Search tips
Search criteria

Results 1-25 (1567494)

Clipboard (0)

Related Articles

1.  Frequent concerted genetic mechanisms disrupt multiple components of the NRF2 inhibitor KEAP1/CUL3/RBX1 E3-ubiquitin ligase complex in thyroid cancer 
Molecular Cancer  2013;12:124.
Reactive oxygen species contribute to normal thyroid function. The NRF2 oxidative response pathway is frequently and constitutively activated in multiple tumor types, including papillary thyroid carcinoma (PTC). Genetic mechanisms underlying NRF2 pathway activation in PTC are not fully understood. Thus, we aimed to determine whether inactivating patterns of DNA-level alterations affect genes encoding for individual NRF2 inhibitor complex components (CUL3/KEAP1/RBX1) occur in PTC.
Combined patterns of epi/genetic alterations for KEAP1/CUL3/RBX1 E3 ubiquitin-ligase complex components were simultaneously interrogated for a panel of 310 PTC cases and 40 adjacent non-malignant tissues. Data were obtained from The Cancer Genome Atlas project. Enrichment of NRF2 pathway activation was assessed by gene-set enrichment analysis using transcriptome data. Our analyses revealed that PTC sustain a strikingly high frequency (80.6%) of disruption to multiple component genes of the NRF2 inhibitor complex. Hypermethylation is the predominant inactivating mechanism primarily affecting KEAP1 (70.6%) and CUL3 (20%), while copy number loss mostly affects RBX1 (16.8%). Concordantly, NRF2-associated gene expression signatures are positively and significantly enriched in PTC.
The KEAP1/CUL3/RBX1 E3-ubiquitin ligase complex is almost ubiquitously affected by multiple DNA-level mechanisms and downstream NRF2 pathway targets are activated in PTC. Given the importance of this pathway to normal thyroid function as well as to cancer; targeted inhibition of NRF2 regulators may impact strategies for therapeutic intervention involving this pathway.
PMCID: PMC4016213  PMID: 24138990
KEAP1/CUL3/RBX1 E3-ubiquitin ligase complex; Gene disruption; NRF2; Thyroid cancer
2.  Unique Pattern of Component Gene Disruption in the NRF2 Inhibitor KEAP1/CUL3/RBX1 E3-Ubiquitin Ligase Complex in Serous Ovarian Cancer 
BioMed Research International  2014;2014:159459.
The NFE2-related factor 2 (NRF2) pathway is critical to initiate responses to oxidative stress; however, constitutive activation occurs in different cancer types, including serous ovarian carcinomas (OVCA). The KEAP1/CUL3/RBX1 E3-ubiquitin ligase complex is a regulator of NRF2 levels. Hence, we investigated the DNA-level mechanisms affecting these genes in OVCA. DNA copy-number loss (CNL), promoter hypermethylation, mRNA expression, and sequence mutation for KEAP1, CUL3, and RBX1 were assessed in a cohort of 568 OVCA from The Cancer Genome Atlas. Almost 90% of cases exhibited loss-of-function alterations in any components of the NRF2 inhibitory complex. CNL is the most prominent mechanism of component disruption, with RBX1 being the most frequently disrupted component. These alterations were associated with reduced mRNA expression of complex components, and NRF2 target gene expression was positively enriched in 90% of samples harboring altered complex components. Disruption occurs through a unique DNA-level alteration pattern in OVCA. We conclude that a remarkably high frequency of DNA and mRNA alterations affects components of the KEAP1/CUL3/RBX1 complex, through a unique pattern of genetic mechanisms. Together, these results suggest a key role for the KEAP1/CUL3/RBX1 complex and NRF2 pathway deregulation in OVCA.
PMCID: PMC4121105  PMID: 25114896
3.  FAS and NF-κB signalling modulate dependence of lung cancers on mutant EGFR 
Nature  2011;471(7339):523-526.
Human lung adenocarcinomas with activating mutations in EGFR (epidermal growth factor receptor) often respond to treatment with EGFRtyrosine kinase inhibitors(TKIs),butthe magnitude of tumour regression is variable and transient1,2. This heterogeneity in treatment response could result from genetic modifiers that regulate the degree to which tumour cells are dependent on mutant EGFR. Through a pooled RNA interference screen, we show that knockdown of FAS and several components of the NF-κB pathway specifically enhanced cell death induced by the EGFR TKI erlotinib in EGFR-mutant lung cancer cells. Activation of NF-κB through overexpression of c-FLIP or IKK (also known as CFLAR and IKBKB, respectively), or silencing of IκB (also known as NFKBIA), rescued EGFR-mutant lung cancer cells from EGFR TKI treatment. Genetic or pharmacologic inhibition of NF-κB enhanced erlotinib-induced apoptosis in erlotinib-sensitive and erlotinib-resistant EGFR-mutant lung cancer models. Increased expression of the NF-κB inhibitor IκB predicted for improved response and survival in EGFR-mutant lung cancer patients treated with EGFR TKI. These data identify NF-κB as a potential companion drug target, together with EGFR, in EGFR-mutant lung cancers and provide insight into the mechanisms by which tumour cells escape from oncogene dependence.
PMCID: PMC3541675  PMID: 21430781
4.  CAND1-Mediated Substrate Adaptor Recycling Is Required for Efficient Repression of Nrf2 by Keap1 
Molecular and Cellular Biology  2006;26(4):1235-1244.
The bZIP transcription factor Nrf2 controls a genetic program that protects cells from oxidative damage and maintains cellular redox homeostasis. Keap1, a BTB-Kelch protein, is the major upstream regulator of Nrf2. Keap1 functions as a substrate adaptor protein for a Cul3-dependent E3 ubiquitin ligase complex to repress steady-state levels of Nrf2 and Nrf2-dependent transcription. Cullin-dependent ubiquitin ligase complexes have been proposed to undergo dynamic cycles of assembly and disassembly that enable substrate adaptor exchange or recycling. In this report, we have characterized the importance of substrate adaptor recycling for regulation of Keap1-mediated repression of Nrf2. Association of Keap1 with Cul3 was decreased by ectopic expression of CAND1 and was increased by small interfering RNA (siRNA)-mediated knockdown of CAND1. However, both ectopic overexpression and siRNA-mediated knockdown of CAND1 decreased the ability of Keap1 to target Nrf2 for ubiquitin-dependent degradation, resulting in stabilization of Nrf2 and activation of Nrf2-dependent gene expression. Neddylation of Cul3 on Lys 712 is required for Keap1-dependent ubiquitination of Nrf2 in vivo. However, the K712R mutant Cul3 molecule, which is not neddylated, can still assemble with Keap1 into a functional ubiquitin ligase complex in vitro. These results provide support for a model in which substrate adaptor recycling is required for efficient substrate ubiquitination by cullin-dependent E3 ubiquitin ligase complexes.
