Search tips
Search criteria

Results 1-25 (922126)

Clipboard (0)

Related Articles

1.  De Novo Design of Antimicrobial Polymers, Foldamers, and Small Molecules: From Discovery to Practical Applications 
Accounts of chemical research  2010;43(1):30-39.
Antimicrobial peptides (AMPs) provide protection against a variety of pathogenic bacteria and are, therefore, an important part of the innate immune system. Over the last decade, there has been considerable interest in developing AMPs as intravenously administered antibiotics. However, despite extensive efforts in the pharmaceutical and biotechnology industry, it has proven difficult to achieve this goal. While researchers have solved some relatively simple problems such as susceptibility to proteolysis, more severe problems have included the expense of the materials, toxicity, limited efficacy, and limited tissue distribution.
In this Account, we describe our efforts to design and synthesize “foldamers”-- short sequence-specific oligomers based on arylamide and β-amino acid backbones, which fold into well-defined secondary structures-- that could act as antimicrobial agents. We reasoned that small “foldamers” would be less expensive to produce than peptides, and might have better tissue distribution. It should be easier to fine-tune the structures and activities of these molecules to minimize toxicity.
Because the activities of many AMPs depends primarily on their overall physicochemical properties rather than the fine details of their precise amino acid sequences, we have designed and synthesized very small “coarse-grained” molecules, which are far simpler than naturally produced AMPs. The molecular design of these foldamers epitomizes the positively charged amphiphilic structures believed to be responsible for the activity of AMPs. The designed oligomers show greater activity than the parent peptides. They have also provided leads for novel small molecule therapeutics that show excellent potency in animal models for multi-drug resistant bacterial infections. In addition, such molecules can serve as relatively simple experimental systems for investigations aimed at understanding the mechanism of action for this class of antimicrobial agents. The foldamers’ specificity for bacterial membranes relative to mammalian membranes appears to arise from differences in membrane composition and physical properties between these cell types.
Furthermore, because experimental coarse-graining provided such outstanding results, we developed computational coarse-grained models to enable molecular dynamic simulations of these molecules with phospholipid membranes. These simulations allow investigation of larger systems for longer times than conventional molecular dynamics simulations, allowing us to investigate how physiologically relevant surface concentrations of AMP mimics affect the bilayer structure and properties. Finally, we apply the principles discovered through this work to the design of inexpensive antimicrobial polymers and materials.
PMCID: PMC2808429  PMID: 19813703
de novo design; antimicrobial peptide; foldamer; antibiotic; membrane-peptide interactions; antimicrobial polymers
2.  Vv-AMP1, a ripening induced peptide from Vitis vinifera shows strong antifungal activity 
BMC Plant Biology  2008;8:75.
Latest research shows that small antimicrobial peptides play a role in the innate defense system of plants. These peptides typically contribute to preformed defense by developing protective barriers around germinating seeds or between different tissue layers within plant organs. The encoding genes could also be upregulated by abiotic and biotic stimuli during active defense processes. The peptides display a broad spectrum of antimicrobial activities. Their potent anti-pathogenic characteristics have ensured that they are promising targets in the medical and agricultural biotechnology sectors.
A berry specific cDNA sequence designated Vv-AMP1, Vitis vinifera antimicrobial peptide 1, was isolated from Vitis vinifera. Vv-AMP1 encodes for a 77 amino acid peptide that shows sequence homology to the family of plant defensins. Vv-AMP1 is expressed in a tissue specific, developmentally regulated manner, being only expressed in berry tissue at the onset of berry ripening and onwards. Treatment of leaf and berry tissue with biotic or abiotic factors did not lead to increased expression of Vv-AMP1 under the conditions tested. The predicted signal peptide of Vv-AMP1, fused to the green fluorescent protein (GFP), showed that the signal peptide allowed accumulation of its product in the apoplast. Vv-AMP1 peptide, produced in Escherichia coli, had a molecular mass of 5.495 kDa as determined by mass spectrometry. Recombinant Vv-AMP1 was extremely heat-stable and showed strong antifungal activity against a broad spectrum of plant pathogenic fungi, with very high levels of activity against the wilting disease causing pathogens Fusarium oxysporum and Verticillium dahliae. The Vv-AMP1 peptide did not induce morphological changes on the treated fungal hyphae, but instead strongly inhibited hyphal elongation. A propidium iodide uptake assay suggested that the inhibitory activity of Vv-AMP1 might be associated with altering the membrane permeability of the fungal membranes.
A berry specific cDNA clone, Vv-AMP1, was isolated and characterized and shown to encode a plant defensin. Recombinant Vv-AMP1 displayed non-morphogenic antifungal activity against a broad spectrum of fungi, probably altering the membrane permeability of the fungal pathogens. The expression of this peptide is highly regulated in Vitis vinifera, hinting at an important defense role during berry-ripening.
PMCID: PMC2492866  PMID: 18611251
3.  Antimicrobial Peptides Design by Evolutionary Multiobjective Optimization 
PLoS Computational Biology  2013;9(9):e1003212.
Antimicrobial peptides (AMPs) are an abundant and wide class of molecules produced by many tissues and cell types in a variety of mammals, plant and animal species. Linear alpha-helical antimicrobial peptides are among the most widespread membrane-disruptive AMPs in nature, representing a particularly successful structural arrangement in innate defense. Recently, AMPs have received increasing attention as potential therapeutic agents, owing to their broad activity spectrum and their reduced tendency to induce resistance. The introduction of non-natural amino acids will be a key requisite in order to contrast host resistance and increase compound's life. In this work, the possibility to design novel AMP sequences with non-natural amino acids was achieved through a flexible computational approach, based on chemophysical profiles of peptide sequences. Quantitative structure-activity relationship (QSAR) descriptors were employed to code each peptide and train two statistical models in order to account for structural and functional properties of alpha-helical amphipathic AMPs. These models were then used as fitness functions for a multi-objective evolutional algorithm, together with a set of constraints for the design of a series of candidate AMPs. Two ab-initio natural peptides were synthesized and experimentally validated for antimicrobial activity, together with a series of control peptides. Furthermore, a well-known Cecropin-Mellitin alpha helical antimicrobial hybrid (CM18) was optimized by shortening its amino acid sequence while maintaining its activity and a peptide with non-natural amino acids was designed and tested, demonstrating the higher activity achievable with artificial residues.
