PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (749077)

Clipboard (0)
None

Related Articles

1.  A role for Atg8–PE deconjugation in autophagosome biogenesis 
Autophagy  2012;8(5):780-793.
Formation of the autophagosome is likely the most complex step of macroautophagy, and indeed it is the morphological and functional hallmark of this process; accordingly, it is critical to understand the corresponding molecular mechanism. Atg8 is the only known autophagy-related (Atg) protein required for autophagosome formation that remains associated with the completed sequestering vesicle. Approximately one-fourth of all of the characterized Atg proteins that participate in autophagosome biogenesis affect Atg8, regulating its conjugation to phosphatidylethanolamine (PE), localization to the phagophore assembly site and/or subsequent deconjugation. An unanswered question in the field regards the physiological role of the deconjugation of Atg8–PE. Using an Atg8 mutant that bypasses the initial Atg4-dependent processing, we demonstrate that Atg8 deconjugation is an important step required to facilitate multiple events during macroautophagy. The inability to deconjugate Atg8–PE results in the mislocalization of this protein to the vacuolar membrane. We also show that the deconjugation of Atg8–PE is required for efficient autophagosome biogenesis, the assembly of Atg9-containing tubulovesicular clusters into phagophores/autophagosomes, and for the disassembly of PAS-associated Atg components.
doi:10.4161/auto.19385
PMCID: PMC3378420  PMID: 22622160
2.  A PCR analysis of the ubiquitin-like conjugation systems in macroautophagy 
Autophagy  2011;7(12):1410-1414.
A central part of the core macroauto-phagy (hereafter autophagy) machinery includes the two ubiquitin-like (Ubl) conjugation systems that involve the Ubl proteins Atg8 and Atg12.1 Although the functions of these proteins have not been fully elucidated, they play critical roles in autophagosome formation. For example, Atg8 is involved in cargo recognition,2,3 and the amount of Atg8 in part determines the size of the autophagosome,4 whereas Atg12 is part of a trimer that may function as an E3 ligase to facilitate Atg8 conjugation to phosphatidylethanolamine and determine, in part, the site of the conjugation reaction.5 Thus, fully functional autophagy requires both the Atg8 and Atg12 conjugation systems. Dysfunctional autophagy is associated with various human pathophysiologies including cancer, neurodegeneration, gastrointestinal disorders and heart disease. So, if you are wondering whether autophagy is operating properly in your own body, what can you do? The problem is that there are relatively few methods for analyzing autophagy in vivo.6-11 Minimally, you might want to find out if the relevant genes are intact and have the correct sequence. Considering the rapid advances being made in DNA sequencing technology, it is likely only a matter of time before people can submit a DNA sample and obtain a rapid readout of particular genes, or their entire genome. Thus, anticipating the future, we decided to analyze a select set of autophagy-related (ATG) genes, with a focus on those encoding components of the Ubl conjugation systems, by a polymerase chain reaction (PCR)-based method that combines science with art.
doi:10.4161/auto.7.12.16991
PMCID: PMC3288015  PMID: 22024756
autophagy; collaboration; gel electrophoresis; membrane; primer
3.  The Atg16L Complex Specifies the Site of LC3 Lipidation for Membrane Biogenesis in Autophagy 
Molecular Biology of the Cell  2008;19(5):2092-2100.
Two ubiquitin-like molecules, Atg12 and LC3/Atg8, are involved in autophagosome biogenesis. Atg12 is conjugated to Atg5 and forms an ∼800-kDa protein complex with Atg16L (referred to as Atg16L complex). LC3/Atg8 is conjugated to phosphatidylethanolamine and is associated with autophagosome formation, perhaps by enabling membrane elongation. Although the Atg16L complex is required for efficient LC3 lipidation, its role is unknown. Here, we show that overexpression of Atg12 or Atg16L inhibits autophagosome formation. Mechanistically, the site of LC3 lipidation is determined by the membrane localization of the Atg16L complex as well as the interaction of Atg12 with Atg3, the E2 enzyme for the LC3 lipidation process. Forced localization of Atg16L to the plasma membrane enabled ectopic LC3 lipidation at that site. We propose that the Atg16L complex is a new type of E3-like enzyme that functions as a scaffold for LC3 lipidation by dynamically localizing to the putative source membranes for autophagosome formation.
doi:10.1091/mbc.E07-12-1257
PMCID: PMC2366860  PMID: 18321988
4.  Mechanism and functions of membrane binding by the Atg5-Atg12/Atg16 complex during autophagosome formation 
The EMBO journal  2012;31(22):4304-4317.