PMCID: PMC1367193  PMID: 16449638
5.  Dysfunctional KEAP1–NRF2 Interaction in Non-Small-Cell Lung Cancer 
PLoS Medicine  2006;3(10):e420.
Nuclear factor erythroid-2 related factor 2 (NRF2) is a redox-sensitive transcription factor that positively regulates the expression of genes encoding antioxidants, xenobiotic detoxification enzymes, and drug efflux pumps, and confers cytoprotection against oxidative stress and xenobiotics in normal cells. Kelch-like ECH-associated protein 1 (KEAP1) negatively regulates NRF2 activity by targeting it to proteasomal degradation. Increased expression of cellular antioxidants and xenobiotic detoxification enzymes has been implicated in resistance of tumor cells against chemotherapeutic drugs.
Methods and Findings
Here we report a systematic analysis of the KEAP1 genomic locus in lung cancer patients and cell lines that revealed deletion, insertion, and missense mutations in functionally important domains of KEAP1 and a very high percentage of loss of heterozygosity at 19p13.2, suggesting that biallelic inactivation of KEAP1 in lung cancer is a common event. Sequencing of KEAP1 in 12 cell lines and 54 non-small-cell lung cancer (NSCLC) samples revealed somatic mutations in KEAP1 in a total of six cell lines and ten tumors at a frequency of 50% and 19%, respectively. All the mutations were within highly conserved amino acid residues located in the Kelch or intervening region domain of the KEAP1 protein, suggesting that these mutations would likely abolish KEAP1 repressor activity. Evaluation of loss of heterozygosity at 19p13.2 revealed allelic losses in 61% of the NSCLC cell lines and 41% of the tumor samples. Decreased KEAP1 activity in cancer cells induced greater nuclear accumulation of NRF2, causing enhanced transcriptional induction of antioxidants, xenobiotic metabolism enzymes, and drug efflux pumps.
This is the first study to our knowledge to demonstrate that biallelic inactivation of KEAP1 is a frequent genetic alteration in NSCLC. Loss of KEAP1 function leading to constitutive activation of NRF2-mediated gene expression in cancer suggests that tumor cells manipulate the NRF2 pathway for their survival against chemotherapeutic agents.
Biallelic inactivation ofKEAP1, a frequent genetic alteration in NSCLC, is associated with activation of the NRF2 pathway which leads to expression of genes that contribute to resistance against chemotherapeutic drugs.
Editors' Summary
Lung cancer is the most common cause of cancer-related death worldwide. More than 150,000 people in the US alone die every year from this disease, which can be split into two basic types—small cell lung cancer and non-small-cell lung cancer (NSCLC). Four out of five lung cancers are NSCLCs, but both types are mainly caused by smoking. Exposure to chemicals in smoke produces changes (or mutations) in the genetic material of the cells lining the lungs that cause the cells to grow uncontrollably and to move around the body. In more than half the people who develop NSCLC, the cancer has spread out of the lungs before it is diagnosed, and therefore can't be removed surgically. Stage IV NSCLC, as this is known, is usually treated with chemotherapy—toxic chemicals that kill the fast-growing cancer cells. However, only 2% of people with stage IV NSCLC are still alive two years after their diagnosis, mainly because their cancer cells become resistant to chemotherapy. They do this by making proteins that destroy cancer drugs (detoxification enzymes) or that pump them out of cells (efflux pumps) and by making antioxidants, chemicals that protect cells against the oxidative damage caused by many chemotherapy agents.
Why Was This Study Done?
To improve the outlook for patients with lung cancer, researchers need to discover exactly how cancer cells become resistant to chemotherapy drugs. Detoxification enzymes, efflux pumps, and antioxidants normally protect cells from environmental toxins and from oxidants produced by the chemical processes of life. Their production is regulated by nuclear factor erythroid-2 related factor 2 (NRF2). The activity of this transcription factor (a protein that controls the expression of other proteins) is controlled by the protein Kelch-like ECH-associated protein 1 (KEAP1). KEAP1 holds NRF2 in the cytoplasm of the cell (the cytoplasm surrounds the cell's nucleus, where the genetic material is stored) when no oxidants are present and targets it for destruction. When oxidants are present, KEAP1 no longer interacts with NRF2, which moves into the nucleus and induces the expression of the proteins that protect the cell against oxidants and toxins. In this study, the researchers investigated whether changes in KEAP1 might underlie the drug resistance seen in lung cancer.
What Did the Researchers Do and Find?
The researchers looked carefully at the gene encoding KEAP1 in tissue taken from lung tumors and in several lung cancer cell lines—tumor cells that have been grown in a laboratory. They found mutations in parts of KEAP1 known to be important for its function in half the cell lines and a fifth of the tumor samples. They also found that about half of the samples had lost part of one copy of the KEAP1 gene—cells usually have two copies of each gene. Five of the six tumors with KEAP1 mutations had also lost one copy of KEAP1—geneticists call this biallelic inactivation. This means that these tumors should have no functional KEAP1. When the researchers checked this by staining the tumors for NRF2, they found that the tumor cells had more NRF2 than normal cells and that it accumulated in the nucleus. In addition, the tumor cells made more detoxification enzymes, efflux proteins, and antioxidants than normal cells. Finally, the researchers showed that lung cancer cells with KEAP1 mutations were more resistant to chemotherapy drugs than normal lung cells were.
What Do These Findings Mean?
These results indicate that biallelic inactivation of KEAP1 is a frequent genetic alteration in NSCLC and suggest that the loss of KEAP1 activity is one way that lung tumors can increase their NRF2 activity and develop resistance to chemotherapeutic drugs. More lung cancer samples need to be examined to confirm this result, and similar studies need to be done in other cancers to see whether loss of KEAP1 activity is a common mechanism by which tumors become resistant to chemotherapy. If such studies confirm that high NRF2 activity (either through mutation or by some other route) is often associated with a poor tumor response to chemotherapy, then the development of NRF2 inhibitors might help to improve treatment outcomes in patients with chemotherapy-resistant tumors.
Additional Information.
