Search tips
Search criteria

Results 1-25 (1149982)

Clipboard (0)

Related Articles

1.  Chemical structure requirements and cellular targeting of microRNA-122 by peptide nucleic acids anti-miRs 
Nucleic Acids Research  2011;40(5):2152-2167.
Anti-miRs are oligonucleotide inhibitors complementary to miRNAs that have been used extensively as tools to gain understanding of specific miRNA functions and as potential therapeutics. We showed previously that peptide nucleic acid (PNA) anti-miRs containing a few attached Lys residues were potent miRNA inhibitors. Using miR-122 as an example, we report here the PNA sequence and attached amino acid requirements for efficient miRNA targeting and show that anti-miR activity is enhanced substantially by the presence of a terminal-free thiol group, such as a Cys residue, primarily due to better cellular uptake. We show that anti-miR activity of a Cys-containing PNA is achieved by cell uptake through both clathrin-dependent and independent routes. With the aid of two PNA analogues having intrinsic fluorescence, thiazole orange (TO)-PNA and [bis-o-(aminoethoxy)phenyl]pyrrolocytosine (BoPhpC)-PNA, we explored the subcellular localization of PNA anti-miRs and our data suggest that anti-miR targeting of miR-122 may take place in or associated with endosomal compartments. Our findings are valuable for further design of PNAs and other oligonucleotides as potent anti-miR agents.
PMCID: PMC3300011  PMID: 22070883
2.  Targeted Inhibition of miRNA Maturation with Morpholinos Reveals a Role for miR-375 in Pancreatic Islet Development 
PLoS Biology  2007;5(8):e203.
Several vertebrate microRNAs (miRNAs) have been implicated in cellular processes such as muscle differentiation, synapse function, and insulin secretion. In addition, analysis of Dicer null mutants has shown that miRNAs play a role in tissue morphogenesis. Nonetheless, only a few loss-of-function phenotypes for individual miRNAs have been described to date. Here, we introduce a quick and versatile method to interfere with miRNA function during zebrafish embryonic development. Morpholino oligonucleotides targeting the mature miRNA or the miRNA precursor specifically and temporally knock down miRNAs. Morpholinos can block processing of the primary miRNA (pri-miRNA) or the pre-miRNA, and they can inhibit the activity of the mature miRNA. We used this strategy to knock down 13 miRNAs conserved between zebrafish and mammals. For most miRNAs, this does not result in visible defects, but knockdown of miR-375 causes defects in the morphology of the pancreatic islet. Although the islet is still intact at 24 hours postfertilization, in later stages the islet cells become scattered. This phenotype can be recapitulated by independent control morpholinos targeting other sequences in the miR-375 precursor, excluding off-target effects as cause of the phenotype. The aberrant formation of the endocrine pancreas, caused by miR-375 knockdown, is one of the first loss-of-function phenotypes for an individual miRNA in vertebrate development. The miRNA knockdown strategy presented here will be widely used to unravel miRNA function in zebrafish.
Author Summary
The striking tissue-specific expression patterns of microRNAs (miRNAs) suggest that they play a role in tissue development. These small RNA molecules (∼22 bases in length) are processed from long primary transcripts (pri-miRNA) and regulate gene expression at the posttranscriptional level. There are hundreds of different miRNAs, many of which are strongly conserved. Vertebrate embryonic development is most easily studied in zebrafish, but genetically disrupting miRNA genes to see which miRNA does what is technically challenging. In this study, we interfere with miRNA function during the first few days of zebrafish embryonic development by introducing specific antisense morpholino oligonucleotides (morpholinos have been used previously to interfere with the synthesis of the much larger mRNAs). We show that morpholinos targeting the miRNA precursor can block processing of the pri-miRNA or directly inhibit the activity of the mature miRNA. We also used morpholinos to study the developmental effects of miRNA knockdown. Although we did not observe gross phenotypic defects for many miRNAs, we found that zebrafish miR-375 is essential for formation of the insulin-secreting pancreatic islet. Loss of miR-375 results in dispersed islet cells by 36 hours postfertilization, representing one of the first vertebrate miRNA loss-of-function phenotypes.
The authors show that morpholinos can be used to knock down zebrafish miRNAs, revealing that miR-375 is important for vertebrate pancreas development.
PMCID: PMC1925136  PMID: 17676975
3.  Subnanomolar antisense activity of phosphonate-peptide nucleic acid (PNA) conjugates delivered by cationic lipids to HeLa cells 
Nucleic Acids Research  2008;36(13):4424-4432.
In the search of facile and efficient methods for cellular delivery of peptide nucleic acids (PNA), we have synthesized PNAs conjugated to oligophosphonates via phosphonate glutamine and bis-phosphonate lysine amino acid derivatives thereby introducing up to twelve phosphonate moieties into a PNA oligomer. This modification of the PNA does not interfere with the nucleic acid target binding affinity based on thermal stability of the PNA/RNA duplexes. When delivered to cultured HeLa pLuc705 cells by Lipofectamine, the PNAs showed dose-dependent nuclear antisense activity in the nanomolar range as inferred from induced luciferase activity as a consequence of pre-mRNA splicing correction by the antisense-PNA. Antisense activity depended on the number of phosphonate moieties and the most potent hexa-bis-phosphonate-PNA showed at least 20-fold higher activity than that of an optimized PNA/DNA hetero-duplex. These results indicate that conjugation of phosphonate moieties to the PNA can dramatically improve cellular delivery mediated by cationic lipids without affecting on the binding affinity and sequence discrimination ability, exhibiting EC50 values down to one nanomolar. Thus the intracellular efficacy of PNA oligomers rival that of siRNA and the results therefore emphasize that provided sufficient in vivo bioavailability of PNA can be achieved these molecules may be developed into potent gene therapeutic drugs.
PMCID: PMC2490735  PMID: 18596083
4.  Antiproliferative effect in chronic myeloid leukaemia cells by antisense peptide nucleic acids 
Nucleic Acids Research  2002;30(17):3712-3721.
