Search tips
Search criteria

Results 1-25 (1028270)

Clipboard (0)

Related Articles

1.  Repeated Insulin-Like Growth Factor 1 Treatment in a Patient with Rett Syndrome: A Single Case Study 
Rett syndrome (RTT) is a devastating neurodevelopmental disorder that has no cure. Patients show regression of acquired skills, motor, and speech impairment, cardio-respiratory distress, microcephaly, and stereotyped hand movements. The majority of RTT patients display mutations in the gene that codes for the Methyl-CpG binding protein 2 (MeCP2), which is involved in the development of the central nervous system, especially synaptic and circuit maturation. Thus, agents that promote brain development and synaptic function are good candidates for ameliorating the symptoms of RTT. In particular, insulin-like growth factor 1 (IGF1) and its active peptide (1–3) IGF1 cross the Blood Brain Barrier, and therefore are ideal treatments for RTT Indeed, both (1–3) IGF1 and IGF1 treatment significantly ameliorates RTT symptoms in a mouse model of the disease In a previous study, we established that IGF1 is safe and well tolerated on Rett patients. In this open label clinical case study, we assess the safety and tolerability of IGF1 administration in two cycles of the treatment. Before and after each cycle, we monitored the clinical and blood parameters, autonomic function, and social and cognitive abilities, and we found that IGF1 was well tolerated each time and did not induce any side effect, nor it interfered with the other treatments that the patient was undergoing. We noticed a moderate improvement in the cognitive, social, and autonomic abilities of the patient after each cycle but the benefits were not retained between the two cycles, consistent with the pre-clinical observation that treatments for RTT should be administered through life. We find that repeated IGF1 treatment is safe and well tolerated in Rett patients but observed effects are not retained between cycles. These results have applications to other pathologies considering that IGF1 has been shown to be effective in other disorders of the autism spectrum.
PMCID: PMC4042280  PMID: 24918098
Rett syndrome; insulin-like growth factor 1; social cognition; seizures; autonomic functions
2.  Long-lasting beneficial effects of central serotonin receptor 7 stimulation in female mice modeling Rett syndrome 
Rett syndrome (RTT) is a rare neurodevelopmental disorder, characterized by severe behavioral and physiological symptoms. Mutations in the methyl CpG binding protein 2 gene (MECP2) cause more than 95% of classic cases, and currently there is no cure for this devastating disorder. Recently we have demonstrated that specific behavioral and brain molecular alterations can be rescued in MeCP2-308 male mice, a RTT mouse model, by pharmacological stimulation of the brain serotonin receptor 7 (5-HT7R). This member of the serotonin receptor family—crucially involved in the regulation of brain structural plasticity and cognitive processes—can be stimulated by systemic repeated treatment with LP-211, a brain-penetrant selective 5-HT7R agonist. The present study extends previous findings by demonstrating that the LP-211 treatment (0.25 mg/kg, once per day for 7 days) rescues RTT-related phenotypic alterations, motor coordination (Dowel test), spatial reference memory (Barnes maze test) and synaptic plasticity (hippocampal long-term-potentiation) in MeCP2-308 heterozygous female mice, the genetic and hormonal milieu that resembles that of RTT patients. LP-211 also restores the activation of the ribosomal protein (rp) S6, the downstream target of mTOR and S6 kinase, in the hippocampus of RTT female mice. Notably, the beneficial effects on neurobehavioral and molecular parameters of a seven-day long treatment with LP-211 were evident up to 2 months after the last injection, thus suggesting long-lasting effects on RTT-related impairments. Taken together with our previous study, these results provide compelling preclinical evidence of the potential therapeutic value for RTT of a pharmacological approach targeting the brain 5-HT7R.
PMCID: PMC4396444  PMID: 25926782
serotonin; neurodevelopmental disorders; intellectual disability; transgenic mice; synaptic plasticity; Rho GTPases; cognition
3.  Isolation of MECP2-null Rett Syndrome patient hiPS cells and isogenic controls through X-chromosome inactivation 
Human Molecular Genetics  2011;20(11):2103-2115.
Rett syndrome (RTT) is a neurodevelopmental autism spectrum disorder that affects girls due primarily to mutations in the gene encoding methyl-CpG binding protein 2 (MECP2). The majority of RTT patients carry missense and nonsense mutations leading to a hypomorphic MECP2, while null mutations leading to the complete absence of a functional protein are rare. MECP2 is an X-linked gene subject to random X-chromosome inactivation resulting in mosaic expression of mutant MECP2. The lack of human brain tissue motivates the need for alternative human cellular models to study RTT. Here we report the characterization of a MECP2 mutation in a classic female RTT patient involving rearrangements that remove exons 3 and 4 creating a functionally null mutation. To generate human neuron models of RTT, we isolated human induced pluripotent stem (hiPS) cells from RTT patient fibroblasts. RTT-hiPS cells retained the MECP2 mutation, are pluripotent and fully reprogrammed, and retained an inactive X-chromosome in a nonrandom pattern. Taking advantage of the latter characteristic, we obtained a pair of isogenic wild-type and mutant MECP2 expressing RTT-hiPS cell lines that retained this MECP2 expression pattern upon differentiation into neurons. Phenotypic analysis of mutant RTT-hiPS cell-derived neurons demonstrated a reduction in soma size compared with the isogenic control RTT-hiPS cell-derived neurons from the same RTT patient. Analysis of isogenic control and mutant hiPS cell-derived neurons represents a promising source for understanding the pathogenesis of RTT and the role of MECP2 in human neurons.
PMCID: PMC3090191  PMID: 21372149
4.  Oxidative brain damage in Mecp2-mutant murine models of Rett syndrome 
Neurobiology of Disease  2014;68(100):66-77.