Please access these Web sites via the online version of this summary at
US National Cancer Institute information on lung cancer and on cancer treatment
MedlinePlus entries on small cell lung cancer and NSCLC Cancer Research UK information on lung cancer
Wikipedia entries on lung cancer and chemotherapy (note that Wikipedia is a free online encyclopedia that anyone can edit)
PMCID: PMC1584412  PMID: 17020408
6.  Keap1 Is a Redox-Regulated Substrate Adaptor Protein for a Cul3-Dependent Ubiquitin Ligase Complex 
Molecular and Cellular Biology  2004;24(24):10941-10953.
The bZIP transcription factor Nrf2 controls a genetic program that protects cells from oxidative damage and maintains cellular redox homeostasis. Keap1, a BTB-Kelch protein, is the major upstream regulator of Nrf2 and controls both the subcellular localization and steady-state levels of Nrf2. In this report, we demonstrate that Keap1 functions as a substrate adaptor protein for a Cul3-dependent E3 ubiquitin ligase complex. Keap1 assembles into a functional E3 ubiquitin ligase complex with Cul3 and Rbx1 that targets multiple lysine residues located in the N-terminal Neh2 domain of Nrf2 for ubiquitin conjugation both in vivo and in vitro. Keap1-dependent ubiquitination of Nrf2 is inhibited following exposure of cells to quinone-induced oxidative stress and sulforaphane, a cancer-preventive isothiocyanate. A mutant Keap1 protein containing a single cysteine-to-serine substitution at residue 151 within the BTB domain of Keap1 is markedly resistant to inhibition by either quinone-induced oxidative stress or sulforaphane. Inhibition of Keap1-dependent ubiquitination of Nrf2 correlates with decreased association of Keap1 with Cul3. Neither quinone-induced oxidative stress nor sulforaphane disrupts association between Keap1 and Nrf2. Our results suggest that the ability of Keap1 to assemble into a functional E3 ubiquitin ligase complex is the critical determinant that controls steady-state levels of Nrf2 in response to cancer-preventive compounds and oxidative stress.
PMCID: PMC533977  PMID: 15572695
7.  Regulation of Pattern Recognition Receptors by the Apolipoprotein A-I Mimetic Peptide 4F 
The apolipoprotein A-I (apoA-I) mimetic peptide 4F favors the differentiation of human monocytes to an anti-inflammatory phenotype and attenuates lipopolysaccharide (LPS)-induced inflammatory responses. We investigated effects of LPS on the Toll-like receptor (TLR) signaling pathway in 4F-differentiated monocyte-derived macrophages (MDMs).
Methods and Results
MDMs were pre-treated with 4F or vehicle for 7 days. 4F down-regulated cell surface TLRs (4, 5 and 6) as determined by flow cytometry. 4F attenuated the LPS-dependent up-regulation of genes encoding TLR1, 2 and 6 and genes of the MyD88-dependent (CD14, MyD88, TRAF6, IRAK4, and IKBKB) and MyD88-independent (IRF3, TBK1 and TRIF) pathways as determined by microarray analysis and qRT-PCR. Functional analyses of MDMs showed that 4F reduced LPS-dependent TLR4 recycling, phosphorylation of IκBα, activation and translocation of NF-κB and inhibited the secretion of TNF-α and IL-6 induced by LPS or lipoteichoic acid (LTA). These changes were associated with depletion of cellular cholesterol and caveolin, components of membrane lipid rafts.
These data suggest that disruption of rafts by 4F alters the assembly of TLR-ligand complexes in cell membranes and inhibits pro-inflammatory gene expression in MDMs, thus attenuating the responsiveness of macrophages to LPS.
PMCID: PMC4083685  PMID: 22982462
apolipoprotein mimetic peptide; inflammation; TLR signaling; macrophage; microarray analysis
8.  Nrf2 is controlled by two distinct β-TrCP recognition motifs in its Neh6 domain, one of which can be modulated by GSK-3 activity. 
Oncogene  2012;32(32):3765-3781.
Identification of regulatable mechanisms by which transcription factor NF-E2 p45-related factor 2 (Nrf2) is repressed will allow strategies to be designed that counter drug resistance associated with its up-regulation in tumours that harbour somatic mutations in Kelch-like ECH-associated protein-1 (Keap1), a gene that encodes a joint adaptor and substrate receptor for the Cul3-Rbx1/Roc1 ubiquitin ligase. We now show that mouse Nrf2 contains two binding sites for β-transducin repeat-containing protein (β-TrCP), which acts as a substrate receptor for the Skp1-Cul1-Rbx1/Roc1 ubiquitin ligase complex. Deletion of either binding site in Nrf2 decreased β-TrCP-mediated ubiquitylation of the transcription factor. The ability of one of the two β-TrCP-binding sites to serve as a degron could be both increased and decreased by manipulation of glycogen synthase kinase-3 (GSK-3) activity. Biotinylated-peptide pull-down assays identified DSGIS338 and DSAPGS378 as the two β-TrCP-binding motifs in Nrf2. Significantly, our pull-down assays indicated that β-TrCP binds a phosphorylated version of DSGIS more tightly than its non-phosphorylated counterpart, whereas this was not the case for DSAPGS. These data suggest that DSGIS, but not DSAPGS, contains a functional GSK-3 phosphorylation site. Activation of GSK-3 in Keap1-null mouse embryonic fibroblasts (MEFs), or in human lung A549 cells that contain mutant Keap1, by inhibition of the phosphoinositide 3-kinase (PI3K) – protein kinase B (PKB)/Akt pathway markedly reduced endogenous Nrf2 protein and decreased to 10-50% of normal the levels of mRNA for prototypic Nrf2-regulated enzymes, including the glutamate-cysteine ligase catalytic and modifier subunits, glutathione S-transferases Alpha-1 and Mu-1, heme oxygenase-1 and NAD(P)H:quinone oxidoreductase-1. Pre-treatment of Keap1−/− MEFs or A549 cells with the LY294002 PI3K inhibitor or the MK-2206 PKB/Akt inhibitor increased their sensitivity to acrolein, chlorambucil and cisplatin between 1.9-fold and 3.1-fold, and this was substantially attenuated by simultaneous pre-treatment with the GSK-3 inhibitor CT99021.
PMCID: PMC3522573  PMID: 22964642
Nrf2; β-TrCP; GSK-3; oxidative stress; drug resistance; ubiquitylation
9.  Monitoring Keap1–Nrf2 interactions in single live cells 
Biotechnology Advances  2014;32(6):1133-1144.