Peptide nucleic acid (PNA) is a synthetic DNA analogue that is resistant to nucleases and proteases and binds with exceptional affinity to RNA. Because of these properties PNA has the potential to become a powerful therapeutic agent to be used in vivo. Until now, however, the use of PNA in vivo has not been much investigated. Here, we have attempted to reduce the expression of the bcr/abl oncogene in chronic myeloid leukaemia KYO-1 cells using a 13mer PNA sequence (asPNA) designed to hybridise to the b2a2 junction of bcr/abl mRNA. To enhance cellular uptake asPNA was covalently linked to the basic peptide VKRKKKP (NLS-asPNA). Moreover, to investigate the cellular uptake by confocal microscopy, both PNAs were linked by their N-terminus to fluorescein (FL). Studies of uptake, carried out at 4 and 37°C on living KYO-1 cells stained with hexidium iodide, showed that both NLS-asPNA-FL and asPNA-FL were taken up by the cells, through a receptor-independent mechanism. The intracellular amount of NLS-asPNA-FL was about two to three times higher than that of asPNA-FL. Using a semi-quantitative RT– PCR technique we found that 10 µM asPNA and NLS-asPNA reduced the level of b2a2 mRNA in KYO-1 cells to 20 ± 5% and 60 ± 10% of the control, respectively. Western blot analysis showed that asPNA promoted a significant inhibition of p210BCR/ABL protein: residual protein measured in cells exposed for 48 h to asPNA was ∼35% of the control. Additionally, asPNA impaired cell growth to 50 ± 5% of the control and inhibited completion of the cell cycle. In summary, these results demonstrate that a PNA 13mer is taken up by KYO-1 cells and is capable of producing a significant and specific down-regulation of the bcr/abl oncogene involved in leukaemogenesis.
PMCID: PMC137404  PMID: 12202756
5.  Human miRNA Precursors with Box H/ACA snoRNA Features 
PLoS Computational Biology  2009;5(9):e1000507.
MicroRNAs (miRNAs) and small nucleolar RNAs (snoRNAs) are two classes of small non-coding regulatory RNAs, which have been much investigated in recent years. While their respective functions in the cell are distinct, they share interesting genomic similarities, and recent sequencing projects have identified processed forms of snoRNAs that resemble miRNAs. Here, we investigate a possible evolutionary relationship between miRNAs and box H/ACA snoRNAs. A comparison of the genomic locations of reported miRNAs and snoRNAs reveals an overlap of specific members of these classes. To test the hypothesis that some miRNAs might have evolved from snoRNA encoding genomic regions, reported miRNA-encoding regions were scanned for the presence of box H/ACA snoRNA features. Twenty miRNA precursors show significant similarity to H/ACA snoRNAs as predicted by snoGPS. These include molecules predicted to target known ribosomal RNA pseudouridylation sites in vivo for which no guide snoRNA has yet been reported. The predicted folded structures of these twenty H/ACA snoRNA-like miRNA precursors reveal molecules which resemble the structures of known box H/ACA snoRNAs. The genomic regions surrounding these predicted snoRNA-like miRNAs are often similar to regions around snoRNA retroposons, including the presence of transposable elements, target site duplications and poly (A) tails. We further show that the precursors of five H/ACA snoRNA-like miRNAs (miR-151, miR-605, mir-664, miR-215 and miR-140) bind to dyskerin, a specific protein component of functional box H/ACA small nucleolar ribonucleoprotein complexes suggesting that these molecules have retained some H/ACA snoRNA functionality. The detection of small RNA molecules that share features of miRNAs and snoRNAs suggest that these classes of RNA may have an evolutionary relationship.
Author Summary
The major functions known for RNA were long believed to be either messenger RNAs, which function as intermediates between genes and proteins, or ribosomal RNAs and transfer RNAs which carry out the translation process. In recent years, however, newly discovered classes of small RNAs have been shown to play important cellular roles. These include microRNAs (miRNAs), which can regulate the production of specific proteins, and small nucleolar RNAs (snoRNAs), which recognise and chemically modify specific sequences in ribosomal RNA. Although miRNAs and snoRNAs are currently believed to be generated by different cellular pathways and to function in different cellular compartments, members of these two types of small RNAs display numerous genomic similarities, and a small number of snoRNAs have been shown to encode miRNAs in several organisms. Here we systematically investigate a possible evolutionary relationship between snoRNAs and miRNAs. Using computational analysis, we identify twenty genomic regions encoding miRNAs with highly significant similarity to snoRNAs, both on the level of their surrounding genomic context as well as their predicted folded structure. A subset of these miRNAs display functional snoRNA characteristics, strengthening the possibility that these miRNA molecules might have evolved from snoRNAs.
PMCID: PMC2730528  PMID: 19763159
6.  Computational identification of microRNA gene loci and precursor microRNA sequences in CHO cell lines 
Journal of Biotechnology  2012;158(3):151-155.
► We mapped all known mature CHO miRNAs to two CHO-K1 reference genomes. ► 212 unique genomic miRNA loci and the respective precursor miRNA sequences were identified. ► The genomic loci of 4 polycistronic miRNA cluster were confirmed by PCR. ► The identified sequences were analyzed for SNPs and conservation compared to mouse. ► Sequence data have been prepared for submission to miRBase miRNA sequence repository.
MicroRNAs (miRNAs) have recently entered Chinese hamster ovary (CHO) cell culture technology, due to their severe impact on the regulation of cellular phenotypes. Applications of miRNAs that are envisioned range from biomarkers of favorable phenotypes to cell engineering targets. These applications, however, require a profound knowledge of miRNA sequences and their genomic organization, which exceeds the currently available information of ∼400 conserved mature CHO miRNA sequences. Based on these recently published sequences and two independent CHO-K1 genome assemblies, this publication describes the computational identification of CHO miRNA genomic loci. Using BLAST alignment, 415 previously reported CHO miRNAs were mapped to the reference genomes, and subsequently assigned to a distinct genomic miRNA locus. Sequences of the respective precursor-miRNAs were extracted from both reference genomes, folded in silico to verify correct structures and cross-compared. In the end, 212 genomic loci and pre-miRNA sequences representing 319 expressed mature miRNAs (approximately 50% of miRNAs represented matching pairs of 5′ and 3′ miRNAs) were submitted to the miRBase miRNA repository. As a proof-of-principle for the usability of the published genomic loci, four likely polycistronic miRNA cluster were chosen for PCR amplification using CHO-K1 and DHFR (-) genomic DNA. Overall, these data on the genomic context of miRNA expression in CHO will simplify the development of tools employing stable overexpression or deletion of miRNAs, allow the identification of miRNA promoters and improve detection methods such as microarrays.
PMCID: PMC3314935  PMID: 22306111
MicroRNA; microRNA stemloops; Chinese hamster ovary; Cell engineering
7.  Zcchc11 Uridylates Mature miRNAs to Enhance Neonatal IGF-1 Expression, Growth, and Survival 
PLoS Genetics  2012;8(11):e1003105.
