Search tips
Search criteria

Results 1-25 (1333639)

Clipboard (0)

Related Articles

1.  Genome-wide in silico prediction of gene expression 
Bioinformatics  2012;28(21):2789-2796.
Motivation: Modelling the regulation of gene expression can provide insight into the regulatory roles of individual transcription factors (TFs) and histone modifications. Recently, Ouyang et al. in 2009 modelled gene expression levels in mouse embryonic stem (mES) cells using in vivo ChIP-seq measurements of TF binding. ChIP-seq TF binding data, however, are tissue-specific and relatively difficult to obtain. This limits the applicability of gene expression models that rely on ChIP-seq TF binding data.
Results: In this study, we build regression-based models that relate gene expression to the binding of 12 different TFs, 7 histone modifications and chromatin accessibility (DNase I hypersensitivity) in two different tissues. We find that expression models based on computationally predicted TF binding can achieve similar accuracy to those using in vivo TF binding data and that including binding at weak sites is critical for accurate prediction of gene expression. We also find that incorporating histone modification and chromatin accessibility data results in additional accuracy. Surprisingly, we find that models that use no TF binding data at all, but only histone modification and chromatin accessibility data, can be as (or more) accurate than those based on in vivo TF binding data.
Availability and implementation: All scripts, motifs and data presented in this article are available online at
Supplementary information: Supplementary data are available at Bioinformatics online.
PMCID: PMC3476338  PMID: 22954627
2.  Optimized Position Weight Matrices in Prediction of Novel Putative Binding Sites for Transcription Factors in the Drosophila melanogaster Genome 
PLoS ONE  2013;8(8):e68712.
Position weight matrices (PWMs) have become a tool of choice for the identification of transcription factor binding sites in DNA sequences. DNA-binding proteins often show degeneracy in their binding requirement and thus the overall binding specificity of many proteins is unknown and remains an active area of research. Although existing PWMs are more reliable predictors than consensus string matching, they generally result in a high number of false positive hits. Our previous study introduced a promising approach to PWM refinement in which known motifs are used to computationally mine putative binding sites directly from aligned promoter regions using composition of similar sites. In the present study, we extended this technique originally tested on single examples of transcription factors (TFs) and showed its capability to optimize PWM performance to predict new binding sites in the fruit fly genome. We propose refined PWMs in mono- and dinucleotide versions similarly computed for a large variety of transcription factors of Drosophila melanogaster. Along with the addition of many auxiliary sites the optimization includes variation of the PWM motif length, the binding sites location on the promoters and the PWM score threshold. To assess the predictive performance of the refined PWMs we compared them to conventional TRANSFAC and JASPAR sources. The results have been verified using performed tests and literature review. Overall, the refined PWMs containing putative sites derived from real promoter content processed using optimized parameters had better general accuracy than conventional PWMs.
PMCID: PMC3735551  PMID: 23936309
3.  Assigning roles to DNA regulatory motifs using comparative genomics 
Bioinformatics  2010;26(7):860-866.
Motivation: Transcription factors (TFs) are crucial during the lifetime of the cell. Their functional roles are defined by the genes they regulate. Uncovering these roles not only sheds light on the TF at hand but puts it into the context of the complete regulatory network.
Results: Here, we present an alignment- and threshold-free comparative genomics approach for assigning functional roles to DNA regulatory motifs. We incorporate our approach into the Gomo algorithm, a computational tool for detecting associations between a user-specified DNA regulatory motif [expressed as a position weight matrix (PWM)] and Gene Ontology (GO) terms. Incorporating multiple species into the analysis significantly improves Gomo's ability to identify GO terms associated with the regulatory targets of TFs. Including three comparative species in the process of predicting TF roles in Saccharomyces cerevisiae and Homo sapiens increases the number of significant predictions by 75 and 200%, respectively. The predicted GO terms are also more specific, yielding deeper biological insight into the role of the TF. Adjusting motif (binding) affinity scores for individual sequence composition proves to be essential for avoiding false positive associations. We describe a novel DNA sequence-scoring algorithm that compensates a thermodynamic measure of DNA-binding affinity for individual sequence base composition. Gomo's prediction accuracy proves to be relatively insensitive to how promoters are defined. Because Gomo uses a threshold-free form of gene set analysis, there are no free parameters to tune. Biologists can investigate the potential roles of DNA regulatory motifs of interest using Gomo via the web (
Supplementary information: Supplementary data are available at Bioinformatics online.
PMCID: PMC2844991  PMID: 20147307
4.  Tree-Based Position Weight Matrix Approach to Model Transcription Factor Binding Site Profiles 
PLoS ONE  2011;6(9):e24210.
Most of the position weight matrix (PWM) based bioinformatics methods developed to predict transcription factor binding sites (TFBS) assume each nucleotide in the sequence motif contributes independently to the interaction between protein and DNA sequence, usually producing high false positive predictions. The increasing availability of TF enrichment profiles from recent ChIP-Seq methodology facilitates the investigation of dependent structure and accurate prediction of TFBSs. We develop a novel Tree-based PWM (TPWM) approach to accurately model the interaction between TF and its binding site. The whole tree-structured PWM could be considered as a mixture of different conditional-PWMs. We propose a discriminative approach, called TPD (TPWM based Discriminative Approach), to construct the TPWM from the ChIP-Seq data with a pre-existing PWM. To achieve the maximum discriminative power between the positive and negative datasets, the cutoff value is determined based on the Matthew Correlation Coefficient (MCC). The resulting TPWMs are evaluated with respect to accuracy on extensive synthetic datasets. We then apply our TPWM discriminative approach on several real ChIP-Seq datasets to refine the current TFBS models stored in the TRANSFAC database. Experiments on both the simulated and real ChIP-Seq data show that the proposed method starting from existing PWM has consistently better performance than existing tools in detecting the TFBSs. The improved accuracy is the result of modelling the complete dependent structure of the motifs and better prediction of true positive rate. The findings could lead to better understanding of the mechanisms of TF-DNA interactions.