The transcription factor NF-E2 p45-related factor 2 (Nrf2) and its negative regulator Kelch-like ECH associated protein 1 (Keap1) control the expression of nearly 500 genes with diverse cytoprotective functions. Keap1, a substrate adaptor protein for Cullin3/Rbx1 ubiquitin ligase, normally continuously targets Nrf2 for degradation, but loses this ability in response to electrophiles and oxidants (termed inducers). Consequently, Nrf2 accumulates and activates transcription of its downstream target genes. Many inducers are phytochemicals, and cruciferous vegetables represent one of the richest sources of inducer activity among the most commonly used edible plants. Here we summarize the discovery of the isothiocyanate sulforaphane as a potent inducer which reacts with cysteine sensors of Keap1, leading to activation of Nrf2. We then describe the development of a quantitative Förster resonance energy transfer (FRET)-based methodology combined with multiphoton fluorescence lifetime imaging microscopy (FLIM) to investigate the interactions between Keap1 and Nrf2 in single live cells, and the effect of sulforaphane, and other cysteine-reactive inducers, on the dynamics of the Keap1–Nrf2 protein complex. We present the experimental evidence for the “cyclic sequential attachment and regeneration” or “conformation cycling” model of Keap1-mediated Nrf2 degradation. Finally, we discuss the implications of this mode of regulation of Nrf2 for achieving a fine balance under normal physiological conditions, and the consequences and mechanisms of disrupting this balance for tumor biology.
PMCID: PMC4165437  PMID: 24681086
Cytoprotective enzymes; FLIM; FRET; Keap1; Nrf2; Sulforaphane
10.  Dihydro-CDDO-Trifluoroethyl Amide (dh404), a Novel Nrf2 Activator, Suppresses Oxidative Stress in Cardiomyocytes 
PLoS ONE  2009;4(12):e8391.
Targeting Nrf2 signaling appears to be an attractive approach for the treatment of maladaptive cardiac remodeling and dysfunction; however, pharmacological modulation of the Nrf2 pathway in the cardiovascular system remains to be established. Herein, we report that a novel synthetic triterpenoid derivative, dihydro-CDDO-trifluoroethyl amide (dh404), activates Nrf2 and suppresses oxidative stress in cardiomyocytes. Dh404 interrupted the Keap1-Cul3-Rbx1 E3 ligase complex-mediated Nrf2 ubiquitination and subsequent degradation saturating the binding capacity of Keap1 to Nrf2, thereby rendering more Nrf2 to be translocated into the nuclei to activate Nrf2-driven gene transcription. A mutant Keap1 protein containing a single cysteine-to-serine substitution at residue 151 within the BTB domain of Keap1 was resistant to dh404-induced stabilization of Nrf2 protein. In addition, dh404 did not dissociate the interaction of Nrf2 with the Keap1-Cul3-Rbx1 E3 ligase complex. Thus, it is likely that dh404 inhibits the ability of Keap1-Cul3-Rbx1 E3 ligase complex to target Nrf2 for ubiquitination and degradation via modifying Cys-151 of Keap1 to change the conformation of the complex. Moreover, dh404 was able to stabilize Nrf2 protein, to enhance Nrf2 nuclear translocation, to activate Nrf2-driven transcription, and to suppress angiotensin II (Ang II)-induced oxidative stress in cardiomyocytes. Knockdown of Nrf2 almost blocked the anti-oxidative effect of dh404. Dh404 activated Nrf2 signaling in the heart. Taken together, dh404 appears to be a novel Nrf2 activator with a therapeutic potential for cardiac diseases via suppressing oxidative stress.
PMCID: PMC2791441  PMID: 20027226
11.  Array analysis for potential biomarker of gemcitabine identification in non-small cell lung cancer cell lines 
Gemcitabine is one of the most widely used drugs for the treatment of advanced Non-small cell lung cancer (NSCLC), but modest objective response rate of patients to gemcitabine makes it necessary to identify novel biomarkers for patients who can benefit from gemcitabine-based therapy and to improve the effect of clinical therapy. In this work, 3 NSCLC cell lines displaying different sensitivities to gemcitabine were applied for mRNA and microRNA (miR) expression chips to figure out the biomarkers for gemcitabine sensitivity. Genes whose expression increased dramatically in sensitive cell lines were mainly enriched in cell adhesion (NRP2, CXCR3, CDK5R1, IL32 and CDH2) and secretory granule (SLC11A1, GP5, CD36 and IGF1), while genes with significantly upregulated expression in resistant cell line were mainly clustered in methylation modification (HIST1H2BF, RAB23 and TP53) and oxidoreductase (TP53I3, CYP27B1 and SOD3). The most intriguing is the activation of Wnt/β-catenin signaling in gemcitabine resistant NSCLC cell lines. The miR-155, miR-10a, miR-30a, miR-24-2* and miR-30c-2* were upregulated in sensitive cell lines, while expression of miR-200c, miR-203, miR-885-5p, miR-195 and miR-25* was increased in resistant cell line. Genes with significantly altered expression and putatively mediated by the expression-changed miRs were mainly enriched in chromatin assembly (MAF, HLF, BCL2, and IGSF3), anti-apoptosis (BCL2, IGF1 and IKBKB), protein kinase (NRP2, PAK7 and CDK5R1) (all the above genes were upregulated in sensitive cells) and small GTPase mediated signal transduction (GNA13, RAP2A, ARHGAP5 and RAB23, down-regulated in sensitive cells). Our results might provide potential biomarkers for gemcitabine sensitivity prediction and putative targets to overcome gemcitabine resistance in NSCLC patients.
PMCID: PMC3759480  PMID: 24040438
Non-small cell lung cancer; gemcitabine; gene expression profiles; miR expression profiles
12.  miR-200c Regulates IL8 Expression by Targeting IKBKB: A Potential Mediator of Inflammation in Leiomyoma Pathogenesis 
PLoS ONE  2014;9(4):e95370.
We have previously reported that leiomyoma expressed lower levels of miR-200c and elevated IL8 as compared to paired myometrium. Here we addressed the regulatory functions of miR-200c on the expression of inflammatory mediators and cellular viability using leiomyomas and paired myometrium and their isolated primary smooth muscle cells. Our results indicated that gain-of function or knockdown of miR-200c in leiomyoma smooth muscle cells (LSMC) regulated IL8 mRNA and protein expression through direct targeting of IKBKB and alteration of NF-kB activity. Additionally, leiomyoma expressed higher levels of phosphorylated IKBKB with no significant difference in the level of IKBKB mRNA and protein as compared to matched myometrium. Gain-of function of miR-200c in LSMC resulted in decreased IkBαphosphorylation and p65 nuclear translocation, which led to decreased p65 transcriptional activity of IL8 promoter, and increased caspase 3/7 activity which was not reversible following IL8 restoration. Collectively, our results suggest that NF-κB signaling pathway is a target of miR-200c regulatory function, and low level of miR-200c expression in leiomyoma by transcriptional regulation of inflammatory mediators such as IL8, in part account for development of leiomyomas.
