PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1297062)

Clipboard (0)
None

Related Articles

1.  Primary Prevention of Gestational Diabetes Mellitus and Large-for-Gestational-Age Newborns by Lifestyle Counseling: A Cluster-Randomized Controlled Trial 
PLoS Medicine  2011;8(5):e1001036.
In a cluster-randomized trial, Riitta Luoto and colleagues find that counseling on diet and activity can reduce the birthweight of babies born to women at risk of developing gestational diabetes mellitus (GDM), but fail to find an effect on GDM.
Background
Our objective was to examine whether gestational diabetes mellitus (GDM) or newborns' high birthweight can be prevented by lifestyle counseling in pregnant women at high risk of GDM.
Method and Findings
We conducted a cluster-randomized trial, the NELLI study, in 14 municipalities in Finland, where 2,271 women were screened by oral glucose tolerance test (OGTT) at 8–12 wk gestation. Euglycemic (n = 399) women with at least one GDM risk factor (body mass index [BMI] ≥25 kg/m2, glucose intolerance or newborn's macrosomia (≥4,500 g) in any earlier pregnancy, family history of diabetes, age ≥40 y) were included. The intervention included individual intensified counseling on physical activity and diet and weight gain at five antenatal visits. Primary outcomes were incidence of GDM as assessed by OGTT (maternal outcome) and newborns' birthweight adjusted for gestational age (neonatal outcome). Secondary outcomes were maternal weight gain and the need for insulin treatment during pregnancy. Adherence to the intervention was evaluated on the basis of changes in physical activity (weekly metabolic equivalent task (MET) minutes) and diet (intake of total fat, saturated and polyunsaturated fatty acids, saccharose, and fiber). Multilevel analyses took into account cluster, maternity clinic, and nurse level influences in addition to age, education, parity, and prepregnancy BMI. 15.8% (34/216) of women in the intervention group and 12.4% (22/179) in the usual care group developed GDM (absolute effect size 1.36, 95% confidence interval [CI] 0.71–2.62, p = 0.36). Neonatal birthweight was lower in the intervention than in the usual care group (absolute effect size −133 g, 95% CI −231 to −35, p = 0.008) as was proportion of large-for-gestational-age (LGA) newborns (26/216, 12.1% versus 34/179, 19.7%, p = 0.042). Women in the intervention group increased their intake of dietary fiber (adjusted coefficient 1.83, 95% CI 0.30–3.25, p = 0.023) and polyunsaturated fatty acids (adjusted coefficient 0.37, 95% CI 0.16–0.57, p<0.001), decreased their intake of saturated fatty acids (adjusted coefficient −0.63, 95% CI −1.12 to −0.15, p = 0.01) and intake of saccharose (adjusted coefficient −0.83, 95% CI −1.55 to −0.11, p  =  0.023), and had a tendency to a smaller decrease in MET minutes/week for at least moderate intensity activity (adjusted coefficient 91, 95% CI −37 to 219, p = 0.17) than women in the usual care group. In subgroup analysis, adherent women in the intervention group (n = 55/229) had decreased risk of GDM (27.3% versus 33.0%, p = 0.43) and LGA newborns (7.3% versus 19.5%, p = 0.03) compared to women in the usual care group.
Conclusions
The intervention was effective in controlling birthweight of the newborns, but failed to have an effect on maternal GDM.
Trial registration
Current Controlled Trials ISRCTN33885819
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Gestational diabetes mellitus (GDM) is diabetes that is first diagnosed during pregnancy. Like other types of diabetes, it is characterized by high levels of sugar (glucose) in the blood. Blood-sugar levels are normally controlled by insulin, a hormone that the pancreas releases when blood-sugar levels rise after meals. Hormonal changes during pregnancy and the baby's growth demands increase a pregnant woman's insulin needs and, if her pancreas cannot make enough insulin, GDM develops. Risk factors for GDM, which occurs in 2%–14% of pregnant women, include a high body-mass index (a measure of body fat), excessive weight gain or low physical activity during pregnancy, high dietary intake of polyunsaturated fats, glucose intolerance (an indicator of diabetes) or the birth of a large baby in a previous pregnancy, and a family history of diabetes. GDM is associated with an increased rate of cesarean sections, induced deliveries, birth complications, and large-for-gestational-age (LGA) babies (gestation is the time during which the baby develops within the mother). GDM, which can often be controlled by diet and exercise, usually disappears after pregnancy but increases a woman's subsequent risk of developing diabetes.
Why Was This Study Done?
Although lifestyle changes can be used to control GDM, it is not known whether similar changes can prevent GDM developing (“primary prevention”). In this cluster-randomized controlled trial, the researchers investigate whether individual intensified counseling on physical activity, diet, and weight gain integrated into routine maternity care visits can prevent the development of GDM and the occurrence of LGA babies among newborns. In a cluster-randomized controlled trial, groups of patients rather than individual patients are randomly assigned to receive alternative interventions, and the outcomes in different “clusters” are compared. In this trial, each cluster is a municipality in the Pirkanmaa region of Finland.
What Did the Researchers Do and Find?
The researchers enrolled 399 women, each of whom had a normal blood glucose level at 8–12 weeks gestation but at least one risk factor for GDM. Women in the intervention municipalities received intensified counseling on physical activity at 8–12 weeks' gestation, dietary counseling at 16–18 weeks' gestation, and further physical activity and dietary counseling at each subsequent antenatal visits. Women in the control municipalities received some dietary but little physical activity counseling as part of their usual care. 23.3% and 20.2% of women in the intervention and usual care groups, respectively, developed GDM, a nonstatistically significant difference (that is, a difference that could have occurred by chance). However, the average birthweight and the proportion of LGA babies were both significantly lower in the intervention group than in the usual care group. Food frequency questionnaires completed by the women indicated that, on average, those in the intervention group increased their intake of dietary fiber and polyunsaturated fatty acids and decreased their intake of saturated fatty acids and sucrose as instructed during counseling, The amount of moderate physical activity also tended to decrease less as pregnancy proceeded in the intervention group than in usual care group. Finally, compared to the usual care group, significantly fewer of the 24% of women in the intervention group who actually met dietary and physical activity targets (“adherent” women) developed GDM.
What Do These Findings Mean?
These findings indicate that intensified counseling on diet and physical activity is effective in controlling the birthweight of babies born to women at risk of developing GDM and encourages at least some of them to alter their lifestyle. However, the findings fail to show that the intervention reduces the risk of GDM because of the limited power of the study. The power of a study—the probability that it will achieve a statistically significant result—depends on the study's size and on the likely effect size of the intervention. Before starting this study, the researchers calculated that they would need 420 participants to see a statistically significant difference between the groups if their intervention reduced GDM incidence by 40%. This estimated effect size was probably optimistic and therefore the study lacked power. Nevertheless, the analyses performed among adherent women suggest that lifestyle changes might be a way to prevent GDM and so larger studies should now be undertaken to test this potential primary prevention intervention.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001036.
The US National Institute of Diabetes and Digestive and Kidney Diseases provides information for patients on diabetes and on gestational diabetes (in English and Spanish)
The UK National Health Service Choices website also provides information for patients on diabetes and on gestational diabetes, including links to other useful resources
The MedlinePlus Encyclopedia has pages on diabetes and on gestational diabetes; MedlinePlus provides links to additional resources on diabetes and on gestational diabetes (in English and Spanish)
More information on this trial of primary prevention of GDM is available
doi:10.1371/journal.pmed.1001036
PMCID: PMC3096610  PMID: 21610860
2.  Implementation of a lifestyle intervention for type 2 diabetes prevention in Dutch primary care: opportunities for intervention delivery 
BMC Family Practice  2012;13:79.
Background
As in clinical practice resources may be limited compared to experimental settings, translation of evidence-based lifestyle interventions into daily life settings is challenging. In this study we therefore evaluated the implementation of the APHRODITE lifestyle intervention for the prevention of type 2 diabetes in Dutch primary care. Based on this evaluation we discuss opportunities for refining intervention delivery.
Methods
A 2.5-year intervention was performed in 14 general practices in the Netherlands among individuals at high risk for type 2 diabetes (FINDRISC-score ≥ 13) (n = 479) and was compared to usual care (n = 446). Intervention consisted of individual lifestyle counselling by nurse practitioners (n = 24) and GPs (n = 48) and group-consultations. Drop-out and attendance were registered during the programme. After the intervention, satisfaction with the programme and perceived implementation barriers were assessed with questionnaires.
Results
Drop-out was modest (intervention: 14.6 %; usual care: 13.2 %) and attendance at individual consultations was high (intervention: 80-97 %; usual care: 86-94 %). Providers were confident about diabetes prevention by lifestyle intervention in primary care. Participants were more satisfied with counselling from nurse practitioners than from GPs. A major part of the GPs reported low self-efficacy regarding dietary guidance. Lack of counselling time (60 %), participant motivation (12 %), and financial reimbursement (11 %) were regarded by providers as important barriers for intervention implementation.
Conclusions
High participant compliance and a positive attitude of providers make primary care a suitable setting for diabetes prevention by lifestyle counselling. Results support a role for the nurse practitioner as the key player in guiding lifestyle modification. Further research is needed on strategies that could increase cost-effectiveness, such as more stringent criteria for participant inclusion, group-counselling, more tailor-made counselling and integration of screening and / or interventions for different disorders.
doi:10.1186/1471-2296-13-79
PMCID: PMC3457845  PMID: 22873753
Type 2 diabetes; Primary care; Lifestyle intervention; Implementation
3.  Gene-Lifestyle Interaction and Type 2 Diabetes: The EPIC InterAct Case-Cohort Study 
PLoS Medicine  2014;11(5):e1001647.
In this study, Wareham and colleagues quantified the combined effects of genetic and lifestyle factors on risk of T2D in order to inform strategies for prevention. The authors found that the relative effect of a type 2 diabetes genetic risk score is greater in younger and leaner participants, and the high absolute risk associated with obesity at any level of genetic risk highlights the importance of universal rather than targeted approaches to lifestyle intervention.
Please see later in the article for the Editors' Summary
Background
Understanding of the genetic basis of type 2 diabetes (T2D) has progressed rapidly, but the interactions between common genetic variants and lifestyle risk factors have not been systematically investigated in studies with adequate statistical power. Therefore, we aimed to quantify the combined effects of genetic and lifestyle factors on risk of T2D in order to inform strategies for prevention.
Methods and Findings
The InterAct study includes 12,403 incident T2D cases and a representative sub-cohort of 16,154 individuals from a cohort of 340,234 European participants with 3.99 million person-years of follow-up. We studied the combined effects of an additive genetic T2D risk score and modifiable and non-modifiable risk factors using Prentice-weighted Cox regression and random effects meta-analysis methods. The effect of the genetic score was significantly greater in younger individuals (p for interaction  = 1.20×10−4). Relative genetic risk (per standard deviation [4.4 risk alleles]) was also larger in participants who were leaner, both in terms of body mass index (p for interaction  = 1.50×10−3) and waist circumference (p for interaction  = 7.49×10−9). Examination of absolute risks by strata showed the importance of obesity for T2D risk. The 10-y cumulative incidence of T2D rose from 0.25% to 0.89% across extreme quartiles of the genetic score in normal weight individuals, compared to 4.22% to 7.99% in obese individuals. We detected no significant interactions between the genetic score and sex, diabetes family history, physical activity, or dietary habits assessed by a Mediterranean diet score.