PMCID: PMC3166302  PMID: 21912677
5.  Predicting transcription factor site occupancy using DNA sequence intrinsic and cell-type specific chromatin features 
BMC Bioinformatics  2016;17(Suppl 1):4.
Understanding the mechanisms by which transcription factors (TF) are recruited to their physiological target sites is crucial for understanding gene regulation. DNA sequence intrinsic features such as predicted binding affinity are often not very effective in predicting in vivo site occupancy and in any case could not explain cell-type specific binding events. Recent reports show that chromatin accessibility, nucleosome occupancy and specific histone post-translational modifications greatly influence TF site occupancy in vivo. In this work, we use machine-learning methods to build predictive models and assess the relative importance of different sequence-intrinsic and chromatin features in the TF-to-target-site recruitment process.
Our study primarily relies on recent data published by the ENCODE consortium. Five dissimilar TFs assayed in multiple cell-types were selected as examples: CTCF, JunD, REST, GABP and USF2. We used two types of candidate target sites: (a) predicted sites obtained by scanning the whole genome with a position weight matrix, and (b) cell-type specific peak lists provided by ENCODE. Quantitative in vivo occupancy levels in different cell-types were based on ChIP-seq data for the corresponding TFs. In parallel, we computed a number of associated sequence-intrinsic and experimental features (histone modification, DNase I hypersensitivity, etc.) for each site. Machine learning algorithms were then used in a binary classification and regression framework to predict site occupancy and binding strength, for the purpose of assessing the relative importance of different contextual features.
We observed striking differences in the feature importance rankings between the five factors tested. PWM-scores were amongst the most important features only for CTCF and REST but of little value for JunD and USF2. Chromatin accessibility and active histone marks are potent predictors for all factors except REST. Structural DNA parameters, repressive and gene body associated histone marks are generally of little or no predictive value.
We define a general and extensible computational framework for analyzing the importance of various DNA-intrinsic and chromatin-associated features in determining cell-type specific TF binding to target sites. The application of our methodology to ENCODE data has led to new insights on transcription regulatory processes and may serve as example for future studies encompassing even larger datasets.
Electronic supplementary material
The online version of this article (doi:10.1186/s12859-015-0846-z) contains supplementary material, which is available to authorized users.
PMCID: PMC4895346  PMID: 26818008
6.  STREAM: Static Thermodynamic REgulAtory Model of transcription 
Bioinformatics  2008;24(21):2544-2545.
Motivation: Understanding the transcriptional regulation of a gene in detail is a crucial step towards uncovering and ultimately utilizing the regulatory grammar of the genome. Modeling transcriptional regulation using thermodynamic equations has become an increasingly important approach towards this goal.
Here, we present stream, the first publicly available framework for modeling, visualizing and predicting the regulation of the transcription rate of a target gene. Given the concentrations of a set of transcription factors (TFs), the TF binding sites (TFBSs) in a regulatory DNA region, and the transcription rate of the target gene, stream will optimize its parameters to generate a model that best fits the input data. This trained model can then be used to (a) validate that the given set of TFs is able to regulate the target gene and (b) to predict the transcription rate under different conditions (e.g. different tissues, knockout/additional TFs or mutated/missing TFBSs).
Availability: The platform independent executable of stream, as well as a tutorial and the full documentation, are available at stream requires Java version 5 or higher.
PMCID: PMC2732279  PMID: 18776194
7.  Annotation of gene promoters by integrative data-mining of ChIP-seq Pol-II enrichment data 
BMC Bioinformatics  2010;11(Suppl 1):S65.
Use of alternative gene promoters that drive widespread cell-type, tissue-type or developmental gene regulation in mammalian genomes is a common phenomenon. Chromatin immunoprecipitation methods coupled with DNA microarray (ChIP-chip) or massive parallel sequencing (ChIP-seq) are enabling genome-wide identification of active promoters in different cellular conditions using antibodies against Pol-II. However, these methods produce enrichment not only near the gene promoters but also inside the genes and other genomic regions due to the non-specificity of the antibodies used in ChIP. Further, the use of these methods is limited by their high cost and strong dependence on cellular type and context.
We trained and tested different state-of-art ensemble and meta classification methods for identification of Pol-II enriched promoter and Pol-II enriched non-promoter sequences, each of length 500 bp. The classification models were trained and tested on a bench-mark dataset, using a set of 39 different feature variables that are based on chromatin modification signatures and various DNA sequence features. The best performing model was applied on seven published ChIP-seq Pol-II datasets to provide genome wide annotation of mouse gene promoters.
We present a novel algorithm based on supervised learning methods to discriminate promoter associated Pol-II enrichment from enrichment elsewhere in the genome in ChIP-chip/seq profiles. We accumulated a dataset of 11,773 promoter and 46,167 non-promoter sequences, each of length 500 bp, generated from RNA Pol-II ChIP-seq data of five tissues (Brain, Kidney, Liver, Lung and Spleen). We evaluated the classification models in building the best predictor and found that Bagging and Random Forest based approaches give the best accuracy. We implemented the algorithm on seven different published ChIP-seq datasets to provide a comprehensive set of promoter annotations for both protein-coding and non-coding genes in the mouse genome. The resulting annotations contain 13,413 (4,747) protein-coding (non-coding) genes with single promoters and 9,929 (1,858) protein-coding (non-coding) genes with two or more alternative promoters, and a significant number of unassigned novel promoters.
Our new algorithm can successfully predict the promoters from the genome wide profile of Pol-II bound regions. In addition, our algorithm performs significantly better than existing promoter prediction methods and can be applied for genome-wide predictions of Pol-II promoters.