Autophagy is a conserved process for the bulk degradation of cytoplasmic material. Triggering of autophagy results in the formation of double membrane-bound vesicles termed autophagosomes. The conserved Atg5-Atg12/Atg16 complex is essential for autophagosome formation. Here we show that the yeast Atg5-Atg12/Atg16 complex directly binds membranes. Membrane binding is mediated by Atg5, inhibited by Atg12 and activated by Atg16. In a fully reconstituted system using giant unilamellar vesicles and recombinant proteins we reveal that all components of the complex are required for efficient promotion of Atg8 conjugation to phosphatidylethanolamine and are able to assign precise functions to all of its components during this process. In addition, we report that in vitro the Atg5-Atg12/Atg16 complex is able to tether membranes independently of Atg8. Furthermore, we show that membrane binding by Atg5 is downstream of its recruitment to the preautophagosomal structure but is essential for autophagy and cytoplasm-to-vacuole transport at a stage preceding Atg8 conjugation and vesicle closure. Our findings provide important insights into the mechanism of action of the Atg5-Atg12/Atg16 complex during autophagosome formation.
doi:10.1038/emboj.2012.278
PMCID: PMC3501226  PMID: 23064152
autophagy; autophagosome; Atg5; Atg8; Atg16
5.  Atg8 Controls Phagophore Expansion during Autophagosome Formation 
Molecular Biology of the Cell  2008;19(8):3290-3298.
Autophagy is a potent intracellular degradation process with pivotal roles in health and disease. Atg8, a lipid-conjugated ubiquitin-like protein, is required for the formation of autophagosomes, double-membrane vesicles responsible for the delivery of cytoplasmic material to lysosomes. How and when Atg8 functions in this process, however, is not clear. Here we show that Atg8 controls the expansion of the autophagosome precursor, the phagophore, and give the first real-time, observation-based temporal dissection of the autophagosome formation process. We demonstrate that the amount of Atg8 determines the size of autophagosomes. During autophagosome biogenesis, Atg8 forms an expanding structure and later dissociates from the site of vesicle formation. On the basis of the dynamics of Atg8, we present a multistage model of autophagosome formation. This model provides a foundation for future analyses of the functions and dynamics of known autophagy-related proteins and for screening new genes.
doi:10.1091/mbc.E07-12-1292
PMCID: PMC2488302  PMID: 18508918
6.  The Atg8 Conjugation System Is Indispensable for Proper Development of Autophagic Isolation Membranes in Mice 
Molecular Biology of the Cell  2008;19(11):4762-4775.
Autophagy is an evolutionarily conserved bulk-protein degradation pathway in which isolation membranes engulf the cytoplasmic constituents, and the resulting autophagosomes transport them to lysosomes. Two ubiquitin-like conjugation systems, termed Atg12 and Atg8 systems, are essential for autophagosomal formation. In addition to the pathophysiological roles of autophagy in mammals, recent mouse genetic studies have shown that the Atg8 system is predominantly under the control of the Atg12 system. To clarify the roles of the Atg8 system in mammalian autophagosome formation, we generated mice deficient in Atg3 gene encoding specific E2 enzyme for Atg8. Atg3-deficient mice were born but died within 1 d after birth. Conjugate formation of mammalian Atg8 homologues was completely defective in the mutant mice. Intriguingly, Atg12–Atg5 conjugation was markedly decreased in Atg3-deficient mice, and its dissociation from isolation membranes was significantly delayed. Furthermore, loss of Atg3 was associated with defective process of autophagosome formation, including the elongation and complete closure of the isolation membranes, resulting in malformation of the autophagosomes. The results indicate the essential role of the Atg8 system in the proper development of autophagic isolation membranes in mice.
doi:10.1091/mbc.E08-03-0309
PMCID: PMC2575156  PMID: 18768753
7.  A high-throughput FRET-based assay for determination of Atg4 activity 
Autophagy  2012;8(3):401-412.
