PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1217318)

Clipboard (0)
None

Related Articles

1.  Active or Passive Exposure to Tobacco Smoking and Allergic Rhinitis, Allergic Dermatitis, and Food Allergy in Adults and Children: A Systematic Review and Meta-Analysis 
PLoS Medicine  2014;11(3):e1001611.
In a systematic review and meta-analysis, Bahi Takkouche and colleagues examine the associations between exposure to tobacco smoke and allergic disorders in children and adults.
Please see later in the article for the Editors' Summary
Background
Allergic rhinitis, allergic dermatitis, and food allergy are extremely common diseases, especially among children, and are frequently associated to each other and to asthma. Smoking is a potential risk factor for these conditions, but so far, results from individual studies have been conflicting. The objective of this study was to examine the evidence for an association between active smoking (AS) or passive exposure to secondhand smoke and allergic conditions.
Methods and Findings
We retrieved studies published in any language up to June 30th, 2013 by systematically searching Medline, Embase, the five regional bibliographic databases of the World Health Organization, and ISI-Proceedings databases, by manually examining the references of the original articles and reviews retrieved, and by establishing personal contact with clinical researchers. We included cohort, case-control, and cross-sectional studies reporting odds ratio (OR) or relative risk (RR) estimates and confidence intervals of smoking and allergic conditions, first among the general population and then among children.
We retrieved 97 studies on allergic rhinitis, 91 on allergic dermatitis, and eight on food allergy published in 139 different articles. When all studies were analyzed together (showing random effects model results and pooled ORs expressed as RR), allergic rhinitis was not associated with active smoking (pooled RR, 1.02 [95% CI 0.92–1.15]), but was associated with passive smoking (pooled RR 1.10 [95% CI 1.06–1.15]). Allergic dermatitis was associated with both active (pooled RR, 1.21 [95% CI 1.14–1.29]) and passive smoking (pooled RR, 1.07 [95% CI 1.03–1.12]). In children and adolescent, allergic rhinitis was associated with active (pooled RR, 1.40 (95% CI 1.24–1.59) and passive smoking (pooled RR, 1.09 [95% CI 1.04–1.14]). Allergic dermatitis was associated with active (pooled RR, 1.36 [95% CI 1.17–1.46]) and passive smoking (pooled RR, 1.06 [95% CI 1.01–1.11]). Food allergy was associated with SHS (1.43 [1.12–1.83]) when cohort studies only were examined, but not when all studies were combined.
The findings are limited by the potential for confounding and bias given that most of the individual studies used a cross-sectional design. Furthermore, the studies showed a high degree of heterogeneity and the exposure and outcome measures were assessed by self-report, which may increase the potential for misclassification.
Conclusions
We observed very modest associations between smoking and some allergic diseases among adults. Among children and adolescents, both active and passive exposure to SHS were associated with a modest increased risk for allergic diseases, and passive smoking was associated with an increased risk for food allergy. Additional studies with detailed measurement of exposure and better case definition are needed to further explore the role of smoking in allergic diseases.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
The immune system protects the human body from viruses, bacteria, and other pathogens. Whenever a pathogen enters the body, immune system cells called T lymphocytes recognize specific molecules on its surface and release chemical messengers that recruit and activate other types of immune cells, which then attack the pathogen. Sometimes, however, the immune system responds to harmless materials (for example, pollen; scientists call these materials allergens) and triggers an allergic disease such as allergic rhinitis (inflammation of the inside of the nose; hay fever is a type of allergic rhinitis), allergic dermatitis (also known as eczema, a disease characterized by dry, itchy patches on the skin), and food allergy. Recent studies suggest that all these allergic (atopic) diseases are part of a continuous state called the “atopic march” in which individuals develop allergic diseases in a specific sequence that starts with allergic dermatitis during infancy, and progresses to food allergy, allergic rhinitis, and finally asthma (inflammation of the airways).
Why Was This Study Done?
Allergic diseases are extremely common, particularly in children. Allergic rhinitis alone affects 10%–30% of the world's population and up to 40% of children in some countries. Moreover, allergic diseases are becoming increasingly common. Allergic diseases affect the quality of life of patients and are financially costly to both patients and health systems. It is important, therefore, to identify the factors that cause or potentiate their development. One potential risk factor for allergic diseases is active or passive exposure to tobacco smoke. In some countries up to 80% of children are exposed to second-hand smoke so, from a public health point of view, it would be useful to know whether exposure to tobacco smoke is associated with the development of allergic diseases. Here, the researchers undertake a systematic review (a study that uses predefined criteria to identify all the research on a given topic) and a meta-analysis (a statistical approach for combining the results of several studies) to investigate this issue.
What Did the Researchers Do and Find?
The researchers identified 196 observational studies (investigations that observe outcomes in populations without trying to affect these outcomes in any way) that examined the association between smoke exposure and allergic rhinitis, allergic dermatitis, or food allergy. When all studies were analyzed together, allergic rhinitis was not associated with active smoking but was slightly associated with exposure to second-hand smoke. Specifically, compared to people not exposed to second-hand smoke, the pooled relative risk (RR) of allergic rhinitis among people exposed to second-hand smoke was 1.10 (an RR of greater than 1 indicates an increased risk of disease development in an exposed population compared to an unexposed population). Allergic dermatitis was associated with both active smoking (RR = 1.21) and exposure to second-hand smoke (RR = 1.07). In the populations of children and adolescents included in the studies, allergic rhinitis was associated with both active smoking and exposure to second-hand smoke (RRs of 1.40 and 1.09, respectively), as was allergic dermatitis (RRs of 1.36 and 1.06, respectively). Finally food allergy was associated with exposure to second-hand smoke (RR = 1.43) when cohort studies (a specific type of observational study) only were examined but not when all the studies were combined.
What Do These Findings Mean?
These findings provide limited evidence for a weak association between smoke exposure and allergic disease in adults but suggest that both active and passive smoking are associated with a modestly increased risk of allergic diseases in children and adolescents. The accuracy of these findings may be affected by the use of questionnaires to assess smoke exposure and allergic disease development in most of the studies in the meta-analysis and by the possibility that individuals exposed to smoke may have shared other characteristics that were actually responsible for their increased risk of allergic diseases. To shed more light on the role of smoking in allergic diseases, additional studies are needed that accurately measure exposure and outcomes. However, the present findings suggest that, in countries where many people smoke, 14% and 13% of allergic rhinitis and allergic dermatitis, respectively, among children may be attributable to active smoking. Thus, the elimination of active smoking among children and adolescents could prevent one in seven cases of allergic rhinitis and one in eight cases of allergic dermatitis in such countries.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001611.
