Search tips
Search criteria

Results 1-25 (848625)

Clipboard (0)

Related Articles

1.  Accuracy of CNV Detection from GWAS Data 
PLoS ONE  2011;6(1):e14511.
Several computer programs are available for detecting copy number variants (CNVs) using genome-wide SNP arrays. We evaluated the performance of four CNV detection software suites—Birdsuite, Partek, HelixTree, and PennCNV-Affy—in the identification of both rare and common CNVs. Each program's performance was assessed in two ways. The first was its recovery rate, i.e., its ability to call 893 CNVs previously identified in eight HapMap samples by paired-end sequencing of whole-genome fosmid clones, and 51,440 CNVs identified by array Comparative Genome Hybridization (aCGH) followed by validation procedures, in 90 HapMap CEU samples. The second evaluation was program performance calling rare and common CNVs in the Bipolar Genome Study (BiGS) data set (1001 bipolar cases and 1033 controls, all of European ancestry) as measured by the Affymetrix SNP 6.0 array. Accuracy in calling rare CNVs was assessed by positive predictive value, based on the proportion of rare CNVs validated by quantitative real-time PCR (qPCR), while accuracy in calling common CNVs was assessed by false positive/false negative rates based on qPCR validation results from a subset of common CNVs. Birdsuite recovered the highest percentages of known HapMap CNVs containing >20 markers in two reference CNV datasets. The recovery rate increased with decreased CNV frequency. In the tested rare CNV data, Birdsuite and Partek had higher positive predictive values than the other software suites. In a test of three common CNVs in the BiGS dataset, Birdsuite's call was 98.8% consistent with qPCR quantification in one CNV region, but the other two regions showed an unacceptable degree of accuracy. We found relatively poor consistency between the two “gold standards,” the sequence data of Kidd et al., and aCGH data of Conrad et al. Algorithms for calling CNVs especially common ones need substantial improvement, and a “gold standard” for detection of CNVs remains to be established.
PMCID: PMC3020939  PMID: 21249187
2.  Software comparison for evaluating genomic copy number variation for Affymetrix 6.0 SNP array platform 
BMC Bioinformatics  2011;12:220.
Copy number data are routinely being extracted from genome-wide association study chips using a variety of software. We empirically evaluated and compared four freely-available software packages designed for Affymetrix SNP chips to estimate copy number: Affymetrix Power Tools (APT), Aroma.Affymetrix, PennCNV and CRLMM. Our evaluation used 1,418 GENOA samples that were genotyped on the Affymetrix Genome-Wide Human SNP Array 6.0. We compared bias and variance in the locus-level copy number data, the concordance amongst regions of copy number gains/deletions and the false-positive rate amongst deleted segments.
APT had median locus-level copy numbers closest to a value of two, whereas PennCNV and Aroma.Affymetrix had the smallest variability associated with the median copy number. Of those evaluated, only PennCNV provides copy number specific quality-control metrics and identified 136 poor CNV samples. Regions of copy number variation (CNV) were detected using the hidden Markov models provided within PennCNV and CRLMM/VanillaIce. PennCNV detected more CNVs than CRLMM/VanillaIce; the median number of CNVs detected per sample was 39 and 30, respectively. PennCNV detected most of the regions that CRLMM/VanillaIce did as well as additional CNV regions. The median concordance between PennCNV and CRLMM/VanillaIce was 47.9% for duplications and 51.5% for deletions. The estimated false-positive rate associated with deletions was similar for PennCNV and CRLMM/VanillaIce.
If the objective is to perform statistical tests on the locus-level copy number data, our empirical results suggest that PennCNV or Aroma.Affymetrix is optimal. If the objective is to perform statistical tests on the summarized segmented data then PennCNV would be preferred over CRLMM/VanillaIce. Specifically, PennCNV allows the analyst to estimate locus-level copy number, perform segmentation and evaluate CNV-specific quality-control metrics within a single software package. PennCNV has relatively small bias, small variability and detects more regions while maintaining a similar estimated false-positive rate as CRLMM/VanillaIce. More generally, we advocate that software developers need to provide guidance with respect to evaluating and choosing optimal settings in order to obtain optimal results for an individual dataset. Until such guidance exists, we recommend trying multiple algorithms, evaluating concordance/discordance and subsequently consider the union of regions for downstream association tests.
PMCID: PMC3146450  PMID: 21627824
3.  Genome-Wide Mapping of Copy Number Variation in Humans: Comparative Analysis of High Resolution Array Platforms 
PLoS ONE  2011;6(11):e27859.
Accurate and efficient genome-wide detection of copy number variants (CNVs) is essential for understanding human genomic variation, genome-wide CNV association type studies, cytogenetics research and diagnostics, and independent validation of CNVs identified from sequencing based technologies. Numerous, array-based platforms for CNV detection exist utilizing array Comparative Genome Hybridization (aCGH), Single Nucleotide Polymorphism (SNP) genotyping or both. We have quantitatively assessed the abilities of twelve leading genome-wide CNV detection platforms to accurately detect Gold Standard sets of CNVs in the genome of HapMap CEU sample NA12878, and found significant differences in performance. The technologies analyzed were the NimbleGen 4.2 M, 2.1 M and 3×720 K Whole Genome and CNV focused arrays, the Agilent 1×1 M CGH and High Resolution and 2×400 K CNV and SNP+CGH arrays, the Illumina Human Omni1Quad array and the Affymetrix SNP 6.0 array. The Gold Standards used were a 1000 Genomes Project sequencing-based set of 3997 validated CNVs and an ultra high-resolution aCGH-based set of 756 validated CNVs. We found that sensitivity, total number, size range and breakpoint resolution of CNV calls were highest for CNV focused arrays. Our results are important for cost effective CNV detection and validation for both basic and clinical applications.