Rett syndrome (RTT) is a rare neurodevelopmental disorder affecting almost exclusively females, caused in the overwhelming majority of the cases by loss-of-function mutations in the gene encoding methyl-CpG binding protein 2 (MECP2). High circulating levels of oxidative stress (OS) markers in patients suggest the involvement of OS in the RTT pathogenesis. To investigate the occurrence of oxidative brain damage in Mecp2 mutant mouse models, several OS markers were evaluated in whole brains of Mecp2-null (pre-symptomatic, symptomatic, and rescued) and Mecp2-308 mutated (pre-symptomatic and symptomatic) mice, and compared to those of wild type littermates. Selected OS markers included non-protein-bound iron, isoprostanes (F2-isoprostanes, F4-neuroprostanes, F2-dihomo-isoprostanes) and 4-hydroxy-2-nonenal protein adducts. Our findings indicate that oxidative brain damage 1) occurs in both Mecp2-null (both −/y and stop/y) and Mecp2-308 (both 308/y males and 308/+ females) mouse models of RTT; 2) precedes the onset of symptoms in both Mecp2-null and Mecp2-308 models; and 3) is rescued by Mecp2 brain specific gene reactivation. Our data provide direct evidence of the link between Mecp2 deficiency, oxidative stress and RTT pathology, as demonstrated by the rescue of the brain oxidative homeostasis following brain-specifically Mecp2-reactivated mice. The present study indicates that oxidative brain damage is a previously unrecognized hallmark feature of murine RTT, and suggests that Mecp2 is involved in the protection of the brain from oxidative stress.
•Oxidative damage is demonstrated in the brain, and more specifically in the neurons, of Mecp2 mutant mouse models.•A direct evidence between enhanced oxidative stress and Mecp2 deficiency is provided.•Oxidative damage precedes the behavioral abnormalities in Mecp2 mutant mice.•Mecp2 is likely involved in the protection of the brain from oxidative stress.
PMCID: PMC4076513  PMID: 24769161
4-HNE, 4-hydroxy-2-nonenal; 4-HNE PAs, 4-hydroxy-2-nonenal protein adducts; AdA, adrenic acid; ARA, arachidonic acid; ASDs, autism spectrum disorders; AUs, arbitrary units; BDNF, brain-derived neurotrophic factor; CRE, Cre-Recombinase; DHA, docosahexaenoic acid; F2-IsoPs, F2-isoprostanes; F2-dihomo-IsoPs, F2-dihomo-isoprostanes; F4-NeuroPs, F4-neuroprostanes; IsoPs, isoprostanes; 4-HNE PAs, 4-HNE protein adducts; MECP2, methyl-CpG-binding protein 2 — human gene; Mecp2, methyl-CpG-binding protein 2 — mouse gene; MeCP2, methyl-CpG-binding protein 2 — human protein; Mecp2, methyl-CpG-binding protein 2 — mouse protein; Mecp2 −/y, hemizygous null mice; Mecp2 stop/y, Lox/stop pre-symptomatic hemizygous mice; Mecp2 stop/y NestinCre, rescued Lox/stop mice (Mecp2 reactivated in the nervous tissue); Mecp2 308/y, symptomatic Mecp2 308-mutated hemizygous males; Mecp2 308/x, symptomatic Mecp2 308-mutated females; NPBI, non-protein-bound iron; OS, oxidative stress; PSV, Preserved Speech Variant; PUFAs, polyunsaturated fatty acids; ROS, reactive oxygen species; RTT, Rett syndrome; wt, wild type; wt-Cre, wild type expressing Cre recombinase; Rett syndrome; Lipid peroxidation; Brain damage; Neurodevelopmental disorder; Murine models; Oxidative stress
Neurobiology of disease  2009;35(2):219-233.
Rett syndrome (RTT) is an X chromosome-linked neurodevelopmental disorder associated with the characteristic neuropathology of dendritic spines common in diseases presenting with mental retardation (MR). Here, we present the first quantitative analyses of dendritic spine density in postmortem brain tissue from female RTT individuals, which revealed that hippocampal CA1 pyramidal neurons have lower spine density than age-matched non-MR female control individuals. The majority of RTT individuals carry mutations in MECP2, the gene coding for a methylated DNA-binding transcriptional regulator. While altered synaptic transmission and plasticity has been demonstrated in Mecp2-deficient mouse models of RTT, observations regarding dendritic spine density and morphology have produced varied results. We investigated the consequences of MeCP2 dysfunction on dendritic spine structure by overexpressing (∼twofold) MeCP2-GFP constructs encoding either the wildtype (WT) protein, or missense mutations commonly found in RTT individuals. Pyramidal neurons within hippocampal slice cultures transfected with either WT or mutant MECP2 (either R106W or T158M) showed a significant reduction in total spine density after 48hrs of expression. Interestingly, spine density in neurons expressing WT MECP2 for 96hrs was comparable to that in control neurons, while neurons expressing mutant MECP2 continued to have lower spines density than controls after 96hrs of expression. Knockdown of endogenous Mecp2 with a specific small hairpin interference RNA (shRNA) also reduced dendritic spine density, but only after 96hrs of expression. On the other hand, the consequences of manipulating MeCP2 levels for dendritic complexity in CA3 pyramidal neurons were only minor. Together, these results demonstrate reduced dendritic spine density in hippocampal pyramidal neurons from RTT patients, a distinct dendritic phenotype also found in neurons expressing RTT-associated MECP2 mutations or after shRNA-mediated endogenous Mecp2 knockdown, suggesting that this phenotype represent a cell-autonomous consequence of MeCP2 dysfunction.