The UK National Health Service Choices website provides information about allergic rhinitis, hay fever (including personal stories), allergic dermatitis (including personal stories), and food allergy (including personal stories)
The US National Institute of Allergy and Infectious Disease provides information about allergic diseases
The UK not-for-profit organization Allergy UK provides information about all aspects of allergic diseases and a description of the atopic march
MedlinePlus encyclopedia has pages on allergic rhinitis and allergic dermatitis (in English and Spanish)
MedlinePlus provides links to further resources about allergies, eczema, and food allergy (in English and Spanish)
doi:10.1371/journal.pmed.1001611
PMCID: PMC3949681  PMID: 24618794
2.  Mainstream and sidestream cigarette smoke-induced DNA adducts in C7Bl and DBA mice. 
Exposure to environmental tobacco smoke (ETS), which is largely composed of the sidestream cigarette smoke, has been implicated in increased incidence of cancer among nonsmokers. The present study was conducted to compare the potential of mainstream and sidestream cigarette smoke to induce DNA adducts in mice. Groups of female C57Bl and DBA mice were exposed twice daily for 65-70 weeks to mainstream or sidestream smoke from the University of Kentucky reference cigarettes (2R1) in a nose-only exposure system. Animals received a total particulate matter dose of about 16 and 6 mg/kg body weight/exposure and exhibited blood carboxyhemoglobin levels of about 16 and 34%, for mainstream and sidestream smoke-exposed groups, respectively. Pulmonary aryl hydrocarbon hydroxylase (AHH) activity was induced by about 2- to 3-fold in both mainstream and sidestream groups of C57Bl and in mainstream smoke-exposed group of DBA mice, but not in sidestream smoke-exposed DBA mice. An analysis of total DNA adduct levels by the 32P-postlabeling assay showed a significant (12- to 25-fold) increase in the magnitude of preexisting lung DNA adducts in both mainstream and sidestream smoke-exposed C57Bl and DBA mice. Smoke exposures did not affect the total preexisting DNA adducts in liver of either strain. It is concluded that both mainstream and sidestream smoke are capable of enhancing preexisting DNA adducts in the lungs of chronically smoke-exposed mice.
Images
PMCID: PMC1567075  PMID: 8319637
3.  A cellular model to mimic exhaled cigarette smokeinduced lung microvascular endothelial cell injury and death 
Tobacco smoke exhaled from smokers is a key component of secondhand smoke, contributing to lung alveolar wall destruction seen in chronic lung diseases. Although mainstream and sidestream tobacco smoke are cyto-toxic to lung cells, it is unclear whether exhaled smoke induces lung cell injury or even death. We sought to establish an in vitro model to examine the effects of exhaled smoke on lung cells. Phosphate-buffered saline-conditioned cigarette smoke (CCS) derived from a blow-by system was used to mimic exhaled tobacco smoke exposure. Exposure of medium to CCS leads to dose-dependent increases in nicotine/cotinine levels. Scanning spectrophotometric analysis of the CCS-exposed medium reveals an absorption peak at 290 nm wavelength. The OD values at 290 nm are correlated with nicotine levels in the exposed medium, indicating that a simple measurement of OD at 290 nm can be used to monitor CCS exposure. Tobacco smoke contacts the microvascular endothelium located at lung alveoli, before it enters the blood stream. Hence, human lung microvascular endothelial cells (hMVEC) were exposed to CCS and assessed for cell injury and death. Exposure of hMVEC to CCS equivalent to burning 12-16 cigarettes leads to increased LDH release from the cells into the medium. This suggests that CCS can induce lung cell injury. CCS at a low level increases cell growth, whereas the high level of CCS decreases cell viability. In addition, CCS exposure induces cell detachment and morphological changes. Our results demonstrate that exposure of buffer-conditioned mainstream cigarette smoke leads to increased nicotine/cotinine levels and cell injury/death, which may contribute to the pathophysiology of passive smoking-associated lung diseases.
PMCID: PMC2929948  PMID: 20827320
Cellular model; secondhand smoke; chronic lung diseases; lung microvascular endothelial cells; passive smoking-associated lung diseases
4.  The composition of cigarette smoke determines inflammatory cell recruitment to the lung in COPD mouse models 
COPD (chronic obstructive pulmonary disease) is caused by exposure to toxic gases and particles, most often CS (cigarette smoke), leading to emphysema, chronic bronchitis, mucus production and a subsequent decline in lung function. The disease pathogenesis is related to an abnormal CS-induced inflammatory response of the lungs. Similar to active (mainstream) smoking, second hand (sidestream) smoke exposure severely affects respiratory health. These processes can be studied in vivo in models of CS exposure of mice. We compared the acute inflammatory response of female C57BL/6 mice exposed to two concentrations [250 and 500 mg/m3 TPM (total particulate matter)] of sidestream and mainstream CS for 3 days and interpreted the biological effects based on physico-chemical differences in the gas and particulate phase composition of CS. BAL (bronchoalveolar lavage fluid) was obtained to perform differential cell counts and to measure cytokine release. Lung tissue was used to determine mRNA and protein expression of proinflammatory genes and to assess tissue inflammation. A strong acute inflammatory response characterized by neutrophilic influx, increased cytokine secretion [KC (keratinocyte chemoattractant), TNF-α (tumour necrosis factor α), MIP-2 (macrophage inflammatory protein 2), MIP-1α and MCP-1 (monocyte chemoattractant protein-1)], pro-inflammatory gene expression [KC, MIP-2 and MMP12 (matrix metalloproteinase 12)] and up-regulated GM-CSF (granulocyte macrophage colony-stimulating factor) production was observed in the mainstream model. After sidestream exposure there was a dampened inflammatory reaction consisting only of macrophages and diminished GM-CSF levels, most likely caused by elevated CO concentrations. These results demonstrate that the composition of CS determines the dynamics of inflammatory cell recruitment in COPD mouse models. Different initial inflammatory processes might contribute to COPD pathogenesis in significantly varying ways, thereby determining the outcome of the studies.
doi:10.1042/CS20130117
PMCID: PMC3906955  PMID: 23875733
chronic obstructive pulmonary disease (COPD); inflammation; mainstream; neutrophil; sidestream; smoke; BAL, bronchoalveolar lavage; CC, carbonyl compounds; CMD, count median diameter; CO-Hb, carboxyhaemoglobin; COPD, chronic obstructive pulmonary disease; CS, cigarette smoke; DNPH, 2,4-dinitrophenylhydrazine; GC-SIM-MS, gas-chromatography with selective ion monitoring MS; GM-CSF, granulocyte macrophage colony-stimulating factor; HO, haem oxygenase; H&E, haematoxylin and eosin; HPRT-1, hypoxanthine–guanine phosphoribosyltransferase; IFNβ, interferon β; IL-1β, interleukin 1β; KC, keratinocyte chemoattractant; LPS, lipopolysaccharide; MCP-1, monocyte chemoattractant protein-1; MIP, macrophage inflammatory protein; MMD, mass median diameter; MMP12, matrix metalloproteinase 12; NE, neutrophil elastase; NF-κB, nuclear factor κB; PAH, polycyclic aromatic hydrocarbons; PM, particulate matter; TNF-α, tumour necrosis factor α; TPM, total particulate matter
5.  EXPOSURE TO ACROLEIN BY INHALATION CAUSES PLATELET ACTIVATION 
Toxicology and applied pharmacology  2010;248(2):100-110.