The Zcchc11 enzyme is implicated in microRNA (miRNA) regulation. It can uridylate let-7 precursors to decrease quantities of the mature miRNA in embryonic stem cell lines, suggested to mediate stem cell maintenance. It can uridylate mature miR-26 to relieve silencing activity without impacting miRNA content in cancer cell lines, suggested to mediate cytokine and growth factor expression. Broader roles of Zcchc11 in shaping or remodeling the miRNome or in directing biological or physiological processes remain entirely speculative. We generated Zcchc11-deficient mice to address these knowledge gaps. Zcchc11 deficiency had no impact on embryogenesis or fetal development, but it significantly decreased survival and growth immediately following birth, indicating a role for this enzyme in early postnatal fitness. Deep sequencing of small RNAs from neonatal livers revealed roles of this enzyme in miRNA sequence diversity. Zcchc11 deficiency diminished the lengths and terminal uridine frequencies for diverse mature miRNAs, but it had no influence on the quantities of any miRNAs. The expression of IGF-1, a liver-derived protein essential to early growth and survival, was enhanced by Zcchc11 expression in vitro, and miRNA silencing of IGF-1 was alleviated by uridylation events observed to be Zcchc11-dependent in the neonatal liver. In neonatal mice, Zcchc11 deficiency significantly decreased IGF-1 mRNA in the liver and IGF-1 protein in the blood. We conclude that the Zcchc11-mediated terminal uridylation of mature miRNAs is pervasive and physiologically significant, especially important in the neonatal period for fostering IGF-1 expression and enhancing postnatal growth and survival. We propose that the miRNA 3′ terminus is a regulatory node upon which multiple enzymes converge to direct silencing activity and tune gene expression.
Author Summary
MicroRNAs (miRNAs) are molecules that regulate gene expression, usually serving silencing functions. Mechanisms regulating miRNAs are poorly understood. In test tube experiments, the enzyme Zcchc11 adds uridines to the ends of miRNAs and their precursors, with uridyation of miRNA precursors decreasing the quantities of mature miRNAs and uridylation of mature miRNAs decreasing their silencing activity. Whether, when, and to what effect Zcchc11 alters miRNA in living animals has never previously been reported. To understand functions of Zcchc11 in integrative biology, we generated mice deficient in Zcchc11. Mutant mice were born normally, but some died soon after birth and survivors grew poorly. No miRNA quantities were changed in tissues sampled from these mice, but mature miRNAs were less likely to have additional uridines on their ends. Some miRNAs that were uridylated by Zcchc11 targeted a critical growth factor known as insulin-like growth factor 1 (IGF-1), but they did so less effectively when uridylated. Zcchc11-deficient mice had decreased amounts of IGF-1 in the liver and blood. These data reveal that Zcchc11 is an important enzyme in living animals for uridylating mature miRNAs, enhancing IGF-1 expression, and promoting neonatal growth and survival, suggesting a novel mode of gene regulation that is biologically significant.
PMCID: PMC3510031  PMID: 23209448
8.  P127-S A Novel method to Profile miRNA Expression in Different Organisms 
MicroRNAs (miRNAs) are short 22–24 nucleotide RNAs that play a vital roles in regulating gene expression. These single stranded RNA molecules are incorporated into the RISC (RNA-inducing silencing complex) and regulate gene expression through various methods including translational inhibition, transcriptional cleavage and transcriptional gene silencing. Recent interest in these non-coding RNAs has been explosive because of its implication in cellular differentiation and disease genesis. Therefore, there is an urgent need to identify and validate miRNA expression in cell lines, tissues, and organs. qRT-PCR has become the standard for microarray data validation, as well as an invaluable tool for quantifying individual or subsets of miRNAs with the greatest sensitivity and accuracy. Most commercially available miRNA qRT-PCR systems employ proprietary, pre-designed miRNA-specific primers for cDNA synthesis by reverse transcription. Unfortunately, this approach requires that the sequence of the miRNA is publicly available and a commercial qRT-PCR assay has been developed for that specific sequence, limiting the availability of qRT-PCR assays for many model organisms as well as recently discovered miRNAs or proprietary miRNAs. Here, we describe a novel, universal, and user-friendly qRT-PCR method, that was developed to measure and characterize miRNA expression in almost all organisms, starting from either total RNA and/or enriched miRNA. The NCode miRNA SYBR Green qRT-PCR protocol is based on carefully optimized polyadenylation reaction with the reverse transcriptase, SuperScript III RT, in a “universal” 1st strand cDNA synthesis reaction.. The miRNA specific amplification occurs during the PCR reaction where the sequence of the miRNA of interest is used as the target-specific PCR primer. Platinum SYBR qPCR Supermix combines Platinum Taq DNA polymerase with SYBR Green fluorescent dye, delivers excellent sensitivity in the quantification of target sequences. This protocol offers 7 logs of dynamic range for maximum sensitivity and single nucleotide discrimination for distinguishing between closely related miRNA families.
PMCID: PMC2291867
9.  Chemical transfection of dye-conjugated microRNA precursors for microRNA functional analysis of M2 macrophages 
Journal of cellular biochemistry  2012;113(5):1714-1723.
MicroRNAs (miRNAs) are short non-coding ribonucleic acids known to affect gene expression at the translational level and there is mounting evidence that miRNAs play a role in the function of tumor-associated macrophages (TAMs). To aid the functional analyses of miRNAs in an in-vitro model of TAMs known as M2 macrophages, a transfection method to introduce artificial miRNA constructs or miRNA molecules into primary human monocytes is needed. Unlike differentiated macrophages or dendritic cells, undifferentiated primary human monocytes have been known to show resistance to lentiviral transduction. To circumvent this challenge, other techniques such as electroporation and chemical transfection have been used in other applications to deliver small gene constructs into human monocytes. To date, no studies have compared these two methods objectively to evaluate their suitability in the miRNA functional analysis of M2 macrophages.
Of the methods tested, the electroporation of miRNA-construct containing plasmids and the chemical transfection of miRNA precursor molecules are the most efficient approaches. The use of a silencer siRNA labeling kit (Ambion) to conjugate Cy 3 fluorescence dyes to the precursor molecules allowed the isolation of successfully transfected cells with fluorescence-activated cell sorting. The chemical transfection of these dye-conjugated miRNA precursors yield an efficiency of 37.5 ± 0.6% and a cell viability of 74 ± 1%. RNA purified from the isolated cells demonstrated good quality, and was fit for subsequent mRNA expression qPCR analysis. While electroporation of plasmids containing miRNA constructs yield transfection efficiencies comparable to chemical transfection of miRNA precursors, these electroporated primary monocytes seemed to have lost their potential for differentiation.