PMCID: PMC2722110  PMID: 19442733
MeCP2; Rett syndrome; dendrite; dendritic spine; pyramidal neuron; hippocampus; DiOlistics; human postmortem brain
6.  Acetyl-L-Carnitine Improves Behavior and Dendritic Morphology in a Mouse Model of Rett Syndrome 
PLoS ONE  2012;7(12):e51586.
Rett syndrome (RTT) is a devastating neurodevelopmental disorder affecting 1 in 10,000 girls. Approximately 90% of cases are caused by spontaneous mutations in the X-linked gene encoding methyl-CpG-binding protein 2 (MeCP2). Girls with RTT suffer from severe motor, respiratory, cognitive and social abnomalities attributed to early deficits in synaptic connectivity which manifest in the adult as a myriad of physiological and anatomical abnormalities including, but not limited to, dimished dendritic complexity. Supplementation with acetyl-L-carnitine (ALC), an acetyl group donor, ameliorates motor and cognitive deficits in other disease models through a variety of mechanisms including altering patterns of histone acetylation resulting in changes in gene expression, and stimulating biosynthetic pathways such as acetylcholine. We hypothesized ALC treatment during critical periods in cortical development would promote normal synaptic maturation, and continuing treatment would improve behavioral deficits in the Mecp21lox mouse model of RTT. In this study, wildtype and Mecp21lox mutant mice received daily injections of ALC from birth until death (postnatal day 47). General health, motor, respiratory, and cognitive functions were assessed at several time points during symptom progression. ALC improved weight gain, grip strength, activity levels, prevented metabolic abnormalities and modestly improved cognitive function in Mecp2 null mice early in the course of treatment, but did not significantly improve motor or cognitive functions assessed later in life. ALC treatment from birth was associated with an almost complete rescue of hippocampal dendritic morphology abnormalities with no discernable side effects in the mutant mice. Therefore, ALC appears to be a promising therapeutic approach to treating early RTT symptoms and may be useful in combination with other therapies.
PMCID: PMC3515484  PMID: 23227269
7.  Pharmacological Stimulation of the Brain Serotonin Receptor 7 as a Novel Therapeutic Approach for Rett Syndrome 
Neuropsychopharmacology  2014;39(11):2506-2518.
Rett syndrome (RTT) is a rare neurodevelopmental disorder, characterized by severe behavioral and physiological symptoms. Mutations in the methyl CpG-binding protein 2 gene (MECP2) cause >95% of classic cases, and currently there is no cure for this devastating disorder. The serotonin receptor 7 (5-HT7R) is linked to neuro-physiological regulation of circadian rhythm, mood, cognition, and synaptic plasticity. We presently report that 5-HT7R density is consistently reduced in cortical and hippocampal brain areas of symptomatic MeCP2–308 male mice, a RTT model. Systemic repeated treatment with LP-211 (0.25 mg/kg once/day for 7 days), a brain-penetrant selective 5-HT7R agonist, was able to rescue RTT-related defective performance: anxiety-related profiles in a Light/Dark test, motor abilities in a Dowel test, the exploratory behavior in the Marble Burying test, as well as memory in the Novelty Preference task. In the brain of RTT mice, LP-211 also reversed the abnormal activation of PAK and cofilin (key regulators of actin cytoskeleton dynamics) and of the ribosomal protein (rp) S6, whose reduced activation in MECP2 mutant neurons by mTOR is responsible for the altered protein translational control. Present findings indicate that pharmacological targeting of 5-HT7R improves specific behavioral and molecular manifestations of RTT, thus representing a first step toward the validation of an innovative systemic treatment. Beyond RTT, the latter might be extended to other disorders associated with intellectual disability.
PMCID: PMC4207333  PMID: 24809912
8.  Cytokine Dysregulation in MECP2- and CDKL5-Related Rett Syndrome: Relationships with Aberrant Redox Homeostasis, Inflammation, and ω-3 PUFAs 
An involvement of the immune system has been suggested in Rett syndrome (RTT), a devastating neurodevelopmental disorder related to oxidative stress, and caused by a mutation in the methyl-CpG binding protein 2 gene (MECP2) or, more rarely, cyclin-dependent kinase-like 5 (CDKL5). To date, it is unclear whether both mutations may have an impact on the circulating cytokine patterns. In the present study, cytokines involved in the Th1-, Th2-, and T regulatory (T-reg) response, as well as chemokines, were investigated in MECP2- (MECP2-RTT) (n = 16) and CDKL5-Rett syndrome (CDKL5-RTT) (n = 8), before and after ω-3 polyunsaturated fatty acids (PUFAs) supplementation. A major cytokine dysregulation was evidenced in untreated RTT patients. In MECP2-RTT, a Th2-shifted balance was evidenced, whereas in CDKL5-RTT both Th1- and Th2-related cytokines (except for IL-4) were upregulated. In MECP2-RTT, decreased levels of IL-22 were observed, whereas increased IL-22 and T-reg cytokine levels were evidenced in CDKL5-RTT. Chemokines were unchanged. The cytokine dysregulation was proportional to clinical severity, inflammatory status, and redox imbalance. Omega-3 PUFAs partially counterbalanced cytokine changes, as well as aberrant redox homeostasis and the inflammatory status. RTT is associated with a subclinical immune dysregulation as the likely consequence of a defective inflammation regulatory signaling system.