Acrolein is a common air pollutant that is present in high concentrations in wood, cotton, and tobacco smoke, automobile exhaust and industrial waste and emissions. Exposure to acrolein containing environmental pollutants such as tobacco smoke and automobile exhaust has been linked to the activation of the coagulation and hemostasis pathways and thereby to the predisposition of thrombotic events in human. To examine the effects of acrolein on platelets, adult male C57Bl/6 mice were subjected acute (5 ppm for 6 h) or sub-chronic (1 ppm, 6h/day for 4 days) acrolein inhalation exposures. The acute exposure to acrolein did not cause pulmonary inflammation and oxidative stress, dyslipidemia or induce liver damage or muscle injury. Platelet GSH levels in acrolein-exposed mice were comparable to controls, but acrolein-exposure increased the abundance of protein-acrolein adducts in platelets. Platelets isolated from mice, exposed to both acute and sub-chronic acrolein levels, showed increased ADP-induced platelet aggregation. Exposure to acrolein also led to an increase in the indices of platelet activation such as the formation of platelet-leukocyte aggregates in the blood, plasma PF4 levels, and increased platelet-fibrinogen binding. The bleeding time was decreased in acrolein exposed mice. Plasma levels of PF4 were also increased in mice exposed to environmental tobacco smoke. Similar to inhalation exposure, acrolein feeding to mice also increased platelet activation and established a pro-thrombotic state in mice. Together, our data suggest that acrolein is an important contributing factor to the pro-thrombotic risk in human exposure to pollutants such as tobacco smoke or automobile exhaust, or through dietary consumption.
doi:10.1016/j.taap.2010.07.013
PMCID: PMC2946419  PMID: 20678513
Acrolein; Platelets; Platelet Factor 4; fibrinogen binding
6.  Adipose Stem Cell Treatment in Mice Attenuates Lung and Systemic Injury Induced by Cigarette Smoking 
Rationale: Adipose-derived stem cells express multiple growth factors that inhibit endothelial cell apoptosis, and demonstrate substantial pulmonary trapping after intravascular delivery.
Objectives: We hypothesized that adipose stem cells would ameliorate chronic lung injury associated with endothelial cell apoptosis, such as that occurring in emphysema.
Methods: Therapeutic effects of systemically delivered human or mouse adult adipose stem cells were evaluated in murine models of emphysema induced by chronic exposure to cigarette smoke or by inhibition of vascular endothelial growth factor receptors.
Measurements and Main Results: Adipose stem cells were detectable in the parenchyma and large airways of lungs up to 21 days after injection. Adipose stem cell treatment was associated with reduced inflammatory infiltration in response to cigarette smoke exposure, and markedly decreased lung cell death and airspace enlargement in both models of emphysema. Remarkably, therapeutic results of adipose stem cells extended beyond lung protection by rescuing the suppressive effects of cigarette smoke on bone marrow hematopoietic progenitor cell function, and by restoring weight loss sustained by mice during cigarette smoke exposure. Pulmonary vascular protective effects of adipose stem cells were recapitulated by application of cell-free conditioned medium, which improved lung endothelial cell repair and recovery in a wound injury repair model and antagonized effects of cigarette smoke in vitro.
Conclusions: These results suggest a useful therapeutic effect of adipose stem cells on both lung and systemic injury induced by cigarette smoke, and implicate a lung vascular protective function of adipose stem cell derived paracrine factors.
doi:10.1164/rccm.201001-0126OC
PMCID: PMC3040390  PMID: 20709815
pulmonary disease, chronic obstructive; endothelium; cell death; regenerative medicine; human
7.  Respiratory Syncytial Virus Infections Enhance Cigarette Smoke Induced COPD in Mice 
PLoS ONE  2014;9(2):e90567.
Respiratory syncytial viral (RSV) infections are a frequent cause of chronic obstructive pulmonary disease (COPD) exacerbations, which are a major factor in disease progression and mortality. RSV is able to evade antiviral defenses to persist in the lungs of COPD patients. Though RSV infection has been identified in COPD, its contribution to cigarette smoke-induced airway inflammation and lung tissue destruction has not been established. Here we examine the long-term effects of cigarette smoke exposure, in combination with monthly RSV infections, on pulmonary inflammation, protease production and remodeling in mice. RSV exposures enhanced the influx of macrophages, neutrophils and lymphocytes to the airways of cigarette smoke exposed C57BL/6J mice. This infiltration of cells was most pronounced around the vasculature and bronchial airways. By itself, RSV caused significant airspace enlargement and fibrosis in mice and these effects were accentuated with concomitant smoke exposure. Combined stimulation with both smoke and RSV synergistically induced cytokine (IL-1α, IL-17, IFN-γ, KC, IL-13, CXCL9, RANTES, MIF and GM-CSF) and protease (MMP-2, -8, -12, -13, -16 and cathepsins E, S, W and Z) expression. In addition, RSV exposure caused marked apoptosis within the airways of infected mice, which was augmented by cigarette smoke exposure. RSV and smoke exposure also reduced protein phosphatase 2A (PP2A) and protein tyrosine phosphates (PTP1B) expression and activity. This is significant as these phosphatases counter smoke-induced inflammation and protease expression. Together, these findings show for the first time that recurrent RSV infection markedly enhances inflammation, apoptosis and tissue destruction in smoke-exposed mice. Indeed, these results indicate that preventing RSV transmission and infection has the potential to significantly impact on COPD severity and progression.
doi:10.1371/journal.pone.0090567
PMCID: PMC3938768  PMID: 24587397
8.  Use of a Soluble Epoxide Hydrolase Inhibitor in Smoke-Induced Chronic Obstructive Pulmonary Disease 
Tobacco smoke-induced chronic obstructive pulmonary disease (COPD) is a prolonged inflammatory condition of the lungs characterized by progressive and largely irreversible airflow limitation attributable to a number of pathologic mechanisms, including bronchitis, bronchiolitis, emphysema, mucus plugging, pulmonary hypertension, and small-airway obstruction. Soluble epoxide hydrolase inhibitors (sEHIs) demonstrated anti-inflammatory properties in a rat model after acute exposure to tobacco smoke. We compared the efficacy of sEHI t-TUCB (trans-4-{4-[3-(4-trifluoromethoxy-phenyl)-ureido]-cyclohexyloxy}-benzoic acid) and the phosphodiesterase-4 (PDE4) inhibitor Rolipram (Biomol International, Enzo Life Sciences, Farmingdale, NY) to reduce lung injury and inflammation after subacute exposure to tobacco smoke over a period of 4 weeks. Pulmonary physiology, bronchoalveolar lavage, cytokine production, and histopathology were analyzed to determine the efficacy of sEHI and Rolipram to ameliorate tobacco smoke–induced inflammation and injury in the spontaneously hypertensive rat. Both t-TUCB and Rolipram inhibited neutrophil elevation in bronchoalveolar lavage. sEHI t-TUCB suppressed IFN-γ, while improving lung function by reducing tobacco smoke–induced total respiratory resistance and tissue damping (small-airway and peripheral tissue resistance). Increases in tobacco smoke–induced alveolar airspace size were attenuated by t-TUCB. Rolipram inhibited the production of airway mucus. Both t-TUCB and Rolipram inhibited vascular remodeling–related growth factor. These findings suggest that sEHI t-TUCB has therapeutic potential for treating COPD by improving lung function and attenuating the lung inflammation and emphysematous changes caused by tobacco smoke. To the best of our knowledge, this is the first report to demonstrate that sEHI exerts significant protective effects after repeated, subacute tobacco smoke–induced lung injury in a rat model of COPD.
doi:10.1165/rcmb.2011-0359OC
PMCID: PMC3359909  PMID: 22180869
experimental animal models; anti-inflammatory agents; airway obstruction
9.  Therapeutic Effects of Hyaluronan on Smoke-induced Elastic Fiber Injury: Does Delayed Treatment Affect Efficacy? 
Lung  2010;189(1):51-56.