Among the most common methods of transfection, the chemical transfection of dye-conjugated miRNA precursors was determined to be the best suited approach for the functional analysis of M2 macrophages.
PMCID: PMC3681413  PMID: 22213010
Tumor-associated macrophages; microRNA; miRNA; miR-511; chemical transfection; electroporation
10.  A construct with fluorescent indicators for conditional expression of miRNA 
BMC Biotechnology  2008;8:77.
Transgenic RNAi holds promise as a simple, low-cost, and fast method for reverse genetics in mammals. It may be particularly useful for producing animal models for hypomorphic gene function. Inducible RNAi that permits spatially and temporally controllable gene silencing in vivo will enhance the power of transgenic RNAi approach. Furthermore, because microRNA (miRNA) targeting specific genes can be expressed simultaneously with protein coding genes, incorporation of fluorescent marker proteins can simplify the screening and analysis of transgenic RNAi animals.
We sought to optimally express a miRNA simultaneously with a fluorescent marker. We compared two construct designs. One expressed a red fluorescent protein (RFP) and a miRNA placed in its 3' untranslated region (UTR). The other expressed the same RFP and miRNA, but the precursor miRNA (pre-miRNA) coding sequence was placed in an intron that was inserted into the 3'-UTR. We found that the two constructs expressed comparable levels of miRNA. However, the intron-containing construct expressed a significantly higher level of RFP than the intron-less construct. Further experiments indicate that the 3'-UTR intron enhances RFP expression by its intrinsic gene-expression-enhancing activity and by eliminating the inhibitory effect of the pre-miRNA on the expression of RFP. Based on these findings, we incorporated the intron-embedded pre-miRNA design into a conditional expression construct that employed the Cre-loxP system. This construct initially expressed EGFP gene, which was flanked by loxP sites. After exposure to Cre recombinase, the transgene stopped EGFP expression and began expression of RFP and a miRNA, which silenced the expression of specific cellular genes.
We have designed and tested a conditional miRNA-expression construct and showed that this construct expresses both the marker genes strongly and can silence the target gene efficiently upon Cre-mediated induction of the miRNA expression. This construct can be used to increase the efficiency of making cell lines or transgenic animals that stably express miRNA targeting specific genes.
PMCID: PMC2569932  PMID: 18840295
11.  Pre-microRNA and Mature microRNA in Human Mitochondria 
PLoS ONE  2011;6(5):e20220.
Because of the central functions of the mitochondria in providing metabolic energy and initiating apoptosis on one hand and the role that microRNA (miRNA) play in gene expression, we hypothesized that some miRNA could be present in the mitochondria for post-transcriptomic regulation by RNA interference. We intend to identify miRNA localized in the mitochondria isolated from human skeletal primary muscular cells.
Methodology/Principal Findings
To investigate the potential origin of mitochondrial miRNA, we in-silico searched for microRNA candidates in the mtDNA. Twenty five human pre-miRNA and 33 miRNA aligments (E-value<0.1) were found in the reference mitochondrial sequence and some of the best candidates were chosen for a co-localization test. In situ hybridization of pre-mir-302a, pre-let-7b and mir-365, using specific labelled locked nucleic acids and confocal microscopy, demonstrated that these miRNA were localized in mitochondria of human myoblasts. Total RNA was extracted from enriched mitochondria isolated by an immunomagnetic method from a culture of human myotubes. The detection of 742 human miRNA (miRBase) were monitored by RT-qPCR at three increasing mtRNA inputs. Forty six miRNA were significantly expressed (2nd derivative method Cp>35) for the smallest RNA input concentration and 204 miRNA for the maximum RNA input concentration. In silico analysis predicted 80 putative miRNA target sites in the mitochondrial genome (E-value<0.05).
The present study experimentally demonstrated for the first time the presence of pre-miRNA and miRNA in the human mitochondria isolated from skeletal muscular cells. A set of miRNA were significantly detected in mitochondria fraction. The origin of these pre-miRNA and miRNA should be further investigate to determine if they are imported from the cytosol and/or if they are partially processed in the mitochondria.
PMCID: PMC3102686  PMID: 21637849
12.  Peptide nucleic acid (PNA) cell penetrating peptide (CPP) conjugates as carriers for cellular delivery of antisense oligomers 
Artificial DNA, PNA & XNA  2011;2(3):90-99.
We have explored the merits of a novel delivery strategy for the antisense oligomers based on cell penetrating peptide (CPP) conjugated to a carrier PNA with sequence complementary to part of the antisense oligomer. The effect of these carrier CPP-PNAs was evaluated by using antisense PNA targeting splicing correction of the mutated luciferase gene in the HeLa pLuc705 cell line, reporting cellular (nuclear) uptake of the antisense PNA via luciferase activity measurement. Carrier CPP-PNA constructs were studied in terms of construct modification (with octaarginine and/or decanoic acid) and carrier PNA length (to adjust binding affinity). In general, the carrier CPP-PNA constructs including the ones with decanoyl modification provided significant increase of the activity of unmodified antisense PNA as well as of antisense octaarginine-PNA conjugates. Antisense activity, and by inference cellular delivery, of unmodified antisense PNA was enhanced at least 20-fold at 6 μM upon the complexation with an equimolar amount of nonamer carrier decanoyl-CPP-PNA (Deca-cPNA1(9)-(D-Arg)8). The antisense activity of a CPP-PNA ((D-Arg)8-asPNA) (at 2 μM) was improved 6-fold and 8-fold by a heptamer carrier CPP-PNA (cPNA1(7)-(D-Arg)8) and hexamer carrier decanoyl-CPP-PNA (Deca-cPNA1(6)-(D-Arg)8), respectively, without showing significant additional cellular toxicity. Most interestingly, the activity reached the same level obtained by enhancement with endosomolytic chloroquine (CQ) treatment, suggesting that the carrier might facilitate endosomal escape. Furthermore, 50% downregulation of luciferase expression at 60 nM siRNA was obtained using this carrier CPP-PNA delivery strategy (with CQ co-treatment) for a single stranded antisense RNA targeting normal luciferase mRNA. These results indicated that CPP-PNA carriers may be used as effective cellular delivery vectors for different types of antisense oligomers and also allows use of combinations of (at least two) different CPP ligands.
PMCID: PMC3324339  PMID: 22567192
antisense; carrier; cell penetrating peptide (CPP); cellular delivery; peptide nucleic acid (PNA); siRNA
13.  Modulation of mdm2 pre-mRNA splicing by 9-aminoacridine-PNA (peptide nucleic acid) conjugates targeting intron-exon junctions 
BMC Cancer  2010;10:342.