PMCID: PMC3009539  PMID: 20122241
8.  The Next Generation of Transcription Factor Binding Site Prediction 
PLoS Computational Biology  2013;9(9):e1003214.
Finding where transcription factors (TFs) bind to the DNA is of key importance to decipher gene regulation at a transcriptional level. Classically, computational prediction of TF binding sites (TFBSs) is based on basic position weight matrices (PWMs) which quantitatively score binding motifs based on the observed nucleotide patterns in a set of TFBSs for the corresponding TF. Such models make the strong assumption that each nucleotide participates independently in the corresponding DNA-protein interaction and do not account for flexible length motifs. We introduce transcription factor flexible models (TFFMs) to represent TF binding properties. Based on hidden Markov models, TFFMs are flexible, and can model both position interdependence within TFBSs and variable length motifs within a single dedicated framework. The availability of thousands of experimentally validated DNA-TF interaction sequences from ChIP-seq allows for the generation of models that perform as well as PWMs for stereotypical TFs and can improve performance for TFs with flexible binding characteristics. We present a new graphical representation of the motifs that convey properties of position interdependence. TFFMs have been assessed on ChIP-seq data sets coming from the ENCODE project, revealing that they can perform better than both PWMs and the dinucleotide weight matrix extension in discriminating ChIP-seq from background sequences. Under the assumption that ChIP-seq signal values are correlated with the affinity of the TF-DNA binding, we find that TFFM scores correlate with ChIP-seq peak signals. Moreover, using available TF-DNA affinity measurements for the Max TF, we demonstrate that TFFMs constructed from ChIP-seq data correlate with published experimentally measured DNA-binding affinities. Finally, TFFMs allow for the straightforward computation of an integrated TF occupancy score across a sequence. These results demonstrate the capacity of TFFMs to accurately model DNA-protein interactions, while providing a single unified framework suitable for the next generation of TFBS prediction.
Author Summary
Transcription factors are critical proteins for sequence-specific control of transcriptional regulation. Finding where these proteins bind to DNA is of key importance for global efforts to decipher the complex mechanisms of gene regulation. Greater understanding of the regulation of transcription promises to improve human genetic analysis by specifying critical gene components that have eluded investigators. Classically, computational prediction of transcription factor binding sites (TFBS) is based on models giving weights to each nucleotide at each position. We introduce a novel statistical model for the prediction of TFBS tolerant of a broader range of TFBS configurations than can be conveniently accommodated by existing methods. The new models are designed to address the confounding properties of nucleotide composition, inter-positional sequence dependence and variable lengths (e.g. variable spacing between half-sites) observed in the more comprehensive experimental data now emerging. The new models generate scores consistent with DNA-protein affinities measured experimentally and can be represented graphically, retaining desirable attributes of past methods. It demonstrates the capacity of the new approach to accurately assess DNA-protein interactions. With the rich experimental data generated from chromatin immunoprecipitation experiments, a greater diversity of TFBS properties has emerged that can now be accommodated within a single predictive approach.
PMCID: PMC3764009  PMID: 24039567
9.  Assessment of clusters of transcription factor binding sites in relationship to human promoter, CpG islands and gene expression 
BMC Genomics  2004;5:16.
Gene expression is regulated mainly by transcription factors (TFs) that interact with regulatory cis-elements on DNA sequences. To identify functional regulatory elements, computer searching can predict TF binding sites (TFBS) using position weight matrices (PWMs) that represent positional base frequencies of collected experimentally determined TFBS. A disadvantage of this approach is the large output of results for genomic DNA. One strategy to identify genuine TFBS is to utilize local concentrations of predicted TFBS. It is unclear whether there is a general tendency for TFBS to cluster at promoter regions, although this is the case for certain TFBS. Also unclear is the identification of TFs that have TFBS concentrated in promoters and to what level this occurs. This study hopes to answer some of these questions.
We developed the cluster score measure to evaluate the correlation between predicted TFBS clusters and promoter sequences for each PWM. Non-promoter sequences were used as a control. Using the cluster score, we identified a PWM group called PWM-PCP, in which TFBS clusters positively correlate with promoters, and another PWM group called PWM-NCP, in which TFBS clusters negatively correlate with promoters. The PWM-PCP group comprises 47% of the 199 vertebrate PWMs, while the PWM-NCP group occupied 11 percent. After reducing the effect of CpG islands (CGI) against the clusters using partial correlation coefficients among three properties (promoter, CGI and predicted TFBS cluster), we identified two PWM groups including those strongly correlated with CGI and those not correlated with CGI.
Not all PWMs predict TFBS correlated with human promoter sequences. Two main PWM groups were identified: (1) those that show TFBS clustered in promoters associated with CGI, and (2) those that show TFBS clustered in promoters independent of CGI. Assessment of PWM matches will allow more positive interpretation of TFBS in regulatory regions.
PMCID: PMC375527  PMID: 15053842
promoter; tissue-specific gene expression; position weight matrix; regulatory motif
10.  Application of experimentally verified transcription factor binding sites models for computational analysis of ChIP-Seq data 
BMC Genomics  2014;15(1):80.
ChIP-Seq is widely used to detect genomic segments bound by transcription factors (TF), either directly at DNA binding sites (BSs) or indirectly via other proteins. Currently, there are many software tools implementing different approaches to identify TFBSs within ChIP-Seq peaks. However, their use for the interpretation of ChIP-Seq data is usually complicated by the absence of direct experimental verification, making it difficult both to set a threshold to avoid recognition of too many false-positive BSs, and to compare the actual performance of different models.
