PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1027028)

Clipboard (0)
None

Related Articles

1.  Heparan sulfate proteoglycan syndecan-3 is a novel receptor for GDNF, neurturin, and artemin 
The Journal of Cell Biology  2011;192(1):153-169.
Syndecan-3 may act alone or as a coreceptor with RET to promote cell spreading, neurite outgrowth, and migration of cortical neurons by GNDF, NRTN, and ARTN.
Glial cell line–derived neurotrophic factor (GDNF) family ligands (GFLs) are potent survival factors for dopaminergic neurons and motoneurons with therapeutic potential for Parkinson’s disease. Soluble GFLs bind to a ligand-specific glycosylphosphatidylinositol-anchored coreceptor (GDNF family receptor α) and signal through the receptor tyrosine kinase RET. In this paper, we show that all immobilized matrix-bound GFLs, except persephin, use a fundamentally different receptor. They interact with syndecan-3, a transmembrane heparan sulfate (HS) proteoglycan, by binding to its HS chains with high affinity. GFL–syndecan-3 interaction mediates both cell spreading and neurite outgrowth with the involvement of Src kinase activation. GDNF promotes migration of cortical neurons in a syndecan-3–dependent manner, and in agreement, mice lacking syndecan-3 or GDNF have a reduced number of cortical γ-aminobutyric acid–releasing neurons, suggesting a central role for the two molecules in cortical development. Collectively, syndecan-3 may directly transduce GFL signals or serve as a coreceptor, presenting GFLs to the signaling receptor RET.
doi:10.1083/jcb.201009136
PMCID: PMC3019558  PMID: 21200028
2.  Glial Cell Line-Derived Neurotrophic Factor (GDNF) Family Ligands (GFLs) Enhance Capsaicin-Stimulated Release of CGRP from Sensory Neurons 
Neuroscience  2009;161(1):148-156.
The glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs) are a group of peptides that have been implicated as important factors in inflammation, since they are released in increased amounts during inflammation and induce thermal hyperalgesia upon injection. Isolated sensory neurons in culture and freshly dissociated spinal cord slices were used to examine the enhancement in stimulated-release of the neuropeptide, calcitonin gene-related peptide (CGRP), as a measure of sensitization. Exposure of isolated sensory neurons in culture to GDNF, neurturin, and artemin enhanced the capsaicin-stimulated release of immunoreactive CGRP (iCGRP) two to three fold, but did not increase potassium-stimulated release of iCGRP. A similar profile of sensitization was observed in freshly dissociated spinal cord slices. Persephin, another member of the GFL family thought to be important in development, was unable to induce an enhancement in the release of iCGRP. These results demonstrate that specific GFLs are important mediators affecting sensory neuronal sensitivity, likely through modulation of the capsaicin receptor. The sensitization of sensory neurons during inflammation, and the pain and neurogenic inflammation resulting from this sensitization, may be due in part to the effects of these selected GFLs.
doi:10.1016/j.neuroscience.2009.03.006
PMCID: PMC2832305  PMID: 19285119
artemin; dorsal root ganglia; inflammation; neurturin; sensitization
3.  The role of GDNF family ligand signalling in the differentiation of sympathetic and dorsal root ganglion neurons 
Cell and Tissue Research  2008;333(3):353-371.
The diversity of neurons in sympathetic ganglia and dorsal root ganglia (DRG) provides intriguing systems for the analysis of neuronal differentiation. Cell surface receptors for the GDNF family ligands (GFLs) glial cell-line-derived neurotrophic factor (GDNF), neurturin and artemin, are expressed in subpopulations of these neurons prompting the question regarding their involvement in neuronal subtype specification. Mutational analysis in mice has demonstrated the requirement for GFL signalling during embryonic development of cholinergic sympathetic neurons as shown by the loss of expression from the cholinergic gene locus in ganglia from mice deficient for ret, the signal transducing subunit of the GFL receptor complex. Analysis in mutant animals and transgenic mice overexpressing GFLs demonstrates an effect on sensitivity to thermal and mechanical stimuli in DRG neurons correlating at least partially with the altered expression of transient receptor potential ion channels and acid-sensitive cation channels. Persistence of targeted cells in mutant ganglia suggests that the alterations are caused by differentiation effects and not by cell loss. Because of the massive effect of GFLs on neurite outgrowth, it remains to be determined whether GFL signalling acts directly on neuronal specification or indirectly via altered target innervation and access to other growth factors. The data show that GFL signalling is required for the specification of subpopulations of sensory and autonomic neurons. In order to comprehend this process fully, the role of individual GFLs, the transduction of the GFL signals, and the interplay of GFL signalling with other regulatory pathways need to be deciphered.
doi:10.1007/s00441-008-0634-4
PMCID: PMC2516536  PMID: 18629541
GFRalpha; GDNF; Ret; Sympathetic ganglion; Dorsal root ganglion; TRP family channel; Development
4.  Absence of Ret Signaling in Mice Causes Progressive and Late Degeneration of the Nigrostriatal System 
PLoS Biology  2007;5(3):e39.
Support of ageing neurons by endogenous neurotrophic factors such as glial cell line–derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) may determine whether the neurons resist or succumb to neurodegeneration. GDNF has been tested in clinical trials for the treatment of Parkinson disease (PD), a common neurodegenerative disorder characterized by the loss of midbrain dopaminergic (DA) neurons. BDNF modulates nigrostriatal functions and rescues DA neurons in PD animal models. The physiological roles of GDNF and BDNF signaling in the adult nigrostriatal DA system are unknown. We generated mice with regionally selective ablations of the genes encoding the receptors for GDNF (Ret) and BDNF (TrkB). We find that Ret, but not TrkB, ablation causes progressive and adult-onset loss of DA neurons specifically in the substantia nigra pars compacta, degeneration of DA nerve terminals in striatum, and pronounced glial activation. These findings establish Ret as a critical regulator of long-term maintenance of the nigrostriatal DA system and suggest conditional Ret mutants as useful tools for gaining insights into the molecular mechanisms involved in the development of PD.