Author Summary
In recent years, the increasing and rapid spread of pathogenic microorganisms resistant to conventional antibiotics especially in hospital settings spurred research for the identification of novel molecules endowed with antimicrobial activities and new mechanisms of action. Antimicrobial peptides (AMPs) received an increasing attention as potential therapeutic agents because of their wide spectrum of activity and low rate in inducing bacterial resistance. Currently, research is focused on the design and optimization of novel AMPs to improve their antimicrobial activity, minimize the cytotoxicity and reduce the proteolytic degradation, also in biological fluids. To this end, the introduction of non-natural amino acids will be a key requisite in order to contrast host resistance and increase compound's life. However, the amino acidic alphabet extension to non-natural elements makes a systematic approach to AMPs design unfeasible. A rational in-silico approach can drastically reduce the number of testing compounds and consequently the production costs and the time required for evaluation of activity and toxicity. In this article, AMP in-silico design with non-natural amino acids was performed and a series of candidates were tested in order to demonstrate the potentiality of this approach.
PMCID: PMC3764005  PMID: 24039565
4.  Identification of candidates for cyclotide biosynthesis and cyclisation by expressed sequence tag analysis of Oldenlandia affinis 
BMC Genomics  2010;11:111.
Cyclotides are a family of circular peptides that exhibit a range of biological activities, including anti-bacterial, cytotoxic, anti-HIV activities, and are proposed to function in plant defence. Their high stability has motivated their development as scaffolds for the stabilisation of peptide drugs. Oldenlandia affinis is a member of the Rubiaceae (coffee) family from which 18 cyclotides have been sequenced to date, but the details of their processing from precursor proteins have only begun to be elucidated. To increase the speed at which genes involved in cyclotide biosynthesis and processing are being discovered, an expressed sequence tag (EST) project was initiated to survey the transcript profile of O. affinis and to propose some future directions of research on in vivo protein cyclisation.
Using flow cytometry the holoploid genome size (1C-value) of O. affinis was estimated to be 4,210 - 4,284 Mbp, one of the largest genomes of the Rubiaceae family. High-quality ESTs were identified, 1,117 in total, from leaf cDNAs and assembled into 502 contigs, comprising 202 consensus sequences and 300 singletons. ESTs encoding the cyclotide precursors for kalata B1 (Oak1) and kalata B2 (Oak4) were among the 20 most abundant ESTs. In total, 31 ESTs encoded cyclotide precursors, representing a distinct commitment of 2.8% of the O. affinis transcriptome to cyclotide biosynthesis. The high expression levels of cyclotide precursor transcripts are consistent with the abundance of mature cyclic peptides in O. affinis. A new cyclotide precursor named Oak5 was isolated and represents the first cDNA for the bracelet class of cyclotides in O. affinis. Clones encoding enzymes potentially involved in processing cyclotides were also identified and include enzymes involved in oxidative folding and proteolytic processing.
The EST library generated in this study provides a valuable resource for the study of the cyclisation of plant peptides. Further analysis of the candidates for cyclotide processing discovered in this work will increase our understanding and aid in reconstructing cyclotide production using transgenic systems and will benefit their development in pharmaceutical applications and insect-resistant crop plants.
PMCID: PMC2838841  PMID: 20158917
5.  Intracellular Toxicity of Proline-Rich Antimicrobial Peptides Shuttled into Mammalian Cells by the Cell-Penetrating Peptide Penetratin 
Antimicrobial Agents and Chemotherapy  2012;56(10):5194-5201.
The health threat caused by multiresistant bacteria has continuously increased and recently peaked with pathogens resistant to all current drugs. This has triggered intense research efforts to develop novel compounds to overcome the resistance mechanisms. Thus, antimicrobial peptides (AMPs) have been intensively studied, especially the family of proline-rich AMPs (PrAMPs) that was successfully tested very recently in murine infection models. PrAMPs enter bacteria and inhibit chaperone DnaK. Here, we studied the toxicity of intracellular PrAMPs in HeLa and SH-SY5Y cells. As PrAMPs cannot enter most mammalian cells, we coupled the PrAMPs with penetratin (residues 43 to 58 in the antennapedia homeodomain) via a C-terminally added cysteine utilizing a thioether bridge. The resulting construct could transport the covalently linked PrAMP into mammalian cells. Penetratin ligation reduced the MIC for Gram-negative Escherichia coli only slightly (1 to 8 μmol/liter) but increased the activity against the Gram-positive Micrococcus luteus up to 32-fold (MIC ≈ 1 μmol/liter), most likely due to more effective penetration through the bacterial membrane. In contrast to native PrAMPs, the penetratin-PrAMP constructs entered the mammalian cells, aligned around the nucleus, and associated with the Golgi apparatus. At higher concentrations, the constructs reduced the cell viability (50% inhibitory concentration [IC50] ≈ 40 μmol/liter) and changed the morphology of the cells. No toxic effects or morphological changes were observed at concentrations of 10 μmol/liter or below. Thus, the IC50 values were around 5 to 40 times higher than the MIC values. In conclusion, PrAMPs are in general not toxic to mammalian cells, as they do not pass through the membrane. When shuttled into mammalian cells, however, PrAMPs are only slightly cross-reactive to mammalian chaperones or other intracellular mammalian proteins, providing a second layer of safety for in vivo applications, even if they can enter some human cells.