Modulation of pre-mRNA splicing by antisense molecules is a promising mechanism of action for gene therapeutic drugs. In this study, we have examined the potential of peptide nucleic acid (PNA) 9-aminoacridine conjugates to modulate the pre-mRNA splicing of the mdm2 human cancer gene in JAR cells.
We screened 10 different 15 mer PNAs targeting intron2 at both the 5' - and the 3'-splice site for their effects on the splicing of mdm2 using RT-PCR analysis. We also tested a PNA (2512) targeting the 3'-splice site of intron3 with a complementarity of 4 bases to intron3 and 11 bases to exon4 for its splicing modulation effect. This PNA2512 was further tested for the effects on the mdm2 protein level as well as for inhibition of cell growth in combination with the DNA damaging agent camptothecin (CPT).
We show that several of these PNAs effectively inhibit the splicing thereby producing a larger mRNA still containing intron2, while skipping of exon3 was not observed by any of these PNAs. The most effective PNA (PNA2406) targeting the 3'-splice site of intron2 had a complementarity of 4 bases to intron2 and 11 bases to exon3. PNA (2512) targeting the 3'-splice site of intron3 induced both splicing inhibition (intron3 skipping) and skipping of exon4. Furthermore, treatment of JAR cells with this PNA resulted in a reduction in the level of MDM2 protein and a concomitant increase in the level of tumor suppressor p53. In addition, a combination of this PNA with CPT inhibited cell growth more than CPT alone.
We have identified several PNAs targeting the 5'- or 3'-splice sites in intron2 or the 3'-splice site of intron3 of mdm2 pre-mRNA which can inhibit splicing. Antisense targeting of splice junctions of mdm2 pre-mRNA may be a powerful method to evaluate the cellular function of MDM2 splice variants as well as a promising approach for discovery of mdm2 targeted anticancer drugs.
PMCID: PMC2910690  PMID: 20591158
14.  MicroRNAs 125a and 455 Repress Lipoprotein-Supported Steroidogenesis by Targeting Scavenger Receptor Class B Type I in Steroidogenic Cells 
Molecular and Cellular Biology  2012;32(24):5035-5045.
We sought to identify and characterize microRNA (miRNAs) that posttranscriptionally regulate the expression of scavenger receptor class B type I (SR-BI) and SR-BI-linked selective high-density lipoprotein (HDL) cholesteryl ester (CE) transport and steroidogenesis. Four miRNAs (miRNA-125a, miRNA-125b, miRNA-145, and miRNA-455) with a potential to regulate SR-BI were identified in silico and validated by quantitative real-time PCR (qRT-PCR), Western blot analysis, and SR-BI 3′ untranslated region (UTR) reporter assays. In vitro treatment of primary rat granulosa cells and MLTC-1 cells with cyclic AMP (cAMP) or in vivo treatment of rat adrenals with adrenocorticotropic hormone (ACTH) decreased the expression of miRNA-125a, miRNA-125b, and miRNA-455 and reciprocally increased SR-BI expression. Using luciferase constructs containing the 3′ untranslated region of SR-BI combined with miRNA overexpression and mutagenesis, we have provided evidence that steroidogenic SR-BI is a direct target of miRNA-125a and miRNA-455. Moreover, the transfection of Leydig tumor cells with precursor miRNA 125a (pre-miRNA-125a) or pre-miRNA-455 resulted in the suppression of SR-BI at both the transcript and protein levels and reduced selective HDL CE uptake and HDL-stimulated progesterone production. Transfection of liver Hepa 1-6 cells with pre-miRNA-125a significantly reduced SR-BI expression and its selective transport function. In contrast, overexpression of miRNA-145 did not affect SR-BI expression or selective HDL CE uptake mediated by SR-BI in steroidogenic cell lines. These data suggest that a trophic hormone and cAMP inversely regulate the expression of SR-BI and miRNA-125a and miRNA-455 in steroidogenic tissues/cells and that both miRNA-125a and miRNA-455, by targeting steroidogenic SR-BI, negatively regulate selective HDL CE uptake and HDL CE-supported steroid hormone production.
PMCID: PMC3510537  PMID: 23045399
15.  A Functional Screen Identifies Specific MicroRNAs Capable of Inhibiting Human Melanoma Cell Viability 
PLoS ONE  2012;7(8):e43569.
Malignant melanoma is an aggressive form of skin cancer with poor prognosis. Despite improvements in awareness and prevention of this disease, its incidence is rapidly increasing. MicroRNAs (miRNAs) are a class of small RNA molecules that regulate cellular processes by repressing messenger RNAs (mRNAs) with partially complementary target sites. Several miRNAs have already been shown to attenuate cancer phenotypes, by limiting proliferation, invasiveness, tumor angiogenesis, and stemness. Here, we employed a genome-scale lentiviral human miRNA expression library to systematically survey which miRNAs are able to decrease A375 melanoma cell viability. We highlight the strongest inhibitors of melanoma cell proliferation, including the miR-15/16, miR-141/200a and miR-96/182 families of miRNAs and miR-203. Ectopic expression of these miRNAs resulted in long-term inhibition of melanoma cell expansion, both in vitro and in vivo. We show specifically miR-16, miR-497, miR-96 and miR-182 are efficient effectors when introduced as synthetic miRNAs in several melanoma cell lines. Our study provides a comprehensive interrogation of miRNAs that interfere with melanoma cell proliferation and viability, and offers a selection of miRNAs that are especially promising candidates for application in melanoma therapy.
PMCID: PMC3425484  PMID: 22927992
16.  Both mature miR-17-5p and passenger strand miR-17-3p target TIMP3 and induce prostate tumor growth and invasion 
Nucleic Acids Research  2013;41(21):9688-9704.
MicroRNAs (miRNA) precursor (pre-miRNA) molecules can be processed to release a miRNA/miRNA* duplex. In the canonical model of miRNA biogenesis, one strand of the duplex is thought to be the biologically active miRNA, whereas the other strand is thought to be inactive and degraded as a carrier or passenger strand called miRNA* (miRNA star). However, recent studies have revealed that miRNA* strands frequently play roles in the regulatory networks of miRNA target molecules. Our recent study indicated that miR-17 transgenic mice could abundantly express both the mature miR-17-5p and the passenger strand miR-17-3p. Here, we showed that miR-17 enhanced prostate tumor growth and invasion by increasing tumor cell proliferation, colony formation, cell survival and invasion. miRNA target analysis showed that both miR-17-5p and miR-17-3p repressed TIMP metallopeptidase inhibitor 3 (TIMP3) expression. Silencing with small interfering RNA against TIMP3 promoted cell survival and invasion. Ectopic expression of TIMP3 decreased cell invasion and cell survival. Our results demonstrated that mature miRNA can function coordinately with its passenger strand, enhancing the repressive ability of a miRNA by binding the same target. Within an intricate regulatory network, this may be among the mechanisms by which miRNA can augment their regulatory capacity.