Using ChIP-Seq data for FoxA2 binding loci in mouse adult liver and human HepG2 cells we compared FoxA binding-site predictions for four computational models of two fundamental classes: pattern matching based on existing training set of experimentally confirmed TFBSs (oPWM and SiteGA) and de novo motif discovery (ChIPMunk and diChIPMunk). To properly select prediction thresholds for the models, we experimentally evaluated affinity of 64 predicted FoxA BSs using EMSA that allows safely distinguishing sequences able to bind TF. As a result we identified thousands of reliable FoxA BSs within ChIP-Seq loci from mouse liver and human HepG2 cells. It was found that the performance of conventional position weight matrix (PWM) models was inferior with the highest false positive rate. On the contrary, the best recognition efficiency was achieved by the combination of SiteGA & diChIPMunk/ChIPMunk models, properly identifying FoxA BSs in up to 90% of loci for both mouse and human ChIP-Seq datasets.
The experimental study of TF binding to oligonucleotides corresponding to predicted sites increases the reliability of computational methods for TFBS-recognition in ChIP-Seq data analysis. Regarding ChIP-Seq data interpretation, basic PWMs have inferior TFBS recognition quality compared to the more sophisticated SiteGA and de novo motif discovery methods. A combination of models from different principles allowed identification of proper TFBSs.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-80) contains supplementary material, which is available to authorized users.
PMCID: PMC4234207  PMID: 24472686
ChIP-Seq; EMSA; Transcription factor binding sites; FoxA; SiteGA; PWM; Transcription factor binding model; Dinucleotide frequencies
11.  Computational evaluation of TIS annotation for prokaryotic genomes 
BMC Bioinformatics  2008;9:160.
Accurate annotation of translation initiation sites (TISs) is essential for understanding the translation initiation mechanism. However, the reliability of TIS annotation in widely used databases such as RefSeq is uncertain due to the lack of experimental benchmarks.
Based on a homogeneity assumption that gene translation-related signals are uniformly distributed across a genome, we have established a computational method for a large-scale quantitative assessment of the reliability of TIS annotations for any prokaryotic genome. The method consists of modeling a positional weight matrix (PWM) of aligned sequences around predicted TISs in terms of a linear combination of three elementary PWMs, one for true TIS and the two others for false TISs. The three elementary PWMs are obtained using a reference set with highly reliable TIS predictions. A generalized least square estimator determines the weighting of the true TIS in the observed PWM, from which the accuracy of the prediction is derived. The validity of the method and the extent of the limitation of the assumptions are explicitly addressed by testing on experimentally verified TISs with variable accuracy of the reference sets. The method is applied to estimate the accuracy of TIS annotations that are provided on public databases such as RefSeq and ProTISA and by programs such as EasyGene, GeneMarkS, Glimmer 3 and TiCo. It is shown that RefSeq's TIS prediction is significantly less accurate than two recent predictors, Tico and ProTISA. With convincing proofs, we show two general preferential biases in the RefSeq annotation, i.e. over-annotating the longest open reading frame (LORF) and under-annotating ATG start codon. Finally, we have established a new TIS database, SupTISA, based on the best prediction of all the predictors; SupTISA has achieved an average accuracy of 92% over all 532 complete genomes.
Large-scale computational evaluation of TIS annotation has been achieved. A new TIS database much better than RefSeq has been constructed, and it provides a valuable resource for further TIS studies.
PMCID: PMC2362131  PMID: 18366730
12.  Position Weight Matrix, Gibbs Sampler, and the Associated Significance Tests in Motif Characterization and Prediction 
Scientifica  2012;2012:917540.
Position weight matrix (PWM) is not only one of the most widely used bioinformatic methods, but also a key component in more advanced computational algorithms (e.g., Gibbs sampler) for characterizing and discovering motifs in nucleotide or amino acid sequences. However, few generally applicable statistical tests are available for evaluating the significance of site patterns, PWM, and PWM scores (PWMS) of putative motifs. Statistical significance tests of the PWM output, that is, site-specific frequencies, PWM itself, and PWMS, are in disparate sources and have never been collected in a single paper, with the consequence that many implementations of PWM do not include any significance test. Here I review PWM-based methods used in motif characterization and prediction (including a detailed illustration of the Gibbs sampler for de novo motif discovery), present statistical and probabilistic rationales behind statistical significance tests relevant to PWM, and illustrate their application with real data. The multiple comparison problem associated with the test of site-specific frequencies is best handled by false discovery rate methods. The test of PWM, due to the use of pseudocounts, is best done by resampling methods. The test of individual PWMS for each sequence segment should be based on the extreme value distribution.
PMCID: PMC3820676  PMID: 24278755
13.  Enhanced Regulatory Sequence Prediction Using Gapped k-mer Features 
PLoS Computational Biology  2014;10(7):e1003711.
Oligomers of length k, or k-mers, are convenient and widely used features for modeling the properties and functions of DNA and protein sequences. However, k-mers suffer from the inherent limitation that if the parameter k is increased to resolve longer features, the probability of observing any specific k-mer becomes very small, and k-mer counts approach a binary variable, with most k-mers absent and a few present once. Thus, any statistical learning approach using k-mers as features becomes susceptible to noisy training set k-mer frequencies once k becomes large. To address this problem, we introduce alternative feature sets using gapped k-mers, a new classifier, gkm-SVM, and a general method for robust estimation of k-mer frequencies. To make the method applicable to large-scale genome wide applications, we develop an efficient tree data structure for computing the kernel matrix. We show that compared to our original kmer-SVM and alternative approaches, our gkm-SVM predicts functional genomic regulatory elements and tissue specific enhancers with significantly improved accuracy, increasing the precision by up to a factor of two. We then show that gkm-SVM consistently outperforms kmer-SVM on human ENCODE ChIP-seq datasets, and further demonstrate the general utility of our method using a Naïve-Bayes classifier. Although developed for regulatory sequence analysis, these methods can be applied to any sequence classification problem.
