PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1015942)

Clipboard (0)
None

Related Articles

1.  Cambial Activity and Intra-annual Xylem Formation in Roots and Stems of Abies balsamea and Picea mariana 
Annals of Botany  2008;102(5):667-674.
Background and Aims
Studies on xylogenesis focus essentially on the stem, whereas there is basically no information about the intra-annual growth of other parts of the tree. As roots strongly influence carbon allocation and tree development, knowledge of the dynamics of xylem production and maturation in roots at a short time scale is required for a better understanding of the phenomenon of tree growth. This study compared cambial activity and xylem formation in stem and roots in two conifers of the boreal forest in Canada.
Methods
Wood microcores were collected weekly in stem and roots of ten Abies balsamea and ten Picea mariana during the 2004–2006 growing seasons. Cross-sections were cut using a rotary microtome, stained with cresyl violet acetate and observed under visible and polarized light. The number of cells in the cambial zone and in differentiation, plus the number of mature cells, was counted along the developing xylem.
Key Results
Xylem formation lasted from the end of May to the end of September, with no difference between stem and roots in 2004–2005. On the contrary, in 2006 a 1-week earlier beginning of cell differentiation was observed in the stem, with cell wall thickening and lignification in roots ending up to 22 d later than in the stem. Cell production in the stem was concentrated early in the season, in June, while most cell divisions in roots occurred 1 month later.
Conclusions
The intra-annual dynamics of growth observed in stem and roots could be related to the different amount of cells produced by the cambium and the patterns of air and soil temperature occurring in spring.
doi:10.1093/aob/mcn146
PMCID: PMC2712372  PMID: 18708643
Abies balsamea; boreal forest; cambium; cell differentiation; cell wall thickening; lignification; Picea mariana; root; stem; xylem
2.  Cambial Growth Season of Brevi-Deciduous Brachystegia spiciformis Trees from South Central Africa Restricted to Less than Four Months 
PLoS ONE  2012;7(10):e47364.
We investigate cambial growth periodicity in Brachystegia spiciformis, a dominant tree species in the seasonally dry miombo woodland of southern Africa. To better understand how the brevi-deciduous (experiencing a short, drought-induced leaf fall period) leaf phenology of this species can be linked to a distinct period of cambial activity, we applied a bi-weekly pinning to six trees in western Zambia over the course of one year. Our results show that the onset and end of cambial growth was synchronous between trees, but was not concurrent with the onset and end of the rainy season. The relatively short (three to four months maximum) cambial growth season corresponded to the core of the rainy season, when 75% of the annual precipitation fell, and to the period when the trees were at full photosynthetic capacity. Tree-ring studies of this species have found a significant relationship between annual tree growth and precipitation, but we did not observe such a correlation at intra-annual resolution in this study. Furthermore, a substantial rainfall event occurring after the end of the cambial growth season did not induce xylem initiation or false ring formation. Low sample replication should be taken into account when interpreting the results of this study, but our findings can be used to refine the carbon allocation component of process-based terrestrial ecosystem models and can thus contribute to a more detailed estimation of the role of the miombo woodland in the terrestrial carbon cycle. Furthermore, we provide a physiological foundation for the use of Brachystegia spiciformis tree-ring records in paleoclimate research.
doi:10.1371/journal.pone.0047364
PMCID: PMC3468463  PMID: 23071794
3.  Effect of Local Heating and Cooling on Cambial Activity and Cell Differentiation in the Stem of Norway Spruce (Picea abies) 
Annals of Botany  2006;97(6):943-951.
• Background and Aims The effect of heating and cooling on cambial activity and cell differentiation in part of the stem of Norway spruce (Picea abies) was investigated.
• Methods A heating experiment (23–25 °C) was carried out in spring, before normal reactivation of the cambium, and cooling (9–11 °C) at the height of cambial activity in summer. The cambium, xylem and phloem were investigated by means of light- and transmission electron microscopy and UV-microspectrophotometry in tissues sampled from living trees.
• Key Results Localized heating for 10 d initiated cambial divisions on the phloem side and after 20 d also on the xylem side. In a control tree, regular cambial activity started after 30 d. In the heat-treated sample, up to 15 earlywood cells undergoing differentiation were found to be present. The response of the cambium to stem cooling was less pronounced, and no anatomical differences were detected between the control and cool-treated samples after 10 or 20 d. After 30 d, latewood started to form in the sample exposed to cooling. In addition, almost no radially expanding tracheids were observed and the cambium consisted of only five layers of cells. Low temperatures reduced cambial activity, as indicated by the decreased proportion of latewood. On the phloem side, no alterations were observed among cool-treated and non-treated samples.
• Conclusions Heating and cooling can influence cambial activity and cell differentiation in Norway spruce. However, at the ultrastructural and topochemical levels, no changes were observed in the pattern of secondary cell-wall formation and lignification or in lignin structure, respectively.
doi:10.1093/aob/mcl050
PMCID: PMC2803384  PMID: 16613904
Norway spruce; Picea abies; cambium; xylem; phloem; cell differentiation; heating; cooling; light microscopy; transmission electron microscopy; UV-microspectrophotometry
4.  Fluctuations of cambial activity in relation to precipitation result in annual rings and intra-annual growth zones of xylem and phloem in teak (Tectona grandis) in Ivory Coast 
Annals of Botany  2012;110(4):861-873.
Background and Aims
Teak forms xylem rings that potentially carry records of carbon sequestration and climate in the tropics. These records are only useful when the structural variations of tree rings and their periodicity of formation are known.