PMCID: PMC3834805  PMID: 23990326
17.  Characterization of Novel Precursor miRNAs Using Next Generation Sequencing and Prediction of miRNA Targets in Atlantic Halibut 
PLoS ONE  2013;8(4):e61378.
microRNAs (miRNAs) are implicated in regulation of many cellular processes. miRNAs are processed to their mature functional form in a step-wise manner by multiple proteins and cofactors in the nucleus and cytoplasm. Many miRNAs are conserved across vertebrates. Mature miRNAs have recently been characterized in Atlantic halibut (Hippoglossus hippoglossus L.). The aim of this study was to identify and characterize precursor miRNA (pre-miRNAs) and miRNA targets in this non-model flatfish. Discovery of miRNA precursor forms and targets in non-model organisms is difficult because of limited source information available. Therefore, we have developed a methodology to overcome this limitation.
Genomic DNA and small transcriptome of Atlantic halibut were sequenced using Roche 454 pyrosequencing and SOLiD next generation sequencing (NGS), respectively. Identified pre- miRNAs were further validated with reverse–transcription PCR. miRNA targets were identified using miRanda and RNAhybrid target prediction tools using sequences from public databases. Some of miRNA targets were also identified using RACE-PCR. miRNA binding sites were validated with luciferase assay using the RTS34st cell line.
We obtained more than 1.3 M and 92 M sequence reads from 454 genomic DNA sequencing and SOLiD small RNA sequencing, respectively. We identified 34 known and 9 novel pre-miRNAs. We predicted a number of miRNA target genes involved in various biological pathways. miR-24 binding to kisspeptin 1 receptor-2 (kiss1-r2) was confirmed using luciferase assay.
This study demonstrates that identification of conserved and novel pre-miRNAs in a non-model vertebrate lacking substantial genomic resources can be performed by combining different next generation sequencing technologies. Our results indicate a wide conservation of miRNA precursors and involvement of miRNA in multiple regulatory pathways, and provide resources for further research on miRNA in non-model animals.
PMCID: PMC3634072  PMID: 23626677
18.  Analysis of microRNA transcriptome by deep sequencing of small RNA libraries of peripheral blood 
BMC Genomics  2010;11:288.
MicroRNAs are a class of small non-coding RNAs that regulate mRNA expression at the post - transcriptional level and thereby many fundamental biological processes. A number of methods, such as multiplex polymerase chain reaction, microarrays have been developed for profiling levels of known miRNAs. These methods lack the ability to identify novel miRNAs and accurately determine expression at a range of concentrations. Deep or massively parallel sequencing methods are providing suitable platforms for genome wide transcriptome analysis and have the ability to identify novel transcripts.
The results of analysis of small RNA sequences obtained by Solexa technology of normal peripheral blood mononuclear cells, tumor cell lines K562 and HL60 are presented. In general K562 cells displayed overall low level of miRNA population and also low levels of DICER. Some of the highly expressed miRNAs in the leukocytes include several members of the let-7 family, miR-21, 103, 185, 191 and 320a. Comparison of the miRNA profiles of normal versus K562 or HL60 cells revealed a specific set of differentially expressed molecules. Correlation of the miRNA with that of mRNA expression profiles, obtained by microarray, revealed a set of target genes showing inverse correlation with miRNA levels. Relative expression levels of individual miRNAs belonging to a cluster were found to be highly variable. Our computational pipeline also predicted a number of novel miRNAs. Some of the predictions were validated by Real-time RT-PCR and or RNase protection assay. Organization of some of the novel miRNAs in human genome suggests that these may also be part of existing clusters or form new clusters.
We conclude that about 904 miRNAs are expressed in human leukocytes. Out of these 370 are novel miRNAs. We have identified miRNAs that are differentially regulated in normal PBMC with respect to cancer cells, K562 and HL60. Our results suggest that post - transcriptional processes may play a significant role in regulating levels of miRNAs in tumor cells. The study also provides a customized automated computation pipeline for miRNA profiling and identification of novel miRNAs; even those that are missed out by other existing pipelines. The Computational Pipeline is available at the website:
PMCID: PMC2885365  PMID: 20459673
19.  Identification and validation of a novel microRNA-like molecule derived from a cytoplasmic RNA virus antigenome by bioinformatics and experimental approaches 
Virology Journal  2014;11:121.
It is generally believed that RNA virus replicating in the cell cytoplasm would not encode microRNAs (miRNAs) due to nucleus inaccessibility. Recent studies have described cytoplasmic RNA virus genome-derived miRNAs in West Nile virus (WNV) and Dengue virus (DENV). However, naturally occurring miRNAs derived from the antigenome of a cytoplasmic RNA virus have not been described.
Hepatitis A virus (HAV) was served as a model virus to investigate whether the antigenome of a cytoplasmic RNA virus would be processed into miRNAs or miRNA-like small RNAs upon infection. HAV antigenome was queried for putative miRNA precursors (pre-miRNA) with the VMir analyzer program. Mature miRNA prediction was performed using MatureBayes and Bayes-SVM-MiRNA web server v1.0. Finally, multiple experimental approaches, including cloning and sequencing-, RNAi-, plasmid-based miRNA expression- and luciferase reporter assays, were performed to identify and validate naturally occurring viral antigenome-derived miRNAs.
Using human HAV genotype IA (isolate H2) (HAVH2), a virally encoded miRNA-like small RNA was detected on the antigenome and named hav-miR-N1-3p. Transcription of viral pre-miRNA in KMB17 and HEK293T cells led to mature hav-miR-N1-3p production. In addition, silencing of the miRNA-processing enzyme Dicer or Drosha caused a dramatic reduction in miRNA levels. Furthermore, artificial target of hav-miR-N1-3p was silenced by synthesized viral miRNA mimics and the HAVH2 naturally-derived hav-miR-N1-3p.
These results suggested that the antigenome of a cytoplasmic RNA virus could be processed into functional miRNAs. Our findings provide new evidence supporting the hypothesis that cytoplasmic RNA viruses naturally encode miRNAs through cellular miRNA processing machinery.
PMCID: PMC4087238  PMID: 24981144
Hepatitis A virus; Antigenome; MicroRNA-like molecule; Picornavirus
20.  Ab initio identification of human microRNAs based on structure motifs 
BMC Bioinformatics  2007;8:478.