PMCID: PMC3457398  PMID: 22850523
6.  LAMP: A Database Linking Antimicrobial Peptides 
PLoS ONE  2013;8(6):e66557.
The frequent emergence of drug-resistant bacteria has created an urgent demand for new antimicrobial agents. Traditional methods of novel antibiotic development are almost obsolete. Antimicrobial peptides (AMPs) are now regarded as a potential solution to revive the traditional methods of antibiotic development, although, until now, many AMPs have failed in clinical trials. A comprehensive database of AMPs with information about their antimicrobial activity and cytotoxicity will help promote the process of finding novel AMPs with improved antimicrobial activity and reduced cytotoxicity and eventually accelerate the speed of translating the discovery of new AMPs into clinical or preclinical trials. LAMP, a database linking AMPs, serves as a tool to aid the discovery and design of AMPs as new antimicrobial agents. The current version of LAMP has 5,547 entries, comprising 3,904 natural AMPs and 1,643 synthetic peptides. The database can be queried using either simply keywords or combinatorial conditions searches. Equipped with the detailed antimicrobial activity and cytotoxicity data, the cross-linking and top similar AMPs functions implemented in LAMP will help enhance our current understanding of AMPs and this may speed up the development of new AMPs for medical applications. LAMP is freely available at:
PMCID: PMC3688957  PMID: 23825543
7.  Interplay between Candida albicans and the Antimicrobial Peptide Armory 
Eukaryotic Cell  2014;13(8):950-957.
Antimicrobial peptides (AMPs) are key elements of innate immunity, which can directly kill multiple bacterial, viral, and fungal pathogens. The medically important fungus Candida albicans colonizes different host niches as part of the normal human microbiota. Proliferation of C. albicans is regulated through a complex balance of host immune defense mechanisms and fungal responses. Expression of AMPs against pathogenic fungi is differentially regulated and initiated by interactions of a variety of fungal pathogen-associated molecular patterns (PAMPs) with pattern recognition receptors (PRRs) on human cells. Inflammatory signaling and other environmental stimuli are also essential to control fungal proliferation and to prevent parasitism. To persist in the host, C. albicans has developed a three-phase AMP evasion strategy, including secretion of peptide effectors, AMP efflux pumps, and regulation of signaling pathways. These mechanisms prevent C. albicans from the antifungal activity of the major AMP classes, including cathelicidins, histatins, and defensins leading to a basal resistance. This minireview summarizes human AMP attack and C. albicans resistance mechanisms and current developments in the use of AMPs as antifungal agents.
PMCID: PMC4135787  PMID: 24951441
8.  Antimicrobial Peptides: Versatile Biological Properties 
Antimicrobial peptides are diverse group of biologically active molecules with multidimensional properties. In recent past, a wide variety of AMPs with diverse structures have been reported from different sources such as plants, animals, mammals, and microorganisms. The presence of unusual amino acids and structural motifs in AMPs confers unique structural properties to the peptide that attribute for their specific mode of action. The ability of these active AMPs to act as multifunctional effector molecules such as signalling molecule, immune modulators, mitogen, antitumor, and contraceptive agent makes it an interesting candidate to study every aspect of their structural and biological properties for prophylactic and therapeutic applications. In addition, easy cloning and recombinant expression of AMPs in heterologous plant host systems provided a pipeline for production of disease resistant transgenic plants. Besides these properties, AMPs were also used as drug delivery vectors to deliver cell impermeable drugs to cell interior. The present review focuses on the diversity and broad spectrum antimicrobial activity of AMPs along with its multidimensional properties that could be exploited for the application of these bioactive peptides as a potential and promising drug candidate in pharmaceutical industries.
PMCID: PMC3710626  PMID: 23935642
9.  Msb2 Shedding Protects Candida albicans against Antimicrobial Peptides 
PLoS Pathogens  2012;8(2):e1002501.
Msb2 is a sensor protein in the plasma membrane of fungi. In the human fungal pathogen C. albicans Msb2 signals via the Cek1 MAP kinase pathway to maintain cell wall integrity and allow filamentous growth. Msb2 doubly epitope-tagged in its large extracellular and small cytoplasmic domain was efficiently cleaved during liquid and surface growth and the extracellular domain was almost quantitatively released into the growth medium. Msb2 cleavage was independent of proteases Sap9, Sap10 and Kex2. Secreted Msb2 was highly O-glycosylated by protein mannosyltransferases including Pmt1 resulting in an apparent molecular mass of >400 kDa. Deletion analyses revealed that the transmembrane region is required for Msb2 function, while the large N-terminal and the small cytoplasmic region function to downregulate Msb2 signaling or, respectively, allow its induction by tunicamycin. Purified extracellular Msb2 domain protected fungal and bacterial cells effectively from antimicrobial peptides (AMPs) histatin-5 and LL-37. AMP inactivation was not due to degradation but depended on the quantity and length of the Msb2 glycofragment. C. albicans msb2 mutants were supersensitive to LL-37 but not histatin-5, suggesting that secreted rather than cell-associated Msb2 determines AMP protection. Thus, in addition to its sensor function Msb2 has a second activity because shedding of its glycofragment generates AMP quorum resistance.
Author Summary
Microbial pathogens are attacked by antimicrobial peptides (AMPs) produced by the human host. AMPs kill pathogens and recruit immune cells to the site of infection. In defense, the human fungal pathogen Candida albicans continuously cleaves and secretes a glycoprotein fragment of the surface protein Msb2, which protects against AMPs. The results suggest that shed Msb2 allows fungal colonies to persist and avoid inflammatory responses caused by AMPs. Msb2 shedding and its additional role in stabilizing the fungal cell wall may be considered as novel diagnostic tools and targets for antifungal action.