Methods
The seasonality of ring formation in mature teak trees was examined via correlative analysis of cambial activity, xylem and phloem formation, and climate throughout 1·5 years. Xylem and phloem differentiation were visualized by light microscopy and scanning electron microscopy.
Key Results
A 3 month dry season resulted in semi-deciduousness, cambial dormancy and formation of annual xylem growth rings (AXGRs). Intra-annual xylem and phloem growth was characterized by variable intensity. Morphometric features of cambium such as cambium thickness and differentiating xylem layers were positively correlated. Cambium thickness was strongly correlated with monthly rainfall (R2 = 0·7535). In all sampled trees, xylem growth zones (XGZs) were formed within the AXGRs during the seasonal development of new foliage. When trees achieved full leaf, the xylem in the new XGZs appeared completely differentiated and functional for water transport. Two phloem growth rings were formed in one growing season.
Conclusions
The seasonal formation pattern and microstructure of teak xylem suggest that AXGRs and XGZs can be used as proxies for analyses of the tree history and climate at annual and intra-annual resolution.
doi:10.1093/aob/mcs145
PMCID: PMC3423803  PMID: 22805529
Growth rings; teak; Tectona grandis; vascular cambium; xylem and phloem formation
5.  A rapid decrease in temperature induces latewood formation in artificially reactivated cambium of conifer stems 
Annals of Botany  2012;110(4):875-885.
Background and Aims
Latewood formation in conifers occurs during the later part of the growing season, when the cell division activity of the cambium declines. Changes in temperature might be important for wood formation in trees. Therefore, the effects of a rapid decrease in temperature on cellular morphology of tracheids were investigated in localized heating-induced cambial reactivation in Cryptomeria japonica trees and in Abies firma seedlings.
Methods
Electric heating tape and heating ribbon were wrapped on the stems of C. japonica trees and A. firma seedlings. Heating was discontinued when 11 or 12 and eight or nine radial files of differentiating and differentiated tracheids had been produced in C. japonica and A. firma stems, respectively. Tracheid diameter, cell wall thickness, percentage of cell wall area and percentage of lumen area were determined by image analysis of transverse sections and scanning electron microscopy.
Key Results
Localized heating induced earlier cambial reactivation and xylem differentiation in stems of C. japonica and A. firma as compared with non-heated stems. One week after cessation of heating, there were no obvious changes in the dimensions of the differentiating tracheids in the samples from adult C. japonica. In contrast, tracheids with a smaller diameter were observed in A. firma seedlings after 1 week of cessation of heating. Two or three weeks after cessation of heating, tracheids with reduced diameters and thickened cell walls were found. The results showed that the rapid decrease in temperature produced slender tracheids with obvious thickening of cell walls that resembled latewood cells.
Conclusions
The results suggest that a localized decrease in temperature of stems induces changes in the diameter and cell wall thickness of differentiating tracheids, indicating that cambium and its derivatives can respond directly to changes in temperature.
doi:10.1093/aob/mcs149
PMCID: PMC3423807  PMID: 22843340
Cambial activity; conifers; latewood formation; morphology of tracheids; rapid decrease in temperature
6.  Intra-annual dynamics of stem CO2 efflux in relation to cambial activity and xylem development in Pinus cembra 
Tree physiology  2009;29(5):641-649.
Summary
The relationship between stem CO2 efflux (ES), cambial activity and xylem production in Pinus cembra was determined at the timberline (1950 m a.s.l.) of the Central Austrian Alps, throughout one year. ES was measured continuously from June 2006 to August 2007 using an infrared gas-analysis system. Cambial activity and xylem production was determined by repeated microcore sampling of the developing tree ring and radial increment was monitored using automated point dendrometers. Aside of temperature, the number of living tracheids and cambial cells was predominantly responsible for ES: ES normalized to 10°C (ES10) was significantly correlated to number of living cells throughout the year (r2 = 0,574; p < 0,001). However, elevated ES and missing correlation between ES10 and xylem production was detected during cambial reactivation in April and during transition from active phase to rest, which occurred in August and lasted until early September. Results of this study indicate that (i) during seasonal variations in cambial activity non-linearity between ES and xylem production occurs and (ii) elevated metabolic activity during transition stages in the cambial activity-dormancy cycle influence the carbon budget of Pinus cembra. Daily radial stem increment was primarily influenced by the number of enlarging cells and was not correlated to ES.
doi:10.1093/treephys/tpp001
PMCID: PMC3013296  PMID: 19203979
cambial reactivation; dormancy; Pinus cembra; radial stem growth; sap flow; stem CO2 efflux; stem respiration; xylem production
7.  Temporal dynamic of wood formation in Pinus cembra along the alpine treeline ecotone and the effect of climate variables 
Trees (Berlin, Germany : West)  2009;23(3):623-635.
We determined the temporal dynamic of cambial activity and xylem development of stone pine (Pinus cembra L.) throughout the treeline ecotone. Repeated micro-sampling of the developing tree ring was carried out during the growing seasons 2006 and 2007 at the timberline (1950 m a.s.l.), treeline (2110 m a.s.l.) and within the krummholz belt (2180 m a.s.l.) and the influence of climate variables on intra-annual wood formation was determined.
At the beginning of both growing seasons, highest numbers of cambial and enlarging cells were observed at the treeline. Soil temperatures at time of initiation of cambial activity were c. 1.5 °C higher at treeline (open canopy) compared to timberline (closed canopy), suggesting that a threshold root-zone temperature is involved in triggering onset of above ground stem growth.