PMCID: PMC3227574  PMID: 22140474
4.  HaplotypeCN: Copy Number Haplotype Inference with Hidden Markov Model and Localized Haplotype Clustering 
PLoS ONE  2014;9(5):e96841.
Copy number variation (CNV) has been reported to be associated with disease and various cancers. Hence, identifying the accurate position and the type of CNV is currently a critical issue. There are many tools targeting on detecting CNV regions, constructing haplotype phases on CNV regions, or estimating the numerical copy numbers. However, none of them can do all of the three tasks at the same time. This paper presents a method based on Hidden Markov Model to detect parent specific copy number change on both chromosomes with signals from SNP arrays. A haplotype tree is constructed with dynamic branch merging to model the transition of the copy number status of the two alleles assessed at each SNP locus. The emission models are constructed for the genotypes formed with the two haplotypes. The proposed method can provide the segmentation points of the CNV regions as well as the haplotype phasing for the allelic status on each chromosome. The estimated copy numbers are provided as fractional numbers, which can accommodate the somatic mutation in cancer specimens that usually consist of heterogeneous cell populations. The algorithm is evaluated on simulated data and the previously published regions of CNV of the 270 HapMap individuals. The results were compared with five popular methods: PennCNV, genoCN, COKGEN, QuantiSNP and cnvHap. The application on oral cancer samples demonstrates how the proposed method can facilitate clinical association studies. The proposed algorithm exhibits comparable sensitivity of the CNV regions to the best algorithm in our genome-wide study and demonstrates the highest detection rate in SNP dense regions. In addition, we provide better haplotype phasing accuracy than similar approaches. The clinical association carried out with our fractional estimate of copy numbers in the cancer samples provides better detection power than that with integer copy number states.
PMCID: PMC4029584  PMID: 24849202
5.  cn.MOPS: mixture of Poissons for discovering copy number variations in next-generation sequencing data with a low false discovery rate 
Nucleic Acids Research  2012;40(9):e69.
Quantitative analyses of next-generation sequencing (NGS) data, such as the detection of copy number variations (CNVs), remain challenging. Current methods detect CNVs as changes in the depth of coverage along chromosomes. Technological or genomic variations in the depth of coverage thus lead to a high false discovery rate (FDR), even upon correction for GC content. In the context of association studies between CNVs and disease, a high FDR means many false CNVs, thereby decreasing the discovery power of the study after correction for multiple testing. We propose ‘Copy Number estimation by a Mixture Of PoissonS’ (cn.MOPS), a data processing pipeline for CNV detection in NGS data. In contrast to previous approaches, cn.MOPS incorporates modeling of depths of coverage across samples at each genomic position. Therefore, cn.MOPS is not affected by read count variations along chromosomes. Using a Bayesian approach, cn.MOPS decomposes variations in the depth of coverage across samples into integer copy numbers and noise by means of its mixture components and Poisson distributions, respectively. The noise estimate allows for reducing the FDR by filtering out detections having high noise that are likely to be false detections. We compared cn.MOPS with the five most popular methods for CNV detection in NGS data using four benchmark datasets: (i) simulated data, (ii) NGS data from a male HapMap individual with implanted CNVs from the X chromosome, (iii) data from HapMap individuals with known CNVs, (iv) high coverage data from the 1000 Genomes Project. cn.MOPS outperformed its five competitors in terms of precision (1–FDR) and recall for both gains and losses in all benchmark data sets. The software cn.MOPS is publicly available as an R package at and at Bioconductor.
PMCID: PMC3351174  PMID: 22302147
6.  Copy Number Variation in Thai Population 
PLoS ONE  2014;9(8):e104355.
Copy number variation (CNV) is a major genetic polymorphism contributing to genetic diversity and human evolution. Clinical application of CNVs for diagnostic purposes largely depends on sufficient population CNV data for accurate interpretation. CNVs from general population in currently available databases help classify CNVs of uncertain clinical significance, and benign CNVs. Earlier studies of CNV distribution in several populations worldwide showed that a significant fraction of CNVs are population specific. In this study, we characterized and analyzed CNVs in 3,017 unrelated Thai individuals genotyped with the Illumina Human610, Illumina HumanOmniexpress, or Illumina HapMap550v3 platform. We employed hidden Markov model and circular binary segmentation methods to identify CNVs, extracted 23,458 CNVs consistently identified by both algorithms, and cataloged these high confident CNVs into our publicly available Thai CNV database. Analysis of CNVs in the Thai population identified a median of eight autosomal CNVs per individual. Most CNVs (96.73%) did not overlap with any known chromosomal imbalance syndromes documented in the DECIPHER database. When compared with CNVs in the 11 HapMap3 populations, CNVs found in the Thai population shared several characteristics with CNVs characterized in HapMap3. Common CNVs in Thais had similar frequencies to those in the HapMap3 populations, and all high frequency CNVs (>20%) found in Thai individuals could also be identified in HapMap3. The majorities of CNVs discovered in the Thai population, however, were of low frequency, or uniquely identified in Thais. When performing hierarchical clustering using CNV frequencies, the CNV data were clustered into Africans, Europeans, and Asians, in line with the clustering performed with single nucleotide polymorphism (SNP) data. As CNV data are specific to origin of population, our population-specific reference database will serve as a valuable addition to the existing resources for the investigation of clinical significance of CNVs in Thais and related ethnicities.