PMCID: PMC4510261  PMID: 26236424
9.  Early intervention with psychostimulants or antidepressants to increase methyl-CpG-binding protein 2 (MeCP2) expressions: A potential therapy for Rett syndrome 
Rett syndrome (RTT) is a severe X-linked postnatal neurodevelopmental disorder. The syndrome is caused primarily by mutations in the methyl CpG binding protein 2 (MeCP2) gene on Xq28. Most individuals with RTT are female, and female RTT is normally heterozygous for mutations in MeCP2. Patients with RTT display a normal period of development prior to the onset of symptoms, at which point they undergo a period of regression. Currently, no effective medication is available for this disorder, although animal studies have suggested that RTT symptoms are potentially reversible. For females with RTT, the severity of symptoms and progression of the disease varies a great deal, despite its homogenous genetic origin. These differences could be attributed to differences in the mutation points of MeCP2 and the skew caused by X-chromosome inactivation. Thus, the increased expression in the normal MeCP2 gene could decrease the severity of the disease. Based on findings from studies on animals indicating that fluoxetine (an antidepressant) and cocaine (a psychostimulant) can increase MeCP2 expression in the brain, it is suggested that early intervention with antidepressants or psychostimulants could increase the normal MeCP2 expression in females with RTT, who are normally heterozygous. This therapeutic hypothesis could be tested in an RTT animal model. Following the identification of the antidepressants or psychostimulants with the greatest influence on MeCP2 expression, a combination of early detection of the disorder with early intervention may result in improved therapeutic outcomes. Furthermore, a trial investigating the effects of antidepressants or psychostimulants on MeCP2 expression in lymphocyte culture from patients with RTT is suggested for clinical therapeutic prediction.
PMCID: PMC3560675  PMID: 22207122
X-chromosome inactivation; methyl CpG binding protein 2 (MeCP2); psychostimulants; antidepressants; treatment; Rett syndrome
10.  X-Chromosome Inactivation in Rett Syndrome Human Induced Pluripotent Stem Cells 
Rett syndrome (RTT) is a neurodevelopmental disorder that affects girls due primarily to heterozygous mutations in the X-linked gene encoding methyl-CpG binding protein 2 (MECP2). Random X-chromosome inactivation (XCI) results in cellular mosaicism in which some cells express wild-type (WT) MECP2 while other cells express mutant MECP2. The generation of patient-specific human induced pluripotent stem cells (hiPSCs) facilitates the production of RTT-hiPSC-derived neurons in vitro to investigate disease mechanisms and identify novel drug treatments. The generation of RTT-hiPSCs has been reported by many laboratories, however, the XCI status of RTT-hiPSCs has been inconsistent. Some report RTT-hiPSCs retain the inactive X-chromosome (post-XCI) of the founder somatic cell allowing isogenic RTT-hiPSCs that express only the WT or mutant MECP2 allele to be isolated from the same patient. Post-XCI RTT-hiPSCs-derived neurons retain this allele-specific expression pattern of WT or mutant MECP2. Conversely, others report RTT-hiPSCs in which the inactive X-chromosome of the founder somatic cell reactivates (pre-XCI) upon reprogramming into RTT-hiPSCs. Pre-XCI RTT-hiPSC-derived neurons exhibit random XCI resulting in cellular mosaicism with respect to WT and mutant MECP2 expression. Here we review and attempt to interpret the inconsistencies in XCI status of RTT-hiPSCs generated to date by comparison to other pluripotent systems in vitro and in vivo and the methods used to analyze XCI. Finally, we discuss the relative strengths and weaknesses of post- and pre-XCI hiPSCs in the context of RTT, and other X-linked and autosomal disorders for translational medicine.
PMCID: PMC3311266  PMID: 22470355
Rett syndrome; human induced pluripotent stem cells; X-chromosome inactivation
11.  MeCP2 Affects Skeletal Muscle Growth and Morphology through Non Cell-Autonomous Mechanisms 
PLoS ONE  2015;10(6):e0130183.
Rett syndrome (RTT) is an autism spectrum disorder mainly caused by mutations in the X-linked MECP2 gene and affecting roughly 1 out of 10.000 born girls. Symptoms range in severity and include stereotypical movement, lack of spoken language, seizures, ataxia and severe intellectual disability. Notably, muscle tone is generally abnormal in RTT girls and women and the Mecp2-null mouse model constitutively reflects this disease feature. We hypothesized that MeCP2 in muscle might physiologically contribute to its development and/or homeostasis, and conversely its defects in RTT might alter the tissue integrity or function. We show here that a disorganized architecture, with hypotrophic fibres and tissue fibrosis, characterizes skeletal muscles retrieved from Mecp2-null mice. Alterations of the IGF-1/Akt/mTOR pathway accompany the muscle phenotype. A conditional mouse model selectively depleted of Mecp2 in skeletal muscles is characterized by healthy muscles that are morphologically and molecularly indistinguishable from those of wild-type mice raising the possibility that hypotonia in RTT is mainly, if not exclusively, mediated by non-cell autonomous effects. Our results suggest that defects in paracrine/endocrine signaling and, in particular, in the GH/IGF axis appear as the major cause of the observed muscular defects. Remarkably, this is the first study describing the selective deletion of Mecp2 outside the brain. Similar future studies will permit to unambiguously define the direct impact of MeCP2 on tissue dysfunctions.