Atg4 is required for cleaving Atg8, allowing it to be conjugated to phosphatidylethanolamine on phagophore membranes, a key step in autophagosome biogenesis. Deconjugation of Atg8 from autophagosomal membranes could be also a regulatory step in controlling autophagy. Therefore, the activity of Atg4 is important for autophagy and could be a target for therapeutic intervention. In this study, a sensitive and specific method to measure the activity of two Atg4 homologs in mammalian cells, Atg4A and Atg4B, was developed using a fluorescence resonance energy transfer (FRET)-based approach. Thus LC3B and GATE-16, two substrates that could be differentially cleaved by Atg4A and Atg4B, were fused with CFP and YFP at the N- and C-terminus, respectively, allowing FRET to occur. The FRET signals decreased in proportion to the Atg4-mediated cleavage, which separated the two fluorescent proteins. This method is highly efficient for measuring the enzymatic activity and kinetics of Atg4A and Atg4B under in vitro conditions. Applications of the assay indicated that the activity of Atg4B was dependent on its catalytic cysteine and expression level, but showed little changes under several common autophagy conditions. In addition, the assays displayed excellent performance in high throughput format and are suitable for screening and analysis of potential modulators. In summary, the FRET-based assay is simple and easy to use, is sensitive and specific, and is suitable for both routine measurement of Atg4 activity and high-throughput screening.
doi:10.4161/auto.18777
PMCID: PMC3337841  PMID: 22302004
Atg4; Atg8; FRET assay; GATE-16; LC3B
8.  Double duty of Atg9 self-association in autophagosome biogenesis 
Autophagy  2009;5(3):385-387.
The understanding of the membrane flow process during autophagosome formation is essential to illuminate the role of autophagy under various disease-causing conditions. Atg9 is the only identified integral membrane protein required for autophagosome formation, and it is thought to cycle between the membrane sources and the phagophore assembly site (PAS). Thus, Atg9 may play an important role as a membrane carrier. We report the self-interaction of Atg9 and generate an Atg9 mutant that is defective in this interaction. This mutation results in abnormal autophagy, due to altered phagophore formation as well as inefficient membrane delivery to the PAS. Based on our analyses, we discuss a model suggesting dual functions for the Atg9 complex: by reversibly binding to another Atg9 molecule, Atg9 can both promote lipid transport from the membrane origins to the PAS, and also help assemble an intact phagophore membrane.
PMCID: PMC2833293  PMID: 19182520
membrane biogenesis; mitochondria; protein targeting; stress; vacuole; yeast
9.  Mammalian Atg2 proteins are essential for autophagosome formation and important for regulation of size and distribution of lipid droplets 
Molecular Biology of the Cell  2012;23(5):896-909.
Autophagy is an intracellular degradation process that is mediated by autophagosomes. Mammalian Atg2 proteins Atg2A and Atg2B are identified and characterized as essential for autophagy. They are also present on lipid droplets and are involved in regulation of lipid droplet volume and distribution.
Macroautophagy is an intracellular degradation system by which cytoplasmic materials are enclosed by the autophagosome and delivered to the lysosome. Autophagosome formation is considered to take place on the endoplasmic reticulum and involves functions of autophagy-related (Atg) proteins. Here, we report the identification and characterization of mammalian Atg2 homologues Atg2A and Atg2B. Simultaneous silencing of Atg2A and Atg2B causes a block in autophagic flux and accumulation of unclosed autophagic structures containing most Atg proteins. Atg2A localizes on the autophagic membrane, as well as on the surface of lipid droplets. The Atg2A region containing amino acids 1723–1829, which shows relatively high conservation among species, is required for localization to both the autophagic membrane and lipid droplet and is also essential for autophagy. Depletion of both Atg2A and Atg2B causes clustering of enlarged lipid droplets in an autophagy-independent manner. These data suggest that mammalian Atg2 proteins function both in autophagosome formation and regulation of lipid droplet morphology and dispersion.
doi:10.1091/mbc.E11-09-0785
PMCID: PMC3290647  PMID: 22219374
10.  SNARE proteins are required for macroautophagy 
Cell  2011;146(2):290-302.