PMCID: PMC4131886  PMID: 25118596
7.  Evaluation of copy number variation detection for a SNP array platform 
BMC Bioinformatics  2014;15:50.
Copy Number Variations (CNVs) are usually inferred from Single Nucleotide Polymorphism (SNP) arrays by use of some software packages based on given algorithms. However, there is no clear understanding of the performance of these software packages; it is therefore difficult to select one or several software packages for CNV detection based on the SNP array platform.
We selected four publicly available software packages designed for CNV calling from an Affymetrix SNP array, including Birdsuite, dChip, Genotyping Console (GTC) and PennCNV. The publicly available dataset generated by Array-based Comparative Genomic Hybridization (CGH), with a resolution of 24 million probes per sample, was considered to be the “gold standard”. Compared with the CGH-based dataset, the success rate, average stability rate, sensitivity, consistence and reproducibility of these four software packages were assessed compared with the “gold standard”. Specially, we also compared the efficiency of detecting CNVs simultaneously by two, three and all of the software packages with that by a single software package.
Simply from the quantity of the detected CNVs, Birdsuite detected the most while GTC detected the least. We found that Birdsuite and dChip had obvious detecting bias. And GTC seemed to be inferior because of the least amount of CNVs it detected. Thereafter we investigated the detection consistency produced by one certain software package and the rest three software suits. We found that the consistency of dChip was the lowest while GTC was the highest. Compared with the CNVs detecting result of CGH, in the matching group, GTC called the most matching CNVs, PennCNV-Affy ranked second. In the non-overlapping group, GTC called the least CNVs. With regards to the reproducibility of CNV calling, larger CNVs were usually replicated better. PennCNV-Affy shows the best consistency while Birdsuite shows the poorest.
We found that PennCNV outperformed the other three packages in the sensitivity and specificity of CNV calling. Obviously, each calling method had its own limitations and advantages for different data analysis. Therefore, the optimized calling methods might be identified using multiple algorithms to evaluate the concordance and discordance of SNP array-based CNV calling.
PMCID: PMC4015297  PMID: 24555668
CNV; CGH; Evaluation; Comparison; Performance test; Reproducibility test; Success rate; Birdsuite; dChip; GTC; PennCNV
8.  A method for calling copy number polymorphism using haplotypes 
Frontiers in Genetics  2013;4:165.
Single nucleotide polymorphism (SNP) and copy number variation (CNV) are both widespread characteristic of the human genome, but are often called separately on common genotyping platforms. To capture integrated SNP and CNV information, methods have been developed for calling allelic specific copy numbers or so called copy number polymorphism (CNP), using limited inter-marker correlation. In this paper, we proposed a haplotype-based maximum likelihood method to call CNP, which takes advantage of the valuable multi-locus linkage disequilibrium (LD) information in the population. We also developed a computationally efficient algorithm to estimate haplotype frequencies and optimize individual CNP calls iteratively, even at presence of missing data. Through simulations, we demonstrated our model is more sensitive and accurate in detecting various CNV regions, compared with commonly-used CNV calling methods including PennCNV, another hidden Markov model (HMM) using CNP, a scan statistic, segCNV, and cnvHap. Our method often performs better in the regions with higher LD, in longer CNV regions, and in common CNV than the opposite. We implemented our method on the genotypes of 90 HapMap CEU samples and 23 patients with acute lung injury (ALI). For each ALI patient the genotyping was performed twice. The CNPs from our method show good consistency and accuracy comparable to others.
PMCID: PMC3780619  PMID: 24069028
CNV; CNP; GWAS; haplotype; joint SNP and CNV calling; integrated SNP and CNV
9.  Modeling genetic inheritance of copy number variations 
Nucleic Acids Research  2008;36(21):e138.
Copy number variations (CNVs) are being used as genetic markers or functional candidates in gene-mapping studies. However, unlike single nucleotide polymorphism or microsatellite genotyping techniques, most CNV detection methods are limited to detecting total copy numbers, rather than copy number in each of the two homologous chromosomes. To address this issue, we developed a statistical framework for intensity-based CNV detection platforms using family data. Our algorithm identifies CNVs for a family simultaneously, thus avoiding the generation of calls with Mendelian inconsistency while maintaining the ability to detect de novo CNVs. Applications to simulated data and real data indicate that our method significantly improves both call rates and accuracy of boundary inference, compared to existing approaches. We further illustrate the use of Mendelian inheritance to infer SNP allele compositions in each of the two homologous chromosomes in CNV regions using real data. Finally, we applied our method to a set of families genotyped using both the Illumina HumanHap550 and Affymetrix genome-wide 5.0 arrays to demonstrate its performance on both inherited and de novo CNVs. In conclusion, our method produces accurate CNV calls, gives probabilistic estimates of CNV transmission and builds a solid foundation for the development of linkage and association tests utilizing CNVs.
PMCID: PMC2588508  PMID: 18832372
10.  MixHMM: Inferring Copy Number Variation and Allelic Imbalance Using SNP Arrays and Tumor Samples Mixed with Stromal Cells 
PLoS ONE  2010;5(6):e10909.