PMCID: PMC4476581  PMID: 26098633
12.  The Utility of Next-Generation Sequencing in Gene Discovery for Mutation-Negative Patients with Rett Syndrome 
Rett syndrome (RTT) is a rare, severe disorder of neuronal plasticity that predominantly affects girls. Girls with RTT usually appear asymptomatic in the first 6–18 months of life, but gradually develop severe motor, cognitive, and behavioral abnormalities that persist for life. A predominance of neuronal and synaptic dysfunction, with altered excitatory–inhibitory neuronal synaptic transmission and synaptic plasticity, are overarching features of RTT in children and in mouse models. Over 90% of patients with classical RTT have mutations in the X-linked methyl-CpG-binding (MECP2) gene, while other genes, including cyclin-dependent kinase-like 5 (CDKL5), Forkhead box protein G1 (FOXG1), myocyte-specific enhancer factor 2C (MEF2C), and transcription factor 4 (TCF4), have been associated with phenotypes overlapping with RTT. However, there remain a proportion of patients who carry a clinical diagnosis of RTT, but who are mutation negative. In recent years, next-generation sequencing technologies have revolutionized approaches to genetic studies, making whole-exome and even whole-genome sequencing possible strategies for the detection of rare and de novo mutations, aiding the discovery of novel disease genes. Here, we review the recent progress that is emerging in identifying pathogenic variations, specifically from exome sequencing in RTT patients, and emphasize the need for the use of this technology to identify known and new disease genes in RTT patients.
PMCID: PMC4500929
Rett syndrome; mutation; massively parallel sequencing; next-generation sequencing; intellectual disability
13.  Transcriptional regulation in pluripotent stem cells by methyl CpG-binding protein 2 (MeCP2) 
Human Molecular Genetics  2013;23(4):1045-1055.
Rett syndrome (RTT) is one of the most prevalent female mental disorders. De novo mutations in methyl CpG-binding protein 2 (MeCP2) are a major cause of RTT. MeCP2 regulates gene expression as a transcription regulator as well as through long-range chromatin interaction. Because MeCP2 is present on the X chromosome, RTT is manifested in an X-linked dominant manner. Investigation using murine MeCP2 null models and post-mortem human brain tissues has contributed to understanding the molecular and physiological function of MeCP2. In addition, RTT models using human induced pluripotent stem cells derived from RTT patients (RTT-iPSCs) provide novel resources to elucidate the regulatory mechanism of MeCP2. Previously, we obtained clones of female RTT-iPSCs that express either wild-type or mutant MECP2 due to the inactivation of one X chromosome. Reactivation of the X chromosome also allowed us to have RTT-iPSCs that express both wild-type and mutant MECP2. Using these unique pluripotent stem cells, we investigated the regulation of gene expression by MeCP2 in pluripotent stem cells by transcriptome analysis. We found that MeCP2 regulates genes encoding mitochondrial membrane proteins. In addition, loss of function in MeCP2 results in de-repression of genes on the inactive X chromosome. Furthermore, we showed that each mutation in MECP2 affects a partly different set of genes. These studies suggest that fundamental cellular physiology is affected by mutations in MECP2 from early development, and that a therapeutic approach targeting to unique forms of mutant MeCP2 is needed.
PMCID: PMC3900111  PMID: 24129406
14.  Effects of ω-3 Polyunsaturated Fatty Acids on Plasma Proteome in Rett Syndrome 
Mediators of Inflammation  2013;2013:723269.
The mechanism of action of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) is only partially known. Prior reports suggest a partial rescue of clinical symptoms and oxidative stress (OS) alterations following ω-3 PUFAs supplementation in patients with Rett syndrome (RTT), a devastating neurodevelopmental disorder with transient autistic features, affecting almost exclusively females and mainly caused by sporadic mutations in the gene encoding the methyl CpG binding protein 2 (MeCP2) protein. Here, we tested the hypothesis that ω-3 PUFAs may modify the plasma proteome profile in typical RTT patients with MECP2 mutations and classic phenotype. A total of 24 RTT girls at different clinical stages were supplemented with ω-3 PUFAs as fish oil for 12 months and compared to matched healthy controls. The expression of 16 proteins, mainly related to acute phase response (APR), was changed at the baseline in the untreated patients. Following ω-3 PUFAs supplementation, the detected APR was partially rescued, with the expression of 10 out of 16 (62%) proteins being normalized. ω-3 PUFAs have a major impact on the modulation of the APR in RTT, thus providing new insights into the role of inflammation in autistic disorders and paving the way for novel therapeutic strategies.
PMCID: PMC3872159  PMID: 24385686
15.  Age-dependent expression of MeCP2 in a heterozygous mosaic mouse model 
Human Molecular Genetics  2011;20(9):1834-1843.
Functional deficiency of the X-linked methyl-CPG binding protein 2 (MeCP2) leads to the neurodevelopmental disorder Rett syndrome (RTT). Due to random X-chromosome inactivation (XCI), most RTT patients are females who are heterozygous for the MECP2 mutation and therefore mosaic in MeCP2 deficiency. Some MECP2 heterozygote females are found to have unbalanced XCI, which may affect the severity of neurological symptoms seen in these patients; however, whether MeCP2 deficiency affects XCI in the postnatal and adult brain is unclear. Here we developed a novel MeCP2 mosaic mouse model in which the X chromosome containing the wild-type Mecp2 expresses a green fluorescent protein (GFP) transgene, while the X chromosome harboring the mutant Mecp2 does not. Due to random XCI, the neurons in the female MeCP2 mosaic mice express either wild-type MeCP2 (GFP+) or mutant MeCP2 (GFP−), and the two can be distinguished by GFP fluorescence. Using this mouse model, we evaluated XCI in female heterozygote mice from 3 to 9 months after birth. We found that MeCP2 deficiency does not affect XCI at 3 months of age, but does alter the proportion of wild-type MeCP2-expressing neurons at later ages, suggesting that MeCP2 impacts XCI patterns in an age-dependent manner. Given the important function of MeCP2 in neuronal development, our data could shed light on how MeCP2 deficiency affects postnatal brain functions and the dynamic changes in the neurological symptoms of RTT.