PMCID: PMC3995706  PMID: 24755559
13.  A functional map of NFκB signaling identifies novel modulators and multiple system controls 
Genome Biology  2007;8(6):R104.
Using cell-based genomic screens and functional assays, positive and negative modulators of NFκB signaling were identified and mapped onto the known NFκB signaling cascade.
The network of signaling pathways that leads to activation of the NFκB transcription factors is a branched structure with different inputs and cross-coupling with other signaling pathways. How these signals are integrated to produce specific, yet diverse responses is not clearly understood. To identify the components and structural features of the NFκB network, a series of cell-based, genomic screens was performed using a library of approximately 14,500 full-length genes.
A total of 154 positive and 88 negative modulators of NFκB signaling were identified. Using a series of dominant-negative constructs and functional assays, these modulators were mapped to the known NFκB signaling cascade. Most of the positive modulators acted upstream of the IκB kinase complex, supporting previous observations that the IκB kinases represent the primary point of convergence in the network. A number of negative modulators were localized downstream of the IκB kinase β (IKBKB) subunit, suggesting that they form an additional layer of negative control within the system. The expression of the modulators at the RNA level was distributed disproportionately across tissues, providing flexibility in network structure, and the number of positive and negative modulators present in a given tissue was highly correlated, suggesting that positive and negative regulation is balanced at the tissue level.
The relative locations of the modulators are consistent with an hourglass structure for the NFκB network that is characteristic of robust systems. The tissue distribution of the modulators and downstream location of the negative modulators serve as layers of control within the system that allow differential responses to different stimuli.
PMCID: PMC2394752  PMID: 17553156
14.  The Cullin3 Ubiquitin Ligase Functions as a Nedd8-bound Heterodimer 
Molecular Biology of the Cell  2007;18(3):899-909.
Cullins are members of a family of scaffold proteins that assemble multisubunit ubiquitin ligase complexes to confer substrate specificity for the ubiquitination pathway. Cullin3 (Cul3) forms a catalytically inactive BTB-Cul3-Rbx1 (BCR) ubiquitin ligase, which becomes functional upon covalent attachment of the ubiquitin homologue neural-precursor-cell-expressed and developmentally down regulated 8 (Nedd8) near the C terminus of Cul3. Current models suggest that Nedd8 activates cullin complexes by providing a recognition site for a ubiquitin-conjugating enzyme. Based on the following evidence, we propose that Nedd8 activates the BCR ubiquitin ligase by mediating the dimerization of Cul3. First, Cul3 is found as a neddylated heterodimer bound to a BTB domain-containing protein in vivo. Second, the formation of a Cul3 heterodimer is mediated by a Nedd8 molecule, which covalently attaches itself to one Cul3 molecule and binds to the winged-helix B domain at the C terminus of the second Cul3 molecule. Third, complementation experiments revealed that coexpression of two distinct nonfunctional Cul3 mutants can rescue the ubiquitin ligase function of the BCR complex. Likewise, a substrate of the BCR complex binds heterodimeric Cul3, suggesting that the Cul3 complex is active as a dimer. These findings not only provide insight into the architecture of the active BCR complex but also suggest assembly as a regulatory mechanism for activation of all cullin-based ubiquitin ligases.
PMCID: PMC1805106  PMID: 17192413
15.  BTB Protein Keap1 Targets Antioxidant Transcription Factor Nrf2 for Ubiquitination by the Cullin 3-Roc1 Ligase 
Molecular and Cellular Biology  2005;25(1):162-171.
The concentrations and functions of many eukaryotic proteins are regulated by the ubiquitin pathway, which consists of ubiquitin activation (E1), conjugation (E2), and ligation (E3). Cullins are a family of evolutionarily conserved proteins that assemble by far the largest family of E3 ligase complexes. Cullins, via a conserved C-terminal domain, bind with the RING finger protein Roc1 to recruit the catalytic function of E2. Via a distinct N-terminal domain, individual cullins bind to a protein motif present in multiple proteins to recruit specific substrates. Cullin 3 (Cul3), but not other cullins, binds directly with BTB domains to constitute a potentially large number of BTB-CUL3-ROC1 E3 ubiquitin ligases. Here we report that the human BTB-Kelch protein Keap1, a negative regulator of the antioxidative transcription factor Nrf2, binds to CUL3 and Nrf2 via its BTB and Kelch domains, respectively. The KEAP1-CUL3-ROC1 complex promoted NRF2 ubiquitination in vitro and knocking down Keap1 or CUL3 by short interfering RNA resulted in NRF2 protein accumulation in vivo. We suggest that Keap1 negatively regulates Nrf2 function in part by targeting Nrf2 for ubiquitination by the CUL3-ROC1 ligase and subsequent degradation by the proteasome. Blocking NRF2 degradation in cells expressing both KEAP1 and NRF2 by either inhibiting the proteasome activity or knocking down Cul3, resulted in NRF2 accumulation in the cytoplasm. These results may reconcile previously observed cytoplasmic sequestration of NRF2 by KEAP1 and suggest a possible regulatory step between KEAP1-NRF2 binding and NRF2 degradation.
PMCID: PMC538799  PMID: 15601839
16.  Stealing the spotlight: CUL4-DDB1 ubiquitin ligase docks WD40-repeat proteins to destroy 
Cell Division  2007;2:5.
Recent investigation of Cullin 4 (CUL4) has ushered this class of multiprotein ubiquitin E3 ligases to center stage as critical regulators of diverse processes including cell cycle regulation, developmental patterning, DNA replication, DNA damage and repair, and epigenetic control of gene expression. CUL4 associates with DNA Damage Binding protein 1 (DDB1) to assemble an ubiquitin E3 ligase that targets protein substrates for ubiquitin-dependent proteolysis. CUL4 ligase activity is also regulated by the covalent attachment of the ubiquitin-like protein NEDD8 to CUL4, or neddylation, and the COP9 signalosome complex (CSN) that removes this important modification. Recently, multiple WD40-repeat proteins (WDR) were found to interact with DDB1 and serve as the substrate-recognition subunits of the CUL4-DDB1 ubiquitin ligase. As more than 150–300 WDR proteins exist in the human genome, these findings impact a wide array of biological processes through CUL4 ligase-mediated proteolysis. Here, we review the recent progress in understanding the mechanism of CUL4 ubiquitin E3 ligase and discuss the architecture of CUL4-assembled E3 ubiquitin ligase complexes by comparison to CUL1-based E3s (SCF). Then, we will review several examples to highlight the critical roles of CUL4 ubiquitin ligase in genome stability, cell cycle regulation, and histone lysine methylation. Together, these studies provide insights into the mechanism of this novel ubiquitin ligase in the regulation of important biological processes.
