PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (683380)

Clipboard (0)
None

Related Articles

1.  Incorporation of thio-pseudoisocytosine into triplex-forming peptide nucleic acids for enhanced recognition of RNA duplexes 
Nucleic Acids Research  2014;42(6):4008-4018.
Peptide nucleic acids (PNAs) have been developed for applications in biotechnology and therapeutics. There is great potential in the development of chemically modified PNAs or other triplex-forming ligands that selectively bind to RNA duplexes, but not single-stranded regions, at near-physiological conditions. Here, we report on a convenient synthesis route to a modified PNA monomer, thio-pseudoisocytosine (L), and binding studies of PNAs incorporating the monomer L. Thermal melting and gel electrophoresis studies reveal that L-incorporated 8-mer PNAs have superior affinity and specificity in recognizing the duplex region of a model RNA hairpin to form a pyrimidine motif major-groove RNA2–PNA triplex, without appreciable binding to single-stranded regions to form an RNA–PNA duplex or, via strand invasion, forming an RNA–PNA2 triplex at near-physiological buffer condition. In addition, an L-incorporated 8-mer PNA shows essentially no binding to single-stranded or double-stranded DNA. Furthermore, an L-modified 6-mer PNA, but not pseudoisocytosine (J) modified or unmodified PNA, binds to the HIV-1 programmed −1 ribosomal frameshift stimulatory RNA hairpin at near-physiological buffer conditions. The stabilization of an RNA2–PNA triplex by L modification is facilitated by enhanced van der Waals contacts, base stacking, hydrogen bonding and reduced dehydration energy. The destabilization of RNA–PNA and DNA–PNA duplexes by L modification is due to the steric clash and loss of two hydrogen bonds in a Watson–Crick-like G–L pair. An RNA2–PNA triplex is significantly more stable than a DNA2–PNA triplex, probably because the RNA duplex major groove provides geometry compatibility and favorable backbone–backbone interactions with PNA. Thus, L-modified triplex-forming PNAs may be utilized for sequence-specifically targeting duplex regions in RNAs for biological and therapeutic applications.
doi:10.1093/nar/gkt1367
PMCID: PMC3973316  PMID: 24423869
2.  Synthesis and evaluation of some properties of chimeric oligomers containing PNA and phosphono-PNA residues. 
Nucleic Acids Research  1998;26(2):566-575.
In an attempt to improve physico-chemical and biological properties of peptide nucleic acids (PNAs), particularly water solubility and cellular uptake, the synthesis of chimeric oligomers consisted of PNA and phosphono-PNA analogues (pPNAs) bearing the four natural nucleobases has been accomplished. To produce these chimeras, pPNA monomers of two types containing N-(2-hydroxyethyl)phosphonoglycine, or N-(2-aminoethyl)phosphonoglycine backbone, were used in conjunction with PNA monomers representing derivatives of N-(2-aminoethyl)glycine, or N-(2-hydroxyethyl)glycine. The oligomers obtained were composed of either PNA and pPNA stretches or alternating PNA and pPNA monomers. The examination of hybridization properties of PNA-pPNA chimeras to DNA and RNA complementary strands in comparison with pure PNAs, and pPNAs as well as DNA-pPNA hybrids and DNA fragments confirmed that these chimeras form stable complexes with complementary DNA and RNA fragments. They were found to be resistant to degradation by nucleases. All these properties together with good solubility in water make PNA-pPNA hybrids promising for further evaluation as potential therapeutic agents.
PMCID: PMC147292  PMID: 9421517
3.  Electrospray ionisation-cleavable tandem nucleic acid mass tag–peptide nucleic acid conjugates: synthesis and applications to quantitative genomic analysis using electrospray ionisation-MS/MS 
Nucleic Acids Research  2007;35(4):e28.
The synthesis and characterization of isotopomer tandem nucleic acid mass tag–peptide nucleic acid (TNT–PNA) conjugates is described along with their use as electrospray ionisation-cleavable (ESI-Cleavable) hybridization probes for the detection and quantification of target DNA sequences by electrospray ionisation tandem mass spectrometry (ESI-MS/MS). ESI-cleavable peptide TNT isotopomers were introduced into PNA oligonucleotide sequences in a total synthesis approach. These conjugates were evaluated as hybridization probes for the detection and quantification of immobilized synthetic target DNAs using ESI-MS/MS. In these experiments, the PNA portion of the conjugate acts as a hybridization probe, whereas the peptide TNT is released in a collision-based process during the ionization of the probe conjugate in the electrospray ion source. The cleaved TNT acts as a uniquely resolvable marker to identify and quantify a unique target DNA sequence. The method should be applicable to a wide variety of assays requiring highly multiplexed, quantitative DNA/RNA analysis, including gene expression monitoring, genetic profiling and the detection of pathogens.
doi:10.1093/nar/gkl1123
PMCID: PMC1994780  PMID: 17259215
4.  Inhibiting Gene Expression with Peptide Nucleic Acid (PNA)–Peptide Conjugates that Target Chromosomal DNA 
Biochemistry  2007;46(25):7581-7589.