SUMMARY
Macroautophagy mediates the degradation of long-lived proteins and organelles via the de novo formation of double-membrane autophagosomes that sequester cytoplasm and deliver it to the vacuole/lysosome; however, relatively little is known about autophagosome biogenesis. Atg8, a phosphatidylethanolamine-conjugated protein, was previously proposed to function in autophagosome membrane expansion, based on the observation that it mediates liposome tethering and hemifusion in vitro. We show here that with physiological concentrations of phosphatidylethanolamine, Atg8 does not act as a fusogen. Rather, we provide evidence for the involvement of exocytic Q/t-SNAREs in autophagosome formation, acting in the recruitment of key autophagy components to the site of autophagosome formation, and in regulating the organization of Atg9 into tubulovesicular clusters. Additionally, we found that the endosomal Q/t-SNARE Tlg2 and the R/v-SNAREs Sec22 and Ykt6 interact with Sso1-Sec9, and are required for normal Atg9 transport. Thus, multiple SNARE-mediated fusion events are likely to be involved in autophagosome biogenesis.
doi:10.1016/j.cell.2011.06.022
PMCID: PMC3143362  PMID: 21784249
Atg9; fusion; lysosome; membrane biogenesis; protein targeting; secretory pathway; stress; tubulovesicular clusters; vacuole; yeast
11.  Non-degradative Role of Atg5-Atg12/Atg16L1 Autophagy Protein Complex in Antiviral Activity of Interferon gamma 
Cell host & microbe  2012;11(4):397-409.
SUMMARY
Host resistance to viral infection requires Type-I (α/β) and -II (γ) interferon (IFN) production. Another important defense mechanism is the degradative activity of macroautophagy (herein autophagy), mediated by the coordinated action of evolutionarily conserved autophagy proteins (Atg). We show that the Atg5-Atg12/Atg16L1 protein complex, whose prior known function is in autophagosome formation, is required for IFNγ-mediated host defense against murine norovirus (MNV) infection. Importantly, the direct antiviral activity of IFNγ against MNV in macrophages required Atg5-Atg12, Atg7, and Atg16L1, but not induction of autophagy, the degradative activity of lysosomal proteases, fusion of autophagosomes and lysosomes, or the Atg8 processing protein Atg4B. IFNγ, via Atg5-Atg12/Atg16L1, inhibited formation of the membranous cytoplasmic MNV replication complex, where Atg16L1 localized. Thus, the Atg5-Atg12/Atg16L1 complex performs a pivotal, nondegradative role in IFNγ-mediated antiviral defense, establishing that multicellular organisms have evolved to use portions of the autophagy pathway machinery in a cassette-like fashion for host defense.
doi:10.1016/j.chom.2012.03.002
PMCID: PMC3348177  PMID: 22520467
12.  OATL1, a novel autophagosome-resident Rab33B-GAP, regulates autophagosomal maturation 
The Journal of Cell Biology  2011;192(5):839-853.
The GAP activity of OATL1, which is recruited to autophagosomes by Atg8, regulates autophagosome–lysosome fusion.
Macroautophagy is a bulk degradation system conserved in all eukaryotic cells. A ubiquitin-like protein, Atg8, and its homologues are essential for autophagosome formation and act as a landmark for selective autophagy of aggregated proteins and damaged organelles. In this study, we report evidence demonstrating that OATL1, a putative Rab guanosine triphosphatase–activating protein (GAP), is a novel binding partner of Atg8 homologues in mammalian cells. OATL1 is recruited to isolation membranes and autophagosomes through direct interaction with Atg8 homologues and is involved in the fusion between autophagosomes and lysosomes through its GAP activity. We further provide evidence that Rab33B, an Atg16L1-binding protein, is a target substrate of OATL1 and is involved in the fusion between autophagosomes and lysosomes, the same as OATL1. Because both its GAP activity and its Atg8 homologue–binding activity are required for OATL1 to function, we propose a model that OATL1 uses Atg8 homologues as a scaffold to exert its GAP activity and to regulate autophagosomal maturation.
doi:10.1083/jcb.201008107
PMCID: PMC3051816  PMID: 21383079
13.  Atg21 Is a Phosphoinositide Binding Protein Required for Efficient Lipidation and Localization of Atg8 during Uptake of Aminopeptidase I by Selective Autophagy 
Molecular Biology of the Cell  2004;15(8):3553-3566.
Delivery of proteins and organelles to the vacuole by autophagy and the cytoplasm to vacuole targeting (Cvt) pathway involves novel rearrangements of membrane resulting in the formation of vesicles that fuse with the vacuole. The mechanism of vesicle formation and the origin of the membrane are complex issues still to be resolved. Atg18 and Atg21 are proteins essential to vesicle formation and together with Ygr223c form a novel family of phosphoinositide binding proteins that are associated with the vacuole and perivacuolar structures. Their localization requires the activity of Vps34, suggesting that phosphatidylinositol(3)phosphate may be essential for their function. The activity of Atg18 is vital for all forms of autophagy, whereas Atg21 is required for the Cvt pathway but not for nitrogen starvation-induced autophagy. The loss of Atg21 results in the absence of Atg8 from the pre-autophagosomal structure (PAS), which may be ascribed to a reduced rate of conjugation of Atg8 to phosphatidylethanolamine. A similar defect in localization of a second ubiquitin-like conjugate, Atg12-Atg5, suggests that Atg21 may be involved in the recruitment of membrane to the PAS.