MicroRNAs (miRNAs) are short, non-coding RNA molecules that are directly involved in post-transcriptional regulation of gene expression. The mature miRNA sequence binds to more or less specific target sites on the mRNA. Both their small size and sequence specificity make the detection of completely new miRNAs a challenging task. This cannot be based on sequence information alone, but requires structure information about the miRNA precursor. Unlike comparative genomics approaches, ab initio approaches are able to discover species-specific miRNAs without known sequence homology.
MiRPred is a novel method for ab initio prediction of miRNAs by genome scanning that only relies on (predicted) secondary structure to distinguish miRNA precursors from other similar-sized segments of the human genome. We apply a machine learning technique, called linear genetic programming, to develop special classifier programs which include multiple regular expressions (motifs) matched against the secondary structure sequence. Special attention is paid to scanning issues. The classifiers are trained on fixed-length sequences as these occur when shifting a window in regular steps over a genome region. Various statistical and empirical evidence is collected to validate the correctness of and increase confidence in the predicted structures. Among other things, we propose a new criterion to select miRNA candidates with a higher stability of folding that is based on the number of matching windows around their genome location. An ensemble of 16 motif-based classifiers achieves 99.9 percent specificity with sensitivity remaining on an acceptable high level when requiring all classifiers to agree on a positive decision. A low false positive rate is considered more important than a low false negative rate, when searching larger genome regions for unknown miRNAs. 117 new miRNAs have been predicted close to known miRNAs on human chromosome 19. All candidate structures match the free energy distribution of miRNA precursors which is significantly shifted towards lower free energies. We employed a human EST library and found that around 75 percent of the candidate sequences are likely to be transcribed, with around 35 percent located in introns.
Our motif finding method is at least competitive to state-of-the-art feature-based methods for ab initio miRNA discovery. In doing so, it requires less previous knowledge about miRNA precursor structures while programs and motifs allow a more straightforward interpretation and extraction of the acquired knowledge.
PMCID: PMC2238772  PMID: 18088431
21.  A Novel Persistence Associated EBV miRNA Expression Profile Is Disrupted in Neoplasia 
PLoS Pathogens  2011;7(8):e1002193.
We have performed the first extensive profiling of Epstein-Barr virus (EBV) miRNAs on in vivo derived normal and neoplastic infected tissues. We describe a unique pattern of viral miRNA expression by normal infected cells in vivo expressing restricted viral latency programs (germinal center: Latency II and memory B: Latency I/0). This includes the complete absence of 15 of the 34 miRNAs profiled. These consist of 12 BART miRNAs (including approximately half of Cluster 2) and 3 of the 4 BHRF1 miRNAs. All but 2 of these absent miRNAs become expressed during EBV driven growth (Latency III). Furthermore, EBV driven growth is accompanied by a 5–10 fold down regulation in the level of the BART miRNAs expressed in germinal center and memory B cells. Therefore, Latency III also expresses a unique pattern of viral miRNAs. We refer to the miRNAs that are specifically expressed in EBV driven growth as the Latency III associated miRNAs. In EBV associated tumors that employ Latency I or II (Burkitt's lymphoma, Hodgkin's disease, nasopharyngeal carcinoma and gastric carcinoma), the Latency III associated BART but not BHRF1 miRNAs are up regulated. Thus BART miRNA expression is deregulated in the EBV associated tumors. This is the first demonstration that Latency III specific genes (the Latency III associated BARTs) can be expressed in these tumors. The EBV associated tumors demonstrate very similar patterns of miRNA expression yet were readily distinguished when the expression data were analyzed either by heat-map/clustering or principal component analysis. Systematic analysis revealed that the information distinguishing the tumor types was redundant and distributed across all the miRNAs. This resembles “secret sharing” algorithms where information can be distributed among a large number of recipients in such a way that any combination of a small number of recipients is able to understand the message. Biologically, this may be a consequence of functional redundancy between the miRNAs.
Author Summary
miRNAs are small (∼22 bp) RNAs. They play central roles in many cellular processes. Epstein-Barr virus (EBV) is an important human pathogen that establishes persistent infection in nearly all humans and is associated with several common forms of cancer. To achieve persistent infection, the virus infects B cells and uses a series of discrete transcription programs to drive these B cells to become memory B cells – the site of long term persistent infection. It was the first human virus found to express miRNAs of which there are at least 40. The functions of a few of these miRNAs are known but their expression in latently infected normal and neoplastic tissues in vivo have not been described. Here we have profiled EBV miRNAs in a wide range of infected normal and neoplastic tissue. We demonstrate that there are indeed latency program specific patterns of viral miRNA expression and that these patterns are disrupted in EBV associated tumors implicating EBV miRNAs both in long term persistence and in oncogenesis.
PMCID: PMC3161978  PMID: 21901094
22.  snoRNA, a Novel Precursor of microRNA in Giardia lamblia 
PLoS Pathogens  2008;4(11):e1000224.
An Argonaute homolog and a functional Dicer have been identified in the ancient eukaryote Giardia lamblia, which apparently lacks the ability to perform RNA interference (RNAi). The Giardia Argonaute plays an essential role in growth and is capable of binding specifically to the m7G-cap, suggesting a potential involvement in microRNA (miRNA)-mediated translational repression. To test such a possibility, small RNAs were isolated from Giardia trophozoites, cloned, and sequenced. A 26-nucleotide (nt) small RNA (miR2) was identified as a product of Dicer-processed snoRNA GlsR17 and localized to the cytoplasm by fluorescence in situ hybridization, whereas GlsR17 was found primarily in the nucleolus of only one of the two nuclei in Giardia. Three other small RNAs were also identified as products of snoRNAs, suggesting that the latter could be novel precursors of miRNAs in Giardia. Putative miR2 target sites were identified at the 3′-untranslated regions (UTR) of 22 variant surface protein mRNAs using the miRanda program. In vivo expression of Renilla luciferase mRNA containing six identical miR2 target sites in the 3′-UTR was reduced by 40% when co-transfected with synthetic miR2, while the level of luciferase mRNA remained unaffected. Thus, miR2 likely affects translation but not mRNA stability. This repression, however, was not observed when Argonaute was knocked down in Giardia using a ribozyme-antisense RNA. Instead, an enhancement of luciferase expression was observed, suggesting a loss of endogenous miR2-mediated repression when this protein is depleted. Additionally, the level of miR2 was significantly reduced when Dicer was knocked down. In all, the evidence indicates the presence of a snoRNA-derived miRNA-mediated translational repression in Giardia.