Author Summary
What does a neuron need to survive? Our body produces its own survival factors for neurons, so-called neurotrophic factors, which have additional roles in neuron differentiation, growth, and function. Declining production of a neurotrophic factor or impaired signal transduction in ageing neurons may contribute to pathological neurodegeneration in humans. Glial cell line–derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) have been suggested as survival factors for midbrain dopaminergic neurons, a group of neurons primarily affected in Parkinson disease.
To investigate the physiological requirements for GDNF and BDNF to establish and maintain an important output pathway of these neurons—the nigrostriatal pathway—in the intact brain, we generated mutant mice with regionally selective ablations of the receptors for these survival factors, Ret (receptor of GDNF and related family members) or TrkB (BDNF receptor). Surprisingly, these mice survive to adulthood and show normal development and maturation of the nigrostriatal system. However, in ageing mice, ablation of Ret leads to a progressive and cell-type–specific loss of substantia nigra pars compacta neurons and their projections into the striatum. Our findings establish Ret and subsequent downstream effectors as critical regulators of long-term maintenance of the nigrostriatal system.
Ret, a receptor for glial cell line-derived neurotrophic factor, selectively regulates long-term maintenance of the nigrostriatal dopaminergic system.
doi:10.1371/journal.pbio.0050039
PMCID: PMC1808500  PMID: 17298183
5.  Co-Transplantation of GDNF-Overexpressing Neural Stem Cells and Fetal Dopaminergic Neurons Mitigates Motor Symptoms in a Rat Model of Parkinson’s Disease 
PLoS ONE  2013;8(12):e80880.
Striatal transplantation of dopaminergic (DA) neurons or neural stem cells (NSCs) has been reported to improve the symptoms of Parkinson’s disease (PD), but the low rate of cell survival, differentiation, and integration in the host brain limits the therapeutic efficacy. We investigated the therapeutic effects of intracranial co-transplantation of mesencephalic NSCs stably overexpressing human glial-derived neurotrophic factor (GDNF-mNSCs) together with fetal DA neurons in the 6-OHDA rat model of PD. Striatal injection of mNSCs labeled by the contrast enhancer superparamagnetic iron oxide (SPIO) resulted in a hypointense signal in the striatum on T2-weighted magnetic resonance images that lasted for at least 8 weeks post-injection, confirming the long-term survival of injected stem cells in vivo. Co-transplantation of GDNF-mNSCs with fetal DA neurons significantly reduced apomorphine-induced rotation, a behavioral endophenotype of PD, compared to sham-treated controls, rats injected with mNSCs expressing empty vector (control mNSCs) plus fetal DA neurons, or rats injected separately with either control mNSCs, GDNF-mNSCs, or fetal DA neurons. In addition, survival and differentiation of mNSCs into DA neurons was significantly greater following co-transplantation of GDNF-mNSCs plus fetal DA neurons compared to the other treatment groups as indicated by the greater number of cell expressing both the mNSCs lineage tracer enhanced green fluorescent protein (eGFP) and the DA neuron marker tyrosine hydroxylase. The success of cell-based therapies for PD may be greatly improved by co-transplantation of fetal DA neurons with mNSCs genetically modified to overexpress trophic factors such as GDNF that support differentiation into DA cells and their survival in vivo.
doi:10.1371/journal.pone.0080880
PMCID: PMC3849044  PMID: 24312503
6.  Dopamine Neuron Stimulating Actions of a GDNF Propeptide 
PLoS ONE  2010;5(3):e9752.
Background
Neurotrophic factors, such as glial cell line-derived neurotrophic factor (GDNF), have shown great promise for protection and restoration of damaged or dying dopamine neurons in animal models and in some Parkinson's disease (PD) clinical trials. However, the delivery of neurotrophic factors to the brain is difficult due to their large size and poor bio-distribution. In addition, developing more efficacious trophic factors is hampered by the difficulty of synthesis and structural modification. Small molecules with neurotrophic actions that are easy to synthesize and modify to improve bioavailability are needed.
Methods and Findings
Here we present the neurobiological actions of dopamine neuron stimulating peptide-11 (DNSP-11), an 11-mer peptide from the proGDNF domain. In vitro, DNSP-11 supports the survival of fetal mesencephalic neurons, increasing both the number of surviving cells and neuritic outgrowth. In MN9D cells, DNSP-11 protects against dopaminergic neurotoxin 6-hydroxydopamine (6-OHDA)-induced cell death, significantly decreasing TUNEL-positive cells and levels of caspase-3 activity. In vivo, a single injection of DNSP-11 into the normal adult rat substantia nigra is taken up rapidly into neurons and increases resting levels of dopamine and its metabolites for up to 28 days. Of particular note, DNSP-11 significantly improves apomorphine-induced rotational behavior, and increases dopamine and dopamine metabolite tissue levels in the substantia nigra in a rat model of PD. Unlike GDNF, DNSP-11 was found to block staurosporine- and gramicidin-induced cytotoxicity in nutrient-deprived dopaminergic B65 cells, and its neuroprotective effects included preventing the release of cytochrome c from mitochondria.
Conclusions
Collectively, these data support that DNSP-11 exhibits potent neurotrophic actions analogous to GDNF, making it a viable candidate for a PD therapeutic. However, it likely signals through pathways that do not directly involve the GFRα1 receptor.