doi:10.1091/mbc.E04-02-0147
PMCID: PMC491818  PMID: 15155809
14.  Crystallization of the Atg12–Atg5 conjugate bound to Atg16 by the free-interface diffusion method 
Journal of Synchrotron Radiation  2008;15(Pt 3):266-268.
The Atg12–Atg5 conjugate was prepared by in vivo reconstitution and was crystallized with Atg16 using the free-interface diffusion method.
Autophagy mediates the bulk degradation of cytoplasmic components in lysosomes/vacuoles. Five autophagy-related (Atg) proteins are involved in a ubiquitin-like protein conjugation system. Atg12 is conjugated to its sole target, Atg5, by two enzymes, Atg7 and Atg10. The Atg12–Atg5 conjugates form a multimeric complex with Atg16. Formation of the Atg12–Atg5–Atg16 ternary complex is crucial for the functions of these proteins on autophagy. Here, the expression, purification and crystallization of the Atg12–Atg5 conjugate bound to the N-terminal region of Atg16 (Atg16N) are reported. The Atg12–Atg5 conjugates were formed by co-expressing Atg5, Atg7, Atg10 and Atg12 in Eschericia coli. The Atg12–Atg5–Atg16N ternary complex was formed by mixing purified Atg12–Atg5 conjugates and Atg16N, and was further purified by gel-filtration chromatography. Crystallization screening was performed by the free-interface diffusion method. Using obtained microcrystals as seeds, large crystals for diffraction data collection were obtained by the sitting-drop vapour-diffusion method. The crystal contained one ternary complex per asymmetric unit, and diffracted to 2.6 Å resolution.
doi:10.1107/S0909049507054799
PMCID: PMC2394807  PMID: 18421155
autophagy; ubiquitin-like conjugation; crystallization; free-interface diffusion method
15.  Structures of Atg7-Atg3 and Atg7-Atg10 reveal noncanonical mechanisms of E2 recruitment by the autophagy E1 
Autophagy  2013;9(5):778-780.
Central to most forms of autophagy are two ubiquitin-like proteins (UBLs), Atg8 and Atg12, which play important roles in autophagosome biogenesis, substrate recruitment to autophagosomes, and other aspects of autophagy. Typically, UBLs are activated by an E1 enzyme that (1) catalyzes adenylation of the UBL C terminus, (2) transiently covalently captures the UBL through a reactive thioester bond between the E1 active site cysteine and the UBL C terminus, and (3) promotes transfer of the UBL C terminus to the catalytic cysteine of an E2 conjugating enzyme. The E2, and often an E3 ligase enzyme, catalyzes attachment of the UBL C terminus to a primary amine group on a substrate. Here, we summarize our recent work reporting the structural and mechanistic basis for E1-E2 protein interactions in autophagy.
doi:10.4161/auto.23644
PMCID: PMC3669186  PMID: 23388412
Atg10; Atg12; Atg3; Atg7; Atg8; E1 enzyme; E2 enzyme; ubiquitin-like protein
16.  Atg35, a micropexophagy-specific protein that regulates micropexophagic apparatus formation in Pichia pastoris 
Autophagy  2011;7(4):375-385.
Autophagy-related (Atg) pathways deliver cytosol and organelles to the vacuole in double-membrane vesicles called autophagosomes, which are formed at the phagophore assembly site (PAS), where most of the core Atg proteins assemble. Atg28 is a component of the core autophagic machinery partially required for all Atg pathways in Pichia pastoris. This coiled-coil protein interacts with Atg17 and is essential for micropexophagy. However, the role of Atg28 in micropexophagy was unknown. We used the yeast two-hybrid system to search for Atg28 interaction partners from P. pastoris and identified a new Atg protein, named Atg35. The atg35Δ mutant was not affected in macropexophagy, cytoplasm-to-vacuole targeting or general autophagy. However, both Atg28 and Atg35 were required for micropexophagy and for the formation of the micropexophagic apparatus (MIPA). This requirement correlated with a stronger expression of both proteins on methanol and glucose. Atg28 mediated the interaction of Atg35 with Atg17. Trafficking of overexpressed Atg17 from the peripheral ER to the nuclear envelope was required to organize a peri-nuclear structure (PNS), the site of Atg35 colocalization during micropexophagy. In summary, Atg35 is a new Atg protein that relocates to the PNS and specifically regulates MIPA formation during micropexophagy.
doi:10.4161/auto.7.4.14369
PMCID: PMC3127218  PMID: 21169734
Atg protein; peroxisome; micropexophagy; MIPA; nucleus
17.  Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy 
Molecular Biology of the Cell  2012;23(10):1860-1873.