Peptide nucleic acids (PNAs) are a nonionic DNA/RNA mimic that can recognize complementary sequences by Watson–Crick base–pairing. The neutral PNA backbone facilitates recognition of duplex DNA by strand invasion, suggesting that antigene PNAs (agPNAs) can be important tools for exploring the structure and function of chromosomal DNA inside cells. However, before agPNAs can enter wide use it will be necessary to develop straightforward strategies for introducing them into cells. Here we demonstrate that agPNA–peptide conjugates can target promoter DNA and block progesterone receptor (PR) gene expression inside cells. Thirty–six agPNA–peptide conjugates were synthesized and tested. We observed inhibition of gene expression using cationic peptides containing either arginine or lysine residues, with eight or more cationic amino acids being preferred. Both thirteen and nineteen base agPNA-peptide conjugates were inhibitory. Inhibition was observed in human cancer cell lines expressing either high or low levels of progesterone receptor. Modification of agPNA–peptide conjugates with hydrophobic amino acids or small molecule hydrophobic moities yielded improved potency. Inhibition by agPNAs did not require cationic lipid or any other additive, but adding agents to cell growth media that promote endosomal release caused modest increases in agPNA potency. These data demonstrate that chromosomal DNA is accessible to agPNA–peptide conjugates and that chemical modifications can improve potency.
doi:10.1021/bi700230a
PMCID: PMC2564818  PMID: 17536840
5.  Down-regulation of MDM2 and activation of p53 in human cancer cells by antisense 9-aminoacridine–PNA (peptide nucleic acid) conjugates 
Nucleic Acids Research  2004;32(16):4893-4902.
A series of peptide nucleic acid (PNA) oligomers targeting the mdm2 oncogene mRNA has been tested for the ability to inhibit the growth of JAR cells. The effect of these PNAs on the cells was also reflected in reduced levels of the MDM2 protein and increased levels of the p53 tumor suppressor protein, which is negatively regulated by MDM2. Initially, PNA oligomers were delivered as DNA complexes with lipofectamine, but it was discovered that PNA conjugated to the DNA intercalator 9-aminoacridine (Acr) (Acr–PNA) could be effectively delivered to JAR cells (as well as to HeLa pLuc705 cells) even in the absence of a DNA carrier. Using such lipofectamine-delivered Acr–PNA conjugates, one PNA targeting a cryptic AUG initiation site was identified that at a concentration of 2 μM caused a reduction of MDM2 levels to ∼20% (but no reduction in mdm2 mRNA levels) and a 3-fold increase in p53 levels, whereas a 2-base mismatch control had no such effects. Furthermore, transcriptional activation by p53 was also increased (6-fold), and cell viability was reduced to 80%. Finally, this PNA acted cooperatively with camptothecin treatment both with regard to p53 activity induction as well as cell viability. Using this novel cell delivery system, we have identified a target on the mdm2 mRNA that appears sensitive to antisense inhibition by PNA and therefore could be used as a lead for further development of mdm2-targeted antisense (PNA and other) gene therapeutic anticancer drugs.
doi:10.1093/nar/gkh820
PMCID: PMC519114  PMID: 15371552
6.  Chiral introduction of positive charges to PNA for double-duplex invasion to versatile sequences 
Nucleic Acids Research  2008;36(5):1464-1471.
Invasion of two PNA strands to double-stranded DNA is one of the most promising methods to recognize a predetermined site in double-stranded DNA (PNA = peptide nucleic acid). In order to facilitate this ‘double-duplex invasion’, a new type of PNA was prepared by using chiral PNA monomers in which a nucleobase was bound to the α-nitrogen of N-(2-aminoethyl)-d-lysine. These positively charged monomer units, introduced to defined positions in Nielsen's PNAs (poly[N-(2-aminoethyl)glycine] derivatives), promoted the invasion without impairing mismatch-recognizing activity. When pseudo-complementary nucleobases 2,6-diaminopurine and 2-thiouracil were bound to N-(2-aminoethyl)-d-lysine, the invasion successfully occurred even at highly G–C-rich regions [e.g. (G/C)7(A/T)3 and (G/C)8(A/T)2] which were otherwise hardly targeted. Thus, the scope of sequences available as the target site has been greatly expanded. In contrast with the promotion by the chiral PNA monomers derived from N-(2-aminoethyl)-d-lysine, their l-isomers hardly invaded, showing crucial importance of the d-chirality. The promotion of double-duplex invasion by the chiral (d) PNA monomer units was ascribed to both destabilization of PNA/PNA duplex and stabilization of PNA/DNA duplexes.
doi:10.1093/nar/gkm1154
PMCID: PMC2275137  PMID: 18203747
7.  Synthesis of polyacrylamides N-substituted with PNA-like oligonucleotide mimics for molecular diagnostic applications. 