doi:10.1371/journal.pone.0009752
PMCID: PMC2841203  PMID: 20305789
7.  Vascular endothelial growth factor B (VEGF-B) is up-regulated and exogenous VEGF-B is neuroprotective in a culture model of Parkinson's disease 
Parkinson's disease (PD) results from the degeneration of dopaminergic neurons in the substantia nigra and the consequent deficit of dopamine released in the striatum. Current oral dopamine replacement or surgical therapies do not address the underlying issue of neurodegeneration, they neither slow nor halt disease. Neurotrophic factors have shown preclinical promise, but the choice of an appropriate growth factor as well as the delivery has proven difficult. In this study, we used a rotenone rat midbrain culture model to identify genes that are changed after addition of the neurotoxin. (1) We challenged rat midbrain cultures with rotenone (20 nM), a pesticide that has been shown to be toxic for dopaminergic neurons and that has been a well-characterized model of PD. A gene chip array analysis demonstrated that several genes were up-regulated after the rotenone treatment. Interestingly transcriptional activation of vascular endothelial growth factor B (VEGF-B) was evident, while vascular endothelial growth factor A (VEGF-A) levels remained unaltered. The results from the gene chip array experiment were verified with real time PCR and semi-quantitative western analysis using β-actin as the internal standard. (2) We have also found evidence that exogenously applied VEGF-B performed as a neuroprotective agent facilitating neuron survival in an even more severe rotenone culture model of PD (40 nM rotenone). VEGF-B has very recently been added to the list of trophic factors that reduce effects of neurodegeneration, as was shown in an in vivo model of motor neuron degeneration, while lacking potential adverse angiogenic activity. The data of an in vivo protective effect on motor neurons taken together with the presented results demonstrate that VEGF-B is a new candidate trophic factor distinct from the GDNF family of trophic factors. VEGF-B is activated by neurodegenerative challenges to the midbrain, and exogenous application of VEGF-B has a neuroprotective effect in a culture model of PD. Strengthening this natural protective response by either adding exogenous VEGF-B or up-regulating the endogenous VEGF-B levels may have the potential to be a disease modifying therapy for PD. We conclude that the growth factor VEGF-B can improve neuronal survival in a culture model of PD.
doi:10.1186/1750-1326-4-49
PMCID: PMC2799405  PMID: 20003314
8.  A Monoclonal Antibody-GDNF Fusion Protein Is Not Neuroprotective and Is Associated with Proliferative Pancreatic Lesions in Parkinsonian Monkeys 
PLoS ONE  2012;7(6):e39036.
Glial cell line derived neurotrophic factor (GDNF) is a neurotrophic factor that has neuroprotective effects in animal models of Parkinson’s disease (PD) and has been proposed as a PD therapy. GDNF does not cross the blood brain barrier (BBB), and requires direct intracerebral delivery to be effective. Trojan horse technology, in which GDNF is coupled to a monoclonal antibody (mAb) against the human insulin receptor (HIR), has been proposed to allow GDNF BBB transport (ArmaGen Technologies Inc.). In this study we tested the feasibility of HIRMAb-GDNF to induce neuroprotection in parkinsonian monkeys, as well as its tolerability and safety. Adult rhesus macaques were assessed throughout the study with a clinical rating scale, a computerized fine motor skills task and general health evaluations. Following baseline measurements, the animals received a unilateral intracarotid artery MPTP injection. Seven days later the animals were evaluated, matched according to disability and blindly assigned to receive twice a week iv. treatments (vehicle, 1 or 5 mg/kg HIRmAb-GDNF) for a period of three months. HIRmAb-GDNF did not improve parkinsonian motor symptoms and induced a dose-dependent hypersensitivity reaction. Quantification of dopaminergic striatal optical density and stereological nigral cell counts did not demonstrate differences between treatment groups. Focal pancreatic acinar to ductular metaplasia (ADM) was noted in four of seven animals treated with 1 mg/kg HIRmAb-GDNF; two of four with ADM also had focal pancreatic intraepithelial neoplasia 1B (PanIN-1B) lesions. Minimal to mild, focal to multifocal, nonsuppurative myocarditis was noted in all animals in the 5 mg/kg treatment group. Our results demonstrate that HIRmAb-GDNF dosing in a monkey model of PD is not an effective neuroprotective strategy and may present serious health risks that should be considered when planning future use of the IR antibody as a carrier, or of any systemic treatment of a GDNF-containing molecule.
doi:10.1371/journal.pone.0039036
PMCID: PMC3380056  PMID: 22745701
9.  Activation of mGlu3 Receptors Stimulates the Production of GDNF in Striatal Neurons 
PLoS ONE  2009;4(8):e6591.
Metabotropic glutamate (mGlu) receptors have been considered potential targets for the therapy of experimental parkinsonism. One hypothetical advantage associated with the use of mGlu receptor ligands is the lack of the adverse effects typically induced by ionotropic glutamate receptor antagonists, such as sedation, ataxia, and severe learning impairment. Low doses of the mGlu2/3 metabotropic glutamate receptor agonist, LY379268 (0.25–3 mg/kg, i.p.) increased glial cell line-derived neurotrophic factor (GDNF) mRNA and protein levels in the mouse brain, as assessed by in situ hybridization, real-time PCR, immunoblotting, and immunohistochemistry. This increase was prominent in the striatum, but was also observed in the cerebral cortex. GDNF mRNA levels peaked at 3 h and declined afterwards, whereas GDNF protein levels progressively increased from 24 to 72 h following LY379268 injection. The action of LY379268 was abrogated by the mGlu2/3 receptor antagonist, LY341495 (1 mg/kg, i.p.), and was lost in mGlu3 receptor knockout mice, but not in mGlu2 receptor knockout mice. In pure cultures of striatal neurons, the increase in GDNF induced by LY379268 required the activation of the mitogen-activated protein kinase and phosphatidylinositol-3-kinase pathways, as shown by the use of specific inhibitors of the two pathways. Both in vivo and in vitro studies led to the conclusion that neurons were the only source of GDNF in response to mGlu3 receptor activation. Remarkably, acute or repeated injections of LY379268 at doses that enhanced striatal GDNF levels (0.25 or 3 mg/kg, i.p.) were highly protective against nigro-striatal damage induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice, as assessed by stereological counting of tyrosine hydroxylase-positive neurons in the pars compacta of the substantia nigra. We speculate that selective mGlu3 receptor agonists or enhancers are potential candidates as neuroprotective agents in Parkinson's disease, and their use might circumvent the limitations associated with the administration of exogenous GDNF.