Mammalian Atg9 (mAtg9) is a multispanning membrane protein that resides in a novel compartment. mAtg9 interacts dynamically with phagophores and forming autophagosomes. It is proposed that mAtg9 function is required to initiate autophagosome formation and increase the number of autophagosomes.
Autophagy is a catabolic process essential for cell homeostasis, at the core of which is the formation of double-membrane organelles called autophagosomes. Atg9 is the only known transmembrane protein required for autophagy and is proposed to deliver membrane to the preautophagosome structures and autophagosomes. We show here that mammalian Atg9 (mAtg9) is required for the formation of DFCP1-positive autophagosome precursors called phagophores. mAtg9 is recruited to phagophores independent of early autophagy proteins, such as ULK1 and WIPI2, but does not become a stable component of the autophagosome membrane. In fact, mAtg9-positive structures interact dynamically with phagophores and autophagosomes without being incorporated into them. The membrane compartment enriched in mAtg9 displays a unique sedimentation profile, which is unaltered upon starvation-induced autophagy. Correlative light electron microscopy reveals that mAtg9 is present on tubular–vesicular membranes emanating from vacuolar structures. We show that mAtg9 resides in a unique endosomal-like compartment and on endosomes, including recycling endosomes, where it interacts with the transferrin receptor. We propose that mAtg9 trafficking through multiple organelles, including recycling endosomes, is essential for the initiation and progression of autophagy; however, rather than acting as a structural component of the autophagosome, it is required for the expansion of the autophagosome precursor.
doi:10.1091/mbc.E11-09-0746
PMCID: PMC3350551  PMID: 22456507
18.  Early Steps in Autophagy Depend on Direct Phosphorylation of Atg9 by the Atg1 Kinase 
Molecular Cell  2014;53(3):471-483.
Summary
Bulk degradation of cytoplasmic material is mediated by a highly conserved intracellular trafficking pathway termed autophagy. This pathway is characterized by the formation of double-membrane vesicles termed autophagosomes engulfing the substrate and transporting it to the vacuole/lysosome for breakdown and recycling. The Atg1/ULK1 kinase is essential for this process; however, little is known about its targets and the means by which it controls autophagy. Here we have screened for Atg1 kinase substrates using consensus peptide arrays and identified three components of the autophagy machinery. The multimembrane-spanning protein Atg9 is a direct target of this kinase essential for autophagy. Phosphorylated Atg9 is then required for the efficient recruitment of Atg8 and Atg18 to the site of autophagosome formation and subsequent expansion of the isolation membrane, a prerequisite for a functioning autophagy pathway. These findings show that the Atg1 kinase acts early in autophagy by regulating the outgrowth of autophagosomal membranes.
Graphical Abstract
Highlights
•The Atg1 kinase phosphorylation consensus was identified on peptide arrays•Atg9 is a direct target of the Atg1/ULK1 kinase in vitro and in vivo•Atg9 phosphorylation recruits Atg18 and Atg8 to the PAS•Atg9 phosphorylation is required for isolation membrane expansion/autophagy function
Autophagy function is pivotal to cell health. Papinski et al. identify the phosphorylation consensus of the central kinase in this pathway, Atg1. The autophagy-related protein Atg9 is a direct target of Atg1. Atg9 phosphorylation by Atg1 is required for autophagosome formation. This finding sheds light on how Atg1 controls autophagy.
doi:10.1016/j.molcel.2013.12.011
PMCID: PMC3978657  PMID: 24440502
19.  Noncanonical E2 recruitment by the autophagy E1 revealed by Atg7–Atg3 and Atg7–Atg10 structures 
Nature structural & molecular biology  2012;19(12):1242-1249.