Aerosolized hyaluronan (HA) has been previously shown to prevent cigarette smoke-induced airspace enlargement and elastic fiber injury in mice when given concurrently with smoke. In the present study, a more stringent test of the therapeutic potential of HA was performed by delaying treatment with this agent for 1 month. After treatment with cigarette smoke for 3 h per day for 5 days per week for 1 month, mice (DBA/2J) began receiving aerosolized HA (0.1%) for 1 h prior to smoke exposure (controls were given aerosolized water). The results indicate that much of the damage to the lung elastic fibers occurred within the first several months of smoke exposure, as measured by levels of desmosine and isodesmosine (DID) in bronchoalveolar lavage fluid (BALF). In contrast to previously published studies, where concurrent administration of aerosolized HA significantly reduced BALF DID levels within 3 months of smoke exposure, the same effect was not seen until 6 months when HA treatment was delayed. However, despite the prolonged breakdown of elastic fibers in the current study, a significant reduction in airspace enlargement was observed after only 2 months of HA treatment. These findings provide further support for testing this agent in patients with preexisting chronic obstructive pulmonary disease.
doi:10.1007/s00408-010-9271-2
PMCID: PMC3050539  PMID: 21153833
Hyaluronan; Lung; Desmosine; Cigarette Smoke; COPD
10.  Impaired Transcriptional Response of the Murine Heart To Cigarette Smoke in the Setting of High Fat Diet and Obesity 
Chemical research in toxicology  2013;26(7):1034-1042.
Smoking and obesity are each well-established risk factors for cardiovascular heart disease, which together impose earlier onset and greater severity of disease. To identify early signaling events in the response of the heart to cigarette smoke exposure within the setting of obesity, we exposed normal weight and high fat diet-induced obese (DIO) C57BL/6 mice to repeated inhaled doses of mainstream (MS) or sidestream (SS) cigarette smoke administered over a two week period, monitoring effects on both cardiac and pulmonary transcriptomes. MS smoke (250 µg wet total particulate matter (WTPM)/L, 5h/day) exposures elicited robust cellular and molecular inflammatory responses in the lung with 1466 differentially expressed pulmonary genes (p<0.01) in normal weight animals, and a muchattenuated response (463 genes) in the hearts of the same animals. In contrast, exposures to SS smoke (85 µg WTPM/L) with an equivalent CO concentration as that of MS smoke (~250 CO ppm), induced a weak pulmonary response (328 genes), but an extensive cardiac response (1590 genes). SS smoke, and to a lesser extent MS smoke preferentially elicited hypoxia- and stress-responsive genes as well as genes predicting early changes of vascular smooth muscle and endothelium, precursors of cardiovascular disease. The most sensitive smoke-induced cardiac transcriptional changes of normal weight mice were largely absent in DIO mice after smoke exposure, while genes involved in fatty acid utilization were unaffected. At the same time, smoke exposure suppressed multiple proteome maintenance genes induced in the hearts of DIO mice. Together these results underscore the sensitivity of the heart to SS smoke and reveal adaptive responses in healthy individuals that are absent in the setting of high fat diet and obesity.
doi:10.1021/tx400078b
PMCID: PMC4234196  PMID: 23786483
heart transcriptome; mainstream cigarette smoke; sidestream cigarette smoke; hypoxia; peroxisomal proliferator-activated receptor-α; high fat diet; obesity
11.  Role of the tachykinin NK1 receptor in a murine model of cigarette smoke-induced pulmonary inflammation 
Respiratory Research  2009;10(1):37.
Background
The tachykinins, substance P and neurokinin A, present in sensory nerves and inflammatory cells such as macrophages and dendritic cells, are considered as pro-inflammatory agents. Inflammation of the airways and lung parenchyma plays a major role in the pathogenesis of chronic obstructive pulmonary disease (COPD) and increased tachykinin levels are recovered from the airways of COPD patients. The aim of our study was to clarify the involvement of the tachykinin NK1 receptor, the preferential receptor for substance P, in cigarette smoke (CS)-induced pulmonary inflammation and emphysema in a mouse model of COPD.
Methods
Tachykinin NK1 receptor knockout (NK1-R-/-) mice and their wild type controls (all in a mixed 129/sv-C57BL/6 background) were subjected to sub acute (4 weeks) or chronic (24 weeks) exposure to air or CS. 24 hours after the last exposure, pulmonary inflammation and development of emphysema were evaluated.
Results
Sub acute and chronic exposure to CS resulted in a substantial accumulation of inflammatory cells in the airways of both WT and NK1-R-/- mice. However, the CS-induced increase in macrophages and dendritic cells was significantly impaired in NK1-R-/- mice, compared to WT controls, and correlated with an attenuated release of MIP-3α/CCL20 and TGF-β1. Chronic exposure to CS resulted in development of pulmonary emphysema in WT mice. NK1-R-/- mice showed already enlarged airspaces upon air-exposure. Upon CS-exposure, the NK1-R-/- mice did not develop additional destruction of the lung parenchyma. Moreover, an impaired production of MMP-12 by alveolar macrophages upon CS-exposure was observed in these KO mice. In a pharmacological validation experiment using the NK1 receptor antagonist RP 67580, we confirmed the protective effect of absence of the NK1 receptor on CS-induced pulmonary inflammation.
Conclusion
These data suggest that the tachykinin NK1 receptor is involved in the accumulation of macrophages and dendritic cells in the airways upon CS-exposure and in the development of smoking-induced emphysema. As both inflammation of the airways and parenchymal destruction are important characteristics of COPD, these findings may have implications in the future treatment of this devastating disease.
doi:10.1186/1465-9921-10-37
PMCID: PMC2689186  PMID: 19445658
12.  The Role of Matrix Metalloproteinase-9 in Cigarette Smoke–induced Emphysema 
Rationale: Matrix metalloprotease (MMP)-9 is an elastolytic endopeptidase produced by activated macrophages that may be involved in the development of human pulmonary emphysema and could be inhibited with existing compounds. Mouse models have demonstrated that excess MMP-9 production can result in permanent alveolar destruction.
Objectives: To determine if MMP-9 causes cigarette smoke–induced emphysema using MMP-9 knockout mice and human samples.
Methods: Mouse lungs were analyzed for inflammation and airspace enlargement using a mainstream smoke-exposure model. Human macrophage mRNA was isolated from subjects with emphysema by laser capture microdissection. Human blood monocyte mRNA was isolated from subjects with greater than 30 pack-year smoking history. Human gene expression was determined by quantitative polymerase chain reaction and compared with emphysema severity determined by automated computed tomography analysis. Plasma Clara cell secretory protein and surfactant protein-D were quantified to measure ongoing lung injury.
Measurements and Main Results: Mice deficient in MMP-9 develop the same degree of cigarette smoke–induced inflammation and airspace enlargement as strain-matched controls. Macrophages are the predominant source of MMP-9 production in human emphysema specimens and similar quantities of macrophage MMP-9 mRNA is present in areas of lung with and without emphysema. Circulating monocytes produce more MMP-9 in individuals with advanced emphysema severity despite no correlation of MMP-9 with markers of ongoing lung damage.
Conclusions: These results suggest that MMP-9 in humans who smoke is similar to smoke-exposed mice, where MMP-9 is present in emphysematous lung but not correlated with the emphysema. To the degree that the mechanisms of emphysema in humans who smoke resemble the mouse model, these data suggest specific inhibition of MMP-9 is unlikely to be an effective therapy for cigarette smoke–induced emphysema.