Nucleic Acids Research  1999;27(22):4416-4426.
Two types of oligonucleotide mimics relative to peptide nucleic acids (PNAs) were tested as probes in nucleic acid hybridisation assays based on polyacrylamide technology. One type of mimic oligomers represented a chimera constructed of PNA and phosphono-PNA (pPNA) monomers, and the other one contained pPNA residues alternating with PNA-like monomers on the base of trans -4-hydroxy-L-proline (HypNA). A chemistry providing efficient and specific covalent attachment of these DNA mimics to acrylamide polymers using a convenient approach based on the co-polymerisation of acrylamide and some reactive acrylic acid derivatives with oligomers bearing 5'- or 3'-terminal acrylamide groups has been developed. A comparative study of polyacrylamide conjugates with oligonucleotides and mimic oligomers demonstrated the suitability and high potential of PNA-pPNA and HypNA-pPNA chimeras as sequence-specific probes in capture and detection of target nucleic acid fragments to serve current forms of DNA arrays.
PMCID: PMC148725  PMID: 10536151
8.  Targeted gene correction using psoralen, chlorambucil and camptothecin conjugates of triplex forming peptide nucleic acid (PNA) 
Artificial DNA, PNA & XNA  2011;2(1):23-32.
Gene correction activation effects of a small series of triplex forming peptide nucleic acid (PNA) covalently conjugated to the DNA interacting ligands psoralen, chlorambucil and camptothecin targeted proximal to a stop codon mutation in an EGFP reporter gene were studied. A 15-mer homopyrimidine PNA conjugated to the topoisomerase I inhibitor camptothecin was found to increase the frequency of repair domain mediated gene correctional events of the EGFP reporter in an in vitro HeLa cell nuclear extract assay, whereas PNA psoralen or chlorambucil conjugates both of which form covalent and also interstrand crosslinked adducts with dsDNA dramatically decreased the frequency of targeted repair/correction. The PNA conjugates were also studied in mammalian cell lines upon transfection of PNA bound EGFP reporter vector and scoring repair of the EGFP gene by FACS analysis of functional EGFP expression. Consistent with the extract experiments, treatment with adduct forming PNA conjugates (psoralen and chlorambucil) resulted in a decrease in background correction frequencies in transiently transfected cells, whereas unmodified PNA or the PNA-camptothecin conjugate had little or no effect. These results suggest that simple triplex forming PNAs have little effect on proximal gene correctional events whereas PNA conjugates capable of forming DNA adducts and interstrand crosslinks are strong inhibitors. Most interestingly the PNA conjugated to the topoisomerase inhibitor, camptothecin enhanced repair in nuclear extract. Thus the effects and use of camptothecin conjugates in gene targeted repair merit further studies.
doi:10.4161/adna.2.1.15553
PMCID: PMC3116579  PMID: 21686249
PNA; triplex; gene correction; repair; DNA modification
9.  Pseudo-complementary PNA actuators as reversible switches in dynamic DNA nanotechnology 
Nucleic Acids Research  2013;41(8):4729-4739.
The structural reorganization of nanoscale DNA architectures is a fundamental aspect in dynamic DNA nanotechnology. Commonly, DNA nanoarchitectures are reorganized by means of toehold-expanded DNA sequences in a strand exchange process. Here we describe an unprecedented, toehold-free switching process that relies on pseudo-complementary peptide nucleic acid (pcPNA) by using a mechanism that involves double-strand invasion. The usefulness of this approach is demonstrated by application of these peptide nucleic acids (PNAs) as switches in a DNA rotaxane architecture. The monomers required for generating the pcPNA were obtained by an improved synthesis strategy and were incorporated into a PNA actuator sequence as well as into a short DNA strand that subsequently was integrated into the rotaxane architecture. Alternate addition of a DNA and PNA actuator sequence allowed the multiple reversible switching between a mobile rotaxane macrocycle and a stationary pseudorotaxane state. The switching occurs in an isothermal process at room temperature and is nearly quantitative in each switching step. pcPNAs can potentially be combined with light- and toehold-based switches, thus broadening the toolbox of orthogonal switching approaches for DNA architectures that open up new avenues in dynamic DNA nanotechnology.
doi:10.1093/nar/gkt121
PMCID: PMC3632119  PMID: 23444144
10.  Phospholipid conjugate for intracellular delivery of peptide nucleic acids 
Bioconjugate chemistry  2009;20(9):1729-1736.