PMCID: PMC1805432  PMID: 17280619
17.  The CUL3–KLHL3 E3 ligase complex mutated in Gordon's hypertension syndrome interacts with and ubiquitylates WNK isoforms: disease-causing mutations in KLHL3 and WNK4 disrupt interaction 
Biochemical Journal  2013;451(Pt 1):111-122.
The WNK (with no lysine kinase)–SPAK (SPS1-related proline/alanine-rich kinase)/OSR1 (oxidative stress-responsive kinase 1) signalling pathway plays an important role in controlling mammalian blood pressure by modulating the activity of ion co-transporters in the kidney. Recent studies have identified Gordon's hypertension syndrome patients with mutations in either CUL3 (Cullin-3) or the BTB protein KLHL3 (Kelch-like 3). CUL3 assembles with BTB proteins to form Cullin–RING E3 ubiquitin ligase complexes. To explore how a CUL3–KLHL3 complex might operate, we immunoprecipitated KLHL3 and found that it associated strongly with WNK isoforms and CUL3, but not with other components of the pathway [SPAK/OSR1 or NCC (Na+/Cl− co-transporter)/NKCC1 (Na+/K+/2Cl− co-transporter 1)]. Strikingly, 13 out of the 15 dominant KLHL3 disease mutations analysed inhibited binding to WNK1 or CUL3. The recombinant wild-type CUL3–KLHL3 E3 ligase complex, but not a disease-causing CUL3–KLHL3[R528H] mutant complex, ubiquitylated WNK1 in vitro. Moreover, siRNA (small interfering RNA)-mediated knockdown of CUL3 increased WNK1 protein levels and kinase activity in HeLa cells. We mapped the KLHL3 interaction site in WNK1 to a non-catalytic region (residues 479–667). Interestingly, the equivalent region in WNK4 encompasses residues that are mutated in Gordon's syndrome patients. Strikingly, we found that the Gordon's disease-causing WNK4[E562K] and WNK4[Q565E] mutations, as well as the equivalent mutation in the WNK1[479–667] fragment, abolished the ability to interact with KLHL3. These results suggest that the CUL3–KLHL3 E3 ligase complex regulates blood pressure via its ability to interact with and ubiquitylate WNK isoforms. The findings of the present study also emphasize that the missense mutations in WNK4 that cause Gordon's syndrome strongly inhibit interaction with KLHL3. This could elevate blood pressure by increasing the expression of WNK4 thereby stimulating inappropriate salt retention in the kidney by promoting activation of the NCC/NKCC2 ion co-transporters. The present study reveals how mutations that disrupt the ability of an E3 ligase to interact with and ubiquitylate a critical cellular substrate such as WNK isoforms can trigger a chronic disease such as hypertension.
PMCID: PMC3632089  PMID: 23387299
BTB domain; Cullin–RING E3 ligase (CRL); Kelch-like domain (KLHL domain); Na+/Cl− co-transporter (NCC); Na+/K+/2Cl− co-transporter 2 (NKCC2); SPS1-related proline/alanine-rich kinase/oxidative stress-responsive kinase 1 (SPAK/OSR1); ubiquitin; CUL3, Cullin-3; CRL, Cullin–RING E3 ligase; DCT, distal convoluted tubule; DTT, dithiothreitol; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GFP, green fluorescent protein; GST, glutathione transferase; HEK, human embryonic kidney; HRP, horseradish peroxidase; KEAP1, Kelch-like ECH-associated protein 1; KLHL3, Kelch-like 3; LC, liquid chromatography; NCC, Na+/Cl− co-transporter; NKCC, Na+/K+/2Cl− co-transporter; NRF2, NF-E2-related factor 2; OSR1, oxidative stress-responsive kinase 1; qRT-PCR, real time quantitative reverse transcription PCR; RBX1, RING-box 1, E3 ubiquitin protein ligase; RPL13A, ribosomal protein L13a; RT, reverse transcription; rTEV, recombinant tobacco etch virus; siRNA, small interfering RNA; SPAK, SPS1-related proline/alanine-rich kinase; TAL, thick ascending limb; TTBS, Tris-buffered saline containing Tween 20; UBE1, ubiquitin-like modifier-activating enzyme 1; UBE2D3, ubiquitin-conjugating enzyme E2 D3; WNK, with no lysine kinase
18.  Interactions between HIV-1 Vif and human ElonginB-ElonginC are important for CBF-β binding to Vif 
Retrovirology  2013;10:94.
The HIV-1 accessory factor Vif is necessary for efficient viral infection in non-permissive cells. Vif antagonizes the antiviral activity of human cytidine deaminase APOBEC3 proteins that confer the non-permissive phenotype by tethering them (APOBEC3DE/3F/3G) to the Vif-CBF-β-ElonginB-ElonginC-Cullin5-Rbx (Vif-CBF-β-EloB-EloC-Cul5-Rbx) E3 complex to induce their proteasomal degradation. EloB and EloC were initially reported as positive regulatory subunits of the Elongin (SIII) complex. Thereafter, EloB and EloC were found to be components of Cul-E3 complexes, contributing to proteasomal degradation of specific substrates. CBF-β is a newly identified key regulator of Vif function, and more information is needed to further clarify its regulatory mechanism. Here, we comprehensively investigated the functions of EloB (together with EloC) in the Vif-CBF-β-Cul5 E3 ligase complex.
The results revealed that: (1) EloB (and EloC) positively affected the recruitment of CBF-β to Vif. Both knockdown of endogenous EloB and over-expression of its mutant with a 34-residue deletion in the COOH-terminal tail (EloBΔC34/EBΔC34) impaired the Vif-CBF-β interaction. (2) Introduction of both the Vif SLQ → AAA mutant (VifΔSLQ, which dramatically impairs Vif-EloB-EloC binding) and the Vif PPL → AAA mutant (VifΔPPL, which is thought to reduce Vif-EloB binding) could reduce CBF-β binding. (3) EloB-EloC but not CBF-β could greatly enhance the folding of full-length Vif in Escherichia coli. (4) The over-expression of EloB or the N-terminal ubiquitin-like (UbL) domain of EloB could significantly improve the stability of Vif/VifΔSLQ/VifΔPPL through the region between residues 9 and 14.