Author Summary
Genomic regulatory elements (enhancers, promoters, and insulators) control the expression of their target genes and are widely believed to play a key role in human development and disease by altering protein concentrations. A fundamental step in understanding enhancers is the development of DNA sequence-based models to predict the tissue specific activity of regulatory elements. Such models facilitate both the identification of the molecular pathways which impinge on enhancer activity through direct transcription factor binding, and the direct evaluation of the impact of specific common or rare genetic variants on enhancer function. We have previously developed a successful sequence-based model for enhancer prediction using a k-mer support vector machine (kmer-SVM). Here, we address a significant limitation of the kmer-SVM approach and present an alternative method using gapped k-mers (gkm-SVM) which exhibits dramatically improved accuracy in all test cases. While we focus on enhancers and transcription factor binding, our method can be applied to improve a much broader class of sequence analysis problems, including proteins and RNA. In addition, we expect that most k-mer based methods can be significantly improved by simply using the generalized k-mer count method that we present in this paper. We believe this improved model will enable significant contributions to our understanding of the human regulatory system.
PMCID: PMC4102394  PMID: 25033408
14.  Mutual enrichment in ranked lists and the statistical assessment of position weight matrix motifs 
Statistics in ranked lists is useful in analysing molecular biology measurement data, such as differential expression, resulting in ranked lists of genes, or ChIP-Seq, which yields ranked lists of genomic sequences. State of the art methods study fixed motifs in ranked lists of sequences. More flexible models such as position weight matrix (PWM) motifs are more challenging in this context, partially because it is not clear how to avoid the use of arbitrary thresholds.
To assess the enrichment of a PWM motif in a ranked list we use a second ranking on the same set of elements induced by the PWM. Possible orders of one ranked list relative to another can be modelled as permutations. Due to sample space complexity, it is difficult to accurately characterize tail distributions in the group of permutations. In this paper we develop tight upper bounds on tail distributions of the size of the intersection of the top parts of two uniformly and independently drawn permutations. We further demonstrate advantages of this approach using our software implementation, mmHG-Finder, which is publicly available, to study PWM motifs in several datasets. In addition to validating known motifs, we found GC-rich strings to be enriched amongst the promoter sequences of long non-coding RNAs that are specifically expressed in thyroid and prostate tissue samples and observed a statistical association with tissue specific CpG hypo-methylation.
We develop tight bounds that can be calculated in polynomial time. We demonstrate utility of mutual enrichment in motif search and assess performance for synthetic and biological datasets. We suggest that thyroid and prostate-specific long non-coding RNAs are regulated by transcription factors that bind GC-rich sequences, such as EGR1, SP1 and E2F3. We further suggest that this regulation is associated with DNA hypo-methylation.
PMCID: PMC4021615  PMID: 24708618
Statistical enrichment; Position weight matrices; High-throughput sequencing data analysis; Tissue specific methylation patterns; lncRNA
15.  Application of machine learning in SNP discovery 
BMC Bioinformatics  2006;7:4.
Single nucleotide polymorphisms (SNP) constitute more than 90% of the genetic variation, and hence can account for most trait differences among individuals in a given species. Polymorphism detection software PolyBayes and PolyPhred give high false positive SNP predictions even with stringent parameter values. We developed a machine learning (ML) method to augment PolyBayes to improve its prediction accuracy. ML methods have also been successfully applied to other bioinformatics problems in predicting genes, promoters, transcription factor binding sites and protein structures.
The ML program C4.5 was applied to a set of features in order to build a SNP classifier from training data based on human expert decisions (True/False). The training data were 27,275 candidate SNP generated by sequencing 1973 STS (sequence tag sites) (12 Mb) in both directions from 6 diverse homozygous soybean cultivars and PolyBayes analysis. Test data of 18,390 candidate SNP were generated similarly from 1359 additional STS (8 Mb). SNP from both sets were classified by experts. After training the ML classifier, it agreed with the experts on 97.3% of test data compared with 7.8% agreement between PolyBayes and experts. The PolyBayes positive predictive values (PPV) (i.e., fraction of candidate SNP being real) were 7.8% for all predictions and 16.7% for those with 100% posterior probability of being real. Using ML improved the PPV to 84.8%, a 5- to 10-fold increase. While both ML and PolyBayes produced a similar number of true positives, the ML program generated only 249 false positives as compared to 16,955 for PolyBayes. The complexity of the soybean genome may have contributed to high false SNP predictions by PolyBayes and hence results may differ for other genomes.
A machine learning (ML) method was developed as a supplementary feature to the polymorphism detection software for improving prediction accuracies. The results from this study indicate that a trained ML classifier can significantly reduce human intervention and in this case achieved a 5–10 fold enhanced productivity. The optimized feature set and ML framework can also be applied to all polymorphism discovery software. ML support software is written in Perl and can be easily integrated into an existing SNP discovery pipeline.
PMCID: PMC1955739  PMID: 16398931
16.  High Resolution Models of Transcription Factor-DNA Affinities Improve In Vitro and In Vivo Binding Predictions 
PLoS Computational Biology  2010;6(9):e1000916.
Accurately modeling the DNA sequence preferences of transcription factors (TFs), and using these models to predict in vivo genomic binding sites for TFs, are key pieces in deciphering the regulatory code. These efforts have been frustrated by the limited availability and accuracy of TF binding site motifs, usually represented as position-specific scoring matrices (PSSMs), which may match large numbers of sites and produce an unreliable list of target genes. Recently, protein binding microarray (PBM) experiments have emerged as a new source of high resolution data on in vitro TF binding specificities. PBM data has been analyzed either by estimating PSSMs or via rank statistics on probe intensities, so that individual sequence patterns are assigned enrichment scores (E-scores). This representation is informative but unwieldy because every TF is assigned a list of thousands of scored sequence patterns. Meanwhile, high-resolution in vivo TF occupancy data from ChIP-seq experiments is also increasingly available. We have developed a flexible discriminative framework for learning TF binding preferences from high resolution in vitro and in vivo data. We first trained support vector regression (SVR) models on PBM data to learn the mapping from probe sequences to binding intensities. We used a novel -mer based string kernel called the di-mismatch kernel to represent probe sequence similarities. The SVR models are more compact than E-scores, more expressive than PSSMs, and can be readily used to scan genomics regions to predict in vivo occupancy. Using a large data set of yeast and mouse TFs, we found that our SVR models can better predict probe intensity than the E-score method or PBM-derived PSSMs. Moreover, by using SVRs to score yeast, mouse, and human genomic regions, we were better able to predict genomic occupancy as measured by ChIP-chip and ChIP-seq experiments. Finally, we found that by training kernel-based models directly on ChIP-seq data, we greatly improved in vivo occupancy prediction, and by comparing a TF's in vitro and in vivo models, we could identify cofactors and disambiguate direct and indirect binding.