The rate of xylem cell production determined in two weekly intervals during June through August 2006-2007 was significantly correlated with air temperature (temperature sums expressed as degree-days and mean daily maximum temperature) at the timberline only. Lack of significant relationships between tracheid production and temperature variables at the treeline and within the krummholz belt support past dendroclimatological studies that more extreme environmental conditions (e.g., wind exposure, frost desiccation, late frost) increasingly control tree growth above timberline.
Results of this study revealed that spatial and temporal (i.e. year-to-year) variability in timing and dynamic of wood formation of Pinus cembra is strongly influenced by local site factors within the treeline ecotone and the dynamics of seasonal temperature variation, respectively.
PMCID: PMC3078619  PMID: 21509148
Cambium; intra-annual growth; Pinus cembra; temperature; tracheid production
8.  Effects of climate variables on intra-annual stem radial increment in Pinus cembra (L.) along the alpine treeline ecotone 
Annals of forest science  2009;66(5):503.
Within the alpine treeline ecotone tree growth is increasingly restricted by extreme climate conditions. Although intra-annual stem growth recorded by dendrometers can be linked to climate, stem diameter increments in slow-growing subalpine trees are masked by changes in tree water status.We tested the hypothesis that intra-annual radial stem growth in Pinus cembra is influenced by different climate variables along the treeline ecotone in the Austrian Alps. Dendrometer traces were compared with dynamics of xylem cell development to date onset of cambial activity and radial stem growth in spring.Daily fluctuations in stem radius reflected changes in tree water status throughout the treeline ecotone. Extracted daily radial increments were significantly correlated with air temperature at the timberline and treeline only, where budburst, cambial activity and enlargement of first tracheids also occurred quite similarly. A close relationship was detected between radial increment and number of enlarging tracheids throughout the treeline ecotone.We conclude that (i) the relationship between climate and radial stem growth within the treeline ecotone is dependent on a close coupling to atmospheric climate conditions and (ii) initiation of cambial activity and radial growth in spring can be distinguished from stem re-hydration by histological analysis.
doi:10.1051/forest/2009038
PMCID: PMC3059571  PMID: 21423861
dendrometer; Pinus cembra; radial increment; treeline ecotone; xylem formation
9.  Induction of Cambial Reactivation by Localized Heating in a Deciduous Hardwood Hybrid Poplar (Populus sieboldii × P. grandidentata) 
Annals of Botany  2007;100(3):439-447.
Background and Aims
The timing of cambial reactivation plays an important role in the control of both the quantity and the quality of wood. The effect of localized heating on cambial reactivation in the main stem of a deciduous hardwood hybrid poplar (Populus sieboldii × P. grandidentata) was investigated.
Methods
Electric heating tape (20–22 °C) was wrapped at one side of the main stem of cloned hybrid poplar trees at breast height in winter. Small blocks were collected from both heated and non-heated control portions of the stem for sequential observations of cambial activity and for studies of the localization of storage starch around the cambium from dormancy to reactivation by light microscopy.
Key Results
Cell division in phloem began earlier than cambial reactivation in locally heated portions of stems. Moreover, the cambial reactivation induced by localized heating occurred earlier than natural cambial reactivation. In heated stems, well-developed secondary xylem was produced that had almost the same structure as the natural xylem. When cambial reactivation was induced by heating, the buds of trees had not yet burst, indicating that there was no close temporal relationship between bud burst and cambial reactivation. In heated stems, the amount of storage starch decreased near the cambium upon reactivation of the cambium. After cambial reactivation, storage starch disappeared completely. Storage starch appeared again, near the cambium, during xylem differentiation in heated stems.
Conclusions
The results suggest that, in deciduous diffuse-porous hardwood poplar growing in a temperate zone, the temperature in the stem is a limiting factor for reactivation of phloem and cambium. An increase in temperature might induce the conversion of storage starch to sucrose for the activation of cambial cell division and secondary xylem. Localized heating in poplar stems provides a useful experimental system for studies of cambial biology.
doi:10.1093/aob/mcm130
PMCID: PMC2533603  PMID: 17621596
Populus sieboldii × Populus grandidentata; localized heating, cambial reactivation; model system; storage starch; xylem differentiation
10.  Impact of drought on the temporal dynamics of wood formation in Pinus sylvestris 
Tree physiology  2010;30(4):490-501.
Summary
We determined the temporal dynamics of cambial activity and xylem cell differentiation of Scots pine (Pinus sylvestris L.) within a dry inner Alpine valley (750 m asl, Tyrol, Austria), where radial growth is strongly limited by drought in spring. Repeated micro-sampling of the developing tree ring of mature trees was carried out during 2 contrasting years at two study plots that differ in soil water availability (xeric and dry-mesic site).
In 2007, when air temperature at the beginning of the growing season in April exceeded the long-term mean by 6.4 °C, cambial cell division started in early April at both study plots. A delayed onset of cambial activity of c. 2 wk was found in 2008, when average climate conditions prevailed in spring, indicating that resumption of cambial cell division after winter dormancy is temperature-controlled. Cambial cell division consistently ended about the end of June/early July in both study years. Radial enlargement of tracheids started almost 3 wk earlier in 2007 compared with 2008 at both study plots. At the xeric site, the maximum rate of tracheid production in 2007 and 2008 was reached in early and mid-May, respectively, and c. 2 wk later, at the dry-mesic site. Since in both study years, more favorable growing conditions (i.e., an increase in soil water content) were recorded during summer, we suggest a strong sink competition for carbohydrates to mycorrhizal root and shoot growth. Wood formation stopped c. 4 wk earlier at the xeric compared with the dry-mesic site in both years, indicating a strong influence of drought stress on cell differentiation. This is supported by radial widths of earlywood cells, which were found to be significantly narrower at the xeric than at the dry-mesic site (P < 0.05).