Peptide nucleic acids (PNAs) have a number of attractive features that have made them an ideal choice for antisense and antigene-based tools, probes and drugs, but their poor membrane permeability has limited their application as therapeutic or diagnostic agents. Herein we report a general method for the synthesis of phospholipid-PNAs (LP-PNAs), and compare the effect of non-cleavable lipids and bioreductively cleavable lipids (L and LSS) and phospholipid (LP) on the splice-correcting bioactivity of a PNA bearing the cell penetrating Arg9 group (PNA-R9). While the three constructs show similar and increasing bioactivity at 1–3 μM, the activity of LP-PNA-R9 continues to increase from 4–6 μM while the activity of L-PNA-R9 remains constant and LSS-PNA-R9 decreases rapidly in parallel with their relative cytotoxicity. The activity of both LP-PNA-R9 and L-PNA-R9 were found to dramatically increase with chloroquine, as expected for an endocytotic entry mechanism. Both constructs were also found to have CMC values of 1.0 and 4.5 μM in 150 mM NaCl, pH 7 water, suggesting that micelle formation may play a hitherto unrecognized role in modulating toxicity and/or facilitating endocytosis.
doi:10.1021/bc900048y
PMCID: PMC2763590  PMID: 19678628
peptide nucleic acid; phospholipid; lipid; cell penetrating peptide; micelle; endocytosis; bioreductively cleavable
11.  Base pair opening kinetics study of the aegPNA:DNA hydrid duplex containing a site-specific GNA-like chiral PNA monomer 
Nucleic Acids Research  2011;39(16):7329-7335.
Peptide nucleic acids (PNA) are one of the most widely used synthetic DNA mimics where the four bases are attached to a N-(2-aminoethyl)glycine (aeg) backbone instead of the negative-charged phosphate backbone in DNA. We have developed a chimeric PNA (chiPNA), in which a chiral GNA-like γ3T monomer is incorporated into aegPNA backbone. The base pair opening kinetics of the aegPNA:DNA and chiPNA:DNA hybrid duplexes were studied by NMR hydrogen exchange experiments. This study revealed that the aegPNA:DNA hybrid is much more stable duplex and is less dynamic compared to DNA duplex, meaning that base pairs are opened and reclosed much more slowly. The site-specific incorporation of γ3T monomer in the aegPNA:DNA hybrid can destabilize a specific base pair and its neighbors, maintaining the thermal stabilities and dynamic properties of other base pairs. Our hydrogen exchange study firstly revealed the unique kinetic features of base pairs in the aegPNA:DNA and chiPNA:DNA hybrids, which will provide an insight into the development of methodology for specific DNA recognition using PNA fragments.
doi:10.1093/nar/gkr360
PMCID: PMC3167616  PMID: 21586589
12.  The Crystal Structure of Non-Modified and Bipyridine-Modified PNA Duplexes 
Peptide nucleic acid (PNA) is a synthetic analogue of DNA that commonly has an N-aminoethlyl-glycine backbone. The crystal structure of two PNA duplexes, one containing eight standard nucleobase pairs (GGCATCGG)2 (pdb: 3MBS), and the other containing the same nucleobase pairs and a central pair of bipyridine ligands (pdb: 3MBU), has been solved with a resolution of 1.2 Å and 1.05 Å, respectively. The non-modified PNA duplex adopts a P-type helical structure s i m i l a r t o that of previously characterized PNAs. The atomic-level resolution of the structures allowed us to observe for the first time specific modes of interaction between the terminal lysines of the PNA and the backbone and nucleobases situated in the vicinity of the lysines, which are considered an important factor in the induction of a preferred handedness in PNA duplexes. These results support the notion that while PNA typically adopts a P-type helical structure, its flexibility is relatively high. For example, the base pair rise in the bipyridine-containing PNA is the largest measured to date in a PNA homoduplex. The two bipyridines are bulged out of the duplex and are aligned parallel to the minor groove of the PNA. In the case of the bipyridine-containing PNA, two bipyridines from adjacent PNA duplexes form a π-stacked pair that relates the duplexes within the crystal. The bulging out of the bipyridines causes bending of the PNA duplex, which is in contrast to the structure previously reported for biphenyl-modified DNA duplexes in solution, where the biphenyls are π-stacking with adjacent nucleobase pairs and adopt an intrahelical geometry [Johar et al., Chem. Eur. J., 2008, 14, 2080]. This difference shows that relatively small perturbations can significantly impact the relative position of nucleobase analogues in nucleic acid duplexes.
doi:10.1002/chem.201000392
PMCID: PMC3194003  PMID: 20859960
PNA structure; X-ray crystallography; nucleic acids; bipyridine; nucleic acid bending
13.  Information transfer from DNA to peptide nucleic acids by template-directed syntheses. 
Nucleic Acids Research  1997;25(23):4792-4796.