Author Summary
Transcription factors (TFs) are proteins that bind sites in the non-coding DNA and regulate the expression of targeted genes. Being able to predict the genome-wide binding locations of TFs is an important step in deciphering gene regulatory networks. Historically, there was very limited experimental data on the DNA-binding preferences of most TFs. Computational biologists used known sites to estimate simple binding site motifs, called position-specific scoring matrices, and scan the genome for additional potential binding locations, but this approach often led to many false positive predictions. Here we introduce a machine learning approach to leverage new high resolution data on the binding preferences of TFs, namely, protein binding microarray (PBM) experiments which measure the in vitro binding affinities of TFs with respect to an array of double-stranded DNA probes, and chromatin immunoprecipitation experiments followed by next generation sequencing (ChIP-seq) which measure in vivo genome-wide binding of TFs in a given cell type. We show that by training statistical models on high resolution PBM and ChIP-seq data, we can more accurately represent the subtle DNA binding preferences of TFs and predict their genome-wide binding locations. These results will enable advances in the computational analysis of transcriptional regulation in mammalian genomes.
PMCID: PMC2936517  PMID: 20838582
17.  Quantification of histone modification ChIP-seq enrichment for data mining and machine learning applications 
BMC Research Notes  2011;4:288.
The advent of ChIP-seq technology has made the investigation of epigenetic regulatory networks a computationally tractable problem. Several groups have applied statistical computing methods to ChIP-seq datasets to gain insight into the epigenetic regulation of transcription. However, methods for estimating enrichment levels in ChIP-seq data for these computational studies are understudied and variable. Since the conclusions drawn from these data mining and machine learning applications strongly depend on the enrichment level inputs, a comparison of estimation methods with respect to the performance of statistical models should be made.
Various methods were used to estimate the gene-wise ChIP-seq enrichment levels for 20 histone methylations and the histone variant H2A.Z. The Multivariate Adaptive Regression Splines (MARS) algorithm was applied for each estimation method using the estimation of enrichment levels as predictors and gene expression levels as responses. The methods used to estimate enrichment levels included tag counting and model-based methods that were applied to whole genes and specific gene regions. These methods were also applied to various sizes of estimation windows. The MARS model performance was assessed with the Generalized Cross-Validation Score (GCV). We determined that model-based methods of enrichment estimation that spatially weight enrichment based on average patterns provided an improvement over tag counting methods. Also, methods that included information across the entire gene body provided improvement over methods that focus on a specific sub-region of the gene (e.g., the 5' or 3' region).
The performance of data mining and machine learning methods when applied to histone modification ChIP-seq data can be improved by using data across the entire gene body, and incorporating the spatial distribution of enrichment. Refinement of enrichment estimation ultimately improved accuracy of model predictions.
PMCID: PMC3170335  PMID: 21834981
18.  Variable structure motifs for transcription factor binding sites 
BMC Genomics  2010;11:30.
Classically, models of DNA-transcription factor binding sites (TFBSs) have been based on relatively few known instances and have treated them as sites of fixed length using position weight matrices (PWMs). Various extensions to this model have been proposed, most of which take account of dependencies between the bases in the binding sites. However, some transcription factors are known to exhibit some flexibility and bind to DNA in more than one possible physical configuration. In some cases this variation is known to affect the function of binding sites. With the increasing volume of ChIP-seq data available it is now possible to investigate models that incorporate this flexibility. Previous work on variable length models has been constrained by: a focus on specific zinc finger proteins in yeast using restrictive models; a reliance on hand-crafted models for just one transcription factor at a time; and a lack of evaluation on realistically sized data sets.
We re-analysed binding sites from the TRANSFAC database and found motivating examples where our new variable length model provides a better fit. We analysed several ChIP-seq data sets with a novel motif search algorithm and compared the results to one of the best standard PWM finders and a recently developed alternative method for finding motifs of variable structure. All the methods performed comparably in held-out cross validation tests. Known motifs of variable structure were recovered for p53, Stat5a and Stat5b. In addition our method recovered a novel generalised version of an existing PWM for Sp1 that allows for variable length binding. This motif improved classification performance.
We have presented a new gapped PWM model for variable length DNA binding sites that is not too restrictive nor over-parameterised. Our comparison with existing tools shows that on average it does not have better predictive accuracy than existing methods. However, it does provide more interpretable models of motifs of variable structure that are suitable for follow-up structural studies. To our knowledge, we are the first to apply variable length motif models to eukaryotic ChIP-seq data sets and consequently the first to show their value in this domain. The results include a novel motif for the ubiquitous transcription factor Sp1.
PMCID: PMC2824720  PMID: 20074339
19.  Optimizing the GATA-3 position weight matrix to improve the identification of novel binding sites 
BMC Genomics  2012;13:416.
The identifying of binding sites for transcription factors is a key component of gene regulatory network analysis. This is often done using position-weight matrices (PWMs). Because of the importance of in silico mapping of tentative binding sites, we previously developed an approach for PWM optimization that substantially improves the accuracy of such mapping.