doi:10.1371/journal.pone.0006591
PMCID: PMC2719807  PMID: 19672295
10.  Glial cell-line derived neurotrophic factor (GDNF) replacement attenuates motor impairments and nigrostriatal dopamine deficits in 12-month-old mice with a partial deletion of GDNF 
Glial cell-line derived neurotrophic factor (GDNF) has been established as a growth factor for the survival and maintenance of dopamine (DA) neurons. In phase I clinical trials, GDNF treatment in Parkinson’s disease patients led to improved motor function and GDNF has been found to be down regulated in Parkinson’s disease patients. Studies using GDNF heterozygous (Gdnf+/−) mice have demonstrated that a partial reduction of GDNF leads to an age-related accelerated decline in nigrostriatal DA system- and motor-function and increased neuro-inflammation and oxidative stress in the substantia nigra (SN). Therefore, the purpose of the current studies was to determine if GDNF replacement restores motor function and functional markers within the nigrostriatal DA system in middle-aged Gdnf+/− mice. At 11 months of age, male Gdnf+/− and wildtype (WT) mice underwent bilateral intra-striatal injections of GDNF (10 μg) or vehicle. Locomotor activity was assessed weekly 1–4 weeks after treatment. Four weeks after treatment, their brains were processed for analysis of GDNF levels and various DAergic and oxidative stress markers. An intrastriatal injection of GDNF increased motor activity in Gdnf+/− mice to levels comparable to WT mice (1 week after injection) and this effect was maintained through the 4-week time point. This increase in locomotion was accompanied by a 40% increase in striatal GDNF protein levels and SN GDNF expression in Gdnf+/− mice. Additionally, GDNF treatment significantly increased the number of tyrosine hydroxylase (TH)-positive neurons in the SN of middle-aged Gdnf+/− mice, but not WT mice, which was coupled with reduced oxidative stress in the SN. These studies further support that long-term changes related to the dysfunction of the nigrostriatal pathway are influenced by GDNF expression and add that this dysfunction appears to be responsive to GDNF treatment. Additionally, these studies suggest that long-term GDNF depletion alters the biological and behavioral responses to GDNF treatment.
doi:10.1016/j.pbb.2012.12.022
PMCID: PMC3638246  PMID: 23290934
Dopamine; Glial cell-line derived neurotrophic factor; Parkinson’s disease; Neurodegeneration; Striatum; Substantia nigra
11.  Regulated Expression of Lentivirus-Mediated GDNF in Human Bone Marrow-Derived Mesenchymal Stem Cells and Its Neuroprotection on Dopaminergic Cells In Vitro 
PLoS ONE  2013;8(5):e64389.
Gene regulation remains one of the major challenges for gene therapy in clinical trials. In the present study, we first generated a binary tetracycline-on (Tet-On) system based on two lentivirus vectors, one expressing both human glial cell line-derived neurotrophic factor (hGDNF) and humanized recombinant green fluorescent protein (hrGFP) genes under second-generation tetracycline response element (TRE), and the other expressing the advanced reverse tetracycline-controlled transactivator - rtTA2S-M2 under a human minimal cytomegalovirus immediate early (CMV-IE) promoter. This system allows simultaneous expression of hGDNF and hrGFP genes in the presence of doxycycline (Dox). Human bone marrow-derived mesenchymal stem cells (hMSCs) were transduced with the binary Tet-On lentivirus vectors and characterized in vitro in the presence (On) or absence (Off) of Dox. The expression of hGDNF and hrGFP transgenes in transduced hMSCs was tightly regulated as determined by flow cytometry (FCM), GDNF enzyme-linked immunosorbent assay (ELISA) and quantitative real time-polymerase chain reaction (qRT-PCR). There was a dose-dependent regulation for hrGFP transgene expression. The levels of hGDNF protein in culture medium were correlated with the mean fluorescence intensity (MFI) units of hrGFP. The levels of transgene background expression were very low in the absence of Dox. The treatment of the conditioned medium from cultures of transduced hMSCs in the presence of Dox protected SH-SY5Y cells against 6-hydroxydopamine (6-OHDA) toxicity as determined by cell viability using 3, [4,5-dimethylthiazol-2-yl]- diphenyltetrazolium bromide (MTT) assay. The treatment of the conditioned medium was also found to improve the survival of dopaminergic (DA) neurons of ventral mesencephalic (VM) tissue in serum-free culture conditions as assessed by cell body area, the number of neurites and dendrite branching points, and proportion of tyrosine hydroxylase (TH)-immunoreactive (IR) cells. Our inducible lentivirus-mediated hGDNF gene delivery system may provide useful tools for basic research on gene therapy for chronic neurological disorders such as Parkinson’s disease (PD).
doi:10.1371/journal.pone.0064389
PMCID: PMC3661514  PMID: 23717608
12.  RET Signaling is Required for Survival and Normal Function of Non-Peptidergic Nociceptors 
Small unmyelinated sensory neurons classified as nociceptors are divided into two subpopulations based on phenotypic differences including expression of neurotrophic factor receptors. Approximately half of unmyelinated nociceptors express the NGF receptor TrkA and half express the GDNF Family Ligand (GFL) receptor Ret. The function of NGF/TrkA signaling in the TrkA population of nociceptors has been extensively studied and NGF/TrkA signaling is a well established mediator of pain. The GFLs are analgesic in models of neuropathic pain emphasizing the importance of understanding the physiological function of GFL/Ret signaling in nociceptors. However, perinatal lethality of Ret-null mice has precluded the study of the physiological role of GFL/Ret signaling in the survival, maintenance and function of nociceptors in viable mice. We deleted Ret exclusively in nociceptors by crossing nociceptor-specific Nav1.8 Cre and Ret conditional mice to produce Ret-Nav1.8 conditional knock out (CKO) mice. Loss of Ret exclusively in nociceptors results in a reduction in nociceptor number and size indicating Ret signaling is important for the survival and trophic support of these cells. Ret-Nav1.8 CKO mice exhibit reduced epidermal innervation, but normal central projections. In addition, Ret-Nav1.8 CKO mice have increased sensitivity to cold and increased formalin-induced pain, demonstrating that Ret signaling modulates the function of nociceptors in vivo. Enhanced inflammation-induced pain may be mediated by decreased Prostatic Acid Phosphatase (PAP) as PAP levels are markedly reduced in Ret-Nav1.8 CKO mice. The results of this study identify the physiological role of endogenous Ret signaling in the survival and function of nociceptors.
doi:10.1523/JNEUROSCI.5930-09.2010
PMCID: PMC2850282  PMID: 20237269
Ret; neurotrophic factor; GDNF; pain; inflammation; nociceptor
13.  Neurotrophic factors: from neurodevelopmental regulators to novel therapies for Parkinson's disease 
Neural Regeneration Research  2014;9(19):1708-1711.