Author Summary
Gene regulation in Giardia lamblia, a primitive parasitic protozoan responsible for the diarrheal disease giardiasis, is poorly understood. There is no consensus promoter sequence. A simple eight–base pair AT-rich region is sufficient to initiate gene transcription in this organism. Thus, the main control of gene expression may occur after the stage of transcription. The presence of Dicer and Argonaute homologs in Giardia suggested that microRNA (miRNA)-mediated translational repression could be one mechanism of gene regulation. In this work, we characterized the presence of the miRNA pathway in Giardia as well as identified the novel use of small nucleolar RNA (snoRNA) as miRNA precursors. Potential target sites for one small RNA (miR2) were identified with the miRanda program. In vivo reporter assays confirmed the specific interaction between the target sites and miR2. A ribozyme-mediated reduction of Dicer and Argonaute in Giardia showed that the former is required for miR2 production whereas the latter functions in mediating the inhibition of reporter expression, which agrees with the roles of these two proteins. This is the first evidence of miRNA-mediated gene regulation in Giardia and the first demonstration of the use of snoRNAs as miRNA precursors.
PMCID: PMC2583053  PMID: 19043559
23.  MiR-RACE, a New Efficient Approach to Determine the Precise Sequences of Computationally Identified Trifoliate Orange (Poncirus trifoliata) MicroRNAs 
PLoS ONE  2010;5(6):e10861.
Among the hundreds of genes encoding miRNAs in plants reported, much more were predicted by numerous computational methods. However, unlike protein-coding genes defined by start and stop codons, the ends of miRNA molecules do not have characteristics that can be used to define the mature miRNAs exactly, which made computational miRNA prediction methods often cannot predict the accurate location of the mature miRNA in a precursor with nucleotide-level precision. To our knowledge, there haven't been reports about comprehensive strategies determining the precise sequences, especially two termini, of these miRNAs.
In this study, we report an efficient method to determine the precise sequences of computationally predicted microRNAs (miRNAs) that combines miRNA-enriched library preparation, two specific 5′ and 3′ miRNA RACE (miR-RACE) PCR reactions, and sequence-directed cloning, in which the most challenging step is the two specific gene specific primers designed for the two RACE reactions. miRNA-mediated mRNA cleavage by RLM-5′ RACE and sequencing were carried out to validate the miRNAs detected. Real-time PCR was used to analyze the expression of each miRNA.
The efficiency of this newly developed method was validated using nine trifoliate orange (Poncirus trifoliata) miRNAs predicted computationally. The miRNAs computationally identified were validated by miR-RACE and sequencing. Quantitative analysis showed that they have variable expression. Eight target genes have been experimentally verified by detection of the miRNA-mediated mRNA cleavage in Poncirus trifoliate.
The efficient and powerful approach developed herein can be successfully used to validate the sequences of miRNAs, especially the termini, which depict the complete miRNA sequence in the computationally predicted precursor.
PMCID: PMC2881865  PMID: 20539756
24.  Global identification of target recognition and cleavage by the Microprocessor in human ES cells 
Nucleic Acids Research  2014;42(20):12806-12821.
The Microprocessor plays an essential role in canonical miRNA biogenesis by facilitating cleavage of stem-loop structures in primary transcripts to yield pre-miRNAs. Although miRNA biogenesis has been extensively studied through biochemical and molecular genetic approaches, it has yet to be addressed to what extent the current miRNA biogenesis models hold true in intact cells. To address the issues of in vivo recognition and cleavage by the Microprocessor, we investigate RNAs that are associated with DGCR8 and Drosha by using immunoprecipitation coupled with next-generation sequencing. Here, we present global protein–RNA interactions with unprecedented sensitivity and specificity. Our data indicate that precursors of canonical miRNAs and miRNA-like hairpins are the major substrates of the Microprocessor. As a result of specific enrichment of nascent cleavage products, we are able to pinpoint the Microprocessor-mediated cleavage sites per se at single-nucleotide resolution. Unexpectedly, a 2-nt 3′ overhang invariably exists at the ends of cleaved bases instead of nascent pre-miRNAs. Besides canonical miRNA precursors, we find that two novel miRNA-like structures embedded in mRNAs are cleaved to yield pre-miRNA-like hairpins, uncoupled from miRNA maturation. Our data provide a framework for in vivo Microprocessor-mediated cleavage and a foundation for experimental and computational studies on miRNA biogenesis in living cells.
PMCID: PMC4227787  PMID: 25326327
25.  Annotation of mammalian primary microRNAs 
BMC Genomics  2008;9:564.
MicroRNAs (miRNAs) are important regulators of gene expression and have been implicated in development, differentiation and pathogenesis. Hundreds of miRNAs have been discovered in mammalian genomes. Approximately 50% of mammalian miRNAs are expressed from introns of protein-coding genes; the primary transcript (pri-miRNA) is therefore assumed to be the host transcript. However, very little is known about the structure of pri-miRNAs expressed from intergenic regions. Here we annotate transcript boundaries of miRNAs in human, mouse and rat genomes using various transcription features. The 5' end of the pri-miRNA is predicted from transcription start sites, CpG islands and 5' CAGE tags mapped in the upstream flanking region surrounding the precursor miRNA (pre-miRNA). The 3' end of the pri-miRNA is predicted based on the mapping of polyA signals, and supported by cDNA/EST and ditags data. The predicted pri-miRNAs are also analyzed for promoter and insulator-associated regulatory regions.
We define sets of conserved and non-conserved human, mouse and rat pre-miRNAs using bidirectional BLAST and synteny analysis. Transcription features in their flanking regions are used to demarcate the 5' and 3' boundaries of the pri-miRNAs. The lengths and boundaries of primary transcripts are highly conserved between orthologous miRNAs. A significant fraction of pri-miRNAs have lengths between 1 and 10 kb, with very few introns. We annotate a total of 59 pri-miRNA structures, which include 82 pre-miRNAs. 36 pri-miRNAs are conserved in all 3 species. In total, 18 of the confidently annotated transcripts express more than one pre-miRNA. The upstream regions of 54% of the predicted pri-miRNAs are found to be associated with promoter and insulator regulatory sequences.
Little is known about the primary transcripts of intergenic miRNAs. Using comparative data, we are able to identify the boundaries of a significant proportion of human, mouse and rat pri-miRNAs. We confidently predict the transcripts including a total of 77, 58 and 47 human, mouse and rat pre-miRNAs respectively. Our computational annotations provide a basis for subsequent experimental validation of predicted pri-miRNAs.
PMCID: PMC2632650  PMID: 19038026

Results 1-25 (1149982)