The present work implements the optimization algorithm applied to the existing PWM for GATA-3 transcription factor and builds a new di-nucleotide PWM. The existing available PWM is based on experimental data adopted from Jaspar. The optimized PWM substantially improves the sensitivity and specificity of the TF mapping compared to the conventional applications. The refined PWM also facilitates in silico identification of novel binding sites that are supported by experimental data. We also describe uncommon positioning of binding motifs for several T-cell lineage specific factors in human promoters.
Our proposed di-nucleotide PWM approach outperforms the conventional mono-nucleotide PWM approach with respect to GATA-3. Therefore our new di-nucleotide PWM provides new insight into plausible transcriptional regulatory interactions in human promoters.
PMCID: PMC3481455  PMID: 22913572
Transcription factor; Binding sites; GATA-3; Human promoter; Position weight matrix; Optimization
20.  Fine-Tuning Enhancer Models to Predict Transcriptional Targets across Multiple Genomes 
PLoS ONE  2007;2(11):e1115.
Networks of regulatory relations between transcription factors (TF) and their target genes (TG)- implemented through TF binding sites (TFBS)- are key features of biology. An idealized approach to solving such networks consists of starting from a consensus TFBS or a position weight matrix (PWM) to generate a high accuracy list of candidate TGs for biological validation. Developing and evaluating such approaches remains a formidable challenge in regulatory bioinformatics. We perform a benchmark study on 34 Drosophila TFs to assess existing TFBS and cis-regulatory module (CRM) detection methods, with a strong focus on the use of multiple genomes. Particularly, for CRM-modelling we investigate the addition of orthologous sites to a known PWM to construct phyloPWMs and we assess the added value of phylogenentic footprinting to predict contextual motifs around known TFBSs. For CRM-prediction, we compare motif conservation with network-level conservation approaches across multiple genomes. Choosing the optimal training and scoring strategies strongly enhances the performance of TG prediction for more than half of the tested TFs. Finally, we analyse a 35th TF, namely Eyeless, and find a significant overlap between predicted TGs and candidate TGs identified by microarray expression studies. In summary we identify several ways to optimize TF-specific TG predictions, some of which can be applied to all TFs, and others that can be applied only to particular TFs. The ability to model known TF-TG relations, together with the use of multiple genomes, results in a significant step forward in solving the architecture of gene regulatory networks.
PMCID: PMC2047340  PMID: 17973026
21.  Transcription Factor Binding Sites Prediction Based on Modified Nucleosomes 
PLoS ONE  2014;9(2):e89226.
In computational methods, position weight matrices (PWMs) are commonly applied for transcription factor binding site (TFBS) prediction. Although these matrices are more accurate than simple consensus sequences to predict actual binding sites, they usually produce a large number of false positive (FP) predictions and so are impoverished sources of information. Several studies have employed additional sources of information such as sequence conservation or the vicinity to transcription start sites to distinguish true binding regions from random ones. Recently, the spatial distribution of modified nucleosomes has been shown to be associated with different promoter architectures. These aligned patterns can facilitate DNA accessibility for transcription factors. We hypothesize that using data from these aligned and periodic patterns can improve the performance of binding region prediction. In this study, we propose two effective features, “modified nucleosomes neighboring” and “modified nucleosomes occupancy”, to decrease FP in binding site discovery. Based on these features, we designed a logistic regression classifier which estimates the probability of a region as a TFBS. Our model learned each feature based on Sp1 binding sites on Chromosome 1 and was tested on the other chromosomes in human CD4+T cells. In this work, we investigated 21 histone modifications and found that only 8 out of 21 marks are strongly correlated with transcription factor binding regions. To prove that these features are not specific to Sp1, we combined the logistic regression classifier with the PWM, and created a new model to search TFBSs on the genome. We tested the model using transcription factors MAZ, PU.1 and ELF1 and compared the results to those using only the PWM. The results show that our model can predict Transcription factor binding regions more successfully. The relative simplicity of the model and capability of integrating other features make it a superior method for TFBS prediction.
PMCID: PMC3931712  PMID: 24586611
22.  A DNA shape-based regulatory score improves position-weight matrix-based recognition of transcription factor binding sites 
Bioinformatics  2015;31(21):3445-3450.
Motivation: The position-weight matrix (PWM) is a useful representation of a transcription factor binding site (TFBS) sequence pattern because the PWM can be estimated from a small number of representative TFBS sequences. However, because the PWM probability model assumes independence between individual nucleotide positions, the PWMs for some TFs poorly discriminate binding sites from non-binding-sites that have similar sequence content. Since the local three-dimensional DNA structure (‘shape’) is a determinant of TF binding specificity and since DNA shape has a significant sequence-dependence, we combined DNA shape-derived features into a TF-generalized regulatory score and tested whether the score could improve PWM-based discrimination of TFBS from non-binding-sites.
Results: We compared a traditional PWM model to a model that combines the PWM with a DNA shape feature-based regulatory potential score, for accuracy in detecting binding sites for 75 vertebrate transcription factors. The PWM + shape model was more accurate than the PWM-only model, for 45% of TFs tested, with no significant loss of accuracy for the remaining TFs.
Availability and implementation: The shape-based model is available as an open-source R package at that is archived on the GitHub software repository at
Supplementary information: Supplementary data are available at Bioinformatics online.
PMCID: PMC4838056  PMID: 26130577
23.  dPeak: High Resolution Identification of Transcription Factor Binding Sites from PET and SET ChIP-Seq Data 
PLoS Computational Biology  2013;9(10):e1003246.