Neuroprotection and neuroregeneration are two of the most promising disease-modifying therapies for the incurable and widespread Parkinson's disease. In Parkinson's disease, progressive degeneration of nigrostriatal dopaminergic neurons causes debilitating motor symptoms. Neurotrophic factors play important regulatory roles in the development, survival and maintenance of specific neuronal populations. These factors have the potential to slow down, halt or reverse the loss of nigrostriatal dopaminergic neurons in Parkinson's disease. Several neurotrophic factors have been investigated in this regard. This review article discusses the neurodevelopmental roles and therapeutic potential of three dopaminergic neurotrophic factors: glial cell line-derived neurotrophic factor, neurturin and growth/differentiation factor 5.
doi:10.4103/1673-5374.143410
PMCID: PMC4238158  PMID: 25422631
Parkinson's disease; neuroprotection; neurotrophic factors; nervous system development; nigrostriatal dopaminergic neurons; glial cell line-derived neurotrophic factor; neurturin; growth/differentiation factor 5
14.  GDNF-Transfected Macrophages Produce Potent Neuroprotective Effects in Parkinson's Disease Mouse Model 
PLoS ONE  2014;9(9):e106867.
The pathobiology of Parkinson's disease (PD) is associated with the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) projecting to the striatum. Currently, there are no treatments that can halt or reverse the course of PD; only palliative therapies, such as replacement strategies for missing neurotransmitters, exist. Thus, the successful brain delivery of neurotrophic factors that promote neuronal survival and reverse the disease progression is crucial. We demonstrated earlier systemically administered autologous macrophages can deliver nanoformulated antioxidant, catalase, to the SNpc providing potent anti-inflammatory effects in PD mouse models. Here we evaluated genetically-modified macrophages for active targeted brain delivery of glial cell-line derived neurotropic factor (GDNF). To capitalize on the beneficial properties afforded by alternatively activated macrophages, transfected with GDNF-encoded pDNA cells were further differentiated toward regenerative M2 phenotype. A systemic administration of GDNF-expressing macrophages significantly ameliorated neurodegeneration and neuroinflammation in PD mice. Behavioral studies confirmed neuroprotective effects of the macrophage-based drug delivery system. One of the suggested mechanisms of therapeutic effects is the release of exosomes containing the expressed neurotropic factor followed by the efficient GDNF transfer to target neurons. Such formulations can serve as a new technology based on cell-mediated active delivery of therapeutic proteins that attenuate and reverse progression of PD, and ultimately provide hope for those patients who are already significantly disabled by the disease.
doi:10.1371/journal.pone.0106867
PMCID: PMC4167552  PMID: 25229627
15.  Cav1.3 channels control D2-autoreceptor responses via NCS-1 in substantia nigra dopamine neurons 
Brain  2014;137(8):2287-2302.
See Borgkvist et al. (doi:10.1093/brain/awu150) for a scientific commentary on this article.
D2 autoreceptors and L-type calcium channels are both implicated in Parkinson’s disease, but how they interact is unclear. Dragicevic et al. reveal that L-type calcium channels can modulate D2-autoreceptor responses via the neuronal calcium sensor NCS-1. This dopamine-dependent signalling network is altered in Parkinson’s disease and could represent a therapeutic target.
Dopamine midbrain neurons within the substantia nigra are particularly prone to degeneration in Parkinson’s disease. Their selective loss causes the major motor symptoms of Parkinson’s disease, but the causes for the high vulnerability of SN DA neurons, compared to neighbouring, more resistant ventral tegmental area dopamine neurons, are still unclear. Consequently, there is still no cure available for Parkinson’s disease. Current therapies compensate the progressive loss of dopamine by administering its precursor l-DOPA and/or dopamine D2-receptor agonists. D2-autoreceptors and Cav1.3-containing L-type Ca2+ channels both contribute to Parkinson’s disease pathology. L-type Ca2+ channel blockers protect SN DA neurons from degeneration in Parkinson’s disease and its mouse models, and they are in clinical trials for neuroprotective Parkinson’s disease therapy. However, their physiological functions in SN DA neurons remain unclear. D2-autoreceptors tune firing rates and dopamine release of SN DA neurons in a negative feedback loop through activation of G-protein coupled potassium channels (GIRK2, or KCNJ6). Mature SN DA neurons display prominent, non-desensitizing somatodendritic D2-autoreceptor responses that show pronounced desensitization in PARK-gene Parkinson’s disease mouse models. We analysed surviving human SN DA neurons from patients with Parkinson’s disease and from controls, and detected elevated messenger RNA levels of D2-autoreceptors and GIRK2 in Parkinson’s disease. By electrophysiological analysis of postnatal juvenile and adult mouse SN DA neurons in in vitro brain-slices, we observed that D2-autoreceptor desensitization is reduced with postnatal maturation. Furthermore, a transient high-dopamine state in vivo, caused by one injection of either l-DOPA or cocaine, induced adult-like, non-desensitizing D2-autoreceptor responses, selectively in juvenile SN DA neurons, but not ventral tegmental area dopamine neurons. With pharmacological and genetic tools, we identified that the expression of this sensitized D2-autoreceptor phenotype required Cav1.3 L-type Ca2+ channel activity, internal Ca2+, and the interaction of the neuronal calcium sensor NCS-1 with D2-autoreceptors. Thus, we identified a first physiological function of Cav1.3 L-type Ca2+ channels in SN DA neurons for homeostatic modulation of their D2-autoreceptor responses. L-type Ca2+ channel activity however, was not important for pacemaker activity of mouse SN DA neurons. Furthermore, we detected elevated substantia nigra dopamine messenger RNA levels of NCS-1 (but not Cav1.2 or Cav1.3) after cocaine in mice, as well as in remaining human SN DA neurons in Parkinson’s disease. Thus, our findings provide a novel homeostatic functional link in SN DA neurons between Cav1.3- L-type-Ca2+ channels and D2-autoreceptor activity, controlled by NCS-1, and indicate that this adaptive signalling network (Cav1.3/NCS-1/D2/GIRK2) is also active in human SN DA neurons, and contributes to Parkinson’s disease pathology. As it is accessible to pharmacological modulation, it provides a novel promising target for tuning substantia nigra dopamine neuron activity, and their vulnerability to degeneration.
doi:10.1093/brain/awu131
PMCID: PMC4107734  PMID: 24934288
D2-autoreceptor; isradipine; Parkinsons disease; l-DOPA; cocaine
16.  Delivery of sonic hedgehog or glial derived neurotrophic factor to dopamine-rich grafts in a rat model of Parkinson’s disease using adenoviral vectors 
Brain research bulletin  2005;68(1-2):31-41.