Peptide nucleic acids (PNAs) are analogs of nucleic acids in which the ribose-phosphate backbone is replaced by a backbone held together by amide bonds. PNAs are interesting as models of alternative genetic systems because they form potentially informational base paired helical structures. Oligocytidylates have been shown to act as templates for formation of longer oligomers of G from PNA G2 dimers. In this paper we show that information can be transferred from DNA to PNA. DNA C4T2C4 is an efficient template for synthesis of PNA G4A2G4 using G2 and A2 units as substrates. The corresponding synthesis of PNA G4C2G4 on DNA C4G2C4 is less efficient. Incorporation of PNA T2 into PNA products on DNA C4A2C4 is the least efficient of the three reactions. These results, obtained using PNA dimers as substrates, parallel those obtained using monomeric activated nucleotides.
PMCID: PMC147107  PMID: 9365258
14.  Cellular Uptakes, Biostabilities and Anti-miR-210 Activities of Chiral Arginine-PNAs in Leukaemic K562 Cells 
Chembiochem  2012;13(9):1327-1337.
A series of 18-mer peptide nucleic acids (PNAs) targeted against micro-RNA miR-210 was synthesised and tested in a cellular system. Unmodified PNAs, R8-conjugated PNAs and modified PNAs containing eight arginine residues on the backbone, either as C2-modified (R) or C5-modified (S) monomers, all with the same sequence, were compared. Two different models were used for the modified PNAs: one with alternated chiral and achiral monomers and one with a stretch of chiral monomers at the N terminus. The melting temperatures of these derivatives were found to be extremely high and 5 m urea was used to assess differences between the different structures. FACS analysis and qRT-PCR on K562 chronic myelogenous leukaemic cells indicated that arginine-conjugated and backbone-modified PNAs display good cellular uptake, with best performances for the C2-modified series. Resistance to enzymatic degradation was found to be higher for the backbone-modified PNAs, thus enhancing the advantage of using these derivatives rather than conjugated PNAs in the cells in serum, and this effect is magnified in the presence of peptidases such as trypsin. Inhibition of miR-210 activity led to changes in the erythroid differentiation pathway, which were more evident in mithramycin-treated cells. Interestingly, the anti-miR activities differed with use of different PNAs, thus suggesting a role of the substituents not only in the cellular uptake, but also in the mechanism of miR recognition and inactivation. This is the first report relating to the use of backbone-modified PNAs as anti-miR agents. The results clearly indicate that backbone-modified PNAs are good candidates for the development of very efficient drugs based on anti-miR activity, due to their enhanced bioavailabilities, and that overall anti-miR performance is a combination of cellular uptake and RNA binding.
doi:10.1002/cbic.201100745
PMCID: PMC3401907  PMID: 22639449
cell permeation; cellular differentiation; chiral PNA; microRNA; peptide nucleic acids; RNA
15.  End invasion of peptide nucleic acids (PNAs) with mixed-base composition into linear DNA duplexes 
Nucleic Acids Research  2005;33(17):e146.
Peptide nucleic acid (PNA) is a synthetic DNA mimic with valuable properties and a rapidly growing scope of applications. With the exception of recently introduced pseudocomplementary PNAs, binding of common PNA oligomers to target sites located inside linear double-stranded DNAs (dsDNAs) is essentially restricted to homopurine–homopyrimidine sequence motifs, which significantly hampers some of the PNA applications. Here, we suggest an approach to bypass this limitation of common PNAs. We demonstrate that PNA with mixed composition of ordinary nucleobases is capable of sequence-specific targeting of complementary dsDNA sites if they are located at the very termini of DNA duplex. We then show that such targeting makes it possible to perform capturing of designated dsDNA fragments via the DNA-bound biotinylated PNA as well as to signal the presence of a specific dsDNA sequence, in the case a PNA beacon is employed. We also examine the PNA–DNA conjugate and prove that it can initiate the primer-extension reaction starting from the duplex DNA termini when a DNA polymerase with the strand-displacement ability is used. We thus conclude that recognition of duplex DNA by mixed-base PNAs via the end invasion has a promising potential for site-specific and sequence-unrestricted DNA manipulation and detection.
doi:10.1093/nar/gni151
PMCID: PMC1243805  PMID: 16204449
16.  Targeting peptide nucleic acid (PNA) oligomers to mitochondria within cells by conjugation to lipophilic cations: implications for mitochondrial DNA replication, expression and disease 
Nucleic Acids Research  2001;29(9):1852-1863.