PMCID: PMC3271078  PMID: 22319443
10.  Protection of Sinorhizobium against Host Cysteine-Rich Antimicrobial Peptides Is Critical for Symbiosis 
PLoS Biology  2011;9(10):e1001169.
A bacterial membrane protein, BacA, protects Sinorhizobium meliloti against the antimicrobial activity of host peptides, enabling the peptides to induce bacterial persistence rather than bacterial death.
Sinorhizobium meliloti differentiates into persisting, nitrogen-fixing bacteroids within root nodules of the legume Medicago truncatula. Nodule-specific cysteine-rich antimicrobial peptides (NCR AMPs) and the bacterial BacA protein are essential for bacteroid development. However, the bacterial factors central to the NCR AMP response and the in planta role of BacA are unknown. We investigated the hypothesis that BacA is critical for the bacterial response towards NCR AMPs. We found that BacA was not essential for NCR AMPs to induce features of S. meliloti bacteroids in vitro. Instead, BacA was critical to reduce the amount of NCR AMP-induced membrane permeabilization and bacterial killing in vitro. Within M. truncatula, both wild-type and BacA-deficient mutant bacteria were challenged with NCR AMPs, but this resulted in persistence of the wild-type bacteria and rapid cell death of the mutant bacteria. In contrast, BacA was dispensable for bacterial survival in an M. truncatula dnf1 mutant defective in NCR AMP transport to the bacterial compartment. Therefore, BacA is critical for the legume symbiosis by protecting S. meliloti against the bactericidal effects of NCR AMPs. Host AMPs are ubiquitous in nature and BacA proteins are essential for other chronic host infections by symbiotic and pathogenic bacteria. Hence, our findings suggest that BacA-mediated protection of bacteria against host AMPs is a critical stage in the establishment of different prolonged host infections.
Author Summary
Certain bacterial species have the unique capacity to enter into eukaryotic host cells and establish prolonged infections, which can be beneficial (e.g. bacterial-legume symbiosis) or detrimental (e.g. chronic disease) for the host. However, the mechanisms by which bacteria persist in host cells are poorly understood. Legume peptides and the bacterial BacA membrane protein play essential roles in enabling bacteria to establish prolonged legume infections. However, the biological function of BacA in persistent legume infections has eluded scientists for nearly two decades. In this article, we investigated a potential relationship between legume peptides and BacA in the establishment of prolonged bacterial-legume infections. We found that BacA was critical to protect bacteria against the antimicrobial action of legume peptides, thereby allowing the peptides to induce bacterial persistence within the legume rather than rapid bacterial death. Mammalian hosts also produce peptides in response to invading microorganisms and BacA proteins are critical for medically important bacterial pathogens such as Mycobacterium tuberculosis to form prolonged mammalian infections. Therefore, our results suggest that BacA-mediated protection against host peptides might be a conserved mechanism used by both symbiotic and pathogenic bacterial species to establish long-term host infections.
PMCID: PMC3186793  PMID: 21990963
11.  Regulation of antimicrobial peptide gene expression by nutrients and by-products of microbial metabolism 
European journal of nutrition  2012;51(8):899-907.
Antimicrobial peptides (AMPs) are synthesized and secreted by immune and epithelial cells that are constantly exposed to environmental microbes. AMPs are essential for barrier defense, and deficiencies lead to increased susceptibility to infection. In addition to their ability to disrupt the integrity of bacterial, viral and fungal membranes, AMPs bind lipopolysaccharides, act as chemoattractants for immune cells and bind to cellular receptors and modulate the expression of cytokines and chemokines. These additional biological activities may explain the role of AMPs in inflammatory diseases and cancer. Modulating the endogenous expression of AMPs offers potential therapeutic treatments for infection and disease.
The present review examines the published data from both in vitro and in vivo studies reporting the effects of nutrients and by-products of microbial metabolism on the expression of antimicrobial peptide genes in order to highlight an emerging appreciation for the role of dietary compounds in modulating the innate immune response.
Vitamins A and D, dietary histone deacetylases and by-products of intestinal microbial metabolism (butyrate and secondary bile acids) have been found to regulate the expression of AMPs in humans. Vitamin D deficiency correlates with increased susceptibility to infection, and supplementation studies indicate an improvement in defense against infection. Animal and human clinical studies with butyrate indicate that increasing expression of AMPs in the colon protects against infection.
These findings suggest that diet and/or consumption of nutritional supplements may be used to improve and/or modulate immune function. In addition, by-products of gut microbe metabolism could be important for communicating with intestinal epithelial and immune cells, thus affecting the expression of AMPs. This interaction may help establish a mucosal barrier to prevent invasion of the intestinal epithelium by either mutualistic or pathogenic microorganisms.