The poor survival of dopamine grafts in Parkinson’s disease is one of the main obstacles to the widespread application of this therapy. One hypothesis is that implanted neurons, once removed from the embryonic environment, lack the differentiation factors needed to develop the dopaminergic phenotype. In an effort to improve the numbers of dopamine neurons surviving in the grafts, we have investigated the potential of adenoviral vectors to deliver the differentiation factor sonic hedgehog or the glial cell line-derived neurotrophic factor GDNF to dopamine-rich grafts in a rat model of Parkinson’s disease. Adenoviral vectors containing sonic hedgehog, GDNF, or the marker gene LacZ were injected into the dopamine depleted striatum of hemiparkinsonian rats. Two weeks later, ventral mesencephalic cell suspensions were prepared from embryos of donor ages E12, E13, E14 or E15 and implanted into the vector-transduced striatum. Pre-treatment with the sonic hedgehog vector produced a three-fold increase in the numbers of tyrosine hydroxylase-positive (presumed dopaminergic) cells in grafts derived from E12 donors, but had no effect on E13–E15 grafts. By contrast, pre-treatment with the GDNF vector increased yields of dopamine cells in grafts derived from E14 and E15 donors but had no effect on grafts from younger donors. The results indicate that provision of both trophic and differentiation factors can enhance the yields of dopamine neurons in ventral mesencephalic grafts, but that the two factors differ in the age and stage of embryonic development at which they have maximal effects.
doi:10.1016/j.brainresbull.2005.08.021
PMCID: PMC2902250  PMID: 16325002
Adenovirus; Viral vectors; Animal model; Gene therapy; 6-OHDA; Parkinson’s disease; Dopamine; Transplant; Sonic hedgehog
17.  A Novel Immunoprecipitation Strategy Identifies a Unique Functional Mimic of the Glial Cell Line-Derived Neurotrophic Factor Family Ligands in the Pathogen Trypanosoma cruzi▿  
Infection and Immunity  2008;76(8):3530-3538.
The journey of the Chagas' disease parasite Trypanosoma cruzi in the human body usually starts in the skin after an insect bite, when trypomastigotes get through the extracellular matrix to bind specific surface receptors in the epidermis and dermis to enter cells, where they differentiate and replicate. As the infection spreads to the heart, nervous system, and other parts of the body via the circulatory system, the parasite must also cope with additional receptors in the immune system and vascular endothelium. The molecular underpinnings that govern host cell receptor recognition by T. cruzi counterreceptors remain largely unknown. Here, we describe an immunoprecipitation strategy designed to concurrently identify host receptors and complementing parasite counterreceptors. Extracellular domains of growth factor receptors fused to human immunoglobulin G (IgG) Fc were incubated with parasite lysates, immunoprecipitated on protein G-Sepharose, and eluted with Laemmli sample buffer. Possible T. cruzi counterreceptors pulled down by the receptor-Fc bait were visualized on immunoblots probed with multispecific high-affinity IgG from chronic chagasic sera and on sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels stained with silver or Coomassie blue. In screening receptors important for nervous system repair, this parasite counterreceptor immunoprecipitation (PcIP) assay identified 7 to 11 polypeptides (molecular masses, 14 kDa to 55 kDa) that bound to the coreceptors of glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs) GFRα-1, -2, and -3. Binding was specific because the T. cruzi mimic of host GFLs, named TGFL, did not react with GFL coreceptor tyrosine kinase RET and with other neurotrophic receptors. The polypeptides were located on the parasite outer membrane and bound noncovalently to each other. TGFL eluted from the GFL receptor/protein G affinity column with 0.5 M NaCl, pH 7.5, and potently promoted neurite outgrowth and cell survival in a GFL-sensitive mouse pheochromocytoma cell line. Given that GFLs are neuron survival factors crucial for development and maintenance of central and peripheral nervous systems, it may be that T. cruzi mimicry of host GFLs helps in mutually beneficial host repair of infected and damaged nervous tissue. As there are >30 growth factor receptor-Fc chimeras commercially available, this PcIP assay can be readily adapted to identify receptors/counterreceptors in other T. cruzi invasion sites and in other infections such as Lyme disease, amebiasis, and schistosomiasis.
doi:10.1128/IAI.00411-08
PMCID: PMC2493206  PMID: 18541656
18.  The Effect of Lentivirus-Mediated PSPN Genetic Engineering Bone Marrow Mesenchymal Stem Cells on Parkinson’s Disease Rat Model 
PLoS ONE  2014;9(8):e105118.
Persephin (PSPN) is one of the neurotrophic factors of the glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs) which have been found to promote the survival of specific populations of neurons. The aim of this study was to assess the potential therapeutic function of gene-modified mesenchymal stem cells (MSCs)-Lv-PSPN-MSCs in 6-OHDA-induced Parkinson’s disease (PD) rats models. Here, we worked on the isolation, purification, identification and amplification of MSCs in vitro. The expression analysis revealed that several of the neural marker proteins like nestin, GFAP and S100 were expressed by rat MSCs. MES23.5 cells co-cultured with Lv-PSPN-MSCs showed less 6-OHDA induced cell death than control cells in vitro. When Lv-PSPN-MSCs were injected into the striatum of PD rats, we observed the survival rate, migration, differentiation and the behavior change of PD rats. We found that Lv-PSPN-MSCs showed higher survival rate in rat brain compared with Lv-null-MSCs. Rotational behavior showed that rats receiving Lv-PSPN-MSCs showed the most significant improvement compared with those in other groups. HPLC results showed the content of DA in striatum of rats which received Lv-PSPN-MSCs was highest compared with those in other groups. In conclusion, our results suggest that transplantation of Lv-PSPN-MSCs can lead to remarkable therapeutic effects in PD rats.