Genotyping platforms such as single nucleotide polymorphism (SNP) arrays are powerful tools to study genomic aberrations in cancer samples. Allele specific information from SNP arrays provides valuable information for interpreting copy number variation (CNV) and allelic imbalance including loss-of-heterozygosity (LOH) beyond that obtained from the total DNA signal available from array comparative genomic hybridization (aCGH) platforms. Several algorithms based on hidden Markov models (HMMs) have been designed to detect copy number changes and copy-neutral LOH making use of the allele information on SNP arrays. However heterogeneity in clinical samples, due to stromal contamination and somatic alterations, complicates analysis and interpretation of these data.
We have developed MixHMM, a novel hidden Markov model using hidden states based on chromosomal structural aberrations. MixHMM allows CNV detection for copy numbers up to 7 and allows more complete and accurate description of other forms of allelic imbalance, such as increased copy number LOH or imbalanced amplifications. MixHMM also incorporates a novel sample mixing model that allows detection of tumor CNV events in heterogeneous tumor samples, where cancer cells are mixed with a proportion of stromal cells.
We validate MixHMM and demonstrate its advantages with simulated samples, clinical tumor samples and a dilution series of mixed samples. We have shown that the CNVs of cancer cells in a tumor sample contaminated with up to 80% of stromal cells can be detected accurately using Illumina BeadChip and MixHMM.
The MixHMM is available as a Python package provided with some other useful tools at
PMCID: PMC2879364  PMID: 20532221
11.  cn.FARMS: a latent variable model to detect copy number variations in microarray data with a low false discovery rate 
Nucleic Acids Research  2011;39(12):e79.
Cost-effective oligonucleotide genotyping arrays like the Affymetrix SNP 6.0 are still the predominant technique to measure DNA copy number variations (CNVs). However, CNV detection methods for microarrays overestimate both the number and the size of CNV regions and, consequently, suffer from a high false discovery rate (FDR). A high FDR means that many CNVs are wrongly detected and therefore not associated with a disease in a clinical study, though correction for multiple testing takes them into account and thereby decreases the study's discovery power. For controlling the FDR, we propose a probabilistic latent variable model, ‘cn.FARMS’, which is optimized by a Bayesian maximum a posteriori approach. cn.FARMS controls the FDR through the information gain of the posterior over the prior. The prior represents the null hypothesis of copy number 2 for all samples from which the posterior can only deviate by strong and consistent signals in the data. On HapMap data, cn.FARMS clearly outperformed the two most prevalent methods with respect to sensitivity and FDR. The software cn.FARMS is publicly available as a R package at
PMCID: PMC3130288  PMID: 21486749
12.  Inferring combined CNV/SNP haplotypes from genotype data 
Bioinformatics  2010;26(11):1437-1445.
Motivation: Copy number variations (CNVs) are increasingly recognized as an substantial source of individual genetic variation, and hence there is a growing interest in investigating the evolutionary history of CNVs as well as their impact on complex disease susceptibility. CNV/SNP haplotypes are critical for this research, but although many methods have been proposed for inferring integer copy number, few have been designed for inferring CNV haplotypic phase and none of these are applicable at genome-wide scale. Here, we present a method for inferring missing CNV genotypes, predicting CNV allelic configuration and for inferring CNV haplotypic phase from SNP/CNV genotype data. Our method, implemented in the software polyHap v2.0, is based on a hidden Markov model, which models the joint haplotype structure between CNVs and SNPs. Thus, haplotypic phase of CNVs and SNPs are inferred simultaneously. A sampling algorithm is employed to obtain a measure of confidence/credibility of each estimate.
Results: We generated diploid phase-known CNV–SNP genotype datasets by pairing male X chromosome CNV–SNP haplotypes. We show that polyHap provides accurate estimates of missing CNV genotypes, allelic configuration and CNV haplotypic phase on these datasets. We applied our method to a non-simulated dataset—a region on Chromosome 2 encompassing a short deletion. The results confirm that polyHap's accuracy extends to real-life datasets.
Availability: Our method is implemented in version 2.0 of the polyHap software package and can be downloaded from
Supplementary information: Supplementary data are available at Bioinformatics online.
PMCID: PMC2913665  PMID: 20406911
13.  The Effect of Algorithms on Copy Number Variant Detection 
PLoS ONE  2010;5(12):e14456.
The detection of copy number variants (CNVs) and the results of CNV-disease association studies rely on how CNVs are defined, and because array-based technologies can only infer CNVs, CNV-calling algorithms can produce vastly different findings. Several authors have noted the large-scale variability between CNV-detection methods, as well as the substantial false positive and false negative rates associated with those methods. In this study, we use variations of four common algorithms for CNV detection (PennCNV, QuantiSNP, HMMSeg, and cnvPartition) and two definitions of overlap (any overlap and an overlap of at least 40% of the smaller CNV) to illustrate the effects of varying algorithms and definitions of overlap on CNV discovery.
Methodology and Principal Findings
We used a 56 K Illumina genotyping array enriched for CNV regions to generate hybridization intensities and allele frequencies for 48 Caucasian schizophrenia cases and 48 age-, ethnicity-, and gender-matched control subjects. No algorithm found a difference in CNV burden between the two groups. However, the total number of CNVs called ranged from 102 to 3,765 across algorithms. The mean CNV size ranged from 46 kb to 787 kb, and the average number of CNVs per subject ranged from 1 to 39. The number of novel CNVs not previously reported in normal subjects ranged from 0 to 212.