Conclusions
The relative effect of a T2D genetic risk score is greater in younger and leaner participants. However, this sub-group is at low absolute risk and would not be a logical target for preventive interventions. The high absolute risk associated with obesity at any level of genetic risk highlights the importance of universal rather than targeted approaches to lifestyle intervention.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Worldwide, more than 380 million people currently have diabetes, and the condition is becoming increasingly common. Diabetes is characterized by high levels of glucose (sugar) in the blood. Blood sugar levels are usually controlled by insulin, a hormone released by the pancreas after meals (digestion of food produces glucose). In people with type 2 diabetes (the commonest type of diabetes), blood sugar control fails because the fat and muscle cells that normally respond to insulin by removing excess sugar from the blood become less responsive to insulin. Type 2 diabetes can often initially be controlled with diet and exercise (lifestyle changes) and with antidiabetic drugs such as metformin and sulfonylureas, but patients may eventually need insulin injections to control their blood sugar levels. Long-term complications of diabetes, which include an increased risk of heart disease and stroke, reduce the life expectancy of people with diabetes by about ten years compared to people without diabetes.
Why Was This Study Done?
Type 2 diabetes is thought to originate from the interplay between genetic and lifestyle factors. But although rapid progress is being made in understanding the genetic basis of type 2 diabetes, it is not known whether the consequences of adverse lifestyles (for example, being overweight and/or physically inactive) differ according to an individual's underlying genetic risk of diabetes. It is important to investigate this question to inform strategies for prevention. If, for example, obese individuals with a high level of genetic risk have a higher risk of developing diabetes than obese individuals with a low level of genetic risk, then preventative strategies that target lifestyle interventions to obese individuals with a high genetic risk would be more effective than strategies that target all obese individuals. In this case-cohort study, researchers from the InterAct consortium quantify the combined effects of genetic and lifestyle factors on the risk of type 2 diabetes. A case-cohort study measures exposure to potential risk factors in a group (cohort) of people and compares the occurrence of these risk factors in people who later develop the disease with those who remain disease free.
What Did the Researchers Do and Find?
The InterAct study involves 12,403 middle-aged individuals who developed type 2 diabetes after enrollment (incident cases) into the European Prospective Investigation into Cancer and Nutrition (EPIC) and a sub-cohort of 16,154 EPIC participants. The researchers calculated a genetic type 2 diabetes risk score for most of these individuals by determining which of 49 gene variants associated with type 2 diabetes each person carried, and collected baseline information about exposure to lifestyle risk factors for type 2 diabetes. They then used various statistical approaches to examine the combined effects of the genetic risk score and lifestyle factors on diabetes development. The effect of the genetic score was greater in younger individuals than in older individuals and greater in leaner participants than in participants with larger amounts of body fat. The absolute risk of type 2 diabetes, expressed as the ten-year cumulative incidence of type 2 diabetes (the percentage of participants who developed diabetes over a ten-year period) increased with increasing genetic score in normal weight individuals from 0.25% in people with the lowest genetic risk scores to 0.89% in those with the highest scores; in obese people, the ten-year cumulative incidence rose from 4.22% to 7.99% with increasing genetic risk score.
What Do These Findings Mean?
These findings show that in this middle-aged cohort, the relative association with type 2 diabetes of a genetic risk score comprised of a large number of gene variants is greatest in individuals who are younger and leaner at baseline. This finding may in part reflect the methods used to originally identify gene variants associated with type 2 diabetes, and future investigations that include other genetic variants, other lifestyle factors, and individuals living in other settings should be undertaken to confirm this finding. Importantly, however, this study shows that young, lean individuals with a high genetic risk score have a low absolute risk of developing type 2 diabetes. Thus, this sub-group of individuals is not a logical target for preventative interventions. Rather, suggest the researchers, the high absolute risk of type 2 diabetes associated with obesity at any level of genetic risk highlights the importance of universal rather than targeted approaches to lifestyle intervention.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001647.
The US National Diabetes Information Clearinghouse provides information about diabetes for patients, health-care professionals and the general public, including detailed information on diabetes prevention (in English and Spanish)
The UK National Health Service Choices website provides information for patients and carers about type 2 diabetes and about living with diabetes; it also provides people's stories about diabetes
The charity Diabetes UK provides detailed information for patients and carers in several languages, including information on healthy lifestyles for people with diabetes
The UK-based non-profit organization Healthtalkonline has interviews with people about their experiences of diabetes
The Genetic Landscape of Diabetes is published by the US National Center for Biotechnology Information
More information on the InterAct study is available
MedlinePlus provides links to further resources and advice about diabetes and diabetes prevention (in English and Spanish)
doi:10.1371/journal.pmed.1001647
PMCID: PMC4028183  PMID: 24845081
4.  Behavioural Interventions for Type 2 Diabetes 
Executive Summary
In June 2008, the Medical Advisory Secretariat began work on the Diabetes Strategy Evidence Project, an evidence-based review of the literature surrounding strategies for successful management and treatment of diabetes. This project came about when the Health System Strategy Division at the Ministry of Health and Long-Term Care subsequently asked the secretariat to provide an evidentiary platform for the Ministry’s newly released Diabetes Strategy.
After an initial review of the strategy and consultation with experts, the secretariat identified five key areas in which evidence was needed. Evidence-based analyses have been prepared for each of these five areas: insulin pumps, behavioural interventions, bariatric surgery, home telemonitoring, and community based care. For each area, an economic analysis was completed where appropriate and is described in a separate report.
To review these titles within the Diabetes Strategy Evidence series, please visit the Medical Advisory Secretariat Web site, http://www.health.gov.on.ca/english/providers/program/mas/mas_about.html,
Diabetes Strategy Evidence Platform: Summary of Evidence-Based Analyses
Continuous Subcutaneous Insulin Infusion Pumps for Type 1 and Type 2 Adult Diabetics: An Evidence-Based Analysis
Behavioural Interventions for Type 2 Diabetes: An Evidence-Based Analysis
Bariatric Surgery for People with Diabetes and Morbid Obesity: An Evidence-Based Summary
Community-Based Care for the Management of Type 2 Diabetes: An Evidence-Based Analysis
Home Telemonitoring for Type 2 Diabetes: An Evidence-Based Analysis
Application of the Ontario Diabetes Economic Model (ODEM) to Determine the Cost-effectiveness and Budget Impact of Selected Type 2 Diabetes Interventions in Ontario
Objective
The objective of this report is to determine whether behavioural interventions1 are effective in improving glycemic control in adults with type 2 diabetes.
Background
Diabetes is a serious chronic condition affecting millions of people worldwide and is the sixth leading cause of death in Canada. In 2005, an estimated 8.8% of Ontario’s population had diabetes, representing more than 816,000 Ontarians. The direct health care cost of diabetes was $1.76 billion in the year 2000 and is projected to rise to a total cost of $3.14 billion by 2016. Much of this cost arises from the serious long-term complications associated with the disease including: coronary heart disease, stroke, adult blindness, limb amputations and kidney disease.
Type 2 diabetes accounts for 90–95% of diabetes and while type 2 diabetes is more prevalent in people aged 40 years and older, prevalence in younger populations is increasing due to a rise in obesity and physical inactivity in children.
Data from the United Kingdom Prospective Diabetes Study (UKPDS) has shown that tight glycemic control can significantly reduce the risk of developing serious complications in type 2 diabetics. Despite physicians’ and patients’ knowledge of the importance of glycemic control, Canadian data has shown that only 38% of patients with diabetes have HbA1C levels in the optimal range of 7% or less. This statistic highlights the complexities involved in the management of diabetes, which is characterized by extensive patient involvement in addition to the support provided by physicians. An enormous demand is, therefore, placed on patients to self-manage the physical, emotional and psychological aspects of living with a chronic illness.
Despite differences in individual needs to cope with diabetes, there is general agreement for the necessity of supportive programs for patient self-management. While traditional programs were didactic models with the goal of improving patients’ knowledge of their disease, current models focus on behavioural approaches aimed at providing patients with the skills and strategies required to promote and change their behaviour.
Several meta-analyses and systematic reviews have demonstrated improved health outcomes with self-management support programs in type 2 diabetics. They have all, however, either looked at a specific component of self-management support programs (i.e. self-management education) or have been conducted in specific populations. Most reviews are also qualitative and do not clearly define the interventions of interest, making findings difficult to interpret. Moreover, heterogeneity in the interventions has led to conflicting evidence on the components of effective programs. There is thus much uncertainty regarding the optimal design and delivery of these programs by policymakers.
Evidence-Based Analysis of Effectiveness
Research Questions
Are behavioural interventions effective in improving glycemic control in adults with type 2 diabetes?
Is the effectiveness of the intervention impacted by intervention characteristics (e.g. delivery of intervention, length of intervention, mode of instruction, interventionist etc.)?
Inclusion Criteria
English Language
Published between January 1996 to August 2008
Type 2 diabetic adult population (>18 years)
Randomized controlled trials (RCTs)
Systematic reviews, or meta-analyses
Describing a multi-faceted self-management support intervention as defined by the 2007 Self-Management Mapping Guide (1)
Reporting outcomes of glycemic control (HbA1c) with extractable data
Studies with a minimum of 6-month follow up
Exclusion Criteria
Studies with a control group other than usual care
Studies with a sample size <30
Studies without a clearly defined intervention
Outcomes of Interest
Primary outcome: glycemic control (HbA1c)
Secondary outcomes: systolic blood pressure (SBP) control, lipid control, change in smoking status, weight change, quality of life, knowledge, self-efficacy, managing psychosocial aspects of diabetes, assessing dissatisfaction and readiness to change, and setting and achieving diabetes goals.
Search Strategy
A search was performed in OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, the Cumulative Index to Nursing & Allied Health Literature (CINAHL), The Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA) for studies published between January 1996 and August 2008. Abstracts were reviewed by a single author and studies meeting the inclusion criteria outlined above were obtained. Data on population characteristics, glycemic control outcomes, and study design were extracted. Reference lists were also checked for relevant studies. The quality of the evidence was assessed as being either high, moderate, low, or very low according to the GRADE methodology.
Summary of Findings
The search identified 638 citations published between 1996 and August 2008, of which 12 met the inclusion criteria and one was a meta-analysis (Gary et al. 2003). The remaining 11 studies were RCTs (9 were used in the meta-analysis) and only one was defined as small (total sample size N=47).
Summary of Participant Demographics across studies
A total of 2,549 participants were included in the 11 identified studies. The mean age of participants reported was approximately 58 years and the mean duration of diabetes was approximately 6 years. Most studies reported gender with a mean percentage of females of approximately 67%. Of the eleven studies, two focused only on women and four included only Hispanic individuals. All studies evaluated type 2 diabetes patients exclusively.
Study Characteristics
The studies were conducted between 2002 and 2008. Approximately six of 11 studies were carried out within the USA, with the remaining studies conducted in the UK, Sweden, and Israel (sample size ranged from 47 to 824 participants). The quality of the studies ranged from moderate to low with four of the studies being of moderate quality and the remaining seven of low quality (based on the Consort Checklist). Differences in quality were mainly due to methodological issues such as inadequate description of randomization, sample size calculation allocation concealment, blinding and uncertainty of the use of intention-to-treat (ITT) analysis. Patients were recruited from several settings: six studies from primary or general medical practices, three studies from the community (e.g. via advertisements), and two from outpatient diabetes clinics. A usual care control group was reported in nine of 11 of the studies and two studies reported some type of minimal diabetes care in addition to usual care for the control group.
Intervention Characteristics
All of the interventions examined in the studies were mapped to the 2007 Self-management Mapping Guide. The interventions most often focused on problem solving, goal setting and encouraging participants to engage in activities that protect and promote health (e.g. modifying behaviour, change in diet, and increase physical activity). All of the studies examined comprehensive interventions targeted at least two self-care topics (e.g. diet, physical activity, blood glucose monitoring, foot care, etc.). Despite the homogeneity in the aims of the interventions, there was substantial clinical heterogeneity in other intervention characteristics such as duration, intensity, setting, mode of delivery (group vs. individual), interventionist, and outcomes of interest (discussed below).