Chromatin immunoprecipitation followed by high throughput sequencing (ChIP-Seq) has been successfully used for genome-wide profiling of transcription factor binding sites, histone modifications, and nucleosome occupancy in many model organisms and humans. Because the compact genomes of prokaryotes harbor many binding sites separated by only few base pairs, applications of ChIP-Seq in this domain have not reached their full potential. Applications in prokaryotic genomes are further hampered by the fact that well studied data analysis methods for ChIP-Seq do not result in a resolution required for deciphering the locations of nearby binding events. We generated single-end tag (SET) and paired-end tag (PET) ChIP-Seq data for factor in Escherichia coli (E. coli). Direct comparison of these datasets revealed that although PET assay enables higher resolution identification of binding events, standard ChIP-Seq analysis methods are not equipped to utilize PET-specific features of the data. To address this problem, we developed dPeak as a high resolution binding site identification (deconvolution) algorithm. dPeak implements a probabilistic model that accurately describes ChIP-Seq data generation process for both the SET and PET assays. For SET data, dPeak outperforms or performs comparably to the state-of-the-art high-resolution ChIP-Seq peak deconvolution algorithms such as PICS, GPS, and GEM. When coupled with PET data, dPeak significantly outperforms SET-based analysis with any of the current state-of-the-art methods. Experimental validations of a subset of dPeak predictions from PET ChIP-Seq data indicate that dPeak can estimate locations of binding events with as high as to resolution. Applications of dPeak to ChIP-Seq data in E. coli under aerobic and anaerobic conditions reveal closely located promoters that are differentially occupied and further illustrate the importance of high resolution analysis of ChIP-Seq data.
Author Summary
Chromatin immunoprecipitation followed by high throughput sequencing (ChIP-Seq) is widely used for studying in vivo protein-DNA interactions genome-wide. Current state-of-the-art ChIP-Seq protocols utilize single-end tag (SET) assay which only sequences ends of DNA fragments in the library. Although paired-end tag (PET) sequencing is routinely used in other applications of next generation sequencing, it has not been much adapted to ChIP-Seq. We illustrate both experimentally and computationally that PET sequencing significantly improves the resolution of ChIP-Seq experiments and enables ChIP-Seq applications in compact genomes like Escherichia coli (E. coli). To enable efficient identification using PET ChIP-Seq data, we develop dPeak as a high resolution binding site identification algorithm. dPeak implements probabilistic models for both SET and PET data and facilitates efficient analysis of both data types. Applications of dPeak to deeply sequenced E. coli PET and SET ChIP-Seq data establish significantly better resolution of PET compared to SET sequencing.
PMCID: PMC3798280  PMID: 24146601
24.  Evaluating a linear k-mer model for protein-DNA interactions using high-throughput SELEX data 
BMC Bioinformatics  2013;14(Suppl 10):S2.
Transcription factor (TF) binding to DNA can be modeled in a number of different ways. It is highly debated which modeling methods are the best, how the models should be built and what can they be applied to. In this study a linear k-mer model proposed for predicting TF specificity in protein binding microarrays (PBM) is applied to a high-throughput SELEX data and the question of how to choose the most informative k-mers to the binding model is studied. We implemented the standard cross-validation scheme to reduce the number of k-mers in the model and observed that the number of k-mers can often be reduced significantly without a great negative effect on prediction accuracy. We also found that the later SELEX enrichment cycles provide a much better discrimination between bound and unbound sequences as model prediction accuracies increased for all proteins together with the cycle number. We compared prediction performance of k-mer and position specific weight matrix (PWM) models derived from the same SELEX data. Consistent with previous results on PBM data, performance of the k-mer model was on average 9%-units better. For the 15 proteins in the SELEX data set with medium enrichment cycles, classification accuracies were on average 71% and 62% for k-mer and PWMs, respectively. Finally, the k-mer model trained with SELEX data was evaluated on ChIP-seq data demonstrating substantial improvements for some proteins. For protein GATA1 the model can distinquish between true ChIP-seq peaks and negative peaks. For proteins RFX3 and NFATC1 the performance of the model was no better than chance.
PMCID: PMC3750486  PMID: 24267147
25.  PiDNA: predicting protein–DNA interactions with structural models 
Nucleic Acids Research  2013;41(Web Server issue):W523-W530.
Predicting binding sites of a transcription factor in the genome is an important, but challenging, issue in studying gene regulation. In the past decade, a large number of protein–DNA co-crystallized structures available in the Protein Data Bank have facilitated the understanding of interacting mechanisms between transcription factors and their binding sites. Recent studies have shown that both physics-based and knowledge-based potential functions can be applied to protein–DNA complex structures to deliver position weight matrices (PWMs) that are consistent with the experimental data. To further use the available structural models, the proposed Web server, PiDNA, aims at first constructing reliable PWMs by applying an atomic-level knowledge-based scoring function on numerous in silico mutated complex structures, and then using the PWM constructed by the structure models with small energy changes to predict the interaction between proteins and DNA sequences. With PiDNA, the users can easily predict the relative preference of all the DNA sequences with limited mutations from the native sequence co-crystallized in the model in a single run. More predictions on sequences with unlimited mutations can be realized by additional requests or file uploading. Three types of information can be downloaded after prediction: (i) the ranked list of mutated sequences, (ii) the PWM constructed by the favourable mutated structures, and (iii) any mutated protein–DNA complex structure models specified by the user. This study first shows that the constructed PWMs are similar to the annotated PWMs collected from databases or literature. Second, the prediction accuracy of PiDNA in detecting relatively high-specificity sites is evaluated by comparing the ranked lists against in vitro experiments from protein-binding microarrays. Finally, PiDNA is shown to be able to select the experimentally validated binding sites from 10 000 random sites with high accuracy. With PiDNA, the users can design biological experiments based on the predicted sequence specificity and/or request mutated structure models for further protein design. As well, it is expected that PiDNA can be incorporated with chromatin immunoprecipitation data to refine large-scale inference of in vivo protein–DNA interactions. PiDNA is available at:
PMCID: PMC3692134  PMID: 23703214

Results 1-25 (1333639)