doi:10.1371/journal.pone.0105118
PMCID: PMC4132064  PMID: 25118697
19.  Dopaminergic regeneration by neurturin-overexpressing c17.2 neural stem cells in a rat model of Parkinson's disease 
Background
Genetically engineered neural stem cell (NSC) lines are promising vectors for the treatment of neurodegenerative diseases, particularly Parkinson's disease (PD). Neurturin (NTN), a member of the glial cell line-derived neurotrophic factor (GDNF) family, has been demonstrated to act specifically on mesencephalic dopaminergic neurons, suggesting its therapeutic potential for PD. In our previous work, we demonstrated that NTN-overexpressing c17.2 NSCs exerted dopaminergic neuroprotection in a rat model of PD. In this study, we transplanted NTN-c17.2 into the striatum of the 6-hydroxydopamine (6-OHDA) PD model to further determine the regenerative effect of NTN-c17.2 on the rat models of PD.
Results
After intrastriatal grafting, NTN-c17.2 cells differentiated and gradually downregulated nestin expression, while the grafts stably overexpressed NTN. Further, an observation of rotational behavior and the contents of neurotransmitters tested by high-performance liquid chromatography showed that the regenerative effect of the NTN-c17.2 group was significantly better than that of the Mock-c17.2 group, and the regenerative effect of the Mock-c17.2 group was better than that of the PBS group. Further research through reverse-transcriptase polymerase chain reaction assays and in vivo histology revealed that the regenerative effect of Mock-c17.2 and NTN-c17.2 cell grafts may be attributed to the ability of NSCs to produce neurotrophic factors and differentiate into tyrosine hydroxylase-positive cells.
Conclusion
The transplantation of NTN-c17.2 can exert neuroregenerative effects in the rat model of PD, and the delivery of NTN by NSCs may constitute a very useful strategy in the treatment of PD.
doi:10.1186/1750-1326-2-19
PMCID: PMC2082017  PMID: 17903274
20.  GDNF Family Ligands Trigger Indirect Neuroprotective Signaling in Retinal Glial Cells 
Molecular and Cellular Biology  2006;26(7):2746-2757.
Apoptotic cell death of photoreceptors is the final event leading to blindness in the heterogeneous group of inherited retinal degenerations. GDNF (glial cell-line-derived neurotrophic factor) was found to rescue photoreceptor function and survival very effectively in an animal model of retinal degeneration (M. Frasson, S. Picaud, T. Leveillard, M. Simonutti, S. Mohand-Said, H. Dreyfus, D. Hicks, and J. Sahel, Investig. Ophthalmol. Vis. Sci. 40:2724-2734, 1999). However, the cellular mechanism of GDNF action remained unresolved. We show here that in porcine retina, GDNF receptors GFRα-1 and RET are expressed on retinal Mueller glial cells (RMG) but not on photoreceptors. Additionally, RMG express the receptors for the GDNF family members artemin and neurturin (GFRα-2 and GFRα-3). We further investigated GDNF-, artemin-, and neurturin-induced signaling in isolated primary RMG and demonstrate three intracellular cascades, which are activated in vitro: MEK/ERK, stress-activated protein kinase (SAPK), and PKB/AKT pathways with different kinetics in dependence on stimulating GFL. We correlate the findings to intact porcine retina, where GDNF induces phosphorylation of ERK in the perinuclear region of RMG located in the inner nuclear layer. GDNF signaling resulted in transcriptional upregulation of FGF-2, which in turn was found to support photoreceptor survival in an in vitro assay. We provide here a detailed model of GDNF-induced signaling in mammalian retina and propose that the GDNF-induced rescue effect on mutated photoreceptors is an indirect effect mediated by retinal Mueller glial cells.
doi:10.1128/MCB.26.7.2746-2757.2006
PMCID: PMC1430306  PMID: 16537917
21.  Sciatic nerve injury in adult rats causes distinct changes in the central projections of sensory neurons expressing different glial cell line-derived neurotrophic factor family receptors 
The Journal of comparative neurology  2010;518(15):3024-3045.
Most small unmyelinated neurons in adult rat dorsal ganglia (DRG) express one or more of the co-receptors targeted by glial cell line-derived neurotrophic factor (GDNF), neurturin and artemin (GFRα1, GFRα2 and GFRα3 respectively). The function of these GDNF family ligands (GFLs) is not fully elucidated but recent evidence suggests GFLs could function in sensory neuron regeneration after nerve injury and peripheral nociceptor sensitisation. In this study, we used immunohistochemistry to determine if the DRG neurons targeted by each GFL change after sciatic nerve injury. We compared complete sciatic nerve transection and the chronic constriction model and found the pattern of changes incurred by each injury was broadly similar. In lumbar spinal cord, there was a widespread increase in neuronal GFRα1 immunoreactivity (IR) in the L1-6 dorsal horn. GFRα3-IR also increased but in a more restricted area. In contrast, GFRα2-IR decreased in patches of superficial dorsal horn and this loss was more extensive after transection injury. No change in calcitonin gene-related peptide-IR was detected after either injury. Analysis of double-immunolabelled L5 DRG sections suggested the main effect of injury on GFRα1- and GFRα3-IR was to increase expression in both myelinated and unmyelinated neurons. In contrast, no change in basal expression of GFRα2-IR was detected in DRG by analysis of fluorescence intensity and there was a small but significant reduction in GFRα2-IR neurons. Our results suggest the DRG neuronal populations targeted by GDNF, neurturin or artemin, and the effect of exogenous GFLs could change significantly after a peripheral nerve injury.
doi:10.1002/cne.22378
PMCID: PMC2883785  PMID: 20533358
nociceptor; pain; sprouting; regeneration; lumbosacral; spinal cord
22.  Glial Cell Line-Derived Neurotrophic Factor Partially Ameliorates Motor Symptoms Without Slowing Neurodegeneration in Mice With Respiratory Chain-Deficient Dopamine Neurons 
Cell transplantation  2012;22(9):1529-1539.