Duration, Intensity and Mode of Delivery
Intervention durations ranged from 2 days to 1 year, with many falling into the range of 6 to 10 weeks. The rest of the interventions fell into categories of ≤ 2 weeks (2 studies), 6 months (2 studies), or 1 year (3 studies). Intensity of the interventions varied widely from 6 hours over 2 days, to 52 hours over 1 year; however, the majority consisted of interventions of 6 to 15 hours. Both individual and group sessions were used to deliver interventions. Group counselling was used in five studies as a mode of instruction, three studies used both individual and group sessions, and one study used individual sessions as its sole mode of instruction. Three studies also incorporated the use of telephone support as part of the intervention.
Interventionists and Setting
The following interventionists were reported (highest to lowest percentage, categories not mutually exclusive): nurse (36%), dietician (18%), physician (9%), pharmacist (9%), peer leader/community worker (18%), and other (36%). The ‘other’ category included interventionists such as consultants and facilitators with unspecified professional backgrounds. The setting of most interventions was community-based (seven studies), followed by primary care practices (three studies). One study described an intervention conducted in a pharmacy setting.
Outcomes
Duration of follow up of the studies ranged from 6 months to 8 years with a median follow-up duration of 12 months. Nine studies followed up patients at a minimum of two time points. Despite clear reporting of outcomes at follow up time points, there was poor reporting on whether the follow up was measured from participant entry into study or from end of intervention. All studies reported measures of glycemic control, specifically HbA1c levels. BMI was measured in five studies, while body weight was reported in two studies. Cholesterol was examined in three studies and blood pressure reduction in two. Smoking status was only examined in one of the studies. Additional outcomes examined in the trials included patient satisfaction, quality of life, diabetes knowledge, diabetes medication reduction, and behaviour modification (i.e. daily consumption of fruits/vegetables, exercise etc). Meta-analysis of the studies identified a moderate but significant reduction in HbA1c levels -0.44% 95%CI: -0.60, -0.29) for behavioural interventions in comparison to usual care for adults with type 2 diabetes. Subgroup analyses suggested the largest effects in interventions which were of at least duration and interventions in diabetics with higher baseline HbA1c (≥9.0). The quality of the evidence according to GRADE for the overall estimate was moderate and the quality of evidence for the subgroup analyses was identified as low.
Summary of Meta-Analysis of Studies Investigating the Effectiveness of Behavioural Interventions on HbA1c in Patients with Type 2 Diabetes.
Based on one study
Conclusions
Based on moderate quality evidence, behavioural interventions as defined by the 2007 Self-management mapping guide (Government of Victoria, Australia) produce a moderate reduction in HbA1c levels in patients with type 2 diabetes compared with usual care.
Based on low quality evidence, the interventions with the largest effects are those:
- in diabetics with higher baseline HbA1c (≥9.0)
- in which the interventions were of at least 1 year in duration
PMCID: PMC3377516  PMID: 23074526
5.  Cost-Effectiveness of Interventions to Promote Physical Activity: A Modelling Study 
PLoS Medicine  2009;6(7):e1000110.
Linda Cobiac and colleagues model the costs and health outcomes associated with interventions to improve physical activity in the population, and identify specific interventions that are likely to be cost-saving.
Background
Physical inactivity is a key risk factor for chronic disease, but a growing number of people are not achieving the recommended levels of physical activity necessary for good health. Australians are no exception; despite Australia's image as a sporting nation, with success at the elite level, the majority of Australians do not get enough physical activity. There are many options for intervention, from individually tailored advice, such as counselling from a general practitioner, to population-wide approaches, such as mass media campaigns, but the most cost-effective mix of interventions is unknown. In this study we evaluate the cost-effectiveness of interventions to promote physical activity.
Methods and Findings
From evidence of intervention efficacy in the physical activity literature and evaluation of the health sector costs of intervention and disease treatment, we model the cost impacts and health outcomes of six physical activity interventions, over the lifetime of the Australian population. We then determine cost-effectiveness of each intervention against current practice for physical activity intervention in Australia and derive the optimal pathway for implementation. Based on current evidence of intervention effectiveness, the intervention programs that encourage use of pedometers (Dominant) and mass media-based community campaigns (Dominant) are the most cost-effective strategies to implement and are very likely to be cost-saving. The internet-based intervention program (AUS$3,000/DALY), the GP physical activity prescription program (AUS$12,000/DALY), and the program to encourage more active transport (AUS$20,000/DALY), although less likely to be cost-saving, have a high probability of being under a AUS$50,000 per DALY threshold. GP referral to an exercise physiologist (AUS$79,000/DALY) is the least cost-effective option if high time and travel costs for patients in screening and consulting an exercise physiologist are considered.
Conclusions
Intervention to promote physical activity is recommended as a public health measure. Despite substantial variability in the quantity and quality of evidence on intervention effectiveness, and uncertainty about the long-term sustainability of behavioural changes, it is highly likely that as a package, all six interventions could lead to substantial improvement in population health at a cost saving to the health sector.
Please see later in the article for Editors' Summary
Editors' Summary
Background
The human body needs regular physical activity throughout life to stay healthy. Physical activity—any bodily movement produced by skeletal muscles that uses energy—helps to maintain a healthy body weight and to prevent or delay heart disease, stroke, type 2 diabetes, colon cancer, and breast cancer. In addition, physically active people feel better and live longer than physically inactive people. For an adult, 30 minutes of moderate physical activity—walking briskly, gardening, swimming, or cycling—at least five times a week is sufficient to promote and maintain health. But at least 60% of the world's population does not do even this modest amount of physical activity. The daily lives of people in both developed and developing countries are becoming increasingly sedentary. People are sitting at desks all day instead of doing manual labor; they are driving to work in cars instead of walking or cycling; and they are participating less in physical activities during their leisure time.
Why Was This Study Done?
In many countries, the chronic diseases that are associated with physical inactivity are now a major public-health problem; globally, physical inactivity causes 1.9 million deaths per year. Clearly, something has to be done about this situation. Luckily, there is no shortage of interventions designed to promote physical activity, ranging from individual counseling from general practitioners to mass-media campaigns. But which intervention or package of interventions will produce the optimal population health benefits relative to cost? Although some studies have examined the cost-effectiveness of individual interventions, different settings for analysis and use of different methods and assumptions make it difficult to compare results and identify which intervention approaches should be give priority by policy makers. Furthermore, little is known about the cost-effectiveness of packages of interventions. In this study, the researchers investigate the cost-effectiveness in Australia (where physical inactivity contributes to 10% of deaths) of a package of interventions designed to promote physical activity in adults using a standardized approach (ACE-Prevention) to the assessment of the cost-effectiveness of health-care interventions.
What Did the Researchers Do and Find?
The researchers selected six interventions for their study: general practitioner “prescription” of physical activity; general practitioner referral to an exercise physiologist; a mass-media campaign to promote physical activity; the TravelSmart car use reduction program; a campaign to encourage the use of pedometers to increase physical activity; and an internet-based program. Using published data on the effects of physical activity on the amount of illness and death caused by breast and colon cancer, heart disease, stroke, and type 2 diabetes and on the effectiveness of each intervention, the researchers calculated the health outcomes of each intervention in disability-adjusted life years (DALY; a year of healthy life lost because of premature death or disability) averted over the lifetime of the Australian population. They also calculated the costs associated with each intervention offset by the costs associated with the five conditions listed above. These analyses showed that the pedometer program and the mass-media campaign were likely to be the most cost-effective interventions. These interventions were also most likely to be cost-saving. Referral to an exercise physiologist was the least cost-effective intervention. The other three interventions, though unlikely to be cost-saving, were likely to be cost-effective. Finally, a package of all six interventions would be cost-effective and would avert 61,000 DALYs, a third of what could be achieved if every Australian did 30 minutes of physical activity five times a week.
What Do These Findings Mean?
As in all modeling studies, these findings depend on the quality of the data and on the assumptions included by the researchers in their calculations. Unfortunately, there was substantial variability in the quantity and quality of evidence on the effectiveness of each intervention and uncertainty about the long-term effects of each intervention. Nevertheless, the findings presented in this study suggest that the assessment of the cost-effectiveness of a combination of interventions designed to promote physical activity might provide policy makers with some guidance about the best way to reduce the burden of disease caused by physical inactivity. More specifically, for Australia, these findings suggest that the package of the six interventions considered here is likely to provide a cost-effective way to substantially improve the health of the nation.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000110.
The World Health Organization provides information about physical activity and health (in several languages); it also provides an explanation of DALYs
The US Centers for Disease Control and Prevention provides information on physical activity for different age groups and for health professionals
The UK National Health Service information source Choices also explains the benefits of regular physical activity
MedlinePlus has links to other resources about exercise and physical fitness (in English and Spanish)
The University of Queensland Web site has more information on ACE-Prevention (Assessing Cost-Effectiveness Prevention)
doi:10.1371/journal.pmed.1000110
PMCID: PMC2700960  PMID: 19597537
6.  Health improvement and prevention study (HIPS) - evaluation of an intervention to prevent vascular disease in general practice 
BMC Family Practice  2010;11:57.
Background
The Health Improvement and Prevention Study (HIPS) study aims to evaluate the capacity of general practice to identify patients at high risk for developing vascular disease and to reduce their risk of vascular disease and diabetes through behavioural interventions delivered in general practice and by the local primary care organization.
Methods/Design
HIPS is a stratified randomized controlled trial involving 30 general practices in NSW, Australia. Practices are randomly allocated to an 'intervention' or 'control' group. General practitioners (GPs) and practice nurses (PNs) are offered training in lifestyle counselling and motivational interviewing as well as practice visits and patient educational resources. Patients enrolled in the trial present for a health check in which the GP and PN provide brief lifestyle counselling based on the 5As model (ask, assess, advise, assist, and arrange) and refer high risk patients to a diet education and physical activity program. The program consists of two individual visits with a dietician or exercise physiologist and four group sessions, after which patients are followed up by the GP or PN. In each practice 160 eligible patients aged between 40 and 64 years are invited to participate in the study, with the expectation that 40 will be eligible and willing to participate. Evaluation data collection consists of (1) a practice questionnaire, (2) GP and PN questionnaires to assess preventive care attitudes and practices, (3) patient questionnaire to assess self-reported lifestyle behaviours and readiness to change, (4) physical assessment including weight, height, body mass index (BMI), waist circumference and blood pressure, (5) a fasting blood test for glucose and lipids, (6) a clinical record audit, and (7) qualitative data collection. All measures are collected at baseline and 12 months except the patient questionnaire which is also collected at 6 months. Study outcomes before and after the intervention is compared between intervention and control groups after adjusting for baseline differences and clustering at the level of the practice.
Discussion
This study will provide evidence of the effectiveness of a primary care intervention to reduce the risk of cardiovascular disease and diabetes in general practice patients. It will inform current policies and programs designed to prevent these conditions in Australian primary health care.
Trial Registration
ACTRN12607000423415
doi:10.1186/1471-2296-11-57
PMCID: PMC2923104  PMID: 20687956
7.  A cluster-randomized controlled trial to study the effectiveness of a protocol-based lifestyle program to prevent type 2 diabetes in people with impaired fasting glucose 
BMC Family Practice  2013;14:184.
Background
Effective diabetes prevention strategies that can be implemented in daily practice, without huge amounts of money and a lot of personnel are needed. The Dutch Diabetes Federation developed a protocol for coaching people with impaired fasting glucose (IFG; according to WHO criteria: 6.1 to 6.9 mmol/l) to a sustainable healthy lifestyle change: ‘the road map towards diabetes prevention’ (abbreviated: Road Map: RM). This protocol is applied within a primary health care setting by a general practitioner and a practice nurse. The feasibility and (cost-) effectiveness of care provided according to the RM protocol will be evaluated.