Conclusions and Significance
Motivated by the availability of multiple publicly available genome-wide SNP arrays, investigators are conducting numerous analyses to identify putative additional CNVs in complex genetic disorders. However, the number of CNVs identified in array-based studies, and whether these CNVs are novel or valid, will depend on the algorithm(s) used. Thus, given the variety of methods used, there will be many false positives and false negatives. Both guidelines for the identification of CNVs inferred from high-density arrays and the establishment of a gold standard for validation of CNVs are needed.
PMCID: PMC3012691  PMID: 21209939
14.  Genome-wide algorithm for detecting CNV associations with diseases 
BMC Bioinformatics  2011;12:331.
SNP genotyping arrays have been developed to characterize single-nucleotide polymorphisms (SNPs) and DNA copy number variations (CNVs). Nonparametric and model-based statistical algorithms have been developed to detect CNVs from SNP data using the marker intensities. However, these algorithms lack specificity to detect small CNVs owing to the high false positive rate when calling CNVs based on the intensity values. Therefore, the resulting association tests lack power even if the CNVs affecting disease risk are common. An alternative procedure called PennCNV uses information from both the marker intensities as well as the genotypes and therefore has increased sensitivity.
By using the hidden Markov model (HMM) implemented in PennCNV to derive the probabilities of different copy number states which we subsequently used in a logistic regression model, we developed a new genome-wide algorithm to detect CNV associations with diseases. We compared this new method with association test applied to the most probable copy number state for each individual that is provided by PennCNV after it performs an initial HMM analysis followed by application of the Viterbi algorithm, which removes information about copy number probabilities. In one of our simulation studies, we showed that for large CNVs (number of SNPs ≥ 10), the association tests based on PennCNV calls gave more significant results, but the new algorithm retained high power. For small CNVs (number of SNPs <10), the logistic algorithm provided smaller average p-values (e.g., p = 7.54e - 17 when relative risk RR = 3.0) in all the scenarios and could capture signals that PennCNV did not (e.g., p = 0.020 when RR = 3.0). From a second set of simulations, we showed that the new algorithm is more powerful in detecting disease associations with small CNVs (number of SNPs ranging from 3 to 5) under different penetrance models (e.g., when RR = 3.0, for relatively weak signals, power = 0.8030 comparing to 0.2879 obtained from the association tests based on PennCNV calls). The new method was implemented in software GWCNV. It is freely available at, distributed under a GPL license.
We conclude that the new algorithm is more sensitive and can be more powerful in detecting CNV associations with diseases than the existing HMM algorithm, especially when the CNV association signal is weak and a limited number of SNPs are located in the CNV.
PMCID: PMC3173460  PMID: 21827692
15.  Comparative analysis of copy number variation detection methods and database construction 
BMC Genetics  2011;12:29.
Array-based detection of copy number variations (CNVs) is widely used for identifying disease-specific genetic variations. However, the accuracy of CNV detection is not sufficient and results differ depending on the detection programs used and their parameters. In this study, we evaluated five widely used CNV detection programs, Birdsuite (mainly consisting of the Birdseye and Canary modules), Birdseye (part of Birdsuite), PennCNV, CGHseg, and DNAcopy from the viewpoint of performance on the Affymetrix platform using HapMap data and other experimental data. Furthermore, we identified CNVs of 180 healthy Japanese individuals using parameters that showed the best performance in the HapMap data and investigated their characteristics.
The results indicate that Hidden Markov model-based programs PennCNV and Birdseye (part of Birdsuite), or Birdsuite show better detection performance than other programs when the high reproducibility rates of the same individuals and the low Mendelian inconsistencies are considered. Furthermore, when rates of overlap with other experimental results were taken into account, Birdsuite showed the best performance from the view point of sensitivity but was expected to include many false negatives and some false positives. The results of 180 healthy Japanese demonstrate that the ratio containing repeat sequences, not only segmental repeats but also long interspersed nuclear element (LINE) sequences both in the start and end regions of the CNVs, is higher in CNVs that are commonly detected among multiple individuals than that in randomly selected regions, and the conservation score based on primates is lower in these regions than in randomly selected regions. Similar tendencies were observed in HapMap data and other experimental data.
Our results suggest that not only segmental repeats but also interspersed repeats, especially LINE sequences, are deeply involved in CNVs, particularly in common CNV formations.
The detected CNVs are stored in the CNV repository database newly constructed by the "Japanese integrated database project" for sharing data among researchers.
PMCID: PMC3058066  PMID: 21385384
16.  R-Gada: a fast and flexible pipeline for copy number analysis in association studies 
BMC Bioinformatics  2010;11:380.
Genome-wide association studies (GWAS) using Copy Number Variation (CNV) are becoming a central focus of genetic research. CNVs have successfully provided target genome regions for some disease conditions where simple genetic variation (i.e., SNPs) has previously failed to provide a clear association.
Here we present a new R package, that integrates: (i) data import from most common formats of Affymetrix, Illumina and aCGH arrays; (ii) a fast and accurate segmentation algorithm to call CNVs based on Genome Alteration Detection Analysis (GADA); and (iii) functions for displaying and exporting the Copy Number calls, identification of recurrent CNVs, multivariate analysis of population structure, and tools for performing association studies. Using a large dataset containing 270 HapMap individuals (Affymetrix Human SNP Array 6.0 Sample Dataset) we demonstrate a flexible pipeline implemented with the package. It requires less than one minute per sample (3 million probe arrays) on a single core computer, and provides a flexible parallelization for very large datasets. Case-control data were generated from the HapMap dataset to demonstrate a GWAS analysis.