PMCID: PMC3587725  PMID: 22797470
Antimicrobial peptide; Innate immune; Vitamin; Dietary; Supplement; Infection
12.  Substantiation in Enterococcus faecalis of Dose-Dependent Resistance and Cross-Resistance to Pore-Forming Antimicrobial Peptides by Use of a Polydiacetylene-Based Colorimetric Assay▿  
A better understanding of the antimicrobial peptide (AMP) resistance mechanisms of bacteria will facilitate the design of effective and potent AMPs. Therefore, to understand resistance mechanisms and for in vitro assessment, variants of Enterococcus faecalis that are resistant to different doses of the fungal AMP alamethicin (Almr) were selected and characterized. The resistance developed was dose dependent, as both doses of alamethicin and degrees of resistance were colinear. The formation of bacterial cell aggregates observed in resistant cells may be the prime mechanism of resistance because overall, a smaller cell surface in aggregated cells is exposed to AMPs. Increased rigidity of the membranes of Almr variants, because of their altered fatty acids, was correlated with limited membrane penetration by alamethicin. Thus, resistance developed against alamethicin was an adaptation of the bacterial cells through changes in their morphological features and physiological activity and the composition of membrane phospholipids. The Almr variants showed cross-resistance to pediocin, which indicated that resistance developed against both AMPs may share a mechanism, i.e., an alteration in the cell membrane. High percentages of colorimetric response by both AMPs against polydiacetylene/lipid biomimetic membranes of Almr variants confirmed that altered phospholipid and fatty acid compositions were responsible for acquisition of resistance. So far, this is the only report of quantification of resistance and cross-resistance using an in vitro colorimetric approach. Our results imply that a single AMP or AMP analog may be effective against bacterial strains having a common mechanism of resistance. Therefore, an understanding of resistance would contribute to the development of a single efficient, potent AMP against resistant strains that share a mechanism of resistance.
PMCID: PMC3028714  PMID: 21115699
13.  Connecting Peptide Physicochemical and Antimicrobial Properties by a Rational Prediction Model 
PLoS ONE  2011;6(2):e16968.
The increasing rate in antibiotic-resistant bacterial strains has become an imperative health issue. Thus, pharmaceutical industries have focussed their efforts to find new potent, non-toxic compounds to treat bacterial infections. Antimicrobial peptides (AMPs) are promising candidates in the fight against antibiotic-resistant pathogens due to their low toxicity, broad range of activity and unspecific mechanism of action. In this context, bioinformatics' strategies can inspire the design of new peptide leads with enhanced activity. Here, we describe an artificial neural network approach, based on the AMP's physicochemical characteristics, that is able not only to identify active peptides but also to assess its antimicrobial potency. The physicochemical properties considered are directly derived from the peptide sequence and comprise a complete set of parameters that accurately describe AMPs. Most interesting, the results obtained dovetail with a model for the AMP's mechanism of action that takes into account new concepts such as peptide aggregation. Moreover, this classification system displays high accuracy and is well correlated with the experimentally reported data. All together, these results suggest that the physicochemical properties of AMPs determine its action. In addition, we conclude that sequence derived parameters are enough to characterize antimicrobial peptides.
PMCID: PMC3036733  PMID: 21347392
14.  Sap Transporter Mediated Import and Subsequent Degradation of Antimicrobial Peptides in Haemophilus 
PLoS Pathogens  2011;7(11):e1002360.
Antimicrobial peptides (AMPs) contribute to host innate immune defense and are a critical component to control bacterial infection. Nontypeable Haemophilus influenzae (NTHI) is a commensal inhabitant of the human nasopharyngeal mucosa, yet is commonly associated with opportunistic infections of the upper and lower respiratory tracts. An important aspect of NTHI virulence is the ability to avert bactericidal effects of host-derived antimicrobial peptides (AMPs). The Sap (sensitivity to antimicrobial peptides) ABC transporter equips NTHI to resist AMPs, although the mechanism of this resistance has remained undefined. We previously determined that the periplasmic binding protein SapA bound AMPs and was required for NTHI virulence in vivo. We now demonstrate, by antibody-mediated neutralization of AMP in vivo, that SapA functions to directly counter AMP lethality during NTHI infection. We hypothesized that SapA would deliver AMPs to the Sap inner membrane complex for transport into the bacterial cytoplasm. We observed that AMPs localize to the bacterial cytoplasm of the parental NTHI strain and were susceptible to cytoplasmic peptidase activity. In striking contrast, AMPs accumulated in the periplasm of bacteria lacking a functional Sap permease complex. These data support a mechanism of Sap mediated import of AMPs, a novel strategy to reduce periplasmic and inner membrane accumulation of these host defense peptides.
Author Summary
The opportunistic pathogen Haemophilus influenzae is a normal inhabitant of the human nasopharynx, and is commonly implicated in respiratory tract infections, particularly of the middle ear (otitis media), sinuses, and lung (pneumonia, chronic obstructive pulmonary disease and cystic fibrosis). We have identified a multifunctional bacterial uptake system that is required for critical mechanisms of bacterial survival in the host. This Sap transporter system recognizes and transports host immune defense molecules and is involved in uptake of an iron-containing nutrient (heme) that is host-limited, yet required for bacterial growth and survival. We propose that bacteria utilize this, and likely other similar transport systems, for numerous functions that are important for bacterial survival in the host, including host immune evasion and metabolism. Our findings significantly advance our understanding of how single bacterial protein systems co-operate and coordinate multiple functions to equip bacteria to survive and cause disease in the hostile host environment. Our long-range goal is to block this uptake system thereby starving the bacterium of essential nutrients and also promoting clearance by the host immune response. Removal of this important bacterial survival mechanism will thwart the ability for Haemophilus to survive as a pathogen and thus decrease the incidence of disease development.
PMCID: PMC3207918  PMID: 22072973
15.  Defensins: antifungal lessons from eukaryotes 
Over the last years, antimicrobial peptides (AMPs) have been the focus of intense research toward the finding of a viable alternative to current antifungal drugs. Defensins are one of the major families of AMPs and the most represented among all eukaryotic groups, providing an important first line of host defense against pathogenic microorganisms. Several of these cysteine-stabilized peptides present a relevant effect against fungi. Defensins are the AMPs with the broader distribution across all eukaryotic kingdoms, namely, Fungi, Plantae, and Animalia, and were recently shown to have an ancestor in a bacterial organism. As a part of the host defense, defensins act as an important vehicle of information between innate and adaptive immune system and have a role in immunomodulation. This multidimensionality represents a powerful host shield, hard for microorganisms to overcome using single approach resistance strategies. Pathogenic fungi resistance to conventional antimycotic drugs is becoming a major problem. Defensins, as other AMPs, have shown to be an effective alternative to the current antimycotic therapies, demonstrating potential as novel therapeutic agents or drug leads. In this review, we summarize the current knowledge on some eukaryotic defensins with antifungal action. An overview of the main targets in the fungal cell and the mechanism of action of these AMPs (namely, the selectivity for some fungal membrane components) are presented. Additionally, recent works on antifungal defensins structure, activity, and cytotoxicity are also reviewed.