Methods/Design
A cluster randomised clinical trial is performed, with randomisation at the level of the general practices. Both opportunistic screening and active case finding took place among clients with high risk factors for diabetes. After IFG is diagnosed, motivated people in the intervention practices receive 3–4 consultations by the practice nurse within one year. During these consultations they are coached to increase the level of physical activity and healthy dietary habits. If necessary, participants are referred to a dietician, physiotherapist, lifestyle programs and/or local sports activities. The control group receives care as usual. The primary outcome measure in this study is change in Body Mass Index (BMI). Secondary outcome measures are waist circumference, physical activity, total and saturated fat intake, systolic blood pressure, blood glucose, total cholesterol, HDL cholesterol, triglycerides and behaviour determinants like risk perception, perceived knowledge and motivation. Based on a sample size calculation 120 people in each group are needed. Measurements are performed at baseline, and after one (post-intervention) and two years follow up. Anthropometrics and biochemical parameters are assessed in the practices and physical activity, food intake and their determinants by a validated questionnaire. The cost-effectiveness is estimated by using the Chronic Disease Model (CDM). Feasibility will be tested by interviews among health care professionals.
Discussion
The results of the study will provide valuable information for both health care professionals and policy makers. If this study shows the RM to be both effective and cost-effective the protocol can be implemented on a large scale.
Trial registration
ISRCTN41209683. Ethical approval number: NL31342.075.10.
doi:10.1186/1471-2296-14-184
PMCID: PMC4219396  PMID: 24295397
Diabetes; Prevention; Healthy life style intervention; Impaired fasting glucose; Primary care health services; Randomized clinical trial
8.  Multiple behaviour change intervention and outcomes in recently diagnosed type 2 diabetes: the ADDITION-Plus randomised controlled trial 
Diabetologia  2014;57(7):1308-1319.
Aims/hypothesis
The aim of this study was to assess whether or not a theory-based behaviour change intervention delivered by trained and quality-assured lifestyle facilitators can achieve and maintain improvements in physical activity, dietary change, medication adherence and smoking cessation in people with recently diagnosed type 2 diabetes.
Methods
An explanatory randomised controlled trial was conducted in 34 general practices in Eastern England (Anglo–Danish–Dutch Study of Intensive Treatment in People with Screen Detected Diabetes in Primary Care-Plus [ADDITION-Plus]). In all, 478 patients meeting eligibility criteria (age 40 to 69 years with recently diagnosed screen or clinically detected diabetes) were individually randomised to receive either intensive treatment (n = 239) or intensive treatment plus a theory-based behaviour change intervention led by a facilitator external to the general practice team (n = 239). Randomisation was central and independent using a partial minimisation procedure to balance stratifiers between treatment arms. Facilitators taught patients skills to facilitate change in and maintenance of key health behaviours, including goal setting, self-monitoring and building habits. Primary outcomes included physical activity energy expenditure (individually calibrated heart rate monitoring and movement sensing), change in objectively measured fruit and vegetable intake (plasma vitamin C), medication adherence (plasma drug levels) and smoking status (plasma cotinine levels) at 1 year. Measurements, data entry and laboratory analysis were conducted with staff unaware of participants’ study group allocation.
Results
Of 475 participants still alive, 444 (93%; intervention group 95%, comparison group 92%) attended 1-year follow-up. There were no significant differences between groups in physical activity (difference: +1.50 kJ kg−1 day−1; 95% CI −1.74, 4.74), plasma vitamin C (difference: −3.84 μmol/l; 95% CI −8.07, 0.38), smoking (OR 1.37; 95% CI 0.77, 2.43) and plasma drug levels (difference in metformin levels: −119.5 μmol/l; 95% CI −335.0, 95.9). Cardiovascular risk factors and self-reported behaviour improved in both groups with no significant differences between groups.
Conclusions/interpretation
For patients with recently diagnosed type 2 diabetes receiving intensive treatment in UK primary care, a facilitator-led individually tailored behaviour change intervention did not improve objectively measured health behaviours or cardiovascular risk factors over 1 year.
Trial registration
ISRCTN99175498
Funding
The trial is supported by the Medical Research Council, the Wellcome Trust, National Health Service R&D support funding (including the Primary Care Research and Diabetes Research Networks) and National Institute of Health Research under its Programme Grants for Applied Research scheme. The Primary Care Unit is supported by NIHR Research funds. Bio-Rad provided equipment for HbA1c testing during the screening phase.
Electronic supplementary material
The online version of this article (doi:10.1007/s00125-014-3236-6) contains peer-reviewed but unedited supplementary material, which is available to authorised users.
doi:10.1007/s00125-014-3236-6
PMCID: PMC4052009  PMID: 24759957
ADDITION-Plus; Diabetes; General practice; Health behaviour; Randomised trial
9.  Regular Breakfast Consumption and Type 2 Diabetes Risk Markers in 9- to 10-Year-Old Children in the Child Heart and Health Study in England (CHASE): A Cross-Sectional Analysis 
PLoS Medicine  2014;11(9):e1001703.
Angela Donin and colleagues evaluated the association between breakfast consumption and composition and risk markers for diabetes and cardiovascular disease in 9- and 10-year-olds.
Please see later in the article for the Editors' Summary
Background
Regular breakfast consumption may protect against type 2 diabetes risk in adults but little is known about its influence on type 2 diabetes risk markers in children. We investigated the associations between breakfast consumption (frequency and content) and risk markers for type 2 diabetes (particularly insulin resistance and glycaemia) and cardiovascular disease in children.
Methods and Findings
We conducted a cross-sectional study of 4,116 UK primary school children aged 9–10 years. Participants provided information on breakfast frequency, had measurements of body composition, and gave fasting blood samples for measurements of blood lipids, insulin, glucose, and glycated haemoglobin (HbA1c). A subgroup of 2,004 children also completed a 24-hour dietary recall. Among 4,116 children studied, 3,056 (74%) ate breakfast daily, 450 (11%) most days, 372 (9%) some days, and 238 (6%) not usually. Graded associations between breakfast frequency and risk markers were observed; children who reported not usually having breakfast had higher fasting insulin (percent difference 26.4%, 95% CI 16.6%–37.0%), insulin resistance (percent difference 26.7%, 95% CI 17.0%–37.2%), HbA1c (percent difference 1.2%, 95% CI 0.4%–2.0%), glucose (percent difference 1.0%, 95% CI 0.0%–2.0%), and urate (percent difference 6%, 95% CI 3%–10%) than those who reported having breakfast daily; these differences were little affected by adjustment for adiposity, socioeconomic status, and physical activity levels. When the higher levels of triglyceride, systolic blood pressure, and C-reactive protein for those who usually did not eat breakfast relative to those who ate breakfast daily were adjusted for adiposity, the differences were no longer significant. Children eating a high fibre cereal breakfast had lower insulin resistance than those eating other breakfast types (p for heterogeneity <0.01). Differences in nutrient intakes between breakfast frequency groups did not account for the differences in type 2 diabetes markers.
Conclusions
Children who ate breakfast daily, particularly a high fibre cereal breakfast, had a more favourable type 2 diabetes risk profile. Trials are needed to quantify the protective effect of breakfast on emerging type 2 diabetes risk.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Worldwide, more than 380 million people have diabetes, a disorder that is characterized by high levels of glucose (sugar) in the blood. Blood sugar levels are usually controlled by insulin, a hormone released by the pancreas after meals (digestion of food produces glucose). In people with type 2 diabetes (the commonest type of diabetes) blood sugar control fails because the fat and muscle cells that normally respond to insulin become insulin resistant. Type 2 diabetes can often be controlled initially with diet and exercise and with drugs such as metformin and sulfonylureas. However, many patients eventually need insulin injections to control their blood sugar levels. Long-term complications of diabetes, which include an increased risk of heart disease and stroke (cardiovascular disease), reduce the life expectancy of people with diabetes by about 10 years compared to people without diabetes. Risk factors for the condition include being over 40 years old and being overweight or obese.
Why Was This Study Done?
Experts predict that by 2035 nearly 600 million people will have diabetes so better strategies to prevent diabetes are urgently needed. Eating breakfast regularly—particularly a high fiber, cereal-based breakfast—has been associated with a reduced risk of type 2 diabetes (and a reduced risk of being overweight or obese) in adults. However, little is known about whether breakfast eating habits affect markers of type 2 diabetes risk in children. In this cross-sectional study (an observational investigation that studies a group of individuals at a single time point), the researchers examine the associations between breakfast consumption (both frequency and content) and risk markers for type 2 diabetes, particularly insulin resistance and glycemia (the presence of sugar in the blood), in an ethnically mixed population of children; insulin resistance and glycemia measurements in children provide important information about diabetes development later in life.
What Did the Researchers Do and Find?
The researchers invited 9–10 year old children attending 200 schools in London, Birmingham, and Leicester to participate in the Child Heart and Health Study in England (CHASE), a study examining risk factors for cardiovascular disease and type 2 diabetes in children of South Asian, black African-Caribbean, and white European origin. The researchers measured the body composition of the study participants and the levels of insulin, glucose, and other markers of diabetes risk in fasting blood samples (blood taken from the children 8–10 hours after their last meal or drink). All the participants (4,116 children) reported how often they ate breakfast; 2,004 children also completed a 24-hour dietary recall questionnaire. Seventy-four percent of the children reported that they ate breakfast every day, 11% and 9% reported that they ate breakfast most days and some days, respectively, whereas 6% reported that they rarely ate breakfast. Children who ate breakfast infrequently had higher fasting insulin levels and higher insulin resistance than children who ate breakfast every day. Moreover, the children who ate a high fiber, cereal-based breakfast had lower insulin resistance than children who ate other types of breakfast such as low fiber or toast-based breakfasts.
What Do These Findings Mean?
These findings indicate that children who ate breakfast every day, particularly those who ate a high fiber breakfast, had lower levels of risk markers for type 2 diabetes than children who rarely ate breakfast. Importantly, the association between eating breakfast and having a favorable type 2 diabetes risk profile remained after allowing for differences in socioeconomic status, physical activity levels, and amount of body fat (adiposity); in observational studies, it is important to allow for the possibility that individuals who share a measured characteristic and a health outcome also share another characteristic (a confounder) that is actually responsible for the outcome. Although trials are needed to establish whether altering the breakfast habits of children can alter their risk of developing type 2 diabetes, these findings are encouraging. Specifically, they suggest that if all the children in England who do not eat breakfast daily could be encouraged to do so, it might reduce population-wide fasting insulin levels by about 4%. Moreover, encouraging children to eat a high fiber breakfast instead of a low fiber breakfast might reduce population-wide fasting insulin levels by 11%–12%. Thus, persuading children to eat a high fiber breakfast regularly could be an important component in diabetes preventative strategies in England and potentially worldwide.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001703.
The US National Diabetes Information Clearinghouse provides information about diabetes for patients, health-care professionals, and the general public, including detailed information on diabetes prevention (in English and Spanish)
The UK National Health Service Choices website provides information for patients and carers about type 2 diabetes and about living with diabetes; it also provides people's stories about diabetes; Change4Life, a UK campaign that provides tips for healthy living, has a webpage about the importance of a healthy breakfast
The charity Diabetes UK provides detailed information for patients and carers in several languages, including information on healthy lifestyles for people with diabetes
The UK-based non-profit organization Healthtalkonline has interviews with people about their experiences of diabetes
MedlinePlus provides links to further resources and advice about diabetes and diabetes prevention (in English and Spanish)
Kidshealth, a US-based not-for-profit organization provides information for parents about the importance of breakfast and information for children
More information about the Child Heart and Health Study in England (CHASE) is available
doi:10.1371/journal.pmed.1001703
PMCID: PMC4151989  PMID: 25181492
10.  The Sydney Diabetes Prevention Program: A community-based translational study 
BMC Public Health  2010;10:328.