Clinical trial registered with www.clinicaltrials.gov (NCT 00757120).
doi:10.1164/rccm.201005-0718OC
PMCID: PMC3086754  PMID: 21057003
pulmonary disease, chronic obstructive; laser capture microdissection; mice, knockout
13.  Exposure to Environmental Tobacco Smoke Induces Angiogenesis and Leukocyte Trafficking in Lung Microvessels 
Experimental lung research  2009;35(2):119-135.
Exposure to environmental tobacco smoke (ETS) is known to contribute to and exacerbate inflammatory diseases of the lung such as chronic obstructive pulmonary disease (COPD) and asthma. The effect of ETS on angiogenesis and leukocyte recruitment, both of which promote lung inflammation, was investigated using lung tissue from mice exposed to aged and diluted sidestream cigarette smoke or fresh air for 12 weeks and transplanted into dorsal skin-fold chambers in nude mice. Lung tissue from mice exposed to cigarette smoke for 12 weeks exhibited significantly increased vascular density (angiogenesis) associated with selectin-mediated increased intravascular leukocyte rolling and adhesion compared to fresh air–exposed lung tissue by intravital microscopy. Further, neutrophils from nicotine-exposed mice displayed significantly increased rolling and adhesion compared to control neutrophils in microvessels of nicotine-exposed lungs versus control lung microvessels, suggesting that nicotine in cigarette smoke can augment leukocyte-endothelial interactions. ETS-induced angiogenesis and leukocyte trafficking may play a key role in airway recruitment of inflammatory cells in ETS-associated disorders such as COPD bronchitis or asthma.
doi:10.1080/01902140802449729
PMCID: PMC3755616  PMID: 19263281
environmental tobacco smoke; leukocyte trafficking; lung angiogenesis; nicotine
14.  Impact of inflammation, emphysema, and smoking cessation on V/Q in mouse models of lung obstruction 
Respiratory Research  2014;15(1):42.
Background
Chronic obstructive pulmonary disease (COPD) is known to greatly affect ventilation (V) and perfusion (Q) of the lung through pathologies such as inflammation and emphysema. However, there is little direct evidence regarding how these pathologies contribute to the V/Q mismatch observed in COPD and models thereof. Also, little is known regarding how smoking cessation affects V/Q relationships after inflammation and airspace enlargement have become established. To this end, we have quantified V/Q on a per-voxel basis using single photon emission computed tomography (SPECT) in mouse models of COPD and lung obstruction.
Methods
Three distinct murine models were used to investigate the impact of different pathologies on V/Q, as measured by SPECT. Lipopolysaccharide (LPS) was used to produce neutrophilic inflammation, porcine pancreatic elastase (PPE) was used to produce emphysema, and long-term cigarette smoke (CS) exposure and cessation were used to investigate the combination of these pathologies.
Results
CS exposure resulted in an increase in mononuclear cells and neutrophils, an increase in airspace enlargement, and an increase in V/Q mismatching. The inflammation produced by LPS was more robust and predominantly neutrophilic, compared to that of cigarette smoke; nevertheless, inflammation alone caused V/Q mismatching similar to that seen with long-term CS exposure. The emphysematous lesions caused by PPE administration were also capable of causing V/Q mismatch in the absence of inflammation. Following CS cessation, inflammatory cell levels returned to those of controls and, similarly, V/Q measures returned to normal despite evidence of persistent mild airspace enlargement.
Conclusions
Both robust inflammation and extensive airspace enlargement, on their own, were capable of producing V/Q mismatch. As CS cessation resulted in a return of V/Q mismatching and inflammatory cell counts to control levels, lung inflammation is likely a major contributor to V/Q mismatch observed in the cigarette smoke exposure model as well as in COPD patients. This return of V/Q mismatching to control values also took place in the presence of mild airspace enlargement, indicating that emphysematous lesions must be of a larger volume before affecting the lung significantly. Early smoking cessation is therefore critical before emphysema has an irreversible impact on gas exchange.
doi:10.1186/1465-9921-15-42
PMCID: PMC4021179  PMID: 24730756
Chronic obstructive pulmonary disease; Gas exchange; Lung function; Perfusion; Single photon emission computed tomography; Ventilation
15.  RAGE and tobacco smoke: insights into modeling chronic obstructive pulmonary disease 
Chronic obstructive pulmonary disease (COPD) is a progressive condition characterized by chronic airway inflammation and airspace remodeling, leading to airflow limitation that is not completely reversible. Smoking is the leading risk factor for compromised lung function stemming from COPD pathogenesis. First- and second-hand cigarette smoke contain thousands of constituents, including several carcinogens and cytotoxic chemicals that orchestrate chronic lung inflammation and destructive alveolar remodeling. Receptors for advanced glycation end-products (RAGE) are multi-ligand cell surface receptors primarily expressed by diverse lung cells. RAGE expression increases following cigarette smoke exposure and expression is elevated in the lungs of patients with COPD. RAGE is responsible in part for inducing pro-inflammatory signaling pathways that culminate in expression and secretion of several cytokines, chemokines, enzymes, and other mediators. In the current review, new transgenic mouse models that conditionally over-express RAGE in pulmonary epithelium are discussed. When RAGE is over-expressed throughout embryogenesis, apoptosis in the peripheral lung causes severe lung hypoplasia. Interestingly, apoptosis in RAGE transgenic mice occurs via conserved apoptotic pathways also known to function in advanced stages of COPD. RAGE over-expression in the adult lung models features of COPD including pronounced inflammation and loss of parenchymal tissue. Understanding the biological contributions of RAGE during cigarette smoke-induced inflammation may provide critically important insight into the pathology of COPD.
doi:10.3389/fphys.2012.00301
PMCID: PMC3429072  PMID: 22934052
RAGE; COPD; tobacco; mouse model
16.  Pulmonary Epithelial Neuropilin-1 Deletion Enhances Development of Cigarette Smoke–induced Emphysema 
Rationale: Cigarette smoke (CS) exposure is an important risk factor for chronic obstructive pulmonary disease; however, not all smokers develop disease, suggesting that other factors influence disease development.
Objectives: We sought to determine whether neuropilin-1 (Nrp1), an integral component of receptor complexes mediating alveolar septation and vascular development, was involved in maintenance of normal alveolar structure, and/or altered susceptibility to the effects of CS.
Methods: Transgenic mice were generated to achieve inducible lung-specific deletion of epithelial Nrp1. We determined whether conditional Nrp1 deletion altered airspace size, then compared the effects of chronic CS or filtered air exposure on airspace size, inflammation, and the balance between cell death and proliferation in conditionally Nrp1–deficient adult mice and littermate controls. Finally, we evaluated the effects of Nrp1 silencing on cell death after acute exposure of A549 cells to cigarette smoke extract or short chain ceramides.
Measurements and Main Results: Genetic deletion of epithelial Nrp1 in either postnatal or adult lungs resulted in a small increase in airspace size. More notably, both airspace enlargement and apoptosis of type I and type II alveolar epithelial cells were significantly enhanced following chronic CS exposure in conditionally Nrp1-deficient adult mice. Silencing of Nrp1 in A549 cells did not alter cell survival after vehicle treatment but significantly augmented apoptosis after exposure to cigarette smoke extract or ceramide.