Repeated cellular analyses during the two growing seasons revealed that, although spatial variability in the dynamics and duration of cell differentiation processes in Pinus sylvestris exposed to drought is strongly influenced by water availability, the onset of cambial activity and cell differentiation is controlled by temperature.
doi:10.1093/treephys/tpq003
PMCID: PMC3046340  PMID: 20197285
Cambium; dry inner Alpine valley; intra-annual growth; Scots pine; tracheid production; xylogenesis
11.  Changes in the localization and levels of starch and lipids in cambium and phloem during cambial reactivation by artificial heating of main stems of Cryptomeria japonica trees 
Annals of Botany  2010;106(6):885-895.
Background and Aims
Cambial reactivation in trees occurs from late winter to early spring when photosynthesis is minimal or almost non-existent. Reserve materials might be important for wood formation in trees. The localization and approximate levels of starch and lipids (as droplets) and number of starch granules in cambium and phloem were examined from cambial dormancy to the start of xylem differentiation in locally heated stems of Cryptomeria japonica trees in winter.
Methods
Electric heating tape was wrapped on one side of the stem of Cryptomeria japonica trees at breast height in winter. The localization and approximate levels of starch and lipids (as droplets) and number of starch granules were determined by image analysis of optical digital images obtained by confocal laser scanning microscopy.
Key Results
Localized heating induced earlier cambial reactivation and xylem differentiation in stems of Cryptomeria japonica, as compared with non-heated stems. There were clear changes in the respective localizations and levels of starch and lipids (as droplets) determined in terms of relative areas on images, from cambial dormancy to the start of xylem differentiation in heated stems. In heated stems, the levels and number of starch granules fell from cambial reactivation to the start of xylem differentiation. There was a significant decrease in the relative area occupied by lipid droplets in the cambium from cambial reactivation to the start of xylem differentiation in heated stems.
Conclusions
The results showed clearly that the levels and number of storage starch granules in cambium and phloem cells and levels of lipids (as droplets) in the cambium decreased from cambial reactivation to the start of xylem differentiation in heated stems during the winter. The observations suggest that starch and lipid droplets might be needed as sources of energy for the initiation of cambial cell division and the differentiation of xylem in Cryptomeria japonica.
doi:10.1093/aob/mcq185
PMCID: PMC2990657  PMID: 21037242
Cambial reactivation; confocal laser scanning microscopy; Cryptomeria japonica; lipid; starch; xylem differentiation
12.  Cambium Destruction in Conifers Caused by Pinewood Nematodes 
Journal of Nematology  1986;18(3):398-402.
Percentage and rate of mortality in 2-4-year-old conifers depended upon the numbers of pinewood nematodes Bursaphelenchus xylophilus inoculated into their stems. In addition, percentage of conifer mortality was greater for spring inoculations when cambial activity was greater than for late summer and fall inoculations. Gross and histological examination of stems revealed destruction of the cambial layer, including fusiform and ray intitials and their derivatives. These data suggest that cambial and ray destruction causes tree death through blockage of tracheids by gas, oleoresin, or metabolites from dying ray tissues.
PMCID: PMC2618560  PMID: 19294198
histopathology; Bursaphelenchus xylophilus; pinewood nematode; pinewi!t disease; conifer death; mortality; Pinus spp.
13.  Significant Mean and Extreme Climate Sensitivity of Norway Spruce and Silver Fir at Mid-Elevation Mesic Sites in the Alps 
PLoS ONE  2012;7(11):e50755.
Climate forcing is the major abiotic driver for forest ecosystem functioning and thus significantly affects the role of forests within the global carbon cycle and related ecosystem services. Annual radial increments of trees are probably the most valuable source of information to link tree growth and climate at long-term time scales, and have been used in a wide variety of investigations worldwide. However, especially in mountainous areas, tree-ring studies have focused on extreme environments where the climate sensitivity is perhaps greatest but are necessarily a biased representation of the forests within a region. We used tree-ring analyses to study two of the most important tree species growing in the Alps: Norway spruce (Picea abies) and silver fir (Abies alba). We developed tree-ring chronologies from 13 mesic mid-elevation sites (203 trees) and then compared them to monthly temperature and precipitation data for the period 1846–1995. Correlation functions, principal component analysis and fuzzy C-means clustering were applied to 1) assess the climate/growth relationships and their stationarity and consistency over time, and 2) extract common modes of variability in the species responses to mean and extreme climate variability. Our results highlight a clear, time-stable, and species-specific response to mean climate conditions. However, during the previous-year's growing season, which shows the strongest correlations, the primary difference between species is in their response to extreme events, not mean conditions. Mesic sites at mid-altitude are commonly underrepresented in tree-ring research; we showed that strong climatic controls of growth may exist even in those areas. Extreme climatic events may play a key role in defining the species-specific responses on climatic sensitivity and, with a global change perspective, specific divergent responses are likely to occur even where current conditions are less limited.
doi:10.1371/journal.pone.0050755
PMCID: PMC3510186  PMID: 23209823
14.  Exploring Ecological Significance of Tree Crown Plasticity through Three-dimensional Modelling 
Annals of Botany  2007;101(8):1221-1231.