PMCID: PMC3960590  PMID: 24688483
antimicrobial peptides; defensins; antifungal; resistance; host defense peptides
16.  Staphylococcus colonization of the skin and antimicrobial peptides 
Expert review of dermatology  2010;5(2):183-195.
Staphylococci are the most abundant skin-colonizing bacteria and the most important causes of nosocomial infections and community-associated skin infections. Molecular determinants of staphylococcal skin colonization include surface polymers and proteins that promote adhesion and aggregation, and a wide variety of mechanisms to evade acquired and innate host defenses. Antimicrobial peptides (AMPs) likely play a central role in providing immunity to bacterial colonization on human epithelia. Recent research has shown that staphylococci have a broad arsenal to combat AMP activity, and can regulate expression of AMP-resistance mechanisms depending on the presence of AMPs. While direct in vivo evidence is still lacking, this suggests that the interplay between AMPs and AMP resistance mechanisms during evolution had a crucial role in rendering staphylococci efficient colonizers of human skin.
PMCID: PMC2867359  PMID: 20473345
antimicrobial peptides; colonization; innate host defense; Staphylococcus aureus; Staphylococcus epidermidis
17.  Bacterial sensing of antimicrobial peptides 
Contributions to microbiology  2009;16:136-149.
Antimicrobial peptides (AMPs) form a crucial part of human innate host defense, especially in neutrophil phagosomes and on epithelial surfaces. Bacteria have a variety of efficient resistance mechanisms to human AMPs, such as efflux pumps, secreted proteases, and alterations of the bacterial cell surface that are aimed to minimize attraction of the typically cationic AMPs. In addition, bacteria have specific sensors that activate AMP resistance mechanisms when AMPs are present. AMP resistance mechanisms and AMP sensors may differ significantly between Gram-positive and Gram-negative bacteria. The prototypical Gram-negative PhoP/PhoQ and the Gram-positive Aps AMP sensing systems have been first described and investigated in Salmonella typhimurium and Staphylococcus epidermidis, respectively. Both include a classical bacterial two-component sensor/regulator system, but show many significant structural, mechanistic, and functional differences. At least the staphylococcal Aps prototype contains a third essential component of unknown function termed ApsX. Furthermore, the extracellular loop that interacts with AMPs is extremely short (9 amino acids) in the ApsS sensor in Staphylococcus, while it contains 145 amino acids in PhoQ of Salmonella. Moreover, while the PhoP/PhoQ regulon controls a variety of genes not necessarily limited to AMP resistance mechanisms, but apparently aimed to combat innate host defense on a broad scale, the staphylococcal Aps system predominantly up-regulates AMP resistance mechanisms, namely the D-alanylation of teichoic acids, inclusion of lysyl-phosphatidylglycerol in the cytoplasmic membrane, and expression of the putative VraFG AMP efflux pump. Notably, both systems are crucial for virulence and represent possible targets for antimicrobial therapy.
PMCID: PMC2777530  PMID: 19494583
18.  Broad Activity against Porcine Bacterial Pathogens Displayed by Two Insect Antimicrobial Peptides Moricin and Cecropin B 
Molecules and Cells  2013;35(2):106-114.
In response to infection, insects produce a variety of antimicrobial peptides (AMPs) to kill the invading pathogens. To study their physicochemical properties and bioactivities for clinical and commercial use in the porcine industry, we chemically synthesized the mature peptides Bombyx mori moricin and Hyalophora cecropia cecropin B. In this paper, we described the antimicrobial activity of the two AMPs. Moricin exhibited antimicrobial activity on eight strains tested with minimal inhibitory concentration values (MICs) ranging between 8 and 128 μg/ml, while cecropin B mainly showed antimicrobial activity against the Gramnegative strains with MICs ranging from 0.5 to 16 μg/ml. Compared to the potent antimicrobial activity these two AMPs displayed against most of the bacterial pathogens tested, they exhibited limited hemolytic activity against porcine red blood cells. The activities of moricin and cecropin B against Haemophilus parasuis SH 0165 were studied in further detail. Transmission electron microscopy (TEM) of moricin and cecropin B treated H. parasuis SH 0165 indicated extensive damage to the membranes of the bacteria. Insights into the probable mechanism utilized by moricin and cecropin B to eliminate pathogens are also presented. The observations from this study are important for the future application of AMPs in the porcine industry.
PMCID: PMC3887904  PMID: 23456332
antimicrobial peptide; cecropin B; Haemophilus parasuis SH 0165; moricin; transmission electron microscopy
19.  Characterization of Antimicrobial Peptides toward the Development of Novel Antibiotics 
Pharmaceuticals  2013;6(8):1055-1081.