PMCID: PMC3071674  PMID: 21330301
16.  Methyl-CpG-binding protein 2 (MEPC2) mutation type is associated with disease severity in Rett Syndrome 
Journal of medical genetics  2014;51(3):152-158.
Rett Syndrome (RTT), a neurodevelopmental disorder that primarily affects girls, is characterized by a period of apparently normal development until 6–18 months of age, when motor and communication abilities regress. More than 95% of people with RTT have mutations in Methyl-CpG-binding protein 2 (MECP2), whose protein product modulates gene transcription. Surprisingly, although the disorder is caused by mutations in a single gene, disease severity in affected individuals can be quite variable. To explore the source of this phenotypic variability, we propose that specific MECP2 mutations lead to different degrees of disease severity. Using a database of 1052 participants assessed over 4940 unique visits, the largest cohort of both typical and atypical RTT patients studied to date, we examined the relationship between MECP2 mutation status and measures of growth, motor coordination, communicative abilities, respiratory function, autonomic symptoms, scoliosis, and seizures over time. In general agreement with previous studies, we found that particular mutations, such as p.Arg133Cys, p.Arg294X, p.Arg306Cys, 3′ Truncations, and Other Point Mutations, were relatively less severe in both typical and atypical RTT. In contrast, p.Arg106Trp, p.Arg168X, p.Arg255X, p.Arg270X, Splice Sites, Large Deletions, Insertions, and Deletions were significantly more severe. We also demonstrated that, for most mutation types, clinical severity increases with age. Furthermore, of the clinical features of RTT, ambulation, hand use, and age at onset of stereotypies are strongly linked to overall disease severity. Thus, we have confirmed that MECP2 mutation type is a strong predictor of disease severity. However, clinical severity continues to become progressively worse with advancing age regardless of initial severity. These findings will allow clinicians and families to anticipate and prepare better for the needs of individuals with RTT.
PMCID: PMC4403764  PMID: 24399845
genotype-phenotype; MeCP2; Rett syndrome; RTT
17.  Peripheral administration of brain-derived neurotrophic factor to Rett syndrome animal model: A possible approach for the treatment of Rett syndrome 
Rett syndrome (RTT) is a postnatal, severe, disabling neurodevelopmental disorder occurring almost exclusively in females and is the second most common cause for genetic mental retardation in girls. In the majority of cases it is caused by mutations in gene (MECP2) encoding methyl-CpG-binding protein 2. Brain-derived neurotrophic factor (BDNF) is a neurotrophic factor playing a major role in neuronal survival, neurogenesis and plasticity. Animal studies suggested that abnormalities in BDNF homeostasis may contribute to the pathogenesis in Mecp2 null mice, and BDNF administration in the Mecp2 mutant brain led to later onset/slower disease progression, suggesting that increased BDNF in the brain could be therapeutic for this disease. Mature BDNF is a 14 kDa protein that may have poor blood-brain barrier penetrability. However, recent animal studies demonstrated that peripheral administration of BDNF, either by intravenous injection or intranasal delivery, could increase BDNF levels in the brain. Thus it is proposed that peripheral administration of BDNF in the early stage could have therapeutic potential for RTT subjects. Furthermore, the combination use of mannitol may temporarily open the blood-brain barrier and facilitate the entry of BDNF into brain. The potential therapeutic effect of peripheral BDNF administration could be tested in RTT animal models such as Mecp2 KO mice, which may provide a new intervention for this devastating disease.
PMCID: PMC3560688  PMID: 22847207
brain-derived neurotrophic factor; peripheral administration; blood-brain barrier; treatment; Rett syndrome
18.  Isogenic Pairs of Wild Type and Mutant Induced Pluripotent Stem Cell (iPSC) Lines from Rett Syndrome Patients as In Vitro Disease Model 
PLoS ONE  2011;6(9):e25255.
Rett syndrome (RTT) is an autism spectrum developmental disorder caused by mutations in the X-linked methyl-CpG binding protein 2 (MECP2) gene. Excellent RTT mouse models have been created to study the disease mechanisms, leading to many important findings with potential therapeutic implications. These include the identification of many MeCP2 target genes, better understanding of the neurobiological consequences of the loss- or mis-function of MeCP2, and drug testing in RTT mice and clinical trials in human RTT patients. However, because of potential differences in the underlying biology between humans and common research animals, there is a need to establish cell culture-based human models for studying disease mechanisms to validate and expand the knowledge acquired in animal models. Taking advantage of the nonrandom pattern of X chromosome inactivation in female induced pluripotent stem cells (iPSC), we have generated isogenic pairs of wild type and mutant iPSC lines from several female RTT patients with common and rare RTT mutations. R294X (arginine 294 to stop codon) is a common mutation carried by 5–6% of RTT patients. iPSCs carrying the R294X mutation has not been studied. We differentiated three R294X iPSC lines and their isogenic wild type control iPSC into neurons with high efficiency and consistency, and observed characteristic RTT pathology in R294X neurons. These isogenic iPSC lines provide unique resources to the RTT research community for studying disease pathology, screening for novel drugs, and testing toxicology.