Background and Aims
Morphogenetic plasticity may be as important as physiological plasticity in determining plant adaptability to changing environmental conditions. This study examines the importance of crown plasticity of trees in stands.
Methods
A three-dimensional forest simulator is used to explore the impact of crown shape plasticity on tree growth. Crown deformation is mediated through the local response to light and overall allometric constraints governing tree dimensions. By altering shape response parameters of Hevea brasiliensis the impact of increased or decreased plasticity is explored in a variety of competitive environments defined by various combinations of tree density and relative frequency of different strategies. The possible interactions between plasticity and growth rate and plasticity and below-ground competition are also explored.
Key Results
Crown plasticity confers competitive superiority in all cases studied. Interactions with other processes may downplay or enhance this competitive advantage.
Conclusions
Simulation results strongly suggest that crown plasticity does have a significant impact on tree performance in nature and that commonly observed crown shape deformation response of trees is of adaptive value.
doi:10.1093/aob/mcm189
PMCID: PMC2710270  PMID: 17720977
Crown plasticity; 3D simulation; individual-based model; competition
15.  A mathematical framework for modelling cambial surface evolution using a level set method 
Annals of Botany  2011;108(6):1001-1011.
Background and Aims
During their lifetime, tree stems take a series of successive nested shapes. Individual tree growth models traditionally focus on apical growth and architecture. However, cambial growth, which is distributed over a surface layer wrapping the whole organism, equally contributes to plant form and function. This study aims at providing a framework to simulate how organism shape evolves as a result of a secondary growth process that occurs at the cellular scale.
Methods
The development of the vascular cambium is modelled as an expanding surface using the level set method. The surface consists of multiple compartments following distinct expansion rules. Growth behaviour can be formulated as a mathematical function of surface state variables and independent variables to describe biological processes.
Key Results
The model was coupled to an architectural model and to a forest stand model to simulate cambium dynamics and wood formation at the scale of the organism. The model is able to simulate competition between cambia, surface irregularities and local features. Predicting the shapes associated with arbitrarily complex growth functions does not add complexity to the numerical method itself.
Conclusions
Despite their slenderness, it is sometimes useful to conceive of trees as expanding surfaces. The proposed mathematical framework provides a way to integrate through time and space the biological and physical mechanisms underlying cambium activity. It can be used either to test growth hypotheses or to generate detailed maps of wood internal structure.
doi:10.1093/aob/mcr067
PMCID: PMC3189832  PMID: 21470972
Dynamic model; level sets; surface growth; vascular cambium; wood formation
16.  Transcriptome Characteristics and Six Alternative Expressed Genes Positively Correlated with the Phase Transition of Annual Cambial Activities in Chinese Fir (Cunninghamia lanceolata (Lamb.) Hook) 
PLoS ONE  2013;8(8):e71562.
Background
The molecular mechanisms that govern cambial activity in angiosperms are well established, but little is known about these molecular mechanisms in gymnosperms. Chinese fir (Cunninghamia lanceolata (Lamb.) Hook), a diploid (2n  = 2x  = 22) gymnosperm, is one of the most important industrial and commercial timber species in China. Here, we performed transcriptome sequencing to identify the repertoire of genes expressed in cambium tissue of Chinese fir.
Methodology/Principal Findings
Based on previous studies, the four stage-specific cambial tissues of Chinese fir were defined using transmission electron microscopy (TEM). In total, 20 million sequencing reads (3.6 Gb) were obtained using Illumina sequencing from Chinese fir cambium tissue collected at active growth stage, with a mean length of 131 bp and a N50 of 90 bp. SOAPdenovo software was used to assemble 62,895 unigenes. These unigenes were further functionally annotated by comparing their sequences to public protein databases. Expression analysis revealed that the altered expression of six homologous genes (ClWOX1, ClWOX4, ClCLV1-like, ClCLV-like, ClCLE12, and ClPIN1-like) correlated positively with changes in cambial activities; moreover, these six genes might be directly involved in cambial function in Chinese fir. Further, the full-length cDNAs and DNAs for ClWOX1 and ClWOX4 were cloned and analyzed.
Conclusions
In this study, a large number of tissue/stage-specific unigene sequences were generated from the active growth stage of Chinese fir cambium. Transcriptome sequencing of Chinese fir not only provides extensive genetic resources for understanding the molecular mechanisms underlying cambial activities in Chinese fir, but also is expected to be an important foundation for future genetic studies of Chinese fir. This study indicates that ClWOX1 and ClWOX4 could be possible reverse genetic target genes for revealing the molecular mechanisms of cambial activities in Chinese fir.
doi:10.1371/journal.pone.0071562
PMCID: PMC3741379  PMID: 23951189
17.  Widening of xylem conduits in a conifer tree depends on the longer time of cell expansion downwards along the stem 
Journal of Experimental Botany  2011;63(2):837-845.