The package provides the tools for creating a complete integrated pipeline from data normalization to statistical association. It can effciently handle a massive volume of data consisting of millions of genetic markers and hundreds or thousands of samples with very accurate results.
PMCID: PMC2915992  PMID: 20637081
17.  Genomic characteristics of cattle copy number variations 
BMC Genomics  2011;12:127.
Copy number variation (CNV) represents another important source of genetic variation complementary to single nucleotide polymorphism (SNP). High-density SNP array data have been routinely used to detect human CNVs, many of which have significant functional effects on gene expression and human diseases. In the dairy industry, a large quantity of SNP genotyping results are becoming available and can be used for CNV discovery to understand and accelerate genetic improvement for complex traits.
We performed a systematic analysis of CNV using the Bovine HapMap SNP genotyping data, including 539 animals of 21 modern cattle breeds and 6 outgroups. After correcting genomic waves and considering the pedigree information, we identified 682 candidate CNV regions, which represent 139.8 megabases (~4.60%) of the genome. Selected CNVs were further experimentally validated and we found that copy number "gain" CNVs were predominantly clustered in tandem rather than existing as interspersed duplications. Many CNV regions (~56%) overlap with cattle genes (1,263), which are significantly enriched for immunity, lactation, reproduction and rumination. The overlap of this new dataset and other published CNV studies was less than 40%; however, our discovery of large, high frequency (> 5% of animals surveyed) CNV regions showed 90% agreement with other studies. These results highlight the differences and commonalities between technical platforms.
We present a comprehensive genomic analysis of cattle CNVs derived from SNP data which will be a valuable genomic variation resource. Combined with SNP detection assays, gene-containing CNV regions may help identify genes undergoing artificial selection in domesticated animals.
PMCID: PMC3053260  PMID: 21345189
18.  Outlier-Based Identification of Copy Number Variations Using Targeted Resequencing in a Small Cohort of Patients with Tetralogy of Fallot 
PLoS ONE  2014;9(1):e85375.
Copy number variations (CNVs) are one of the main sources of variability in the human genome. Many CNVs are associated with various diseases including cardiovascular disease. In addition to hybridization-based methods, next-generation sequencing (NGS) technologies are increasingly used for CNV discovery. However, respective computational methods applicable to NGS data are still limited. We developed a novel CNV calling method based on outlier detection applicable to small cohorts, which is of particular interest for the discovery of individual CNVs within families, de novo CNVs in trios and/or small cohorts of specific phenotypes like rare diseases. Approximately 7,000 rare diseases are currently known, which collectively affect ∼6% of the population. For our method, we applied the Dixon’s Q test to detect outliers and used a Hidden Markov Model for their assessment. The method can be used for data obtained by exome and targeted resequencing. We evaluated our outlier- based method in comparison to the CNV calling tool CoNIFER using eight HapMap exome samples and subsequently applied both methods to targeted resequencing data of patients with Tetralogy of Fallot (TOF), the most common cyanotic congenital heart disease. In both the HapMap samples and the TOF cases, our method is superior to CoNIFER, such that it identifies more true positive CNVs. Called CNVs in TOF cases were validated by qPCR and HapMap CNVs were confirmed with available array-CGH data. In the TOF patients, we found four copy number gains affecting three genes, of which two are important regulators of heart development (NOTCH1, ISL1) and one is located in a region associated with cardiac malformations (PRODH at 22q11). In summary, we present a novel CNV calling method based on outlier detection, which will be of particular interest for the analysis of de novo or individual CNVs in trios or cohorts up to 30 individuals, respectively.
PMCID: PMC3882271  PMID: 24400131
19.  Fast detection of de novo copy number variants from SNP arrays for case-parent trios 
BMC Bioinformatics  2012;13:330.
In studies of case-parent trios, we define copy number variants (CNVs) in the offspring that differ from the parental copy numbers as de novo and of interest for their potential functional role in disease. Among the leading array-based methods for discovery of de novo CNVs in case-parent trios is the joint hidden Markov model (HMM) implemented in the PennCNV software. However, the computational demands of the joint HMM are substantial and the extent to which false positive identifications occur in case-parent trios has not been well described. We evaluate these issues in a study of oral cleft case-parent trios.
Our analysis of the oral cleft trios reveals that genomic waves represent a substantial source of false positive identifications in the joint HMM, despite a wave-correction implementation in PennCNV. In addition, the noise of low-level summaries of relative copy number (log R ratios) is strongly associated with batch and correlated with the frequency of de novo CNV calls. Exploiting the trio design, we propose a univariate statistic for relative copy number referred to as the minimum distance that can reduce technical variation from probe effects and genomic waves. We use circular binary segmentation to segment the minimum distance and maximum a posteriori estimation to infer de novo CNVs from the segmented genome. Compared to PennCNV on simulated data, MinimumDistance identifies fewer false positives on average and is comparable to PennCNV with respect to false negatives. Genomic waves contribute to discordance of PennCNV and MinimumDistance for high coverage de novo calls, while highly concordant calls on chromosome 22 were validated by quantitative PCR. Computationally, MinimumDistance provides a nearly 8-fold increase in speed relative to the joint HMM in a study of oral cleft trios.