Conclusions: These data support a role for epithelial Nrp1 in the maintenance of normal alveolar structure and suggest that dysregulation of Nrp1 expression may promote epithelial cell death in response to CS exposure, thereby enhancing emphysema development.
doi:10.1164/rccm.200809-1483OC
PMCID: PMC2742758  PMID: 19520907
chronic obstructive pulmonary disease; genetically modified mice; apoptosis
17.  Distinguishing adult-onset asthma from COPD: a review and a new approach 
Adult-onset asthma and chronic obstructive pulmonary disease (COPD) are major public health burdens. This review presents a comprehensive synopsis of their epidemiology, pathophysiology, and clinical presentations; describes how they can be distinguished; and considers both established and proposed new approaches to their management. Both adult-onset asthma and COPD are complex diseases arising from gene–environment interactions. Early life exposures such as childhood infections, smoke, obesity, and allergy influence adult-onset asthma. While the established environmental risk factors for COPD are adult tobacco and biomass smoke, there is emerging evidence that some childhood exposures such as maternal smoking and infections may cause COPD. Asthma has been characterized predominantly by Type 2 helper T cell (Th2) cytokine-mediated eosinophilic airway inflammation associated with airway hyperresponsiveness. In established COPD, the inflammatory cell infiltrate in small airways comprises predominantly neutrophils and cytotoxic T cells (CD8 positive lymphocytes). Parenchymal destruction (emphysema) in COPD is associated with loss of lung tissue elasticity, and small airways collapse during exhalation. The precise definition of chronic airflow limitation is affected by age; a fixed cut-off of forced expiratory volume in 1 second/forced vital capacity leads to overdiagnosis of COPD in the elderly. Traditional approaches to distinguishing between asthma and COPD have highlighted age of onset, variability of symptoms, reversibility of airflow limitation, and atopy. Each of these is associated with error due to overlap and convergence of clinical characteristics. The management of chronic stable asthma and COPD is similarly convergent. New approaches to the management of obstructive airway diseases in adults have been proposed based on inflammometry and also multidimensional assessment, which focuses on the four domains of the airways, comorbidity, self-management, and risk factors. Short-acting beta-agonists provide effective symptom relief in airway diseases. Inhalers combining a long-acting beta-agonist and corticosteroid are now widely used for both asthma and COPD. Written action plans are a cornerstone of asthma management although evidence for self-management in COPD is less compelling. The current management of chronic asthma in adults is based on achieving and maintaining control through step-up and step-down approaches, but further trials of back-titration in COPD are required before a similar approach can be endorsed. Long-acting inhaled anticholinergic medications are particularly useful in COPD. Other distinctive features of management include pulmonary rehabilitation, home oxygen, and end of life care.
doi:10.2147/COPD.S46761
PMCID: PMC4166213  PMID: 25246782
chronic obstructive pulmonary disease; diagnosis; management; adults; inflammometry
18.  A Novel Anti-Inflammatory and Pro-Resolving Role for Resolvin D1 in Acute Cigarette Smoke-Induced Lung Inflammation 
PLoS ONE  2013;8(3):e58258.
Introduction
Cigarette smoke is a profound pro-inflammatory stimulus that contributes to acute lung injuries and to chronic lung disease including COPD (emphysema and chronic bronchitis). Until recently, it was assumed that resolution of inflammation was a passive process that occurred once the inflammatory stimulus was removed. It is now recognized that resolution of inflammation is a bioactive process, mediated by specialized lipid mediators, and that normal homeostasis is maintained by a balance between pro-inflammatory and pro-resolving pathways. These novel small lipid mediators, including the resolvins, protectins and maresins, are bioactive products mainly derived from dietary omega-3 and omega-6 polyunsaturated fatty acids (PUFA). We hypothesize that resolvin D1 (RvD1) has potent anti-inflammatory and pro-resolving effects in a model of cigarette smoke-induced lung inflammation.
Methods
Primary human lung fibroblasts, small airway epithelial cells and blood monocytes were treated with IL-1β or cigarette smoke extract in combination with RvD1 in vitro, production of pro-inflammatory mediators was measured. Mice were exposed to dilute mainstream cigarette smoke and treated with RvD1 either concurrently with smoke or after smoking cessation. The effects on lung inflammation and lung macrophage populations were assessed.
Results
RvD1 suppressed production of pro-inflammatory mediators by primary human cells in a dose-dependent manner. Treatment of mice with RvD1 concurrently with cigarette smoke exposure significantly reduced neutrophilic lung inflammation and production of pro-inflammatory cytokines, while upregulating the anti-inflammatory cytokine IL-10. RvD1 promoted differentiation of alternatively activated (M2) macrophages and neutrophil efferocytosis. RvD1 also accelerated the resolution of lung inflammation when given after the final smoke exposure.
Conclusions
RvD1 has potent anti-inflammatory and pro-resolving effects in cells and mice exposed to cigarette smoke. Resolvins have strong potential as a novel therapeutic approach to resolve lung injury caused by smoke and pulmonary toxicants.
doi:10.1371/journal.pone.0058258
PMCID: PMC3590122  PMID: 23484005
19.  Role of IL-18 in Second-Hand Smoke–Induced Emphysema 
Chronic second-hand smoke (SHS) exposure comprises the main risk factor for nonsmokers to develop chronic obstructive pulmonary disease (COPD). However, the mechanisms behind the chronic inflammation and lung destruction remain incompletely understood. In this study, we show that chronic exposure of Sprague-Dawley rats to SHS results in a significant increase of proinflammatory cytokine IL-18 and chemokine (C-C motif) ligand 5 in the bronchoalveolar lavage fluid (BALF) and a significant decrease of vascular endothelial growth factor (VEGF) in the lung tissue. SHS exposure resulted in progressive alveolar airspace enlargement, cell death, pulmonary vessel loss, vessel muscularization, collagen deposition, and right ventricular hypertrophy. Alveolar macrophages displayed a foamy phenotype and a decreased expression of the natural inhibitor of IL-18, namely, IL-18 binding protein (IL-18BP). Moreover, IL-18 down-regulated the expression of VEGF receptor–1 and VEGFR receptor–2, and induced apoptosis in pulmonary microvascular endothelial cells in vitro. We also observed a trend toward increased concentrations of IL-18 in the BALF of patients with COPD. Our findings suggest that IL-18–mediated endothelial cell death may contribute to vascular destruction and disappearance in SHS-induced COPD. Moreover, IL-18 and IL-18BP are potential new targets for therapeutics.
doi:10.1165/rcmb.2012-0173OC
PMCID: PMC3727875  PMID: 23392573
second-hand cigarette smoke; emphysema; inflammation; macrophages; vasculature
20.  Tumor necrosis factor-α serum levels in healthy smokers and nonsmokers 
Background:
Tobacco smoking is the most important risk factor for chronic obstructive pulmonary disease (COPD) development. Inhaled cigarette smoke can induce tumor necrosis factor-α (TNF-α) production by alveolar macrophages, which in turn may enhance the production of metalloproteinases (MMPs). MMPs have been involved in mediating airway inflammation and lung destruction.
Objectives:
We aimed to measure the TNF-α serum levels in healthy heavy smokers and healthy nonsmokers to determine the dose-response relationship based on the cigarette smoke exposure.
Subjects and methods:
We included in our study 43 healthy heavy smokers and 19 healthy nonsmokers (the control group). The smokers group was classified as less than one pack, one pack, and more than one pack per day. A clinical and paraclinical evaluation was performed in both groups, without any evidence of infection or COPD. The serum levels of TNF-α were assessed by ELISA.