The diameter of vascular conduits increases towards the stem base. It has been suggested that this profile is an efficient anatomical feature for reducing the hydraulic resistance when trees grow taller. However, the mechanism that controls the cell diameter along the plant is not fully understood. The timing of cell differentiation along the stem was investigated. Cambial activity and cell differentiation were investigated in a Picea abies tree (11.5 m in height) collecting microsamples at nine different heights (from 1 to 9 m) along the stem with a 4 d time interval. Wood sections (8–12 μm thick) were stained and observed under a light microscope with polarized light to differentiate the developing xylem cells. Cell wall lignification was detected using cresyl violet acetate. The first enlarging cells appeared almost simultaneously along the tree axis indicating that cambium activation is not height-dependent. A significant increase in the duration of the cell expansion phase was observed towards the tree base: at 9 m from the ground, xylem cells expanded for 7 d, at 6 m for 14 d, and at 3 m for 19 d. The duration of the expansion phase is positively correlated with the lumen area of the tracheids (r2=0.68, P < 0.01) at the same height. By contrast, thickness of the cell wall of the earlywood did not show any trend with height. The lumen area of the conduits down the stem appeared linearly dependent on time during which differentiating cells remained in the expansion phase. However, the inductive signal of such long-distance patterned differentiation remains to be identified.
doi:10.1093/jxb/err309
PMCID: PMC3254684  PMID: 22016427
Auxin; cambium; cell differentiation; conduit tapering; Picea abies polar pattern growth
18.  Two Novel Techniques to Screen Abies Seedlings for Resistance to the Balsam Woolly Adelgid, Adelges piceae  
Since its introduction into the Southern Appalachians in the 1950s, the balsam woolly adelgid, Adelges piceae Ratzeburg (Hemiptera: Adelgidae), has devastated native populations of Fraser fir, Abies fraseri (Pursh) Poir. (Pinales: Pinaceae), and has become a major pest in Christmas tree plantations requiring expensive chemical treatments. Adelges piceae—resistant Fraser fir trees would lessen costs for the Christmas tree industry and assist in the restoration of native stands. Resistance screening is an important step in this process. Here, four studies directed toward the development of time— and cost—efficient techniques for screening are reported. In the first study, three methods to artificially infest seedlings of different ages were evaluated in a shade—covered greenhouse. Two—year—old seedlings had much lower infestation levels than 7 year—old seedlings. Placing infested bark at the base of the seedling was less effective than tying infested bark to the seedling or suspending infested bolts above the seedling. Although the two latter techniques resulted in similar densities on the seedlings, they each have positive and negative considerations. Attaching bark to uninfested trees is effective, but very time consuming. The suspended bolt method mimics natural infestation and is more economical than attaching bark, but care must be taken to ensure an even distribution of crawlers falling onto the seedlings. The second study focused on the density and distribution of crawlers falling from suspended bolts onto paper gridded into 7.6 × 7.6 cm cells. Crawler density in a 30 cm band under and to each side of the suspended bolt ranged from 400 to over 3000 crawlers per cell (1 to 55 crawlers per cm2). In the third study, excised branches from 4 year—old A. fraseri and A. vetchii seedlings were artificially infested with A. piceae to determine whether this technique may be useful for early resistance screening. The excised A. fraseri branches supported complete adelgid development (crawler to egg—laying adult), and very little adelgid development occurred on A. vetchii branches. The fourth study compared infestation levels and gouting response on excised versus intact branches of 4 year—old A. fraseri seedlings from three different seed sources, and excised branches from 4 year—old and 25 year—old trees. There were no differences in infestation levels between excised versus intact branches nor in very young versus mature trees; gouting response was observed only on intact branches.
doi:10.1673/031.011.15801
PMCID: PMC3391932  PMID: 22239164
Abies fraseri; artificial infestation; excised branches; Fraser fir; host resistance
19.  Relationships of tree height and diameter at breast height revisited: analyses of stem growth using 20-year data of an even-aged Chamaecyparis obtusa stand 
Tree Physiology  2013;33(1):106-118.
Stem diameter at breast height (DBH) and tree height (H) are commonly used measures of tree growth. We examined patterns of height growth and diameter growth along a stem using a 20-year record of an even-aged hinoki cypress (Chamaecyparis obtusa (Siebold & Zucc.) Endl.) stand. In the region of the stem below the crown (except for the butt swell), diameter growth rates (ΔD) at different heights tended to increase slightly from breast height upwards. This increasing trend was pronounced in suppressed trees, but not as much as the variation in ΔD among individual trees. Hence, ΔD below the crown can be regarded as generally being represented by the DBH growth rate (ΔDBH) of a tree. Accordingly, the growth rate of the stem cross-sectional area increased along the stem upwards in suppressed trees, but decreased in dominant trees. The stem diameter just below the crown base (DCB), the square of which is an index of the amount of leaves on a tree, was an important factor affecting ΔDBH. DCB also had a strong positive relationship with crown length. Hence, long-term changes in the DCB of a tree were associated with long-term changes in crown length, determined by the balance between the height growth rate (ΔH) and the rising rate of the crown base (ΔHCB). Within the crown, ΔD's were generally greater than the rates below the crown. Even dying trees (ΔD ≈ 0 below the crown) maintained ΔD > 0 within the crown and ΔH > 0 until about 5 years before death. This growth within the crown may be related to the need to produce new leaves to compensate for leaves lost owing to the longevity of the lower crown. These results explain the different time trajectories in DBH–H relationships among individual trees, and also the long-term changes in the DBH–H relationships. The view that a rise in the crown base is strongly related to leaf turnover helps to interpret DBH–H relationships.
doi:10.1093/treephys/tps127
PMCID: PMC3556985  PMID: 23303367
allometry; crown rise; linear mixed models; pipe model theory; stem form; stem taper
20.  Avian Species Richness in Relation to Intensive Forest Management Practices in Early Seral Tree Plantations 
PLoS ONE  2012;7(8):e43290.