Our results indicate that batch effects and genomic waves are important considerations for case-parent studies of de novo CNV, and that the minimum distance is an effective statistic for reducing technical variation contributing to false de novo discoveries. Coupled with segmentation and maximum a posteriori estimation, our algorithm compares favorably to the joint HMM with MinimumDistance being much faster.
PMCID: PMC3576329  PMID: 23234608
Trios; Oral cleft; Copy number variants; de novo; High-throughput arrays; Segmentation; batch effects; Genomic waves
20.  Improved detection of global copy number variation using high density, non-polymorphic oligonucleotide probes 
BMC Genetics  2008;9:27.
DNA sequence diversity within the human genome may be more greatly affected by copy number variations (CNVs) than single nucleotide polymorphisms (SNPs). Although the importance of CNVs in genome wide association studies (GWAS) is becoming widely accepted, the optimal methods for identifying these variants are still under evaluation. We have previously reported a comprehensive view of CNVs in the HapMap DNA collection using high density 500 K EA (Early Access) SNP genotyping arrays which revealed greater than 1,000 CNVs ranging in size from 1 kb to over 3 Mb. Although the arrays used most commonly for GWAS predominantly interrogate SNPs, CNV identification and detection does not necessarily require the use of DNA probes centered on polymorphic nucleotides and may even be hindered by the dependence on a successful SNP genotyping assay.
In this study, we have designed and evaluated a high density array predicated on the use of non-polymorphic oligonucleotide probes for CNV detection. This approach effectively uncouples copy number detection from SNP genotyping and thus has the potential to significantly improve probe coverage for genome-wide CNV identification. This array, in conjunction with PCR-based, complexity-reduced DNA target, queries over 1.3 M independent NspI restriction enzyme fragments in the 200 bp to 1100 bp size range, which is a several fold increase in marker density as compared to the 500 K EA array. In addition, a novel algorithm was developed and validated to extract CNV regions and boundaries.
Using a well-characterized pair of DNA samples, close to 200 CNVs were identified, of which nearly 50% appear novel yet were independently validated using quantitative PCR. The results indicate that non-polymorphic probes provide a robust approach for CNV identification, and the increasing precision of CNV boundary delineation should allow a more complete analysis of their genomic organization.
PMCID: PMC2374799  PMID: 18373861
21.  A Map of Copy Number Variations in Chinese Populations 
PLoS ONE  2011;6(11):e27341.
It has been shown that the human genome contains extensive copy number variations (CNVs). Investigating the medical and evolutionary impacts of CNVs requires the knowledge of locations, sizes and frequency distribution of them within and between populations. However, CNV study of Chinese minorities, which harbor the majority of genetic diversity of Chinese populations, has been underrepresented considering the same efforts in other populations. Here we constructed, to our knowledge, a first CNV map in seven Chinese populations representing the major linguistic groups in China with 1,440 CNV regions identified using Affymetrix SNP 6.0 Array. Considerable differences in distributions of CNV regions between populations and substantial population structures were observed. We showed that ∼35% of CNV regions identified in minority ethnic groups are not shared by Han Chinese population, indicating that the contribution of the minorities to genetic architecture of Chinese population could not be ignored. We further identified highly differentiated CNV regions between populations. For example, a common deletion in Dong and Zhuang (44.4% and 50%), which overlaps two keratin-associated protein genes contributing to the structure of hair fibers, was not observed in Han Chinese. Interestingly, the most differentiated CNV deletion between HapMap CEU and YRI containing CCL3L1 gene reported in previous studies was also the highest differentiated regions between Tibetan and other populations. Besides, by jointly analyzing CNVs and SNPs, we found a CNV region containing gene CTDSPL were in almost perfect linkage disequilibrium between flanking SNPs in Tibetan while not in other populations except HapMap CHD. Furthermore, we found the SNP taggability of CNVs in Chinese populations was much lower than that in European populations. Our results suggest the necessity of a full characterization of CNVs in Chinese populations, and the CNV map we constructed serves as a useful resource in further evolutionary and medical studies.
PMCID: PMC3210162  PMID: 22087296
22.  Optimizing copy number variation analysis using genome-wide short sequence oligonucleotide arrays 
Nucleic Acids Research  2010;38(10):3275-3286.
The detection of copy number variants (CNV) by array-based platforms provides valuable insight into understanding human diversity. However, suboptimal study design and data processing negatively affect CNV assessment. We quantitatively evaluate their impact when short-sequence oligonucleotide arrays are applied (Affymetrix Genome-Wide Human SNP Array 6.0) by evaluating 42 HapMap samples for CNV detection. Several processing and segmentation strategies are implemented, and results are compared to CNV assessment obtained using an oligonucleotide array CGH platform designed to query CNVs at high resolution (Agilent). We quantitatively demonstrate that different reference models (e.g. single versus pooled sample reference) used to detect CNVs are a major source of inter-platform discrepancy (up to 30%) and that CNVs residing within segmental duplication regions (higher reference copy number) are significantly harder to detect (P < 0.0001). After adjusting Affymetrix data to mimic the Agilent experimental design (reference sample effect), we applied several common segmentation approaches and evaluated differential sensitivity and specificity for CNV detection, ranging 39–77% and 86–100% for non-segmental duplication regions, respectively, and 18–55% and 39–77% for segmental duplications. Our results are relevant to any array-based CNV study and provide guidelines to optimize performance based on study-specific objectives.