Antimicrobial agents have eradicated many infectious diseases and significantly improved our living environment. However, abuse of antimicrobial agents has accelerated the emergence of multidrug-resistant microorganisms, and there is an urgent need for novel antibiotics. Antimicrobial peptides (AMPs) have attracted attention as a novel class of antimicrobial agents because AMPs efficiently kill a wide range of species, including bacteria, fungi, and viruses, via a novel mechanism of action. In addition, they are effective against pathogens that are resistant to almost all conventional antibiotics. AMPs have promising properties; they directly disrupt the functions of cellular membranes and nucleic acids, and the rate of appearance of AMP-resistant strains is very low. However, as pharmaceuticals, AMPs exhibit unfavorable properties, such as instability, hemolytic activity, high cost of production, salt sensitivity, and a broad spectrum of activity. Therefore, it is vital to improve these properties to develop novel AMP treatments. Here, we have reviewed the basic biochemical properties of AMPs and the recent strategies used to modulate these properties of AMPs to enhance their safety.
PMCID: PMC3817730  PMID: 24276381
antibiotic; antimicrobial peptide; drug delivery; activity regulation
20.  Anti-Fungal Innate Immunity in C. elegans Is Enhanced by Evolutionary Diversification of Antimicrobial Peptides 
PLoS Pathogens  2008;4(7):e1000105.
Encounters with pathogens provoke changes in gene transcription that are an integral part of host innate immune responses. In recent years, studies with invertebrate model organisms have given insights into the origin, function, and evolution of innate immunity. Here, we use genome-wide transcriptome analysis to characterize the consequence of natural fungal infection in Caenorhabditis elegans. We identify several families of genes encoding putative antimicrobial peptides (AMPs) and proteins that are transcriptionally up-regulated upon infection. Many are located in small genomic clusters. We focus on the nlp-29 cluster of six AMP genes and show that it enhances pathogen resistance in vivo. The same cluster has a different structure in two other Caenorhabditis species. A phylogenetic analysis indicates that the evolutionary diversification of this cluster, especially in cases of intra-genomic gene duplications, is driven by natural selection. We further show that upon osmotic stress, two genes of the nlp-29 cluster are strongly induced. In contrast to fungus-induced nlp expression, this response is independent of the p38 MAP kinase cascade. At the same time, both involve the epidermal GATA factor ELT-3. Our results suggest that selective pressure from pathogens influences intra-genomic diversification of AMPs and reveal an unexpected complexity in AMP regulation as part of the invertebrate innate immune response.
Author Summary
We are interested in how exactly the nematode Caenorhabditi elegans, widely used in biological research, defends itself against fungal infection. Like most animals, this worm responds to infection by switching on defense genes. We used DNA chips to measure the levels of all the worm's 20,000 genes and discovered new inducible defense genes. Many of them encode small proteins or peptides that can probably kill microbes. By looking in other nematode species, we saw that these antimicrobial peptide genes are evolving rapidly. This means that they could be important for the worms' survival in their natural environment. We also looked at how some of these genes are regulated and uncovered a sophisticated control mechanism involving a series of proteins called kinases that relay signals within cells. The genes we looked at are active in the worm's skin. Some of the antimicrobial peptide genes that we looked at are also switched on in the skin by high salt, but in this case, the regulation doesn't involve the same cascade of kinases. The responses to both infection and high salt do, however, require the same transcription factor (the protein that actually switches genes on), in this case called a GATA factor.
PMCID: PMC2453101  PMID: 18636113
21.  Display of Multimeric Antimicrobial Peptides on the Escherichia coli Cell Surface and Its Application as Whole-Cell Antibiotics 
PLoS ONE  2013;8(3):e58997.
Concerns over the increasing emergence of antibiotic-resistant pathogenic microorganisms due to the overuse of antibiotics and the lack of effective antibiotics for livestock have prompted efforts to develop alternatives to conventional antibiotics. Antimicrobial peptides (AMPs) with a broad-spectrum activity and rapid killing, along with little opportunity for the development of resistance, represent one of the promising novel alternatives. Their high production cost and cytotoxicity, however, limit the use of AMPs as effective antibiotic agents to livestock. To overcome these problems, we developed potent antimicrobial Escherichia coli displaying multimeric AMPs on the cell surface so that the AMP multimers can be converted into active AMP monomers by the pepsin in the stomach of livestock. Buf IIIb, a strong AMP without cytotoxicity, was expressed on the surface of E. coli as Lpp-OmpA-fused tandem multimers with a pepsin substrate residue, leucine, at the C-terminus of each monomer. The AMP multimers were successfully converted into active AMPs upon pepsin cleavage, and the liberated Buf IIIb-L monomers inhibited the growth of two major oral infectious pathogens of livestock, Salmonella enteritidis and Listeria monocytogenes. Live antimicrobial microorganisms developed in this study may represent the most effective means of providing potent AMPs to livestock, and have a great impact on controlling over pathogenic microorganisms in the livestock production.
PMCID: PMC3597565  PMID: 23516591
22.  Antimicrobial Peptide Resistance Mechanisms of Gram-Positive Bacteria 
Antibiotics (Basel, Switzerland)  2014;3(4):461-492.
Antimicrobial peptides, or AMPs, play a significant role in many environments as a tool to remove competing organisms. In response, many bacteria have evolved mechanisms to resist these peptides and prevent AMP-mediated killing. The development of AMP resistance mechanisms is driven by direct competition between bacterial species, as well as host and pathogen interactions. Akin to the number of different AMPs found in nature, resistance mechanisms that have evolved are just as varied and may confer broad-range resistance or specific resistance to AMPs. Specific mechanisms of AMP resistance prevent AMP-mediated killing against a single type of AMP, while broad resistance mechanisms often lead to a global change in the bacterial cell surface and protect the bacterium from a large group of AMPs that have similar characteristics. AMP resistance mechanisms can be found in many species of bacteria and can provide a competitive edge against other bacterial species or a host immune response. Gram-positive bacteria are one of the largest AMP producing groups, but characterization of Gram-positive AMP resistance mechanisms lags behind that of Gram-negative species. In this review we present a summary of the AMP resistance mechanisms that have been identified and characterized in Gram-positive bacteria. Understanding the mechanisms of AMP resistance in Gram-positive species can provide guidelines in developing and applying AMPs as therapeutics, and offer insight into the role of resistance in bacterial pathogenesis.