Background
Managers of landscapes dedicated to forest commodity production require information about how practices influence biological diversity. Individual species and communities may be threatened if management practices truncate or simplify forest age classes that are essential for reproduction and survival. For instance, the degradation and loss of complex diverse forest in young age classes have been associated with declines in forest-associated Neotropical migrant bird populations in the Pacific Northwest, USA. These declines may be exacerbated by intensive forest management practices that reduce hardwood and broadleaf shrub cover in order to promote growth of economically valuable tree species in plantations.
Methodology and Principal Findings
We used a Bayesian hierarchical model to evaluate relationships between avian species richness and vegetation variables that reflect stand management intensity (primarily via herbicide application) on 212 tree plantations in the Coast Range, Oregon, USA. Specifically, we estimated the influence of broadleaf hardwood vegetation cover, which is reduced through herbicide applications, on bird species richness and individual species occupancy. Our model accounted for imperfect detection. We used average predictive comparisons to quantify the degree of association between vegetation variables and species richness. Both conifer and hardwood cover were positively associated with total species richness, suggesting that these components of forest stand composition may be important predictors of alpha diversity. Estimates of species richness were 35–80% lower when imperfect detection was ignored (depending on covariate values), a result that has critical implications for previous efforts that have examined relationships between forest composition and species richness.
Conclusion and Significance
Our results revealed that individual and community responses were positively associated with both conifer and hardwood cover. In our system, patterns of bird community assembly appear to be associated with stand management strategies that retain or increase hardwood vegetation while simultaneously regenerating the conifer cover in commercial tree plantations.
doi:10.1371/journal.pone.0043290
PMCID: PMC3419709  PMID: 22905249
21.  Cellulose and lignin biosynthesis is altered by ozone in wood of hybrid poplar (Populus tremula×alba) 
Journal of Experimental Botany  2011;62(10):3575-3586.
Wood formation in trees is a dynamic process that is strongly affected by environmental factors. However, the impact of ozone on wood is poorly documented. The objective of this study was to assess the effects of ozone on wood formation by focusing on the two major wood components, cellulose and lignin, and analysing any anatomical modifications. Young hybrid poplars (Populus tremula×alba) were cultivated under different ozone concentrations (50, 100, 200, and 300 nl l−1). As upright poplars usually develop tension wood in a non-set pattern, the trees were bent in order to induce tension wood formation on the upper side of the stem and normal or opposite wood on the lower side. Biosynthesis of cellulose and lignin (enzymes and RNA levels), together with cambial growth, decreased in response to ozone exposure. The cellulose to lignin ratio was reduced, suggesting that cellulose biosynthesis was more affected than that of lignin. Tension wood was generally more altered than opposite wood, especially at the anatomical level. Tension wood may be more susceptible to reduced carbon allocation to the stems under ozone exposure. These results suggested a coordinated regulation of cellulose and lignin deposition to sustain mechanical strength under ozone. The modifications of the cellulose to lignin ratio and wood anatomy could allow the tree to maintain radial growth while minimizing carbon cost.
doi:10.1093/jxb/err047
PMCID: PMC3130179  PMID: 21357770
Cellulose; lignin; ozone; poplar; tension wood
22.  How Stand Productivity Results from Size- and Competition-Dependent Growth and Mortality 
PLoS ONE  2011;6(12):e28660.
Background
A better understanding of the relationship between stand structure and productivity is required for the development of: a) scalable models that can accurately predict growth and yield dynamics for the world's forests; and b) stand management regimes that maximize wood and/or timber yield, while maintaining structural and species diversity.
Methods
We develop a cohort-based canopy competition model (“CAIN”), parameterized with inventory data from Ontario, Canada, to examine the relationship between stand structure and productivity. Tree growth, mortality and recruitment are quantified as functions of diameter and asymmetric competition, using a competition index (CAIh) defined as the total projected area of tree crowns at a given tree's mid-crown height. Stand growth, mortality, and yield are simulated for inventoried stands, and also for hypothetical stands differing in total volume and tree size distribution.
Results
For a given diameter, tree growth decreases as CAIh increases, whereas the probability of mortality increases. For a given CAIh, diameter growth exhibits a humped pattern with respect to diameter, whereas mortality exhibits a U-shaped pattern reflecting senescence of large trees. For a fixed size distribution, stand growth increases asymptotically with total density, whereas mortality increases monotonically. Thus, net productivity peaks at an intermediate volume of 100–150 m3/ha, and approaches zero at 250 m3/ha. However, for a fixed stand volume, mortality due to senescence decreases if the proportion of large trees decreases as overall density increases. This size-related reduction in mortality offsets the density-related increase in mortality, resulting in a 40% increase in yield.
Conclusions
Size-related variation in growth and mortality exerts a profound influence on the relationship between stand structure and productivity. Dense stands dominated by small trees yield more wood than stands dominated by fewer large trees, because the relative growth rate of small trees is higher, and because they are less likely to die.
doi:10.1371/journal.pone.0028660
PMCID: PMC3236764  PMID: 22174861
23.  Anatomical features that facilitate radial flow across growth rings and from xylem to cambium in Cryptomeria japonica 
Annals of Botany  2009;103(7):1145-1157.