Our results indicate that the Vif interaction with EloB-EloC may contribute to recruitment of CBF-β to Vif, demonstrating that the EloB C-teminus may play a role in improving Vif function and that the over-expression of EloB results in Vif stabilization.
PMCID: PMC3765967  PMID: 23988114
CBF-β; Elongin BC complex; HIV-1; Protein binding; Ubiquitin-protein ligases; Vif
19.  Structure of the BTB Domain of Keap1 and Its Interaction with the Triterpenoid Antagonist CDDO 
PLoS ONE  2014;9(6):e98896.
The protein Keap1 is central to the regulation of the Nrf2-mediated cytoprotective response, and is increasingly recognized as an important target for therapeutic intervention in a range of diseases involving excessive oxidative stress and inflammation. The BTB domain of Keap1 plays key roles in sensing environmental electrophiles and in mediating interactions with the Cul3/Rbx1 E3 ubiquitin ligase system, and is believed to be the target for several small molecule covalent activators of the Nrf2 pathway. However, despite structural information being available for several BTB domains from related proteins, there have been no reported crystal structures of Keap1 BTB, and this has precluded a detailed understanding of its mechanism of action and interaction with antagonists. We report here the first structure of the BTB domain of Keap1, which is thought to contain the key cysteine residue responsible for interaction with electrophiles, as well as structures of the covalent complex with the antagonist CDDO/bardoxolone, and of the constitutively inactive C151W BTB mutant. In addition to providing the first structural confirmation of antagonist binding to Keap1 BTB, we also present biochemical evidence that adduction of Cys 151 by CDDO is capable of inhibiting the binding of Cul3 to Keap1, and discuss how this class of compound might exert Nrf2 activation through disruption of the BTB-Cul3 interface.
PMCID: PMC4045772  PMID: 24896564
20.  Transcriptome Profiling of the Theca Interna from Bovine Ovarian Follicles during Atresia 
PLoS ONE  2014;9(6):e99706.
The theca interna is a specialized stromal layer that envelops each growing ovarian follicle. It contains capillaries, fibroblasts, immune cells and the steroidogenic cells that synthesize androgens for conversion to estradiol by the neighboring granulosa cells. During reproductive life only a small number of follicles will grow to a sufficient size to ovulate, whereas the majority of follicles will undergo regression/atresia and phagocytosis by macrophages. To identify genes which are differentially regulated in the theca interna during follicular atresia, we undertook transcriptome profiling of the theca interna from healthy (n = 10) and antral atretic (n = 5) bovine follicles at early antral stages (<5 mm). Principal Component Analyses and hierarchical classification of the signal intensity plots for the arrays showed primary clustering into two groups, healthy and atretic. A total of 543 probe sets were differentially expressed between the atretic and healthy theca interna. Further analyses of these genes by Ingenuity Pathway Analysis and Gene Ontology Enrichment Analysis Toolkit software found most of the genes being expressed were related to cytokines, hormones and receptors as well as the cell cycle and DNA replication. Cell cycle genes which encode components of the replicating chromosome complex and mitotic spindle were down-regulated in atretic theca interna, whereas stress response and inflammation-related genes such as TP53, IKBKB and TGFB1 were up-regulated. In addition to cell cycle regulators, upstream regulators that were predicted to be inhibited included Retinoblastoma 1, E2 transcription factor 1, and hepatocyte growth factor. Our study suggests that during antral atresia of small follicles in the theca interna, arrest of cell cycle and DNA replication occurs rather than up- regulation of apoptosis-associated genes as occurs in granulosa cells.
PMCID: PMC4067288  PMID: 24956388
21.  USP15 negatively regulates Nrf2 through deubiquitination of Keap1 
Molecular cell  2013;51(1):68-79.
Nrf2 is a master regulator of the antioxidant response. Under basal conditions Nrf2 is polyubiquitinated by the Keap1-Cul3-E3 ligase and degraded by the 26S-proteasome. In response to Nrf2 inducers there is a switch in polyubiquitination from Nrf2 to Keap1. Currently, regulation of the Nrf2-Keap1 pathway by ubiquitination is largely understood. However, the mechanism responsible for removal of ubiquitin conjugated to Nrf2 or Keap1 remains unknown. Here we report that the deubiquitinating enzyme, USP15, specifically deubiquitinates Keap1, which suppresses the Nrf2 pathway. We demonstrated that deubiquitinated-Keap1 incorporates into the Keap1-Cul3-E3 ligase complex more efficiently, enhancing the complex stability and enzymatic activity. Consequently, there is an increase in Nrf2 protein degradation and a reduction in Nrf2 target gene expression. Furthermore, USP15-siRNA enhances chemoresistance of cells through upregulation of Nrf2. These findings further our understanding of how the Nrf2-Keap1 pathway is regulated, which is imperative in targeting this pathway for chemoprevention or chemotherapy.
PMCID: PMC3732832  PMID: 23727018
Nrf2; Keap1; USP15; Cul3; ubiquitination; deubiquitination; antioxidant response; chemoresistance
22.  SIRT1 pathway dysregulation in the smoke-exposed airway epithelium and lung tumor tissue 
Cancer research  2012;72(22):5702-5711.
Cigarette smoke produces a molecular “field of injury” in epithelial cells lining the respiratory tract. However, the specific signaling pathways that are altered in the airway of smokers and the signaling processes responsible for the transition from smoking-induced airway damage to lung cancer remain unknown. In this study, we use a genomic approach to study the signaling processes associated with tobacco smoke exposure and lung cancer. First, we developed and validated pathway-specific gene expression signatures in bronchial airway epithelium that reflect activation of signaling pathways relevant to tobacco-exposure including ATM, BCL2, GPX1, NOS2, IKBKB, and SIRT1. Using these profiles and four independent gene expression datasets, we found that SIRT1 activity is significantly up-regulated in cytologically normal bronchial airway epithelial cells from active smokers compared to non-smokers. In contrast, this activity is strikingly down-regulated in non-small cell lung cancer. This pattern of signaling modulation was unique to SIRT1, and down-regulation of SIRT1 activity is confined to tumors from smokers. Decreased activity of SIRT1 was validated using genomic analyses of mouse models of lung cancer and biochemical testing of SIRT1 activity in patient lung tumors. Together, our findings indicate a role of SIRT1 in response to smoke and a potential role in repressing lung cancer. Further, our findings suggest that the airway gene-expression signatures derived in this study can provide novel insights into signaling pathways altered in the “field of inury” induced by tobacco smoke and thus may impact strategies for prevention of tobacco-related lung cancer.