The selective manipulation of mitochondrial DNA (mtDNA) replication and expression within mammalian cells has proven difficult. One promising approach is to use peptide nucleic acid (PNA) oligomers, nucleic acid analogues that bind selectively to complementary DNA or RNA sequences inhibiting replication and translation. However, the potential of PNAs is restricted by the difficulties of delivering them to mitochondria within cells. To overcome this problem we conjugated a PNA 11mer to a lipophilic phosphonium cation. Such cations are taken up by mitochondria through the lipid bilayer driven by the membrane potential across the inner membrane. As anticipated, phosphonium–PNA (ph–PNA) conjugates of 3.4–4 kDa were imported into both isolated mitochondria and mitochondria within human cells in culture. This was confirmed by using an ion-selective electrode to measure uptake of the ph–PNA conjugates; by cell fractionation in conjunction with immunoblotting; by confocal microscopy; by immunogold-electron microscopy; and by crosslinking ph–PNA conjugates to mitochondrial matrix proteins. In all cases dissipating the mitochondrial membrane potential with an uncoupler prevented ph–PNA uptake. The ph–PNA conjugate selectively inhibited the in vitro replication of DNA containing the A8344G point mutation that causes the human mtDNA disease ‘myoclonic epilepsy and ragged red fibres’ (MERRF) but not the wild-type sequence that differs at a single nucleotide position. Therefore these modified PNA oligomers retain their selective binding to DNA and the lipophilic cation delivers them to mitochondria within cells. When MERRF cells were incubated with the ph–PNA conjugate the ratio of MERRF to wild-type mtDNA was unaffected, even though the ph–PNA content of the mitochondria was sufficient to inhibit MERRF mtDNA replication in a cell-free system. This unexpected finding suggests that nucleic acid derivatives cannot bind their complementary sequences during mtDNA replication. In summary, we have developed a new strategy for targeting PNA oligomers to mitochondria and used it to determine the effects of PNA on mutated mtDNA replication in cells. This work presents new approaches for the manipulation of mtDNA replication and expression, and will assist in the development of therapies for mtDNA diseases.
PMCID: PMC37250  PMID: 11328868
17.  Transcription-mediated binding of peptide nucleic acid (PNA) to double-stranded DNA: sequence-specific suicide transcription. 
Nucleic Acids Research  1996;24(3):458-463.
Peptide nucleic acid (PNA) forms sequence-specific (PNA)2/DNA triplexes with one strand of double-stranded DNA by strand invasion. When formed with the template strand of DNA such a (PNA)2/DNA triplex can arrest transcription elongation in vitro and can thus act as an anti-gene agent. One of the major obstacles to applying PNA as an anti-gene agent in vivo is that PNA strand invasion occurs at a very slow rate under moderate salt conditions. In the present study we show that transcription can increase the rate of sequence-specific PNA binding dramatically. Such transcription-mediated PNA binding occurs three times as efficiently when the PNA target is situated on the non- template strand as compared with the template strand. Since transcription can mediate template strand-associated (PNA)2/DNA complexes which arrest further elongation, the action of RNA polymerase results in repression of its own activity, i.e. suicide transcription. These findings are highly relevant for the possible future use of PNA as an anti-gene agent.
PMCID: PMC145648  PMID: 8602358
18.  Methods for assessing DNA hybridization of PNA-TiO2 nanoconjugates 
Analytical biochemistry  2008;383(2):226-235.
We describe the synthesis of peptide nucleic acid (PNA)-titanium dioxide (TiO2) nanoconjugates and the several novel methods developed to investigate the DNA hybridization behaviors of these constructs. PNAs are synthetic DNA analogs resistant to degradation by cellular enzymes, which hybridize to single strand DNA (ssDNA) with higher affinity than DNA oligonucleotides, invade double strand DNA (dsDNA), and form different PNA-DNA complexes. Previously, we developed a DNA-TiO2 nanoconjugate capable of hybridizing to target DNA intracellularly in a sequence-specific manner, with the ability to cleave DNA when excited by electromagnetic radiation, but susceptible to degradation which may lower its intracellular targeting efficiency and retention time. PNA-TiO2 nanoconjugates described herein hybridize to target ssDNA, oligonucleotide dsDNA, and supercoiled plasmid DNA under physiological-like ionic and temperature conditions, enabling rapid and inexpensive, sequence-specific precipitation of nucleic acids in vitro. When modified by the addition of imaging agents or peptides, hybridization capabilities of PNA-TiO2 nanoconjugates are enhanced which provides essential benefits for numerous in vitro and in vivo applications. The series of experiments shown here could not be done with either TiO2-DNA nanoconjugates or PNAs alone, and the novel methods developed will benefit studies of numerous other nanoconjugate systems.
doi:10.1016/j.ab.2008.08.020
PMCID: PMC2597192  PMID: 18786502
titanium dioxide; peptide nucleic acid; nanoparticle; DNA; hybridization
19.  Efficient pH-independent sequence-specific DNA binding by pseudoisocytosine-containing bis-PNA. 
Nucleic Acids Research  1995;23(2):217-222.