Background
Type 2 diabetes is a major public health problem in Australia with prevalence increasing in parallel with increasing obesity. Prevention is an essential component of strategies to reduce the diabetes burden. There is strong and consistent evidence from randomised controlled trials that type 2 diabetes can be prevented or delayed through lifestyle modification which improves diet, increases physical activity and achieves weight loss in at risk people. The current challenge is to translate this evidence into routine community settings, determine feasible and effective ways of delivering the intervention and providing on-going support to sustain successful behavioural changes.
Methods/Design
The Sydney Diabetes Prevention Program (SDPP) is a translational study which will be conducted in 1,550 participants aged 50-65 years (including 100 indigenous people aged 18 years and older) at high risk of future development of diabetes. Participants will be identified through a screening and recruitment program delivered through primary care and will be offered a community-based lifestyle modification intervention. The intervention comprises an initial individual session and three group sessions based on behaviour change principles and focuses on five goals: 5% weight loss, 210 min/week physical activity (aerobic and strength training exercise), limit dietary fat and saturated fat to less than 30% and 10% of energy intake respectively, and at least 15 g/1000 kcal dietary fibre. This is followed by 3-monthly contact with participants to review progress and offer ongoing lifestyle advice for 12 months. The effectiveness and costs of the program on diabetes-related risk factors will be evaluated. Main outcomes include changes in weight, physical activity, and dietary changes (fat, saturated fat and fibre intake). Secondary outcomes include changes in waist circumference, fasting plasma glucose, blood pressure, lipids, quality of life, psychological well being, medication use and health service utilization.
Discussion
This translational study will ascertain the reach, feasibility, effectiveness and cost-effectiveness of a lifestyle modification program delivered in a community setting through primary health care. If demonstrated to be effective, it will result in recommendations for policy change and practical methods for a wider community program for preventing or delaying the onset of type 2 diabetes in high risk people.
doi:10.1186/1471-2458-10-328
PMCID: PMC2898827  PMID: 20534170
11.  The importance of social support for people with type 2 diabetes – a qualitative study with general practitioners, practice nurses and patients 
Objective: Social support is an important element of family medicine within a primary care setting, delivered by general practitioners and practice nurses in addition to usual clinical care. The aim of the study was to explore general practitioner’s, practice nurse’s and people with type 2 diabetes’ views, experiences and perspectives of the importance of social support in caring for people with type 2 diabetes and their role in providing social support.
Methods: Interviews with general practitioners (n=10) and focus groups with practice nurses (n=10) and people with diabetes (n=9). All data were audio-recorded, fully transcribed and thematically analysed using qualitative content analysis by Mayring.
Results: All participants emphasized the importance of the concept of social support and its impacts on well-being of people with type 2 diabetes. Social support is perceived helpful for people with diabetes in order to improve diabetes control and give support for changes in lifestyle habits (physical activity and dietary changes). General practitioners identified a lack of information about facilities in the community like sports or self-help groups. Practice nurses emphasized that they need more training, such as in dietary counselling.
Conclusions: Social support given by general practitioners and practice nurses plays a crucial role for people with type 2 diabetes and is an additional component of social care. However there is a need for an increased awareness by general practitioners and practice nurses about the influence social support could have on the individual’s diabetes management.
doi:10.3205/psm000080
PMCID: PMC3413874  PMID: 22879856
social support; type 2 diabetes; qualitative approach; primary health care
12.  Effect of a Community-Based Nursing Intervention on Mortality in Chronically Ill Older Adults: A Randomized Controlled Trial 
PLoS Medicine  2012;9(7):e1001265.
Kenneth Coburn and colleagues report findings from a randomized trial evaluating the effects of a complex nursing intervention on mortality risk among older individuals diagnosed with chronic health conditions.
Background
Improving the health of chronically ill older adults is a major challenge facing modern health care systems. A community-based nursing intervention developed by Health Quality Partners (HQP) was one of 15 different models of care coordination tested in randomized controlled trials within the Medicare Coordinated Care Demonstration (MCCD), a national US study. Evaluation of the HQP program began in 2002. The study reported here was designed to evaluate the survival impact of the HQP program versus usual care up to five years post-enrollment.
Methods and Findings
HQP enrolled 1,736 adults aged 65 and over, with one or more eligible chronic conditions (coronary artery disease, heart failure, diabetes, asthma, hypertension, or hyperlipidemia) during the first six years of the study. The intervention group (n = 873) was offered a comprehensive, integrated, and tightly managed system of care coordination, disease management, and preventive services provided by community-based nurse care managers working collaboratively with primary care providers. The control group (n = 863) received usual care. Overall, a 25% lower relative risk of death (hazard ratio [HR] 0.75 [95% CI 0.57–1.00], p = 0.047) was observed among intervention participants with 86 (9.9%) deaths in the intervention group and 111 (12.9%) deaths in the control group during a mean follow-up of 4.2 years. When covariates for sex, age group, primary diagnosis, perceived health, number of medications taken, hospital stays in the past 6 months, and tobacco use were included, the adjusted HR was 0.73 (95% CI 0.55–0.98, p = 0.033). Subgroup analyses did not demonstrate statistically significant interaction effects for any subgroup. No suspected program-related adverse events were identified.
Conclusions
The HQP model of community-based nurse care management appeared to reduce all-cause mortality in chronically ill older adults. Limitations of the study are that few low-income and non-white individuals were enrolled and implementation was in a single geographic region of the US. Additional research to confirm these findings and determine the model's scalability and generalizability is warranted.
Trial Registration
ClinicalTrials.gov NCT01071967
Please see later in the article for the Editors' Summary
Editors' Summary
Background
In almost every country in the world, the proportion of people aged over 60 years is growing faster than any other age group because of increased life expectancy. This demographic change has several implications for public health, especially as older age is a risk factor for many chronic diseases—diseases of long duration and generally slow progression. Chronic diseases, such as heart disease, stroke, cancer, chronic respiratory diseases, and diabetes, are by far the leading cause of death in the world, representing almost two-thirds of all deaths. Therefore in most countries, the challenge of managing increasingly ageing populations who have chronic illnesses demands an urgent response and countries such as the United States are actively researching possible solutions.
Why Was This Study Done?
Some studies suggest that innovations in chronic disease management that are led by nurses may help address the epidemic of chronic diseases by increasing the quality and reducing the cost of care. However, to date, reports of the evaluation of such interventions lack rigor and do not provide evidence of improved long-term health outcomes or reduced health care costs. So in this study, the researchers used the gold standard of research, a randomized controlled trial, to examine the impact of a community-based nurse care management model for older adults with chronic illnesses in the United States as part of a series of studies supported by the Centers for Medicare and Medicaid Services.
What Did the Researchers Do and Find?
The researchers recruited eligible patients aged 65 years and over with heart failure, coronary heart disease, asthma, diabetes, hypertension, and/or hyperlipidemia who received traditional Medicare—a fee for service insurance scheme in which beneficiaries can choose to receive their care from any Medicare provider—from participating primary care practices in Pennsylvania. The researchers then categorized patients according to their risk on the basis of several factors including the number of chronic diseases each individual had before randomizing patients to receive usual care or the nurse-led intervention. The intervention included an individualized plan comprising education, symptom monitoring, medication, counseling for adherence, help identifying, arranging, and monitoring community health and social service referrals in addition to group interventions such as weight loss maintenance and exercise classes. The researchers checked whether any participating patients had died by using the online Social Security Death Master File. Then the researchers used a statistical model to calculate the risk of death in both groups.
Of the 1,736 patients the researchers recruited into the trial, 873 were randomized to receive the intervention and 863 were in the control group (usual care). The researchers found that 86 (9.9%) participants in the intervention group and 111 (12.9%) participants in the control group died during the study period, representing a 25% lower relative risk of death among the intervention group. However, when the researchers considered other factors, such as sex, age group, primary diagnosis, perceived health, number of medications taken, hospital stays in the past 6 months, and tobacco use in their statistical model, this risk was slightly altered—0.73 risk of death in the intervention group.
What Do These Findings Mean?
These findings suggest that that community-based nurse care management is associated with a reduction in all-cause mortality among older adults with chronic illnesses who are beneficiaries of the fee for service Medicare scheme in the United States. These findings also support the important role of nurses in improving health outcomes in this group of patients and show the feasibility of implementing this program in collaboration with primary care practices. Future research is needed to test the adaptability, scalability, and generalizability of this model of care.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001265.
This study is further discussed in a PLoS Medicine Perspective by Arlene Bierman
Information about the Centers for Medicare and Medicaid Services is available
The World Health Organization provides statistics on the prevalence of both chronic illness and ageing
Heath Quality Partners provide information about the study
doi:10.1371/journal.pmed.1001265
PMCID: PMC3398966  PMID: 22815653
13.  Factors influencing participant enrolment in a diabetes prevention program in general practice: lessons from the Sydney diabetes prevention program 
BMC Public Health  2012;12:822.
Background
The effectiveness of lifestyle interventions in reducing diabetes incidence has been well established. Little is known, however, about factors influencing the reach of diabetes prevention programs. This study examines the predictors of enrolment in the Sydney Diabetes Prevention Program (SDPP), a community-based diabetes prevention program conducted in general practice, New South Wales, Australia from 2008–2011.
Methods
SDPP was an effectiveness trial. Participating general practitioners (GPs) from three Divisions of General Practice invited individuals aged 50–65 years without known diabetes to complete the Australian Type 2 Diabetes Risk Assessment tool. Individuals at high risk of diabetes were invited to participate in a lifestyle modification program. A multivariate model using generalized estimating equations to control for clustering of enrolment outcomes by GPs was used to examine independent predictors of enrolment in the program. Predictors included age, gender, indigenous status, region of birth, socio-economic status, family history of diabetes, history of high glucose, use of anti-hypertensive medication, smoking status, fruit and vegetable intake, physical activity level and waist measurement.
Results
Of the 1821 eligible people identified as high risk, one third chose not to enrol in the lifestyle program. In multivariant analysis, physically inactive individuals (OR: 1.48, P = 0.004) and those with a family history of diabetes (OR: 1.67, P = 0.000) and history of high blood glucose levels (OR: 1.48, P = 0.001) were significantly more likely to enrol in the program. However, high risk individuals who smoked (OR: 0.52, P = 0.000), were born in a country with high diabetes risk (OR: 0.52, P = 0.000), were taking blood pressure lowering medications (OR: 0.80, P = 0.040) and consumed little fruit and vegetables (OR: 0.76, P = 0.047) were significantly less likely to take up the program.
Conclusions
Targeted strategies are likely to be needed to engage groups such as smokers and high risk ethnic groups. Further research is required to better understand factors influencing enrolment in diabetes prevention programs in the primary health care setting, both at the GP and individual level.
doi:10.1186/1471-2458-12-822
PMCID: PMC3549936  PMID: 23006577
Diabetes prevention; Program participation; Enrolment; Risk factors; Research translation
14.  Reduction of diabetes risk in routine clinical practice: are physical activity and nutrition interventions feasible and are the outcomes from reference trials replicable? A systematic review and meta-analysis 
BMC Public Health  2010;10:653.
Background
The clinical effectiveness of intensive lifestyle interventions in preventing or delaying diabetes in people at high risk has been established from randomised trials of structured, intensive interventions conducted in several countries over the past two decades. The challenge is to translate them into routine clinical settings. The objective of this review is to determine whether lifestyle interventions delivered to high-risk adult patients in routine clinical care settings are feasible and effective in achieving reductions in risk factors for diabetes.