Background and Aims
Although the lateral movement of water and gas in tree stems is an important issue for understanding tree physiology, as well as for the development of wood preservation technologies, little is known about the vascular pathways for radial flow. The aim of the current study was to understand the occurrence and the structure of anatomical features of sugi (Cryptomeria japonica) wood including the tracheid networks, and area fractions of intertracheary pits, tangential walls of ray cells and radial intercellular spaces that may be related to the radial permeability (conductivity) of the xylem.
Methods
Wood structure was investigated by light microscopy and scanning electron microscopy of traditional wood anatomical preparations and by a new method of exposed tangential faces of growth-ring boundaries.
Key Results
Radial wall pitting and radial grain in earlywood and tangential wall pitting in latewood provide a direct connection between subsequent tangential layers of tracheids. Bordered pit pairs occur frequently between earlywood and latewood tracheids on both sides of a growth-ring boundary. In the tangential face of the xylem at the interface with the cambium, the area fraction of intertracheary pit membranes is similar to that of rays (2·8 % and 2·9 %, respectively). The intercellular spaces of rays are continuous across growth-ring boundaries. In the samples, the mean cross-sectional area of individual radial intercellular spaces was 1·2 µm2 and their total volume was 0·06 % of that of the xylem and 2·07 % of the volume of rays.
Conclusions
A tracheid network can provide lateral apoplastic transport of substances in the secondary xylem of sugi. The intertracheid pits in growth-ring boundaries can be considered an important pathway, distinct from that of the rays, for transport of water across growth rings and from xylem to cambium.
doi:10.1093/aob/mcp050
PMCID: PMC2707907  PMID: 19258338
Cryptomeria japonica; bordered pit; intercellular spaces; lateral transport; tracheid network; water conduction; xylem permeability
24.  A Patchy Growth via Successive and Simultaneous Cambia: Key to Success of the Most Widespread Mangrove Species Avicennia marina? 
Annals of Botany  2007;101(1):49-58.
Background and Aims
Secondary growth via successive cambia has been intriguing researchers for decades. Insight into the mechanism of growth layer formation is, however, limited to the cellular level. The present study aims to clarify secondary growth via successive cambia in the mangrove species Avicennia marina on a macroscopic level, addressing the formation of the growth layer network as a whole. In addition, previously suggested effects of salinity on growth layer formation were reconsidered.
Methods
A 1-year cambial marking experiment was performed on 80 trees from eight sites in two mangrove forests in Kenya. Environmental (soil water salinity and nutrients, soil texture, inundation frequency) and tree characteristics (diameter, height, leaf area index) were recorded for each site. Both groups of variables were analysed in relation to annual number of growth layers, annual radial increment and average growth layer width of stem discs.
Key Results
Between trees of the same site, the number of growth layers formed during the 1-year study period varied from only part of a growth layer up to four growth layers, and was highly correlated to the corresponding radial increment (0–5 mm year–1), even along the different sides of asymmetric stem discs. The radial increment was unrelated to salinity, but the growth layer width decreased with increasing salinity and decreasing tree height.
Conclusions
A patchy growth mechanism was proposed, with an optimal growth at distinct moments in time at different positions around the stem circumference. This strategy creates the opportunity to form several growth layers simultaneously, as observed in 14 % of the studied trees, which may optimize tree growth under favourable conditions. Strong evidence was provided for a mainly endogenous trigger controlling cambium differentiation, with an additional influence of current environmental conditions in a trade-off between hydraulic efficiency and mechanical stability.
doi:10.1093/aob/mcm280
PMCID: PMC2701843  PMID: 18006508
Avicenia marina; cambial marking; mangrove; phloem; salinity; secondary growth; successive cambia; xylem
25.  Auxin-Responsive DR5 Promoter Coupled with Transport Assays Suggest Separate but Linked Routes of Auxin Transport during Woody Stem Development in Populus 
PLoS ONE  2013;8(8):e72499.
Polar auxin transport (PAT) is a major determinant of plant morphology and internal anatomy with important roles in vascular patterning, tropic growth responses, apical dominance and phyllotactic arrangement. Woody plants present a highly complex system of vascular development in which isolated bundles of xylem and phloem gradually unite to form concentric rings of conductive tissue. We generated several transgenic lines of hybrid poplar (Populus tremula x alba) with the auxin-responsive DR5 promoter driving GUS expression in order to visualize an auxin response during the establishment of secondary growth. Distinct GUS expression in the cambial zone and developing xylem-side derivatives supports the current view of this tissue as a major stream of basipetal PAT. However, we also found novel sites of GUS expression in the primary xylem parenchyma lining the outer perimeter of the pith. Strands of primary xylem parenchyma depart the stem as a leaf trace, and showed GUS expression as long as the leaves to which they were connected remained attached (i.e., until just prior to leaf abscission). Tissue composed of primary xylem parenchyma strands contained measurable levels of free indole-3-acetic acid (IAA) and showed basipetal transport of radiolabeled auxin (3H-IAA) that was both significantly faster than diffusion and highly sensitive to the PAT inhibitor NPA. Radiolabeled auxin was also able to move between the primary xylem parenchyma in the interior of the stem and the basipetal stream in the cambial zone, an exchange that was likely mediated by ray parenchyma cells. Our results suggest that (a) channeling of leaf-derived IAA first delineates isolated strands of pre-procambial tissue but then later shifts to include basipetal transport through the rapidly expanding xylem elements, and (b) the transition from primary to secondary vascular development is gradual, with an auxin response preceding the appearance of a unified and radially-organized vascular cambium.
doi:10.1371/journal.pone.0072499
PMCID: PMC3744479  PMID: 23977308

Results 1-25 (1015942)