The synthesis and DNA binding properties of bis-PNA (peptide nucleic acid) are reported. Two PNA segments each of seven nucleobases in length were connected in a continuous synthesis via a flexible linker composed of three 8-amino-3,6-dioxaoctanoic acid units. The sequence of the first strand was TCTCTTT (C- to N-terminal), while the second strand was TTTCTCT or TTTJTJT, where J is pseudoisocytosine. These bis-PNAs form triple-stranded complexes of somewhat higher thermal stability than monomeric PNA with complementary oligonucleotides and the thermal melting transition shows very little hysteresis. When the J base is placed in the strand parallel to the DNA complement ('Hoogsteen strand'), the DNA binding was pH independent. The bis-PNAs were also superior to monomeric PNAs for targeting double-stranded DNA by strand invasion.
Images
PMCID: PMC306657  PMID: 7862524
20.  Subnanomolar antisense activity of phosphonate-peptide nucleic acid (PNA) conjugates delivered by cationic lipids to HeLa cells 
Nucleic Acids Research  2008;36(13):4424-4432.
In the search of facile and efficient methods for cellular delivery of peptide nucleic acids (PNA), we have synthesized PNAs conjugated to oligophosphonates via phosphonate glutamine and bis-phosphonate lysine amino acid derivatives thereby introducing up to twelve phosphonate moieties into a PNA oligomer. This modification of the PNA does not interfere with the nucleic acid target binding affinity based on thermal stability of the PNA/RNA duplexes. When delivered to cultured HeLa pLuc705 cells by Lipofectamine, the PNAs showed dose-dependent nuclear antisense activity in the nanomolar range as inferred from induced luciferase activity as a consequence of pre-mRNA splicing correction by the antisense-PNA. Antisense activity depended on the number of phosphonate moieties and the most potent hexa-bis-phosphonate-PNA showed at least 20-fold higher activity than that of an optimized PNA/DNA hetero-duplex. These results indicate that conjugation of phosphonate moieties to the PNA can dramatically improve cellular delivery mediated by cationic lipids without affecting on the binding affinity and sequence discrimination ability, exhibiting EC50 values down to one nanomolar. Thus the intracellular efficacy of PNA oligomers rival that of siRNA and the results therefore emphasize that provided sufficient in vivo bioavailability of PNA can be achieved these molecules may be developed into potent gene therapeutic drugs.
doi:10.1093/nar/gkn401
PMCID: PMC2490735  PMID: 18596083
21.  DNA assembly using bis-peptide nucleic acids (bisPNAs) 
Nucleic Acids Research  2002;30(13):2782-2789.
DNA nanostructures are ordered oligonucleotide arrangements that have applications for DNA computers, crystallography, diagnostics and material sciences. Peptide nucleic acid (PNA) is a DNA/RNA mimic that offers many advantages for hybridization, but its potential for application in the field of DNA nanotechnology has yet to be thoroughly examined. We report the synthesis and characterization of tethered PNA molecules (bisPNAs) designed to assemble two individual DNA molecules through Watson–Crick base pairing. The spacer regions linking the PNAs were varied in length and contained amino acids with different electrostatic properties. We observed that bisPNAs effectively assembled oligonucleotides that were either the exact length of the PNA or that contained overhanging regions that projected outwards. In contrast, DNA assembly was much less efficient if the oligonucleotides contained overhanging regions that projected inwards. Surprisingly, the length of the spacer region between the PNA sequences did not greatly affect the efficiency of DNA assembly. Reasons for inefficient assembly of inward projecting DNA oligonucleotides include non-sequence-specific intramolecular interactions between the overhanging region of the bisPNA and steric conflicts that complicate simultaneous binding of two inward projecting strands. These results suggest that bisPNA molecules can be used for self-assembling DNA nanostructures provided that the arrangement of the hybridizing DNA oligonucleotides does not interfere with simultaneous hybridization to the bisPNA molecule.
PMCID: PMC117044  PMID: 12087161
22.  Local delivery of gene-modifying triplex-forming molecules to epidermis 
Epidermal keratinocytes are particularly suitable candidates for in situ gene correction. Intraperitoneal administration of a triplex-forming oligonucleotide (TFO) was shown previously to introduce DNA base changes in a reporter gene in skin, without identifying which cells had been targeted. We extend those previous experiments using two triplex-forming molecules (TFMs), a peptide nucleic acid (PNA-Antp) and a TFO (AG30), and two lines of transgenic mice that have the chromosomally integrated λsupFG1 shuttle-reporter transgene. Successful in vivo genomic modification occurs in epidermis and dermis in CD1 transgenic mice following either intraperitoneal or intradermal delivery of the PNA-Antennapedia conjugate. FITC-PNA-Antp accumulates in nuclei of keratinocytes and, after intradermal delivery of the PNA-Antp, chromosomally modified, keratin 5 positive basal keratinocytes persist for at least 10 days. In hairless (SKH1) mice with the λsupFG1 transgene, intradermal delivery of the TFO, AG30, introduces gene modifications in both tail and back skin and those chromosomal modifications persist in basal keratinocytes for 10 days. Hairless mice should facilitate comparison of various targeting agents and methods of delivery. Gene targeting by repeated local administration of oligonucleotides may prove clinically useful for judiciously selected disease-causing genes in the epidermis.
doi:10.1038/jid.2012.351
PMCID: PMC3532560  PMID: 23014335
23.  PNA microarrays for hybridisation of unlabelled DNA samples 
Nucleic Acids Research  2003;31(19):e119.