Methods
Data sources: MEDLINE (PubMed), EMBASE, CINAHL, The Cochrane Library, Google Scholar, and grey literature were searched for English-language articles published from January 1990 to August 2009. The reference lists of all articles collected were checked to ensure that no relevant suitable studies were missed. Study selection: We included RCTs, before/after evaluations, cohort studies with or without a control group and interrupted time series analyses of lifestyle interventions with the stated aim of diabetes risk reduction or diabetes prevention, conducted in routine clinical settings and delivered by healthcare providers such as family physicians, practice nurses, allied health personnel, or other healthcare staff associated with a health service. Outcomes of interest were weight loss, reduction in waist circumference, improvement of impaired fasting glucose or oral glucose tolerance test (OGTT) results, improvements in fat and fibre intakes, increased level of engagement in physical activity and reduction in diabetes incidence.
Results
Twelve from 41 potentially relevant studies were included in the review. Four studies were suitable for meta-analysis. A significant positive effect of the interventions on weight was reported by all study types. The meta-analysis showed that lifestyle interventions achieved weight and waist circumference reductions after one year. However, no clear effects on biochemical or clinical parameters were observed, possibly due to short follow-up periods or lack of power of the studies meta-analysed. Changes in dietary parameters or physical activity were generally not reported. Most studies assessing feasibility were supportive of implementation of lifestyle interventions in routine clinical care.
Conclusion
Lifestyle interventions for patients at high risk of diabetes, delivered by a variety of healthcare providers in routine clinical settings, are feasible but appear to be of limited clinical benefit one year after intervention. Despite convincing evidence from structured intensive trials, this systematic review showed that translation into routine practice has less effect on diabetes risk reduction.
doi:10.1186/1471-2458-10-653
PMCID: PMC2989959  PMID: 21029469
15.  Behavior change in a lifestyle intervention for type 2 diabetes prevention in Dutch primary care: opportunities for intervention content 
BMC Family Practice  2013;14:78.
Background
Despite the favorable effects of behavior change interventions on diabetes risk, lifestyle modification is a complicated process. In this study we therefore investigated opportunities for refining a lifestyle intervention for type 2 diabetes prevention, based on participant perceptions of behavior change progress.
Methods
A 30 month intervention was performed in Dutch primary care among high-risk individuals (FINDRISC-score ≥ 13) and was compared to usual care. Participant perceptions of behavior change progress for losing weight, dietary modification, and increasing physical activity were assessed after18 months with questionnaires. Based on the response, participants were categorized as ‘planners’, ‘initiators’ or ‘achievers’ and frequencies were evaluated in both study groups. Furthermore, participants reported on barriers for lifestyle change.
Results
In both groups, around 80% of all participants (intervention: N = 370; usual care: N = 322) planned change. Except for reducing fat intake (p = 0.08), the number of initiators was significantly higher in the intervention group than in usual care. The percentage of achievers was high for the dietary and exercise objectives (intervention: 81–95%; usual care: 83–93%), but was lower for losing weight (intervention: 67%; usual care: 62%). Important motivational barriers were ‘I already meet the standards’ and ‘I’m satisfied with my current behavior’. Temptation to snack, product taste and lack of time were important volitional barriers.
Conclusions
The results suggest that the intervention supports participants to bridge the gap between motivation and action. Several opportunities for intervention refinement are however revealed, including more stringent criteria for participant inclusion, tools for (self)-monitoring of health, emphasis on the ‘small-step-approach’, and more attention for stimulus control.
Trial registration
Netherlands Trial Register: NTR1082
doi:10.1186/1471-2296-14-78
PMCID: PMC3706294  PMID: 23758998
Type 2 diabetes; Primary care; Behavior change; Lifestyle intervention
16.  Randomised controlled trial of patient centred care of diabetes in general practice: impact on current wellbeing and future disease risk 
BMJ : British Medical Journal  1998;317(7167):1202-1208.
Objective To assess the effect of additional training of practice nurses and general practitioners in patient centred care on the lifestyle and psychological and physiological status of patients with newly diagnosed type 2 diabetes.
Design Pragmatic parallel group design, with randomisation between practice teams to routine care (comparison group) or routine care plus additional training (intervention group); analysis at one year, allowing for practice effects and stratifiers; self reporting by patients on communication with practitioners, satisfaction with treatment, style of care, and lifestyle.
Setting 41 practices (21 in intervention group, 20 in comparison group) in a health region in southern England.
Subjects 250/360 patients (aged 30-70 years) diagnosed with type 2 diabetes and completing follow up at one year (142 in intervention group, 108 in comparison group).
Intervention 1.5 days’ group training for the doctors and nurses—introducing evidence for and skills of patient centred care and a patient held booklet encouraging questions.
Main outcome measures Quality of life, wellbeing, haemoglobin A1c and lipid concentrations, blood pressure, body mass index (kg/m2).
Results Compared with patients in the C group, those in the intervention group reported better communication with the doctors (odds ratio 2.8; 95% confidence interval 1.8 to 4.3) and greater treatment satisfaction (1.6; 1.1 to 2.5) and wellbeing (difference in means (d) 2.8; 0.4 to 5.2). However, their body mass index was significantly higher (d=2.0; 0.3 to 3.8), as were triglyceride concentrations (d=0.4 mmol/l; 0.07 to 0.73 mmol/l), whereas knowledge scores were lower (d=−2.74; −0.23 to −5.25). Differences in lifestyle and glycaemic control were not significant.
Conclusions The findings suggest greater attention to the consultation process than to preventive care among trained practitioners; those committed to achieving the benefits of patient centred consulting should not lose the focus on disease management.
Key messagesA training programme in patient centred care for practitioners led to patients with newly diagnosed diabetes reporting better communication with doctors, greater wellbeing, and greater treatment satisfaction at one year, without loss of glycaemic controlKnowledge scores were lower and weight and other cardiovascular risk factors higher among patients attending trained practice teamsTrained practitioners may have found it difficult to integrate attention to wellbeing with management of disease riskProfessionals using patient centred consulting should not lose the focus on disease
PMCID: PMC28704  PMID: 9794859
17.  Effects of lifestyle intervention in persons at risk for type 2 diabetes mellitus - results from a randomised, controlled trial 
BMC Public Health  2011;11:893.
Background
Lifestyle change is probably the most important single action to prevent type 2 diabetes mellitus. The purpose of this study was to assess the effects of a low-intensity individual lifestyle intervention by a physician and compare this to the same physician intervention combined with an interdisciplinary, group-based approach in a real-life setting.
Methods
The "Finnish Diabetes Risk score" (FINDRISC) was used by GPs to identify individuals at high risk. A randomised, controlled design and an 18 month follow-up was used to assess the effect of individual lifestyle counselling by a physician (individual physician group, (IG)) every six months, with emphasis on diet and exercise, and compare this to the same individual lifestyle counselling combined with a group-based interdisciplinary program (individual and interdisciplinary group, (IIG)) provided over 16 weeks. Primary outcomes were changes in lifestyle indicated by weight reduction ≥ 5%, improvement in exercise capacity as assessed by VO2 max and diet improvements according to the Smart Diet Score (SDS).
Results
213 participants (104 in the IG and 109 in the IIG group, 50% women), with a mean age of 46 and mean body mass index 37, were included (inclusion rate > 91%) of whom 182 returned at follow-up (drop-out rate 15%). There were no significant differences in changes in lifestyle behaviours between the two groups. At baseline 57% (IG) and 53% (IIG) of participants had poor aerobic capacity and after intervention 35% and 33%, respectively, improved their aerobic capacity at least one metabolic equivalent. Unhealthy diets according to SDS were common in both groups at baseline, 61% (IG) and 60% (IIG), but uncommon at follow-up, 17% and 10%, respectively. At least 5% weight loss was achieved by 35% (IG) and 28% (IIG). In the combined IG and IIG group, at least one primary outcome was achieved by 93% while all primary outcomes were achieved by 6%. Most successful was the 78% reduction in the proportion of participants with unhealthy diet (almost 50% absolute reduction).
Conclusion
It is possible to achieve important lifestyle changes in persons at risk for type 2 diabetes with modest clinical efforts. Group intervention yields no additional effects. The design of the study, with high inclusion and low dropout rates, should make the results applicable to ordinary clinical settings.
Trial registration
ClinicalTrials.gov: NCT00202748
doi:10.1186/1471-2458-11-893
PMCID: PMC3247299  PMID: 22117618
type 2 diabetes mellitus; prevention; lifestyle; obesity
18.  Economic evaluation of a lifestyle intervention in primary care to prevent type 2 diabetes mellitus and cardiovascular diseases: a randomized controlled trial 
BMC Family Practice  2013;14:45.
Background
Cost-effectiveness studies of lifestyle interventions in people at risk for lifestyle-related diseases, addressing ‘real-world’ implementation, are needed. This study examines the cost-effectiveness of a primary care intervention from a societal perspective, compared with provision of health brochures, alongside a randomized controlled trial.
Methods
Adults aged 30-50 years, at risk of type 2 diabetes (T2DM) and/or cardiovascular disease (CVD), were recruited from twelve general practices in The Netherlands. They were randomized to the intervention (n = 314) or control group (n = 308). The intervention consisted of up to six face-to-face counseling sessions with a trained practice nurse, followed by three-monthly sessions by phone. Costs were collected using three-monthly retrospective questionnaires. Quality of life was measured with the EuroQol-5D-3L, at baseline, 6, 12 and 24 months. Nine-year risk of developing T2DM and ten-year risk of CVD mortality were estimated using the ARIC and SCORE formulae, respectively, based on measurements at baseline and 24 months while applying a fixed age of 60 years at both time points.
Results
Small, statistically non-significant differences in effects were found between the intervention and control group with regard to risk scores and Quality Adjusted Life Years (QALYs) gained. The mean difference in costs between the intervention and control group was €-866 (95% confidence interval -2372; 370). The probability that the intervention was cost-effective varied from 93% at €8000/QALY to 88% at €80,000/QALY.
Conclusion
A primary care lifestyle intervention aimed at adults at increased risk of T2DM and/or CVD could result in cost savings over a two-year period. However, due to methodological uncertainty no advice can be given regarding the implementation of the intervention in Dutch general practices.
Trial registration
Current Controlled Trials ISRCTN59358434.
doi:10.1186/1471-2296-14-45
PMCID: PMC3662579  PMID: 23557482
Cost-effectiveness; Cost-utility; General practitioner; Lifestyle counseling; Practice nurse
19.  Whole Grain, Bran, and Germ Intake and Risk of Type 2 Diabetes: A Prospective Cohort Study and Systematic Review 
PLoS Medicine  2007;4(8):e261.
Background
Control of body weight by balancing energy intake and energy expenditure is of major importance for the prevention of type 2 diabetes, but the role of specific dietary factors in the etiology of type 2 diabetes is less well established. We evaluated intakes of whole grain, bran, and germ in relation to risk of type 2 diabetes in prospective cohort studies.
Methods and Findings
We followed 161,737 US women of the Nurses' Health Studies (NHSs) I and II, without history of diabetes, cardiovascular disease, or cancer at baseline. The age at baseline was 37–65 y for NHSI and 26–46 y for NHSII. Dietary intakes and potential confounders were assessed with regularly administered questionnaires. We documented 6,486 cases of type 2 diabetes during 12–18 y of follow-up. Other prospective cohort studies on whole grain intake and risk of type 2 diabetes were identified in searches of MEDLINE and EMBASE up to January 2007, and data were independently extracted by two reviewers. The median whole grain intake in the lowest and highest quintile of intake was, respectively, 3.7 and 31.2 g/d for NHSI and 6.2 and 39.9 g/d for NHSII. After adjustment for potential confounders, the relative risks (RRs) for the highest as compared with the lowest quintile of whole grain intake was 0.63 (95% confidence interval [CI] 0.57–0.69) for NHSI and 0.68 (95% CI 0.57–0.81) for NHSII (both: p-value, test for trend <0.001). After further adjustment for body mass index (BMI), these RRs were 0.75 (95% CI 0.68–0.83; p-value, test for trend <0.001) and 0.86 (95% CI 0.72–1.02; p-value, test for trend 0.03) respectively. Associations for bran intake were similar to those for total whole grain intake, whereas no significant association was observed for germ intake after adjustment for bran. Based on pooled data for six cohort studies including 286,125 participants and 10,944 cases of type 2 diabetes, a two-serving-per-day increment in whole grain consumption was associated with a 21% (95% CI 13%–28%) decrease in risk of type 2 diabetes after adjustment for potential confounders and BMI.
