repair; chromosomal translocations; primary and secondary DSB clusters; higher order chromatin structure; ionizing radiation of different quality
23.  Species-Specific Heterochromatin Prevents Mitotic Chromosome Segregation to Cause Hybrid Lethality in Drosophila 
PLoS Biology  2009;7(10):e1000234.
Early embryonic lethality of interspecies hybrids in Drosophila can be caused by defects in mitotic segregation of paternal X chromatids carrying a critical domain of heterochromatic DNA.
Postzygotic reproductive barriers such as sterility and lethality of hybrids are important for establishing and maintaining reproductive isolation between species. Identifying the causal loci and discerning how they interfere with the development of hybrids is essential for understanding how hybrid incompatibilities (HIs) evolve, but little is known about the mechanisms of how HI genes cause hybrid dysfunctions. A previously discovered Drosophila melanogaster locus called Zhr causes lethality in F1 daughters from crosses between Drosophila simulans females and D. melanogaster males. Zhr maps to a heterochromatic region of the D. melanogaster X that contains 359-bp satellite repeats, suggesting either that Zhr is a rare protein-coding gene embedded within heterochromatin, or is a locus consisting of the noncoding repetitive DNA that forms heterochromatin. The latter possibility raises the question of how heterochromatic DNA can induce lethality in hybrids. Here we show that hybrid females die because of widespread mitotic defects induced by lagging chromatin at the time during early embryogenesis when heterochromatin is first established. The lagging chromatin is confined solely to the paternally inherited D. melanogaster X chromatids, and consists predominantly of DNA from the 359-bp satellite block. We further found that a rearranged X chromosome carrying a deletion of the entire 359-bp satellite block segregated normally, while a translocation of the 359-bp satellite block to the Y chromosome resulted in defective Y segregation in males, strongly suggesting that the 359-bp satellite block specifically and directly inhibits chromatid separation. In hybrids produced from wild-type parents, the 359-bp satellite block was highly stretched and abnormally enriched with Topoisomerase II throughout mitosis. The 359-bp satellite block is not present in D. simulans, suggesting that lethality is caused by the absence or divergence of factors in the D. simulans maternal cytoplasm that are required for heterochromatin formation of this species-specific satellite block. These findings demonstrate how divergence of noncoding repetitive sequences between species can directly cause reproductive isolation by altering chromosome segregation.
Author Summary
Speciation is most commonly understood to occur when two species can no longer reproduce with each other, and sterility and lethality of hybrids formed between different species are widely observed causes of such reproductive isolation. Several protein-coding genes have been previously discovered to cause hybrid sterility and lethality. We show here that first generation hybrid females in Drosophila die during early embryogenesis because of a failure in mitosis. However, we have discovered that this is not a general failure in mitosis, because only the paternally inherited X chromosome fails to segregate properly. Our analyses further demonstrate that this mitotic failure is caused by a large heterochromatic region of DNA (millions of base pairs) that contains many repetitive copies of short noncoding sequences that are normally transcriptionally quiescent. Interestingly, this block of heterochromatin is only found in the paternal species. We suggest that a failure of the maternal species to package this paternally inherited DNA region into heterochromatin leads to mitotic failure and hybrid lethality. If this is a general phenomenon it may explain other examples of hybrid lethality in which F1 females die but F1 males survive.
PMCID: PMC2760206  PMID: 19859525
24.  Transcription of the Herpes Simplex Virus Latency-Associated Transcript Promotes the Formation of Facultative Heterochromatin on Lytic Promoters▿  
Journal of Virology  2009;83(16):8182-8190.
An important question in virology is the mechanism(s) by which persistent viruses such as the herpesviruses and human immunodeficiency virus (HIV) establish a latent infection in specific types of cells. In the case of herpesviruses, herpes simplex virus (HSV) infection of epithelial cells results in a lytic infection, whereas latent infection is established in sensory neurons. Recent studies have shown the importance of chromatin structure in the regulation of latent infection for both HSV and HIV. For HSV, we have shown previously that the viral latency-associated transcript (LAT) promotes lytic gene silencing and the association of one heterochromatin marker, dimethylation of lysine 9 on histone H3 (H3K9me2), with viral lytic genes. In this study, we further defined the structure of latent viral chromatin by examining the heterochromatin markers on histones associated with the HSV latent genome. We detected the H3K9me2, H3K9me3, and H3K27me3 modifications, with H3K27me3, which is indicative of facultative heterochromatin, exhibiting the highest enrichment on all viral promoters tested. A modification associated with cellular centromeric heterochromatin, H4K20me3, was not detected. A mutant virus containing a 1.8-kbp deletion within the LAT region showed reduced levels of the facultative heterochromatin marker (H3K27me3) along with H3K9me3 during latency, whereas a viral mutant defective for the LAT promoter showed a specific reduction in H3K27me3. Cellular long, noncoding RNAs induce facultative heterochromatin, and this study shows that transcription of a viral noncoding RNA can also induce facultative heterochromatin to promote lytic gene silencing during latency.
PMCID: PMC2715743  PMID: 19515781
25.  Corepressive Action of CBP on Androgen Receptor Transactivation in Pericentric Heterochromatin in a Drosophila Experimental Model System▿ †  
Molecular and Cellular Biology  2008;29(4):1017-1034.
Ligand-bound nuclear receptors (NR) activate transcription of the target genes. This activation is coupled with histone modifications and chromatin remodeling through the function of various coregulators. However, the nature of the dependence of a NR coregulator action on the presence of the chromatin environment at the target genes is unclear. To address this issue, we have developed a modified position effect variegation experimental model system that includes an androgen-dependent reporter transgene inserted into either a pericentric heterochromatin region or a euchromatic region of Drosophila chromosome. Human androgen receptor (AR) and its constitutively active truncation mutant (AR AF-1) were transcriptionally functional in both chromosomal regions. Predictably, the level of AR-induced transactivation was lower in the pericentric heterochromatin. In genetic screening for AR AF-1 coregulators, Drosophila CREB binding protein (dCBP) was found to corepress AR transactivation at the pericentric region whereas it led to coactivation in the euchromatic area. Mutations of Sir2 acetylation sites or deletion of the CBP acetyltransferase domain abrogated dCBP corepressive action for AR at heterochromatic areas in vivo. Such a CBP corepressor function for AR was observed in the transcriptionally silent promoter of an AR target gene in cultured mammalian cells. Thus, our findings suggest that the action of NR coregulators may depend on the state of chromatin at the target loci.
PMCID: PMC2643800  PMID: 19075001

Results 1-25 (1174818)