PMCID: PMC4239024  PMID: 25419466
Clostridium difficile; antimicrobial; antimicrobial peptide; AMP; resistance
23.  Activity of an Antimicrobial Peptide Mimetic against Planktonic and Biofilm Cultures of Oral Pathogens▿ †  
Antimicrobial Agents and Chemotherapy  2007;51(11):4125-4132.
Antimicrobial peptides (AMPs) are naturally occurring, broad-spectrum antimicrobial agents that have recently been examined for their utility as therapeutic antibiotics. Unfortunately, they are expensive to produce and are often sensitive to protease digestion. To address this problem, we have examined the activity of a peptide mimetic whose design was based on the structure of magainin, exhibiting its amphiphilic structure. We demonstrate that this compound, meta-phenylene ethynylene (mPE), exhibits antimicrobial activity at nanomolar concentrations against a variety of bacterial and Candida species found in oral infections. Since Streptococcus mutans, an etiological agent of dental caries, colonizes the tooth surface and forms a biofilm, we quantified the activity of this compound against S. mutans growing under conditions that favor biofilm formation. Our results indicate that mPE can prevent the formation of a biofilm at nanomolar concentrations. Incubation with 5 nM mPE prevents further growth of the biofilm, and 100 nM mPE reduces viable bacteria in the biofilm by 3 logs. Structure-function analyses suggest that mPE inhibits the bioactivity of lipopolysaccharide and binds DNA at equimolar ratios, suggesting that it may act both as a membrane-active molecule, similar to magainin, and as an intracellular antibiotic, similar to other AMPs. We conclude that mPE and similar molecules display great potential for development as therapeutic antimicrobials.
PMCID: PMC2151458  PMID: 17785509
24.  A novel PCR-based method for high throughput prokaryotic expression of antimicrobial peptide genes 
BMC Biotechnology  2012;12:10.
To facilitate the screening of large quantities of new antimicrobial peptides (AMPs), we describe a cost-effective method for high throughput prokaryotic expression of AMPs. EDDIE, an autoproteolytic mutant of the N-terminal autoprotease, Npro, from classical swine fever virus, was selected as a fusion protein partner. The expression system was used for high-level expression of six antimicrobial peptides with different sizes: Bombinin-like peptide 7, Temporin G, hexapeptide, Combi-1, human Histatin 9, and human Histatin 6. These expressed AMPs were purified and evaluated for antimicrobial activity.
Two or four primers were used to synthesize each AMP gene in a single step PCR. Each synthetic gene was then cloned into the pET30a/His-EDDIE-GFP vector via an in vivo recombination strategy. Each AMP was then expressed as an Npro fusion protein in Escherichia coli. The expressed fusion proteins existed as inclusion bodies in the cytoplasm and the expression levels of the six AMPs reached up to 40% of the total cell protein content. On in vitro refolding, the fusion AMPs was released from the C-terminal end of the autoprotease by self-cleavage, leaving AMPs with an authentic N terminus. The released fusion partner was easily purified by Ni-NTA chromatography. All recombinant AMPs displayed expected antimicrobial activity against E. coli, Micrococcus luteus and S. cerevisia.
The method described in this report allows the fast synthesis of genes that are optimized for over-expression in E. coli and for the production of sufficiently large amounts of peptides for functional and structural characterization. The Npro partner system, without the need for chemical or enzymatic removal of the fusion tag, is a low-cost, efficient way of producing AMPs for characterization. The cloning method, combined with bioinformatic analyses from genome and EST sequence data, will also be useful for screening new AMPs. Plasmid pET30a/His-EDDIE-GFP also provides green/white colony selection for high-throughput recombinant AMP cloning.
PMCID: PMC3350388  PMID: 22439858
antimicrobial peptide; high throughput; Npro; prokaryotic expression
25.  A Peptide Derived from Phage Display Library Exhibits Antibacterial Activity against E. coli and Pseudomonas aeruginosa 
PLoS ONE  2013;8(2):e56081.
Emergence of drug resistant strains to currently available antibiotics has resulted in the quest for novel antimicrobial agents. Antimicrobial peptides (AMPs) are receiving attention as alternatives to antibiotics. In this study, we used phage-display random peptide library to identify peptides binding to the cell surface of E. coli. The peptide with sequence RLLFRKIRRLKR (EC5) bound to the cell surface of E. coli and exhibited certain features common to AMPs and was rich in Arginine and Lysine residues. Antimicrobial activity of the peptide was tested in vitro by growth inhibition assays and the bacterial membrane permeabilization assay. The peptide was highly active against Gram-negative organisms and showed significant bactericidal activity against E. coli and P. aeruginosa resulting in a reduction of 5 log10 CFU/ml. In homologous plasma and platelets, incubation of EC5 with the bacteria resulted in significant reduction of E. coli and P. aeruginosa, compared to the peptide-free controls. The peptide was non-hemolytic and non-cytotoxic when tested on eukaryotic cells in culture. EC5 was able to permeabilize the outer membrane of E. coli and P. aeruginosa causing rapid depolarization of cytoplasmic membrane resulting in killing of the cells at 5 minutes of exposure. The secondary structure of the peptide showed a α-helical conformation in the presence of aqueous environment. The bacterial lipid interaction with the peptide was also investigated using Molecular Dynamic Simulations. Thus this study demonstrates that peptides identified to bind to bacterial cell surface through phage-display screening may additionally aid in identifying and developing novel antimicrobial peptides.
PMCID: PMC3569419  PMID: 23409125

Results 1-25 (922126)