Core functions of autophagy are mediated by ubiquitin-like protein (UBL) cascades, in which a homodimeric E1 enzyme, Atg7, directs the UBLs Atg8 and Atg12 to their respective E2 enzymes, Atg3 and Atg10. Crystallographic and mutational analyses of yeast (Atg7 – Atg3)2 and (Atg7 –Atg10)2 complexes reveal noncanonical, multisite E1 –E2 recognition in autophagy. Atg7’s unique N-terminal domain recruits distinctive elements from the Atg3 and Atg10 ‘backsides’. This, along with E1 and E2 conformational variability, allows presentation of ‘frontside’ Atg3 and Atg10 active sites to the catalytic cysteine in the C-terminal domain from the opposite Atg7 protomer in the homodimer. Despite different modes of binding, the data suggest that common principles underlie conjugation in both noncanonical and canonical UBL cascades, whereby flexibly tethered E1 domains recruit E2s through surfaces remote from their active sites to juxtapose the E1 and E2 catalytic cysteines.
doi:10.1038/nsmb.2415
PMCID: PMC3515690  PMID: 23142976
20.  Organization of the Pre-autophagosomal Structure Responsible for Autophagosome Formation 
Molecular Biology of the Cell  2008;19(5):2039-2050.
Autophagy induced by nutrient depletion is involved in survival during starvation conditions. In addition to starvation-induced autophagy, the yeast Saccharomyces cerevisiae also has a constitutive autophagy-like system, the Cvt pathway. Among 31 autophagy-related (Atg) proteins, the function of Atg17, Atg29, and Atg31 is required specifically for autophagy. In this study, we investigated the role of autophagy-specific (i.e., non-Cvt) proteins under autophagy-inducing conditions. For this purpose, we used atg11Δ cells in which the Cvt pathway is abrogated. The autophagy-unique proteins are required for the localization of Atg proteins to the pre-autophagosomal structure (PAS), the putative site for autophagosome formation, under starvation condition. It is likely that these Atg proteins function as a ternary complex, because Atg29 and Atg31 bind to Atg17. The Atg1 kinase complex (Atg1–Atg13) is also essential for recruitment of Atg proteins to the PAS. The assembly of Atg proteins to the PAS is observed only under autophagy-inducing conditions, indicating that this structure is specifically involved in autophagosome formation. Our results suggest that Atg1 complex and the autophagy-unique Atg proteins cooperatively organize the PAS in response to starvation signals.
doi:10.1091/mbc.E07-10-1048
PMCID: PMC2366851  PMID: 18287526
21.  Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice 
The Journal of Cell Biology  2005;169(3):425-434.
Autophagy is a membrane-trafficking mechanism that delivers cytoplasmic constituents into the lysosome/vacuole for bulk protein degradation. This mechanism is involved in the preservation of nutrients under starvation condition as well as the normal turnover of cytoplasmic component. Aberrant autophagy has been reported in several neurodegenerative disorders, hepatitis, and myopathies. Here, we generated conditional knockout mice of Atg7, an essential gene for autophagy in yeast. Atg7 was essential for ATG conjugation systems and autophagosome formation, amino acid supply in neonates, and starvation-induced bulk degradation of proteins and organelles in mice. Furthermore, Atg7 deficiency led to multiple cellular abnormalities, such as appearance of concentric membranous structure and deformed mitochondria, and accumulation of ubiquitin-positive aggregates. Our results indicate the important role of autophagy in starvation response and the quality control of proteins and organelles in quiescent cells.
doi:10.1083/jcb.200412022
PMCID: PMC2171928  PMID: 15866887
22.  Cdc48/p97 and Shp1/p47 regulate autophagosome biogenesis in concert with ubiquitin-like Atg8 
The Journal of Cell Biology  2010;190(6):965-973.
Cdc48/p97/VCP plays a ubiquitin-independent role during autophagosome formation in S. cerevisiae.