Several strategies have been developed for the production of peptide nucleic acid (PNA) microarrays by parallel probe synthesis and selective coupling of full-length molecules. Such microarrays were used for direct detection of the hybridisation of unlabelled DNA by time-of-flight secondary ion mass spectrometry. PNAs were synthesised by an automated process on filter-bottom microtitre plates. The resulting molecules were released from the solid support and attached without any purification to microarray surfaces via the terminal amino group itself or via modifications, which had been chemically introduced during synthesis. Thus, only full-length PNA oligomers were attached whereas truncated molecules, produced during synthesis because of incomplete condensation reactions, did not bind. Different surface chemistries and fitting modifications of the PNA terminus were tested. For an examination of coupling selectivity, bound PNAs were cleaved off microarray surfaces and analysed by MALDI-TOF mass spectrometry. Additionally, hybridisation experiments were performed to compare the attachment chemistries, with fully acetylated PNAs spotted as controls. Upon hybridisation of unlabelled DNA to such microarrays, binding events could be detected by visualisation of phosphates, which are an integral part of nucleic acids but missing entirely in PNA probes. Overall best results in terms of selectivity and sensitivity were obtained with thiol-modified PNAs on maleimide surfaces.
doi:10.1093/nar/gng120
PMCID: PMC206485  PMID: 14500847
24.  Sequence specificity at targeting double-stranded DNA with a γ-PNA oligomer modified with guanidinium G-clamp nucleobases 
Artificial DNA, PNA & XNA  2010;1(1):45-53.
γ-PNA, a new class of peptide nucleic acids, promises to overcome previous sequence limitations of double-stranded DNA (dsDNA) targeting with PNA. To check the potential of γ-PNA, we have synthesized a biotinylated, pentadecameric γ-PNA of mixed sequence carrying three guanidinium G-clamp nucleobases. We have found that strand invasion reactions of the γ-PNA oligomer to its fully complementary target within dsDNA occurs with significantly higher binding rates than to targets containing single mismatches. Association of the PNA oligomer to mismatched targets does not go to completion but instead reaches a stationary level at or below 60%, even at conditions of very low ionic strength. Initial binding rates to both matched and mismatched targets experience a steep decrease with increasing salt concentration. We demonstrate that a linear DNA target fragment with the correct target sequence can be purified from DNA mixtures containing mismatched target or unrelated genomic DNA by affinity capture with streptavidin-coated magnetic beads. Similarly, supercoiled plasmid DNA is obtained with high purity from an initial sample mixture that included a linear DNA fragment with the fully complementary sequence. Based on the results obtained in this study we believe that γ-PNA has a great potential for specific targeting of chosen duplex DNA sites in a sequence-unrestricted fashion.
doi:10.4161/adna.1.1.12444
PMCID: PMC3109445  PMID: 21687526
strand-invasion; gamma-PNA; duplex DNA recognition; duplex DNA capture; plasmid DNA purification
25.  (α,α-dimethyl)glycyl (dmg) PNAs 
Artificial DNA, PNA & XNA  2012;3(1):5-13.
The design and facile synthesis of sterically constrained new analogs of PNA having gem-dimethyl substitutions on glycine (dmg-PNA-T) is presented. The PNA oligomers [aminoethyl dimethylglycyl (aedmg) and aminopropyl dimethylglycyl (apdmg)] synthesized from the monomers 6 and 12) effected remarkable stabilization of homothyminePNA2:homoadenine DNA/RNA triplexes and mixed base sequence duplexes with target cDNA or RNA. They show a higher binding to DNA relative to that with isosequential RNA. This may be a structural consequence of the sterically rigid gem-dimethyl group, imposing a pre-organized conformation favorable for complex formation with cDNA. The results complement our previous work that had demonstrated that cyclohexanyl-PNAs favor binding with cRNA compared with cDNA and imply that the biophysical and structural properties of PNAs can be directed by introduction of the right rigidity in PNA backbone devoid of chirality. This approach of tweaking selectivity in binding of PNA constructs by installing gem-dimethyl substitution in PNA backbone can be extended to further fine-tuning by similar substitution in the aminoethyl segment as well either individually or in conjunction with present substitution.
doi:10.4161/adna.19185
PMCID: PMC3368815  PMID: 22679528
(α,α-dimethyl)glycyl PNA; gem-dimethylglycyl PNA; peptide nucleic acid; PNA-DNA binding; sterically constrained PNA analog; α-aminoisobutyric acid PNA

Results 1-25 (683380)