PMCID: PMC4053174  PMID: 22986747
23.  Microarray Analyses of Peripheral Blood Cells Identifies Unique Gene Expression Signature in Psoriatic Arthritis 
Molecular Medicine  2005;11(1-12):21-29.
Psoriatic arthritis (PsA) is a chronic and erosive form of arthritis of unknown cause. We aimed to characterize the PsA phenotype using gene expression profiling and comparing it with healthy control subjects and patients rheumatoid arthritis (RA). Peripheral blood cells (PBCs) of 19 patients with active PsA and 19 age- and sex-matched control subjects were used in the analyses of PsA, with blood samples collected in PaxGene tubes. A significant alteration in the pattern of expression of 313 genes was noted in the PBCs of PsA patients on Affymetrix U133A arrays: 257 genes were expressed at reduced levels in PsA, and 56 genes were expressed at increased levels, compared with controls. Downregulated genes tended to cluster to certain chromosomal regions, including those containing the psoriasis susceptibility loci PSORS1 and PSORS2. Among the genes with the most significantly reduced expression were those involved in downregulation or suppression of innate and acquired immune responses, such as SIGIRR, STAT3, SHP1, IKBKB, IL-11RA, and TCF7, suggesting inappropriate control that favors proin-flammatory responses. Several members of the MAPK signaling pathway and tumor suppressor genes showed reduced expression. Three proinflammatory genes—S100A8, S100A12, and thioredoxin—showed increased expression. Logistic regression and recursive partitioning analysis determined that one gene, nucleoporin 62 kDa, could correctly classify all controls and 94.7% of the PsA patients. Using a dataset of 48 RA samples for comparison, the combination of two genes, MAP3K3 followed by CACNA1S, was enough to correctly classify all RA and PsA patients. Thus, PBC gene expression profiling identified a gene expression signature that differentiated PsA from RA, and PsA from controls. Several novel genes were differentially expressed in PsA and may prove to be diagnostic biomarkers or serve as new targets for the development of therapies.
PMCID: PMC1449519  PMID: 16622521
24.  Identification of novel molecular regulators of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in breast cancer cells by RNAi screening 
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) binds to its receptors, TRAIL-receptor 1 (TRAIL-R1) and TRAIL-receptor 2 (TRAIL-R2), leading to apoptosis by activation of caspase-8 and the downstream executioner caspases, caspase-3 and caspase-7 (caspase-3/7). Triple-negative breast cancer (TNBC) cell lines with a mesenchymal phenotype are sensitive to TRAIL, whereas other breast cancer cell lines are resistant. The underlying mechanisms that control TRAIL sensitivity in breast cancer cells are not well understood. Here, we performed small interfering RNA (siRNA) screens to identify molecular regulators of the TRAIL pathway in breast cancer cells.
We conducted siRNA screens of the human kinome (691 genes), phosphatome (320 genes), and about 300 additional genes in the mesenchymal TNBC cell line MB231. Forty-eight hours after transfection of siRNA, parallel screens measuring caspase-8 activity, caspase-3/7 activity, or cell viability were conducted in the absence or presence of TRAIL for each siRNA, relative to a negative control siRNA (siNeg). A subset of genes was screened in cell lines representing epithelial TNBC (MB468), HER2-amplified breast cancer (SKBR3), and estrogen receptor-positive breast cancer (T47D). Selected putative negative regulators of the TRAIL pathway were studied by using small-molecule inhibitors.
The primary screens in MB231 identified 150 genes, including 83 kinases, 4 phosphatases, and 63 nonkinases, as potential negative regulators of TRAIL. The identified genes are involved in many critical cell processes, including apoptosis, growth factor-receptor signaling, cell-cycle regulation, transcriptional regulation, and DNA repair. Gene-network analysis identified four genes (PDPK1, IKBKB, SRC, and BCL2L1) that formed key nodes within the interaction network of negative regulators. A secondary screen of a subset of the genes identified in additional cell lines representing different breast cancer subtypes and sensitivities to TRAIL validated and extended these findings. Further, we confirmed that small-molecule inhibition of SRC or BCL2L1, in combination with TRAIL, sensitizes breast cancer cells to TRAIL-induced apoptosis, including cell lines resistant to TRAIL-induced cytotoxicity.
These data identify novel molecular regulators of TRAIL-induced apoptosis in breast cancer cells and suggest strategies for the enhanced application of TRAIL as a therapy for breast cancer.
PMCID: PMC4053258  PMID: 24745479
25.  The caenorhabditis elegans CDT-2 ubiquitin ligase is required for attenuation of EGFR signalling in vulva precursor cells 
Attenuation of the EGFR (Epidermal Growth Factor Receptor) signalling cascade is crucial to control cell fate during development. A candidate-based RNAi approach in C. elegans identified CDT-2 as an attenuator of LET-23 (EGFR) signalling. Human CDT2 is a component of the conserved CDT2/CUL4/DDB1 ubiquitin ligase complex that plays a critical role in DNA replication and G2/M checkpoint. Within this complex, CDT2 is responsible for substrate recognition. This ubiquitin ligase complex has been shown in various organisms, including C. elegans, to target the replication-licensing factor CDT1, and the CDK inhibitor p21. However, no previous link to EGFR signalling has been identified.
We have characterised CDT-2's role during vulva development and found that it is a novel attenuator of LET-23 signalling. CDT-2 acts redundantly with negative modulators of LET-23 signalling and CDT-2 or CUL-4 downregulation causes persistent expression of the egl-17::cfp transgene, a marker of LET-23 signalling during vulva development. In addition, we show that CDT-2 physically interacts with SEM-5 (GRB2), a known negative modulator of LET-23 signalling that directly binds LET-23, and provide genetic evidence consistent with CDT-2 functioning at or downstream of LET-23. Interestingly, both SEM-5 and CDT-2 were identified independently in a screen for genes involved in receptor-mediated endocytosis in oocytes, suggesting that attenuation of LET-23 by CDT-2 might be through regulation of endocytosis.
In this study, we have shown that CDT-2 and CUL-4, members of the CUL-4/DDB-1/CDT-2 E3 ubiquitin ligase complex attenuate LET-23 signalling in vulval precursor cells. In future, it will be interesting to investigate the potential link to endocytosis and to determine whether other signalling pathways dependent on endocytosis, e.g. LIN-12 (Notch) could be regulated by this ubiquitin ligase complex. This work has uncovered a novel function for the CUL-4/DDB-1/CDT-2 E3 ligase that may be relevant for its mammalian oncogenic activity.
PMCID: PMC2984460  PMID: 20977703

Results 1-25 (1567494)