The molecular details of the biogenesis of double-membraned autophagosomes are poorly understood. We identify the Saccharomyces cerevisiae AAA–adenosine triphosphatase Cdc48 and its substrate-recruiting cofactor Shp1/Ubx1 as novel components needed for autophagosome biogenesis. In mammals, the Cdc48 homologue p97/VCP and the Shp1 homologue p47 mediate Golgi reassembly by extracting an unknown monoubiquitinated fusion regulator from a complex. We find no requirement of ubiquitination or the proteasome system for autophagosome biogenesis but detect interaction of Shp1 with the ubiquitin-fold autophagy protein Atg8. Atg8 coupled to phosphatidylethanolamine (PE) is crucial for autophagosome elongation and, in vitro, mediates tethering and hemifusion. Interaction with Shp1 requires an FK motif within the N-terminal non–ubiquitin-like Atg8 domain. Based on our data, we speculate that autophagosome formation, in contrast to Golgi reassembly, requires a complex in which Atg8 functionally substitutes ubiquitin. This, for the first time, would give a rationale for use of the ubiquitin-like Atg8 during macroautophagy and would explain why Atg8-PE delipidation is necessary for efficient macroautophagy.
doi:10.1083/jcb.201002075
PMCID: PMC3101598  PMID: 20855502
23.  ATG12 Conjugation to ATG3 Regulates Mitochondrial Homeostasis and Cell Death 
Cell  2010;142(4):590-600.
SUMMARY
ATG12, an ubiquitin-like modifier required for macroautophagy, has a single known conjugation target, another autophagy regulator called ATG5. Here, we identify ATG3 as a substrate for ATG12 conjugation. ATG3 is the E2-like enzyme necessary for ATG8/LC3 lipidation during autophagy. ATG12-ATG3 complex formation requires ATG7 as the E1 enzyme and ATG3 autocatalytic activity as the E2, resulting in the covalent linkage of ATG12 onto a single lysine on ATG3. Surprisingly, disrupting ATG12 conjugation to ATG3 does not affect starvation-induced autophagy. Rather, the lack of ATG12-ATG3 complex formation produces an expansion in mitochondrial mass and inhibits cell death mediated by mitochondrial pathways. Overall, these results unveil a role for ATG12-ATG3 in mitochondrial homeostasis, and implicate the ATG12 conjugation system in cellular functions distinct from the early steps of autophagosome formation.
doi:10.1016/j.cell.2010.07.018
PMCID: PMC2925044  PMID: 20723759
24.  Atg11 
Autophagy  2012;8(8):1275-1278.
Selective macroautophagy uses double-membrane vesicles, termed autophagosomes, to transport cytoplasmic pathogens, organelles and protein complexes to the vacuole for degradation. Autophagosomes are formed de novo by membrane fusion events at the phagophore assembly site (PAS). Therefore, precursor membrane material must be targeted and transported to the PAS. While some autophagy-related (Atg) proteins, such as Atg9 and Atg11, are known to be involved in this process, most of the mechanistic details are not understood. Previous work has also implicated the small Rab-family GTPase Ypt1 in the process, identifying Trs85 as a unique subunit of the TRAPPIII targeting complex and showing that it plays a macroautophagy-specific role; however, the relationship between Ypt1, Atg9 and Atg11 was not clear. Now, a recent report shows that Atg11 is a Trs85-specific effector of the Rab Ypt1, and may act as a classic coiled-coil membrane tether that targets Atg9-containing membranes to the PAS. Here, we review this finding in the context of what is known about Atg11, other Rab-dependent coiled-coil tethers, and other tethering complexes involved in autophagosome formation.
doi:10.4161/auto.21153
PMCID: PMC3679242  PMID: 22717525
Atg9; membrane trafficking; stress; Trs85; vacuole; Ypt1
25.  An Atg4B Mutant Hampers the Lipidation of LC3 Paralogues and Causes Defects in Autophagosome Closure 
Molecular Biology of the Cell  2008;19(11):4651-4659.
In the process of autophagy, a ubiquitin-like molecule, LC3/Atg8, is conjugated to phosphatidylethanolamine (PE) and associates with forming autophagosomes. In mammalian cells, the existence of multiple Atg8 homologues (referred to as LC3 paralogues) has hampered genetic analysis of the lipidation of LC3 paralogues. Here, we show that overexpression of an inactive mutant of Atg4B, a protease that processes pro-LC3 paralogues, inhibits autophagic degradation and lipidation of LC3 paralogues. Inhibition was caused by sequestration of free LC3 paralogues in stable complexes with the Atg4B mutant. In mutant overexpressing cells, Atg5- and ULK1-positive intermediate autophagic structures accumulated. The length of these membrane structures was comparable to that in control cells; however, a significant number were not closed. These results show that the lipidation of LC3 paralogues is involved in the completion of autophagosome formation in mammalian cells. This study also provides a powerful tool for a wide variety of studies of autophagy in the future.
doi:10.1091/mbc.E08-03-0312
PMCID: PMC2575160  PMID: 18768752

Results 1-25 (749077)