PMCID: PMC3180386  PMID: 21966470
19.  Dynamic changes in Histone H3 lysine 9 acetylation localization patterns during neuronal maturation require MeCP2 
Mutations within the gene encoding methyl CpG binding protein 2 (MECP2) cause the autism-spectrum neurodevelopmental disorder Rett Syndrome (RTT). MECP2 recruits histone deacetylase to methylated DNA and acts as a long-range regulator of methylated genes. Despite ubiquitous MECP2 expression, the phenotype of RTT and the Mecp2-deficient mouse is largely restricted to the postnatal brain. Since Mecp2-deficient mice have a defect in neuronal maturation, we sought to understand how MECP2/Mecp2 mutations globally affect histone modifications during postnatal brain development by an immunofluorescence approach. Using an antibody specific to acetylated histone H3 lysine 9 (H3K9ac), a bright punctate nuclear staining pattern was observed as MECP2 expression increased in early postnatal neuronal nuclei. As neurons matured in juvenile and adult brain samples, the intensity of H3K9ac staining was reduced. Mecp2-deficient mouse and RTT cerebral neurons lacked this developmental reduction in H3K9ac staining compared to age-matched controls, resulting in a significant increase in neuronal nuclei with bright H3K9ac punctate staining. In contrast, trimethylated histone H3 lysine 9 (H3K9me3) localized to heterochromatin independent of MeCP2, but showed significantly reduced levels in Mecp2 deficient mouse and RTT brain. Autism brain with reduced MECP2 expression displayed similar histone H3 alterations as RTT brain. These observations suggest that MeCP2 regulates global histone modifications during a critical postnatal stage of neuronal maturation. These results have implications for understanding the molecular pathogenesis of RTT and autism in which MECP2 mutation or deficiency corresponds with arrested neurodevelopment.
PMCID: PMC1857283  PMID: 17464364
histone; acetylation; methylation; MeCP2; Rett syndrome; autism; brain; neuron
20.  VPA Alleviates Neurological Deficits and Restores Gene Expression in a Mouse Model of Rett Syndrome 
PLoS ONE  2014;9(6):e100215.
Rett syndrome (RTT) is a devastating neurodevelopmental disorder that occurs once in every 10,000–15,000 live female births. Despite intensive research, no effective cure is yet available. Valproic acid (VPA) has been used widely to treat mood disorder, epilepsy, and a growing number of other disorders. In limited clinical studies, VPA has also been used to control seizure in RTT patients with promising albeit somewhat unclear efficacy. In this study we tested the effect of VPA on the neurological symptoms of RTT and discovered that short-term VPA treatment during the symptomatic period could reduce neurological symptoms in RTT mice. We found that VPA restores the expression of a subset of genes in RTT mouse brains, and these genes clustered in neurological disease and developmental disorder networks. Our data suggest that VPA could be used as a drug to alleviate RTT symptoms.
PMCID: PMC4072629  PMID: 24968028
21.  Mice with an isoform-ablating Mecp2 exon 1 mutation recapitulate the neurologic deficits of Rett syndrome 
Human Molecular Genetics  2013;23(9):2447-2458.
Mutations in MECP2 cause the neurodevelopmental disorder Rett syndrome (RTT OMIM 312750). Alternative inclusion of MECP2/Mecp2 exon 1 with exons 3 and 4 encodes MeCP2-e1 or MeCP2-e2 protein isoforms with unique amino termini. While most MECP2 mutations are located in exons 3 and 4 thus affecting both isoforms, MECP2 exon 1 mutations but not exon 2 mutations have been identified in RTT patients, suggesting that MeCP2-e1 deficiency is sufficient to cause RTT. As expected, genetic deletion of Mecp2 exons 3 and/or 4 recapitulates RTT-like neurologic defects in mice. However, Mecp2 exon 2 knockout mice have normal neurologic function. Here, a naturally occurring MECP2 exon 1 mutation is recapitulated in a mouse model by genetic engineering. A point mutation in the translational start codon of Mecp2 exon 1, transmitted through the germline, ablates MeCP2-e1 translation while preserving MeCP2-e2 production in mouse brain. The resulting MeCP2-e1 deficient mice developed forelimb stereotypy, hindlimb clasping, excessive grooming and hypo-activity prior to death between 7 and 31 weeks. MeCP2-e1 deficient mice also exhibited abnormal anxiety, sociability and ambulation. Despite MeCP2-e1 and MeCP2-e2 sharing, 96% amino acid identity, differences were identified. A fraction of phosphorylated MeCP2-e1 differed from the bulk of MeCP2 in subnuclear localization and co-factor interaction. Furthermore, MeCP2-e1 exhibited enhanced stability compared with MeCP2-e2 in neurons. Therefore, MeCP2-e1 deficient mice implicate MeCP2-e1 as the sole contributor to RTT with non-redundant functions.
PMCID: PMC3976336  PMID: 24352790
22.  Inflammatory Lung Disease in Rett Syndrome 
Mediators of Inflammation  2014;2014:560120.
Rett syndrome (RTT) is a pervasive neurodevelopmental disorder mainly linked to mutations in the gene encoding the methyl-CpG-binding protein 2 (MeCP2). Respiratory dysfunction, historically credited to brainstem immaturity, represents a major challenge in RTT. Our aim was to characterize the relationships between pulmonary gas exchange abnormality (GEA), upper airway obstruction, and redox status in patients with typical RTT (n = 228) and to examine lung histology in a Mecp2-null mouse model of the disease. GEA was detectable in ~80% (184/228) of patients versus ~18% of healthy controls, with “high” (39.8%) and “low” (34.8%) patterns dominating over “mixed” (19.6%) and “simple mismatch” (5.9%) types. Increased plasma levels of non-protein-bound iron (NPBI), F2-isoprostanes (F2-IsoPs), intraerythrocyte NPBI (IE-NPBI), and reduced and oxidized glutathione (i.e., GSH and GSSG) were evidenced in RTT with consequently decreased GSH/GSSG ratios. Apnea frequency/severity was positively correlated with IE-NPBI, F2-IsoPs, and GSSG and negatively with GSH/GSSG ratio. A diffuse inflammatory infiltrate of the terminal bronchioles and alveoli was evidenced in half of the examined Mecp2-mutant mice, well fitting with the radiological findings previously observed in RTT patients. Our findings indicate that GEA is a key feature of RTT and that terminal bronchioles are a likely major target of the disease.