Conclusions
Whole grain intake is inversely associated with risk of type 2 diabetes, and this association is stronger for bran than for germ. Findings from prospective cohort studies consistently support increasing whole grain consumption for the prevention of type 2 diabetes.
Jeroen de Munter and colleagues found that, in women in the US Nurses' Health Studies, whole grain intake was inversely associated with risk of type 2 diabetes. The association was stronger for bran than for germ.
Editors' Summary
Background.
Type 2 diabetes mellitus (also sometimes called adult-onset or noninsulin-dependent diabetes) is increasing worldwide and is the most common form of diabetes. It puts people at risk of poor health and death by increasing their risk of heart disease and stroke, and a range of other conditions including blindness, kidney disease, and ulcers. It has long been recognized that there is a link between diet and developing type 2 diabetes, because people who are overweight (because the amount of energy in their diet is greater than the energy they use up) run a greater risk of getting type 2 diabetes. However, it has not been clear which particular nutrients or foods might increase the risk or might give protection.
Cereals—such as rice, wheat, corn (maize), etc.—make up a major part of most people's diets. During the refining of cereal grains, much of the outer part of the grain (kernel) are usually removed. Foods are described as “whole grain” if all components of the kernel (the bran, germ, and endosperm) are still present in their natural proportions. There is good evidence that consumption of whole grains may reduce the risk of several diseases, including various types of cancer, heart attacks, and strokes. Some evidence also suggests that eating a diet rich in whole grains might help protect against diabetes, but this has not been firmly established.
Why Was This Study Done?
The authors of this study wanted to find out how much whole grain was eaten by a large number of people over several years and to record how many of these people developed type 2 diabetes. If these two things were closely associated it would provide more evidence to support the idea that whole grain consumption helps protect against type 2 diabetes.
What Did the Researchers Do and Find?
The researchers drew on information recorded in a very large and continuing study in the US, the Nurses' Health Study, which began in 1976, when over 100,000 female registered US nurses completed and returned a mailed questionnaire to assess their health and lifestyle. More nurses were added in 1989. It is an example of what is known as a “cohort study.” Every two years, questionnaires have been mailed to the nurses. Questions asked include the nurses' age, weight, their diet, whether they smoke, their use of oral contraception; and their personal history of diabetes, cardiovascular disease, and cancer. The researchers calculated each nurse's whole grain intake in grams per day. They found that by 2004 about 6,500 of them had developed type 2 diabetes. From an analysis of the data it was clear that the greater the consumption of whole grains the lower the risk of getting type 2 diabetes.
An additional part of the study was that the researchers searched the medical literature for other cohort studies that examined whole grain intake in relation to risk of type 2 diabetes. (This type of research is called a “systematic review,” and it requires that researchers define clearly in advance the kind of studies they are looking for and how they will analyze the data.) They found five such studies. They added together the results of all the studies, including their own. This gave a total of nearly 11,000 cases of type 2 diabetes, out of around 286,000 people. From their analysis they calculated that a two-serving-per-day increment in whole grain consumption was associated with a 21% decrease in risk of type 2 diabetes.
What Do These Findings Mean?
Scientists say that association can never prove causation. (That would require a different sort of study called a trial, where two similar groups of people would be given either a diet high in whole grains or one that was low.) Nevertheless, the research does strongly suggest that a healthy diet that reduces the risk of developing type 2 diabetes should include the consumption of several servings of whole grains daily. The authors do point out that people who choose to eat a lot of whole grains also tend to have a healthy lifestyle in other respects, and that it was hard to calculate intake accurately. However, they do not consider that these limitations to their study would have affected the overall result too seriously.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040261.
Good introductory information about diabetes (type 1 and type 2) may be found on the Web sites of the National Diabetes Clearing House (US) and Diabetes UK
More detailed information is available on Medline Plus, a Web site that brings together authoritative information from several US government agencies and health-related organizations
Wikipedia has an entry on whole grain (Wikipedia is a free online encyclopedia that anyone can edit)
The Nurses' Health Study has a Web site
doi:10.1371/journal.pmed.0040261
PMCID: PMC1952203  PMID: 17760498
20.  Primary prevention of diabetes mellitus type 2 and cardiovascular diseases using a cognitive behavior program aimed at lifestyle changes in people at risk: Design of a randomized controlled trial 
Background
The number of people with cardiovascular disease (CVD) and diabetes mellitus type 2 (T2DM) is growing rapidly. To a large extend, this increase is due to lifestyle-dependent risk factors, such as overweight, reduced physical activity, and an unhealthy diet. Changing these risk factors has the potential to postpone or prevent the development of T2DM and CVD. It is hypothesized that a cognitive behavioral program (CBP), focused in particular on motivation and self-management in persons who are at high risk for CVD and/or T2DM, will improve their lifestyle behavior and, as a result, will reduce their risk of developing T2DM and CVD.
Methods
12,000 inhabitants, 30-50 years of age living in several municipalities in the semi-rural region of West-Friesland will receive an invitation from their general practitioner (n = 13) to measure their own waist circumference with a tape measure. People with abdominal obesity (male waist ≥ 102 cm, female waist ≥ 88 cm) will be invited to participate in the second step of the screening which includes blood pressure, a blood sample and anthropometric measurements. T2DM and CVD risk scores will then be calculated according to the ARIC and the SCORE formulae, respectively. People with a score that indicates a high risk of developing T2DM and/or CVD will then be randomly assigned to the intervention group (n = 300) or the control group (n = 300).
Participants in the intervention group will follow a CBP aimed at modifying their dietary behavior, physical activity, and smoking behavior. The counseling methods that will be used are motivational interviewing (MI) and problem solving treatment (PST), which focus in particular on intrinsic motivation for change and self-management of problems of the participants. The CBP will be provided by trained nurse practitioners in the participant's general practice, and will consists of a maximum of six individual sessions of 30 minutes, followed by 3-monthly booster sessions by phone. Participants in the control group will receive brochures containing health guidelines regarding physical activity and diet, and how to stop smoking. The primary outcome measures will be changes in T2DM and CVD risk scores. Secondary outcome measures will be changes in lifestyle behavior and cost-effectiveness and cost-utility ratios. All relevant direct and indirect costs will be measured, and there will be a follow-up of 24 months.
Discussion
Changing behaviors is difficult, requires time, considerable effort and motivation. Combining the two counseling methods MI and PST, followed by booster sessions may result in sustained behavioral change.
Trial registration
Current Controlled Trials ISRCTN59358434
doi:10.1186/1472-6823-8-6
PMCID: PMC2446389  PMID: 18573221
21.  The prevention of type 2 diabetes: general practitioner and practice nurse opinions 
Background: Primary prevention of type 2 diabetes is now possible with lifestyle or pharmacological interventions in people who are at risk. Primary care would seem to be the legitimate setting for this to take place.
Aim: To explore the views of general practitioners and practice nurses about the detection and management of people at risk of developing type 2 diabetes.
Design of study: Qualitative study.
Setting: One local health board area in Wales.
Method: General practitioners and practice nurses participated in multi-professional focus groups, and opinions of participants were analysed into themes and sub-themes according to focus group content analysis methodology to search for ‘markers of text’.
Results: Participants from 21 practices were involved. Participants' opinions on the detection and management of individuals at risk of developing type 2 diabetes were polarised into those who considered these activities inappropriate for primary care and those who were already engaged in the detection, management and follow-up of these individuals. For the former, existing workload, the questionable role of primary care as a ‘screening service’, lack of resources, and conflict and concern about increasing specialisation were given as justification. Those already engaged in these activities emphasised their importance but were also concerned with the lack of available resources. Other concerns were the perceived low motivation of patients to modify their lifestyle and the unnecessary medicalisation of the precursor conditions of impaired glucose tolerance and impaired fasting glycaemia. The prevention of type 2 diabetes was seen as largely the responsibility of other agencies such as health promotion and education.
Conclusion: The often strongly held views about this topic are at least partly influenced by current pressures on primary care. To make the primary prevention of type 2 diabetes a reality, either practitioners need to be motivated and resourced to carry out preventive strategies or alternative methods must be identified.
PMCID: PMC1324806  PMID: 15239916
diabetes mellitus, type II; primary prevention; nurses; qualitative research; focus groups
22.  No identifiable Hb1Ac or lifestyle change after a comprehensive diabetes programme including motivational interviewing: A cluster randomised trial 
Abstract
Objective
To study the effectiveness of a comprehensive diabetes programme in general practice that integrates patient-centred lifestyle counselling into structured diabetes care.
Design and setting
Cluster randomised trial in general practices.
Intervention
Nurse-led structured diabetes care with a protocol, record keeping, reminders, and feedback, plus training in motivational interviewing and agenda setting.
Subjects
Primary care nurses in 58 general practices and their 940 type 2 diabetes patients with an HbA1c concentration above 7%, and a body mass index (BMI) above 25 kg/m2.
Main outcome measures
HbA1c, diet, and physical activity (medical records and patient questionnaires).
Results
Multilevel linear and logistic regression analyses adjusted for baseline outcomes showed that despite active nurse participation in the intervention, the comprehensive programme was no more effective than usual care after 14 months, as shown by HbA1c levels (difference between groups = 0.13; CI 20.8–0.35) and diet (fat (difference between groups = 0.19; CI 20.82–1.21); vegetables (difference between groups = 0.10; CI-0.21–0.41); fruit (difference between groups = 20.02; CI 20.26–0.22)), and physical activity (difference between groups = 21.15; CI 212.26–9.97), or any of the other measures of clinical parameters, patient's readiness to change, or quality of life.
Conclusion
A comprehensive programme that integrated lifestyle counselling based on motivational interviewing principles integrated into structured diabetes care did not alter HbA1c or the lifestyle related to diet and physical activity. We thus question the impact of motivational interviewing in terms of its ability to improve routine diabetes care in general practice.
doi:10.3109/02813432.2013.797178
PMCID: PMC3656395  PMID: 23659710
General practice; lifestyle; primary health care; quality of health care; randomised controlled trial; the Netherlands; type 2 diabetes mellitus
23.  A monitoring and feedback tool embedded in a counselling protocol to increase physical activity of patients with COPD or type 2 diabetes in primary care: study protocol of a three-arm cluster randomised controlled trial 
BMC Family Practice  2014;15:93.
Background
Physical activity is important for a healthy lifestyle. Although physical activity can delay complications and decrease the burden of the disease, the level of activity of patients with chronic obstructive pulmonary disease (COPD) or type 2 Diabetes Mellitus (DM2) is often far from optimal. To stimulate physical activity, a monitoring and feedback tool, consisting of an accelerometer linked to a smart phone and webserver (It’s LiFe! tool), and a counselling protocol for practice nurses in primary care was developed (the Self-management Support Program). The main objective of this study is to measure the longitudinal effects of this counselling protocol and the added value of using the tool.