Degeneration of midbrain dopamine neurons causes the striatal dopamine deficiency responsible for the hallmark motor symptoms of Parkinson’s disease (PD). Intraparenchymal delivery of neurotrophic factors, such as glial cell line-derived neurotrophic factor (GDNF), is a possible future therapeutic approach. In animal PD models, GDNF can both ameliorate neurodegeneration and promote recovery of the dopamine system following a toxic insult. However, clinical studies have generated mixed results, and GDNF has not been efficacious in genetic animal models based on α-synuclein overexpression. We have tested the response to GDNF in a genetic mouse PD model with progressive degeneration of dopamine neurons caused by mitochondrial impairment. We find that GDNF, delivered to the striatum by either an adeno-associated virus or via miniosmotic pumps, partially alleviates the progressive motor symptoms without modifying the rate of neurodegeneration. These behavioral changes are accompanied by increased levels of dopamine in the midbrain, but not in striatum. At high levels, GDNF may instead reduce striatal dopamine levels. These results demonstrate the therapeutic potential of GDNF in a progressively impaired dopamine system.
doi:10.3727/096368912X657693
PMCID: PMC3888826  PMID: 23051605
Glial cell line-derived neurotrophic factor (GDNF); Mitochondria; Parkinson’s disease (PD); Trophic support; Gene therapy
23.  Intravenous treatment of experimental Parkinson’s disease in the mouse with an IgG-GDNF fusion protein that penetrates the blood-brain barrier 
Brain research  2010;1352:208-213.
Glial derived neurotrophic factor (GDNF) is a trophic factor for the nigra-striatal tract in experimental Parkinson’s disease (PD). The neurotrophin must be administered by intra-cerebral injection, because GDNF does not cross the blood-brain barrier (BBB). In the present study, GDNF was re-engineered to enable receptor-mediated transport across the BBB following fusion of GDNF to the heavy chain of a chimeric monoclonal antibody (MAb) against the mouse transferrin receptor (TfR), and this fusion protein is designated cTfRMAb-GDNF. This fusion protein had been previously shown to retain low nM binding constants for both the GDNF receptor and the mouse TfR, and to rapidly enter the mouse brain in vivo following intravenous administration. Experimental PD in mice was induced by the intra-striatal injection of 6-hydroxydopamine, and mice were treated with either saline or the cTfRMAb-GDNF fusion protein every other day for 3 weeks, starting 1 hour after toxin injection. Fusion protein treatment caused a 44% decrease in apomorphine-induced rotation, a 45% reduction in amphetamine-induced rotation, a 121% increase in the vibrissae-elicited forelimb placing test, and a 272% increase in striatal tyrosine hydroxylase (TH) enzyme activity at 3 weeks after toxin injection. Fusion protein treatment caused no change in TH enzyme activity in either the contralateral striatum or the frontal cortex. In conclusion, following fusion of GDNF to a BBB molecular Trojan horse, GDNF trophic effects in brain in experimental PD are observed following intravenous administration.
doi:10.1016/j.brainres.2010.06.059
PMCID: PMC2926206  PMID: 20599807
blood-brain barrier; Parkinson’s disease; GDNF; monoclonal antibody
24.  AAV2-mediated gene transfer of GDNF to the striatum of MPTP monkeys enhances the survival and outgrowth of co-implanted fetal dopamine neurons 
Experimental neurology  2008;211(1):252-258.
Neural transplantation offers the potential of treating Parkinson’s disease by grafting fetal dopamine neurons to depleted regions of the brain. However, clinical studies of neural grafting in Parkinson’s disease have produced only modest improvements. One of the main reasons for this is the low survival rate of transplanted neurons. The inadequate supply of critical neurotrophic factors in the adult brain is likely to be a major cause of early cell death and restricted outgrowth of fetal grafts placed into the mature striatum. Glial derived neurotrophic factor (GDNF) is a potent neurotrophic factor that is crucial to the survival, outgrowth and maintenance of dopamine neurons, and so is a candidate for protecting grafted fetal dopamine neurons in the adult brain. We found that implantation of adeno-associated virus type 2 encoding GDNF (AAV2-GDNF) in the normal monkey caudate nucleus induced over-expression of GDNF that persisted for at least 6 months after injection. In a 6-month within-animal controlled study, AAV2-GDNF enhanced the survival of fetal dopamine neurons by 4-fold, and increased the outgrowth of grafted fetal dopamine neurons by almost 3-fold in the caudate nucleus of MPTP-treated monkeys, compared with control grafts in the other caudate nucleus. Thus, the addition of GDNF gene therapy to neural transplantation may be a useful strategy to improve treatment for Parkinson’s disease.
doi:10.1016/j.expneurol.2008.01.026
PMCID: PMC2855210  PMID: 18346734
associated adenoviral vector (AAV); dopamine; fetal tissue; glial derived neurotrophic factor (GDNF); graft; monkey; MPTP; Parkinson’s disease; striatum; transplantation
25.  Neurorestoration 
Parkinsonism & related disorders  2012;18(0 1):S143-S146.
Although initially thought to be important primarily in neural development, a number of trophic proteins have been found to have neuroprotective and neuroregenerative activity in the adult central system, particularly for midbrain dopamine neurons (MDN). Neurorestoration is potentially feasible for MDN since there is an initial loss of phenotype for these neurons in Parkinson's disease (PD) rather than neuronal death. There is a considerable recent literature on trophic properties of TGF-ß superfamily proteins for MDN's, including glial cell-derived neurotrophic factor (GDNF), neurturin, and bone morphogenetic proteins (BMPs). This paper will review studies with the factors listed above, as well as describe more recent studies with two newly described trophic proteins, MANF and CDNF. Data will be presented from various animal models of PD suggesting that these trophic proteins may eventually lead to PD therapeutics in man. In addition, some data on small molecules with neuroprotective properties (AP4A, retinoic acid and vitamin D3) will also be described.
doi:10.1016/S1353-8020(11)70045-1
PMCID: PMC3245378  PMID: 22166416

Results 1-25 (1027028)