PMCID: PMC2879534  PMID: 20156996
23.  Genome wide CNV analysis reveals additional variants associated with milk production traits in Holsteins 
BMC Genomics  2014;15(1):683.
Milk production is an economically important sector of global agriculture. Much attention has been paid to the identification of quantitative trait loci (QTL) associated with milk, fat, and protein yield and the genetic and molecular mechanisms underlying them. Copy number variation (CNV) is an emerging class of variants which may be associated with complex traits.
In this study, we performed a genome-wide association between CNVs and milk production traits in 26,362 Holstein bulls and cows. A total of 99 candidate CNVs were identified using Illumina BovineSNP50 array data, and association tests for each production trait were performed using a linear regression analysis with PCA correlation. A total of 34 CNVs on 22 chromosomes were significantly associated with at least one milk production trait after false discovery rate (FDR) correction. Some of those CNVs were located within or near known QTL for milk production traits. We further investigated the relationship between associated CNVs with neighboring SNPs. For all 82 combinations of traits and CNVs (less than 400 kb in length), we found 17 cases where CNVs directly overlapped with tag SNPs and 40 cases where CNVs were adjacent to tag SNPs. In 5 cases, CNVs located were in strong linkage disequilibrium with tag SNPs, either within or adjacent to the same haplotype block. There were an additional 20 cases where CNVs did not have a significant association with SNPs, suggesting that the effects of those CNVs were probably not captured by tag SNPs.
We conclude that combining CNV with SNP analyses reveals more genetic variations underlying milk production traits than those revealed by SNPs alone.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-683) contains supplementary material, which is available to authorized users.
PMCID: PMC4152564  PMID: 25128478
Copy number variation (CNV); dPTA; Association; Milk production traits
24.  The pitfalls of platform comparison: DNA copy number array technologies assessed 
BMC Genomics  2009;10:588.
The accurate and high resolution mapping of DNA copy number aberrations has become an important tool by which to gain insight into the mechanisms of tumourigenesis. There are various commercially available platforms for such studies, but there remains no general consensus as to the optimal platform. There have been several previous platform comparison studies, but they have either described older technologies, used less-complex samples, or have not addressed the issue of the inherent biases in such comparisons. Here we describe a systematic comparison of data from four leading microarray technologies (the Affymetrix Genome-wide SNP 5.0 array, Agilent High-Density CGH Human 244A array, Illumina HumanCNV370-Duo DNA Analysis BeadChip, and the Nimblegen 385 K oligonucleotide array). We compare samples derived from primary breast tumours and their corresponding matched normals, well-established cancer cell lines, and HapMap individuals. By careful consideration and avoidance of potential sources of bias, we aim to provide a fair assessment of platform performance.
By performing a theoretical assessment of the reproducibility, noise, and sensitivity of each platform, notable differences were revealed. Nimblegen exhibited between-replicate array variances an order of magnitude greater than the other three platforms, with Agilent slightly outperforming the others, and a comparison of self-self hybridizations revealed similar patterns. An assessment of the single probe power revealed that Agilent exhibits the highest sensitivity. Additionally, we performed an in-depth visual assessment of the ability of each platform to detect aberrations of varying sizes. As expected, all platforms were able to identify large aberrations in a robust manner. However, some focal amplifications and deletions were only detected in a subset of the platforms.
Although there are substantial differences in the design, density, and number of replicate probes, the comparison indicates a generally high level of concordance between platforms, despite differences in the reproducibility, noise, and sensitivity. In general, Agilent tended to be the best aCGH platform and Affymetrix, the superior SNP-CGH platform, but for specific decisions the results described herein provide a guide for platform selection and study design, and the dataset a resource for more tailored comparisons.
PMCID: PMC2797821  PMID: 19995423
25.  Copy number variations (CNVs) identified in Korean individuals 
BMC Genomics  2008;9:492.
Copy number variations (CNVs) are deletions, insertions, duplications, and more complex variations ranging from 1 kb to sub-microscopic sizes. Recent advances in array technologies have enabled researchers to identify a number of CNVs from normal individuals. However, the identification of new CNVs has not yet reached saturation, and more CNVs from diverse populations remain to be discovered.
We identified 65 copy number variation regions (CNVRs) in 116 normal Korean individuals by analyzing Affymetrix 250 K Nsp whole-genome SNP data. Ten of these CNVRs were novel and not present in the Database of Genomic Variants (DGV). To increase the specificity of CNV detection, three algorithms, CNAG, dChip and GEMCA, were applied to the data set, and only those regions recognized at least by two algorithms were identified as CNVs. Most CNVRs identified in the Korean population were rare (<1%), occurring just once among the 116 individuals. When CNVs from the Korean population were compared with CNVs from the three HapMap ethnic groups, African, European, and Asian; our Korean population showed the highest degree of overlap with the Asian population, as expected. However, the overlap was less than 40%, implying that more CNVs remain to be discovered from the Asian population as well as from other populations. Genes in the novel CNVRs from the Korean population were enriched for genes involved in regulation and development processes.
CNVs are recently-recognized structural variations among individuals, and more CNVs need to be identified from diverse populations. Until now, CNVs from Asian populations have been studied less than those from European or American populations. In this regard, our study of CNVs from the Korean population will contribute to the full cataloguing of structural variation among diverse human populations.
PMCID: PMC2576253  PMID: 18928558

Results 1-25 (848625)