Results:
The TNF-α serum levels were significantly higher for the group of smokers compared to the group of nonsmokers (P < 0.004). We also noticed an increased TNF-α concentration in the serum of smokers with more than one pack per day compared with those with less than one pack per day (P < 0.03). There was a positive correlation between the serum level of TNF-α and tobacco smoke exposure.
Conclusions:
The high levels of TNF-α in the serum of smokers suggest an imbalance between the proinflammatory and anti-inflammatory factors as a result of tobacco smoke exposure. The concentration of TNF-α is elevated in the serum of healthy heavy smokers in a cigarette dose-dependent manner. We speculate that the serum level of TNF-α might be a useful biomarker for the selection of heavy smokers with a high risk of developing smoke induced pulmonary diseases.
PMCID: PMC2921689  PMID: 20714375
tobacco smoking; inflammation; chronic obstructive pulmonary disease; metalloproteinases
21.  Pneumocystis murina Infection and Cigarette Smoke Exposure Interact To Cause Increased Organism Burden, Development of Airspace Enlargement, and Pulmonary Inflammation in Mice▿  
Infection and Immunity  2008;76(8):3481-3490.
Chronic obstructive pulmonary disease (COPD) is characterized by the presence of airflow obstruction and lung destruction with airspace enlargement. In addition to cigarette smoking, respiratory pathogens play a role in pathogenesis, but specific organisms are not always identified. Recent reports demonstrate associations between the detection of Pneumocystis jirovecii DNA in lung specimens or respiratory secretions and the presence of emphysema in COPD patients. Additionally, human immunodeficiency virus-infected individuals who smoke cigarettes develop early emphysema, but a role for P. jirovecii in pathogenesis remains speculative. We developed a new experimental model using immunocompetent mice to test the interaction of cigarette smoke exposure and environmentally acquired Pneumocystis murina infection in vivo. We hypothesized that cigarette smoke and P. murina would interact to cause increases in total lung capacity, airspace enlargement, and pulmonary inflammation. We found that exposure to cigarette smoke significantly increases the lung organism burden of P. murina. Pulmonary infection with P. murina, combined with cigarette smoke exposure, results in changes in pulmonary function and airspace enlargement characteristic of pulmonary emphysema. P. murina and cigarette smoke exposure interact to cause increased lung inflammatory cell accumulation. These findings establish a novel animal model system to explore the role of Pneumocystis species in the pathogenesis of COPD.
doi:10.1128/IAI.00165-08
PMCID: PMC2493196  PMID: 18490462
22.  “Efforts to Reprioritise the Agenda” in China: British American Tobacco's Efforts to Influence Public Policy on Secondhand Smoke in China 
PLoS Medicine  2008;5(12):e251.
Background
Each year, 540 million Chinese are exposed to secondhand smoke (SHS), resulting in more than 100,000 deaths. Smoke-free policies have been demonstrated to decrease overall cigarette consumption, encourage smokers to quit, and protect the health of nonsmokers. However, restrictions on smoking in China remain limited and ineffective. Internal tobacco industry documents show that transnational tobacco companies (TTCs) have pursued a multifaceted strategy for undermining the adoption of restrictions on smoking in many countries.
Methods and Findings
To understand company activities in China related to SHS, we analyzed British American Tobacco's (BAT's) internal corporate documents produced in response to litigation against the major cigarette manufacturers to understand company activities in China related to SHS. BAT has carried out an extensive strategy to undermine the health policy agenda on SHS in China by attempting to divert public attention from SHS issues towards liver disease prevention, pushing the so-called “resocialisation of smoking” accommodation principles, and providing “training” for industry, public officials, and the media based on BAT's corporate agenda that SHS is an insignificant contributor to the larger issue of air pollution.
Conclusions
The public health community in China should be aware of the tactics previously used by TTCs, including efforts by the tobacco industry to co-opt prominent Chinese benevolent organizations, when seeking to enact stronger restrictions on smoking in public places.
Monique Muggli and colleagues study British American Tobacco (BAT) internal documents and find that from the mid 1990s BAT pursued a strategy aimed at influencing the public debate on secondhand smoke in China.
Editors' Summary
Background.
Each year, about one million people die in China from tobacco-caused diseases, including cancer, heart disease, and lung disease. Although most of these deaths occur among smokers—300 million people smoke in China, accounting for one-third of the global “consumption” of cigarettes—more than 100,000 deaths from tobacco-related causes occur annually among the 540 million Chinese people who are exposed to secondhand smoke. Tobacco smoke contains 4,000 known chemicals, 69 of which are known or probable carcinogens, and, when it is produced in enclosed spaces, both smokers and nonsmokers are exposed to its harmful effects. The only effective way to reduce tobacco smoke exposure indoors to acceptable levels is to implement 100% smoke-free environments—ventilation, filtration, and the provision of segregated areas for smokers and nonsmokers are insufficient. Importantly, as well as protecting nonsmokers from secondhand smoke, the implementation of smoke-free public places also reduces the number of cigarettes smoked among continuing smokers, increases the likelihood of smokers quitting, and reduces the chances of young people taking up smoking.
Why Was This Study Done?
Article 8 of the World Health Organization's Framework Convention on Tobacco Control (FCTC; an international public-health treaty that seeks to reduce tobacco-caused death and disease) calls on countries party to the treaty to protect their citizens from secondhand smoke exposure. China became a party to the FCTC in 2005 but restrictions on smoking in public places in China remain limited and ineffective. Previous analyses of internal tobacco industry documents have revealed that transnational tobacco companies (TTCs) have used a multifaceted approach to undermine the adoption of restrictions on smoking in many countries. TTCs have been shown to influence media coverage of secondhand smoke issues and to promote ineffective ventilation and separate smoking and nonsmoking areas in restaurants, bars, and hotels (so-called “resocalization of smoking” accommodation principles) with the aim of undermining smoke-free legislation. In addition, TTCs have created organizations interested in non-tobacco-related diseases to draw attention away from the public-health implications of secondhand smoke. In this study, the researchers ask whether TTCs have used a similar approach to undermine the adoption of restrictions on smoking in China, one of the most coveted cigarette markets in the world by the major TTCs.
What Did the Researchers Do and Find?
The researchers analyzed internal corporate documents produced by British American Tobacco (BAT; the predominant TTC in China) in response to litigation against major cigarette manufacturers stored in document depositories in Minnesota, USA and Guildford, UK. Among these documents, they found evidence that BAT had attempted to divert attention from secondhand smoke issues toward liver disease prevention by funding the Beijing Liver Foundation (BFL) from its inception in 1997 until at least 2002 (the most recent year that BAT's corporate records are available for public review). The researchers also found evidence that BAT had promoted “resocialization of smoking” accommodation principles as a “route to avoid smoking bans” and pushed ventilation and air filtration in airports and in establishments serving food and drink. Finally, the researchers found evidence that BAT had sought to “present the message that ‘tobacco smoke is just one of the sources of air polution [sic] and a very insignificant one compared with other pollutants'” through presentations given to the Chinese tobacco industry and media seminars aimed at Chinese journalists.
What Do These Findings Mean?