Methods/Design
This three-armed cluster randomised controlled trial with 120 participants with COPD and 120 participants with DM2 (aged 40–70), compares the counselling protocol with and without the use of the tool (group 1 and 2) with usual care (group 3). Recruitment takes place at GP practices in the southern regions of the Netherlands. Randomisation takes place at the practice level. The intended sample (three arms of 8 practices) powers the study to detect a 10-minute difference of moderate and intense physical activity per day between groups 1 and 3. Participants in the intervention groups have to visit the practice nurse 3–4 times for physical activity counselling, in a 4-6-month period. Specific activity goals tailored to the individual patient's preferences and needs will be set. In addition, participants in group 1 will be instructed to use the tool in daily life. The primary outcome, physical activity, will be measured in all groups with a physical activity monitor (PAM). Secondary outcomes are quality of life, general - and exercise - self-efficacy, and health status. Follow-up will take place after 6 and 9 months. Separately, a process evaluation will be conducted to explore reasons for trial non-participation, and the intervention’s acceptability for participating patients and nurses.
Discussion
Results of this study will give insight into the effects of the It’s LiFe! monitoring and feedback tool combined with care from a practice nurse for people with COPD or DM2 on physical activity.
Trial registration
ClinicalTrials.gov: NCT01867970
doi:10.1186/1471-2296-15-93
PMCID: PMC4030038  PMID: 24885096
Physical activity; Self-management support; Primary care nursing; Remote sensing technology
24.  Primary care nurses struggle with lifestyle counseling in diabetes care: a qualitative analysis 
BMC Family Practice  2010;11:41.
Background
Patient outcomes are poorly affected by lifestyle advice in general practice. Promoting lifestyle behavior change require that nurses shift from simple advice giving to a more counseling-based approach. The current study examines which barriers nurses encounter in lifestyle counseling to patients with type 2 diabetes. Based on this information we will develop an implementation strategy to improve lifestyle behavior change in general practice.
Method
In a qualitative semi-structured study, twelve in-depth interviews took place with nurses in Dutch general practices involved in diabetes care. Specific barriers in counseling patients with type 2 diabetes about diet, physical activity, and smoking cessation were addressed. The nurses were invited to reflect on barriers at the patient and practice levels, but mainly on their own roles as counselors. All interviews were audio-recorded and transcribed. The data were analyzed with the aid of a predetermined framework.
Results
Nurses felt most barriers on the level of the patient; patients had limited knowledge of a healthy lifestyle and limited insight into their own behavior, and they lacked the motivation to modify their lifestyles or the discipline to maintain an improved lifestyle. Furthermore, nurses reported lack of counseling skills and insufficient time as barriers in effective lifestyle counseling.
Conclusions
The traditional health education approach is still predominant in primary care of patients with type 2 diabetes. An implementation strategy based on motivational interviewing can help to overcome 'jumping ahead of the patient' and promotes skills in lifestyle behavioral change. We will train our nurses in agenda setting to structure the consultation based on prioritizing the behavior change and will help them to develop social maps that contain information on local exercise programs.
doi:10.1186/1471-2296-11-41
PMCID: PMC2889883  PMID: 20500841
25.  Behavioural Interventions for Urinary Incontinence in Community-Dwelling Seniors 
Executive Summary
In early August 2007, the Medical Advisory Secretariat began work on the Aging in the Community project, an evidence-based review of the literature surrounding healthy aging in the community. The Health System Strategy Division at the Ministry of Health and Long-Term Care subsequently asked the secretariat to provide an evidentiary platform for the ministry’s newly released Aging at Home Strategy.
After a broad literature review and consultation with experts, the secretariat identified 4 key areas that strongly predict an elderly person’s transition from independent community living to a long-term care home. Evidence-based analyses have been prepared for each of these 4 areas: falls and fall-related injuries, urinary incontinence, dementia, and social isolation. For the first area, falls and fall-related injuries, an economic model is described in a separate report.
Please visit the Medical Advisory Secretariat Web site, http://www.health.gov.on.ca/english/providers/program/mas/mas_about.html, to review these titles within the Aging in the Community series.
Aging in the Community: Summary of Evidence-Based Analyses
Prevention of Falls and Fall-Related Injuries in Community-Dwelling Seniors: An Evidence-Based Analysis
Behavioural Interventions for Urinary Incontinence in Community-Dwelling Seniors: An Evidence-Based Analysis
Caregiver- and Patient-Directed Interventions for Dementia: An Evidence-Based Analysis
Social Isolation in Community-Dwelling Seniors: An Evidence-Based Analysis
The Falls/Fractures Economic Model in Ontario Residents Aged 65 Years and Over (FEMOR)
Objective
To assess the effectiveness of behavioural interventions for the treatment and management of urinary incontinence (UI) in community-dwelling seniors.
Clinical Need: Target Population and Condition
Urinary incontinence defined as “the complaint of any involuntary leakage of urine” was identified as 1 of the key predictors in a senior’s transition from independent community living to admission to a long-term care (LTC) home. Urinary incontinence is a health problem that affects a substantial proportion of Ontario’s community-dwelling seniors (and indirectly affects caregivers), impacting their health, functioning, well-being and quality of life. Based on Canadian studies, prevalence estimates range from 9% to 30% for senior men and nearly double from 19% to 55% for senior women. The direct and indirect costs associated with UI are substantial. It is estimated that the total annual costs in Canada are $1.5 billion (Cdn), and that each year a senior living at home will spend $1,000 to $1,500 on incontinence supplies.
Interventions to treat and manage UI can be classified into broad categories which include lifestyle modification, behavioural techniques, medications, devices (e.g., continence pessaries), surgical interventions and adjunctive measures (e.g., absorbent products).
The focus of this review is behavioural interventions, since they are commonly the first line of treatment considered in seniors given that they are the least invasive options with no reported side effects, do not limit future treatment options, and can be applied in combination with other therapies. In addition, many seniors would not be ideal candidates for other types of interventions involving more risk, such as surgical measures.
Note: It is recognized that the terms “senior” and “elderly” carry a range of meanings for different audiences; this report generally uses the former, but the terms are treated here as essentially interchangeable.
Description of Technology/Therapy
Behavioural interventions can be divided into 2 categories according to the target population: caregiver-dependent techniques and patient-directed techniques. Caregiver-dependent techniques (also known as toileting assistance) are targeted at medically complex, frail individuals living at home with the assistance of a caregiver, who tends to be a family member. These seniors may also have cognitive deficits and/or motor deficits. A health care professional trains the senior’s caregiver to deliver an intervention such as prompted voiding, habit retraining, or timed voiding. The health care professional who trains the caregiver is commonly a nurse or a nurse with advanced training in the management of UI, such as a nurse continence advisor (NCA) or a clinical nurse specialist (CNS).
The second category of behavioural interventions consists of patient-directed techniques targeted towards mobile, motivated seniors. Seniors in this population are cognitively able, free from any major physical deficits, and motivated to regain and/or improve their continence. A nurse or a nurse with advanced training in UI management, such as an NCA or CNS, delivers the patient-directed techniques. These are often provided as multicomponent interventions including a combination of bladder training techniques, pelvic floor muscle training (PFMT), education on bladder control strategies, and self-monitoring. Pelvic floor muscle training, defined as a program of repeated pelvic floor muscle contractions taught and supervised by a health care professional, may be employed as part of a multicomponent intervention or in isolation.
Education is a large component of both caregiver-dependent and patient-directed behavioural interventions, and patient and/or caregiver involvement as well as continued practice strongly affect the success of treatment. Incontinence products, which include a large variety of pads and devices for effective containment of urine, may be used in conjunction with behavioural techniques at any point in the patient’s management.
Evidence-Based Analysis Methods
A comprehensive search strategy was used to identify systematic reviews and randomized controlled trials that examined the effectiveness, safety, and cost-effectiveness of caregiver-dependent and patient-directed behavioural interventions for the treatment of UI in community-dwelling seniors (see Appendix 1).
Research Questions
Are caregiver-dependent behavioural interventions effective in improving UI in medically complex, frail community-dwelling seniors with/without cognitive deficits and/or motor deficits?
Are patient-directed behavioural interventions effective in improving UI in mobile, motivated community-dwelling seniors?
Are behavioural interventions delivered by NCAs or CNSs in a clinic setting effective in improving incontinence outcomes in community-dwelling seniors?
Assessment of Quality of Evidence
The quality of the evidence was assessed as high, moderate, low, or very low according to the GRADE methodology and GRADE Working Group. As per GRADE the following definitions apply:
Summary of Findings
Executive Summary Table 1 summarizes the results of the analysis.
The available evidence was limited by considerable variation in study populations and in the type and severity of UI for studies examining both caregiver-directed and patient-directed interventions. The UI literature frequently is limited to reporting subjective outcome measures such as patient observations and symptoms. The primary outcome of interest, admission to a LTC home, was not reported in the UI literature. The number of eligible studies was low, and there were limited data on long-term follow-up.
Summary of Evidence on Behavioural Interventions for the Treatment of Urinary Incontinence in Community-Dwelling Seniors
Prompted voiding
Habit retraining
Timed voiding
Bladder training
PFMT (with or without biofeedback)
Bladder control strategies
Education
Self-monitoring
CI refers to confidence interval; CNS, clinical nurse specialist; NCA, nurse continence advisor; PFMT, pelvic floor muscle training; RCT, randomized controlled trial; WMD, weighted mean difference; UI, urinary incontinence.
Economic Analysis
A budget impact analysis was conducted to forecast costs for caregiver-dependent and patient-directed multicomponent behavioural techniques delivered by NCAs, and PFMT alone delivered by physiotherapists. All costs are reported in 2008 Canadian dollars. Based on epidemiological data, published medical literature and clinical expert opinion, the annual cost of caregiver-dependent behavioural techniques was estimated to be $9.2 M, while the annual costs of patient-directed behavioural techniques delivered by either an NCA or physiotherapist were estimated to be $25.5 M and $36.1 M, respectively. Estimates will vary if the underlying assumptions are changed.
Currently, the province of Ontario absorbs the cost of NCAs (available through the 42 Community Care Access Centres across the province) in the home setting. The 2007 Incontinence Care in the Community Report estimated that the total cost being absorbed by the public system of providing continence care in the home is $19.5 M in Ontario. This cost estimate included resources such as personnel, communication with physicians, record keeping and product costs. Clinic costs were not included in this estimation because currently these come out of the global budget of the respective hospital and very few continence clinics actually exist in the province. The budget impact analysis factored in a cost for the clinic setting, assuming that the public system would absorb the cost with this new model of community care.
Considerations for Ontario Health System
An expert panel on aging in the community met on 3 occasions from January to May 2008, and in part, discussed treatment of UI in seniors in Ontario with a focus on caregiver-dependent and patient-directed behavioural interventions. In particular, the panel discussed how treatment for UI is made available to seniors in Ontario and who provides the service. Some of the major themes arising from the discussions included:
Services/interventions that currently exist in Ontario offering behavioural interventions to treat UI are not consistent. There is a lack of consistency in how seniors access services for treatment of UI, who manages patients and what treatment patients receive.
Help-seeking behaviours are important to consider when designing optimal service delivery methods.
There is considerable social stigma associated with UI and therefore there is a need for public education and an awareness campaign.
The cost of incontinent supplies and the availability of NCAs were highlighted.
Conclusions
There is moderate-quality evidence that the following interventions are effective in improving UI in mobile motivated seniors:
Multicomponent behavioural interventions including a combination of bladder training techniques, PFMT (with or without biofeedback), education on bladder control strategies and self-monitoring techniques.
Pelvic floor muscle training alone.
There is moderate quality evidence that when behavioural interventions are led by NCAs or CNSs in a clinic setting, they are effective in improving UI in seniors.
There is limited low-quality evidence that prompted voiding may be effective in medically complex, frail seniors with motivated caregivers.
There is insufficient evidence for the following interventions in medically complex, frail seniors with motivated caregivers:
habit retraining, and
timed voiding.
PMCID: PMC3377527  PMID: 23074508

Results 1-25 (1297062)