PMCID: PMC3976920  PMID: 24757286
23.  Loss of MeCP2 function is associated with distinct gene expression changes in the striatum 
Neurobiology of disease  2013;59:257-266.
Rett syndrome (RTT) is a neurodevelopmental disorder characterized by developmental regression beginning 6–18 months after birth, followed by a lifetime of intellectual disability, stereotyped behaviors, and motor deficits. RTT is caused by mutations in the gene encoding MeCP2, a methyl-CpG binding protein believed to modulate gene transcription. Gene expression studies of individual brain regions have reported that Mecp2 loss-of-function leads to both activation or repression of its gene targets in mice. Conditional deletion of MeCP2 from different brain regions has revealed unique insights into the role of these structures in mediating particular RTT-like phenotypes. However, the function of MeCP2 in the striatum, a major brain region involved in motor control and executive cognitive functions, has yet to be studied. Here, we characterized the gene expression changes in the striatum of Mecp2 mutant mice. We found a number of differentially expressed genes in the striatum of both constitutive Mecp2-null mice and mice lacking MeCP2 only from forebrain GABAergic neurons. These changes only occurred when MeCP2 expression levels had reached mature levels and RTT-like symptoms were manifest, supporting a role for MeCP2 in maintaining proper brain function. Many of the gene expression changes identified in the striatum have not previously been shown to change in the hypothalamus or cerebellum. Bioinformatic analysis of differentially expressed genes in striatum as well as hypothalamus and cerebellum revealed that loss of MeCP2 does not affect the global landscape of gene expression. Additionally, we uncovered a number of differentially expressed genes in the liver of Mecp2-null mice suggesting an important role for MeCP2 in non-neuronal tissues. Collectively, our data suggest that the differential expression of genes following loss of MeCP2 occurs in a tissue, or cell-type specific manner and thus MeCP2 function should be understood in a cellular context.
PMCID: PMC3790640  PMID: 23948639
Methyl-CpG binding protein 2; MeCP2; Rett syndrome; RTT; Gene expression; Striatum
24.  Two new Rett syndrome families and review of the literature: expanding the knowledge of MECP2 frameshift mutations 
Rett syndrome (RTT) is an X-linked dominant neurodevelopmental disorder, which is usually caused by de novo mutations in the MECP2 gene. More than 70% of the disease causing MECP2 mutations are eight recurrent C to T transitions, which almost exclusively arise on the paternally derived X chromosome. About 10% of the RTT cases have a C-terminal frameshift deletion in MECP2. Only few RTT families with a segregating MECP2 mutation, which affects female carriers with a phenotype of mental retardation or RTT, have been reported in the literature. In this study we describe two new RTT families with three and four individuals, respectively, and review the literature comparing the type of mutations and phenotypes observed in RTT families with those observed in sporadic cases. Based on these observations we also investigated origin of mutation segregation to further improve genetic counselling.
MECP2 mutations were identified by direct sequencing. XCI studies were performed using the X-linked androgen receptor (AR) locus. The parental origin of de novo MECP2 frameshift mutations was investigated using intronic SNPs.
In both families a C-terminal frameshift mutation segregates. Clinical features of the mutation carriers vary from classical RTT to mild mental retardation. XCI profiles of the female carriers correlate to their respective geno-/phenotypes. The majority of the de novo frameshift mutations occur on the paternally derived X chromosome (7/9 cases), without a paternal age effect.
The present study suggests a correlation between the intrafamilial phenotypic differences observed in RTT families and their respective XCI pattern in blood, in contrast to sporadic RTT cases where a similar correlation has not been demonstrated. Furthermore, we found de novo MECP2 frameshift mutations frequently to be of paternal origin, although not with the same high paternal occurrence as in sporadic cases with C to T transitions. This suggests further investigations of more families. This study emphasizes the need for thorough genetic counselling of families with a newly diagnosed RTT patient.
PMCID: PMC3173288  PMID: 21878110
25.  Loss of MeCP2 From Forebrain Excitatory Neurons Leads to Cortical Hyperexcitation and Seizures 
The Journal of Neuroscience  2014;34(7):2754-2763.
Mutations of MECP2 cause Rett syndrome (RTT), a neurodevelopmental disorder leading to loss of motor and cognitive functions, impaired social interactions, and seizure at young ages. Defects of neuronal circuit development and function are thought to be responsible for the symptoms of RTT. The majority of RTT patients show recurrent seizures, indicating that neuronal hyperexcitation is a common feature of RTT. However, mechanisms underlying hyperexcitation in RTT are poorly understood. Here we show that deletion of Mecp2 from cortical excitatory neurons but not forebrain inhibitory neurons in the mouse leads to spontaneous seizures. Selective deletion of Mecp2 from excitatory but not inhibitory neurons in the forebrain reduces GABAergic transmission in layer 5 pyramidal neurons in the prefrontal and somatosensory cortices. Loss of MeCP2 from cortical excitatory neurons reduces the number of GABAergic synapses in the cortex, and enhances the excitability of layer 5 pyramidal neurons. Using single-cell deletion of Mecp2 in layer 2/3 pyramidal neurons, we show that GABAergic transmission is reduced in neurons without MeCP2, but is normal in neighboring neurons with MeCP2. Together, these results suggest that MeCP2 in cortical excitatory neurons plays a critical role in the regulation of GABAergic transmission and cortical excitability.
PMCID: PMC3921436  PMID: 24523563
GABA; hyperexcitation; neocortex; pyramidal neuron; Rett syndrome; seizure

Results 1-25 (1028270)