These findings indicate that, beginning in the mid 1990s and continuing until at least 2002, BAT has followed an intensive, multi-pronged strategy designed to undermine the health policy agenda on secondhand smoke in China. Given their findings, the researchers suggest that BFL and other charitable organizations in China must be wary of accepting tobacco money and that measures must be taken to improve the transparency and accountability of these and other public organizations. To meet FCTC obligations under Article 5.3 (industry interference), policy makers in China, they suggest, must be made aware of how BAT and other TTCs have repeatedly sought to influence health policy in China by focusing attention toward the adoption of ineffective air filtration and ventilation systems in hospitality venues rather than the implementation of 100% smoke-free environments. Finally, Chinese policy makers and the media need to be better informed about BAT's long-standing attempts to communicate misleading messages to them about the health effects of secondhand smoke.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0050251.
The World Health Organization's Regional Office for the Western Pacific provides smoking statistics for China and other countries in the region
The World Health Organization provides information on the health problems associated with secondhand smoke, about its Tobacco Free Initiative (available in several languages), and about the Framework Convention on Tobacco Control (also available in several languages)
MedlinePlus provides links to information about the dangers of secondhand smoke (available in English and Spanish)
The UK National Health Service Smokefree Web site provides information about the advantages of giving up smoking, how to give up smoking, and the dangers associated with secondhand smoke
British American Tobacco documents stored in the Minnesota and Guildford Depositories, including those analyzed in this study, can be searched through the British American Tobacco Documents Archive
doi:10.1371/journal.pmed.0050251
PMCID: PMC2605899  PMID: 19108603
23.  Neutral Sphingomyelinase 2 
Chronic obstructive pulmonary disease (COPD) is caused by exposure to cigarette smoke (CS). One mechanism of CS-induced lung injury is aberrant generation of ceramide, which leads to elevated apoptosis of epithelial and endothelial cells in the alveolar spaces. Recently, we discovered that CS-induced ceramide generation and apoptosis in pulmonary cells is governed by neutral sphingomyelinase (nSMase) 2. In the current experiments, we expanded our studies to investigate whether nSMase2 governs ceramide generation and apoptosis in vivo using rodent and human models of CS-induced lung injury. We found that exposure of mice or rats to CS leads to colocalizing elevations of ceramide levels and terminal deoxynucleotidyl transferase mediated X-dUTP nick end labeling–positive cells in lung tissues. These increases are nSMase2 dependent, and are abrogated by treatment with N-acetyl cysteine or anti-nSMase2 small interfering RNA (siRNA). We further showed that mice that are heterozygous for nSMase2 demonstrate significant decrease in ceramide generation after CS exposure, whereas acidic sphingomyelinase (aSMase) knockout mice maintain wild-type ceramide levels, confirming our previous findings (in human airway epithelial cells) that only nSMase2, and not aSMase, is activated by CS exposure. Lastly, we found that lung tissues from patients with emphysema (smokers) display significantly higher levels of nSMase2 expression compared with lung tissues from healthy control subjects. Taken together, these data establish the central in vivo role of nSMase2 in ceramide generation, aberrant apoptosis, and lung injury under CS exposure, underscoring its promise as a novel target for the prevention of CS-induced airspace destruction.
doi:10.1165/rcmb.2009-0422OC
PMCID: PMC3095936  PMID: 20448054
neutral sphingomyelinase2; ceramide; apoptosis; chronic obstructive pulmonary disease; mouse model
24.  Philip Morris toxicological experiments with fresh sidestream smoke: more toxic than mainstream smoke 
Tobacco Control  2005;14(6):396-404.
Background: Exposure to secondhand smoke causes lung cancer; however, there are little data in the open literature on the in vivo toxicology of fresh sidestream cigarette smoke to guide the debate about smoke-free workplaces and public places.
Objective: To investigate the unpublished in vivo research on sidestream cigarette smoke done by Philip Morris Tobacco Company during the 1980s at its Institut für Biologische Forschung (INBIFO).
Methods: Analysis of internal tobacco industry documents now available at the University of California San Francisco Legacy Tobacco Documents Library and other websites.
Results: Inhaled fresh sidestream cigarette smoke is approximately four times more toxic per gram total particulate matter (TPM) than mainstream cigarette smoke. Sidestream condensate is approximately three times more toxic per gram and two to six times more tumourigenic per gram than mainstream condensate by dermal application. The gas/vapour phase of sidestream smoke is responsible for most of the sensory irritation and respiratory tract epithelium damage. Fresh sidestream smoke inhibits normal weight gain in developing animals. In a 21day exposure, fresh sidestream smoke can cause damage to the respiratory epithelium at concentrations of 2 µg/l TPM. Damage to the respiratory epithelium increases with longer exposures. The toxicity of whole sidestream smoke is higher than the sum of the toxicities of its major constituents.
Conclusion: Fresh sidestream smoke at concentrations commonly encountered indoors is well above a 2 µg/m3 reference concentration (the level at which acute effects are unlikely to occur), calculated from the results of the INBIFO studies, that defines acute toxicity to humans. Smoke-free public places and workplaces are the only practical way to protect the public health from the toxins in sidestream smoke.
doi:10.1136/tc.2005.011288
PMCID: PMC1748121  PMID: 16319363
25.  p38 mitogen-activated protein kinase determines the susceptibility to cigarette smoke-induced emphysema in mice 
Background
There is a need for agents that suppress inflammation and progression of chronic obstructive pulmonary disease. p38 mitogen-activated protein kinase (p38 MAPK) has been associated with this disorder, and several inhibitors of this cascade are in clinical trials for its treatment, but their efficacy and utility are unknown. This study evaluated the relationship between p38 MAPK activation and susceptibility to cigarette smoke (CS)-induced emphysema, and whether its inhibition ameliorated the lung inflammation and injury in murine models of cigarette smoke exposure.
Methods
In acute and chronic CS exposure, the activation and expression of p38 MAPK in the lungs, as well as lung inflammation and injury (proteinase production, apoptosis, and oxidative DNA damage), were compared between two mouse strains: C57BL/6 (emphysema-susceptible) and NZW (emphysema-resistant). The selective p38 MAPK inhibitor SB203580 (45 mg/kg) was administrated intra-peritoneally to C57BL/6 mice, to examine whether it ameliorated cigarette smoke-induced lung inflammation and injury.
Results
Acute CS-induced lung inflammation (neutrophil infiltration, mRNA expressions of TNF-α and MIP-2), proteinase expression (MMP-12 mRNA), apoptosis, and oxidative DNA damage were significantly lower in NZW than C57BL/6 mice. p38 MAPK was significantly activated and up-regulated by both acute and chronic CS exposure in C57BL/6 but not NZW mice. mRNA expression of p38 MAPK was also upregulated in C57BL/6 by chronic CS exposure and tended to be constitutively suppressed in NZW mice. SB203580 significantly attenuated lung inflammation (neutrophil infiltration, mRNA expressions of TNF-α and MIP-2, protein levels of KC, MIP-1α, IL-1β, and IL-6), proteinase expression (MMP-12 mRNA), oxidative DNA damage, and apoptosis caused by acute CS exposure.
Conclusions
Cigarette smoke activated p38 MAPK only in mice that were susceptible to cigarette smoke-induced emphysema. Its selective inhibition ameliorated lung inflammation and injury in a murine model of cigarette smoke exposure. p38 MAPK pathways are a possible molecular target for the treatment of chronic obstructive pulmonary disease.
doi:10.1186/1471-2466-14-79
PMCID: PMC4024315  PMID: 24885161
Chronic obstructive pulmonary disease; Animal model; Disease susceptibility; Signal transduction; Molecular targeted therapy

Results 1-25 (1217318)