Search tips
Search criteria

Results 1-25 (916829)

Clipboard (0)

Related Articles

1.  The C-Terminal 42 Residues of the Tula Virus Gn Protein Regulate Interferon Induction▿ 
Journal of Virology  2011;85(10):4752-4760.
Hantaviruses primarily infect the endothelial cell lining of capillaries and cause two vascular permeability-based diseases. The ability of pathogenic hantaviruses to regulate the early induction of interferon determines whether hantaviruses replicate in endothelial cells. Tula virus (TULV) and Prospect Hill virus (PHV) are hantaviruses which infect human endothelial cells but fail to cause human disease. PHV is unable to inhibit early interferon (IFN) responses and fails to replicate within human endothelial cells. However, TULV replicates successfully in human endothelial cells, suggesting that TULV is capable of regulating cellular IFN responses. We observed a >300-fold reduction in the IFN-stimulated genes (ISGs) MxA and ISG56 following TULV versus PHV infection of endothelial cells 1 day postinfection. Similar to results with pathogenic hantaviruses, expressing the TULV Gn protein cytoplasmic tail (Gn-T) blocked RIG-I- and TBK1-directed transcription from IFN-stimulated response elements (ISREs) and IFN-β promoters (>90%) but not transcription directed by constitutively active IFN regulatory factor-3 (IRF3). In contrast, expressing the PHV Gn-T had no effect on TBK1-induced transcriptional responses. Analysis of Gn-T truncations demonstrated that the C-terminal 42 residues of the Gn-T (Gn-T-C42) from TULV, but not PHV, inhibited IFN induction >70%. These findings demonstrate that the TULV Gn-T inhibits IFN- and ISRE-directed responses upstream of IRF3 at the level of the TBK1 complex and further define a 42-residue domain of the TULV Gn-T that inhibits IFN induction. In contrast to pathogenic hantavirus Gn-Ts, the TULV Gn-T lacks a C-terminal degron domain and failed to bind tumor necrosis factor (TNF) receptor-associated factor 3 (TRAF3), a TBK1 complex component required for IRF3 activation. These findings indicate that the nonpathogenic TULV Gn-T regulates IFN induction but accomplishes this via unique interactions with cellular TBK1 complexes. These findings fundamentally distinguish nonpathogenic hantaviruses, PHV and TULV, and demonstrate that IFN regulation alone is insufficient for hantaviruses to cause disease. Yet regulating the early IFN response is necessary for hantaviruses to replicate within human endothelial cells and to be pathogenic. Thus, in addition to IFN regulation, hantaviruses contain discrete virulence determinants which permit them to be human pathogens.
PMCID: PMC3126157  PMID: 21367904
2.  The Pathogenic NY-1 Hantavirus G1 Cytoplasmic Tail Inhibits RIG-I- and TBK-1-Directed Interferon Responses 
Journal of Virology  2006;80(19):9676-9686.
Hantaviruses cause two diseases with prominent vascular permeability defects, hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome. All hantaviruses infect human endothelial cells, although it is unclear what differentiates pathogenic from nonpathogenic hantaviruses. We observed dramatic differences in interferon-specific transcriptional responses between pathogenic and nonpathogenic hantaviruses at 1 day postinfection, suggesting that hantavirus pathogenesis may in part be determined by viral regulation of cellular interferon responses. In contrast to pathogenic NY-1 virus (NY-1V) and Hantaan virus (HTNV), nonpathogenic Prospect Hill virus (PHV) elicits early interferon responses following infection of human endothelial cells. We determined that PHV replication is blocked in human endothelial cells and that RNA and protein synthesis by PHV, but not NY-1V or HTNV, is inhibited at 2 to 4 days postinfection. The addition of antibodies to beta interferon (IFN-β) blocked interferon-directed MxA induction by >90% and demonstrated that hantavirus infection induces the secretion of IFN-β from endothelial cells. Coinfecting endothelial cells with NY-1V and PHV resulted in a 60% decrease in the induction of interferon-responsive MxA transcripts by PHV and further suggested the potential for NY-1V to regulate early IFN responses. Expression of the NY-1V G1 cytoplasmic tail inhibited by >90% RIG-I- and downstream TBK-1-directed transcription from interferon-stimulated response elements or β-interferon promoters in a dose-dependent manner. In contrast, expression of the NY-1V nucleocapsid or PHV G1 tail had no effect on RIG-I- or TBK-1-directed transcriptional responses. Further, neither the NY-1V nor PHV G1 tails inhibited transcriptional responses directed by a constitutively active form of interferon regulatory factor 3 (IRF-3 5D), and IRF-3 is a direct target of TBK-1 phosphorylation. These findings indicate that the pathogenic NY-1V G1 protein regulates cellular IFN responses upstream of IRF-3 phosphorylation at the level of the TBK-1 complex. These findings further suggest that the G1 cytoplasmic tail contains a virulence element which determines the ability of hantaviruses to bypass innate cellular immune responses and delineates a mechanism for pathogenic hantaviruses to successfully replicate within human endothelial cells.
PMCID: PMC1617216  PMID: 16973572
3.  Hantavirus GnT Elements Mediate TRAF3 Binding and Inhibit RIG-I/TBK1-Directed Beta Interferon Transcription by Blocking IRF3 Phosphorylation 
Journal of Virology  2014;88(4):2246-2259.
Hantaviruses successfully replicate in primary human endothelial cells by restricting the early induction of beta interferon (IFN-β) and interferon-stimulated genes (ISGs). Gn proteins from NY-1V, ANDV, and TULV, but not PHV, harbor elements in their 142-residue cytoplasmic tails (GnTs) that inhibit RIG-I/MAVS/TBK1-TRAF3-directed IFN-β induction. Here, we define GnT interactions and residues required to inhibit TRAF3-TBK1-directed IFN-β induction and IRF3 phosphorylation. We observed that GnTs bind TRAF3 via residues within the TRAF-N domain (residues 392 to 415) and that binding is independent of the MAVS-interactive TRAF-C domain (residues 415 to 568). We determined that GnT binding to TRAF3 is mediated by C-terminal degrons within NY-1V or ANDV GnTs and that mutations that add degrons to TULV or PHV GnTs confer TRAF3 binding. Further analysis of GnT domains revealed that TRAF3 binding is a discrete GnT function, independent of IFN regulation, and that residues 15 to 42 from the NY-1V GnT C terminus are required for inhibiting TBK1-directed IFN-β transcription. Mutagenesis of the NY-1V GnT revealed that altering tyrosine 627 (Y627A/S/F) abolished GnT regulation of RIG-I/TBK1-directed IRF3 phosphorylation and transcriptional responses of ISRE, κB, and IFN-β promoters. Moreover, GnTs from NY-1V, ANDV, and TULV, but not PHV, inhibited RIG-I-directed IRF3 phosphorylation. Collectively, these findings suggest a novel role for GnTs in regulating RIG-I/TBK1 pathway-directed IRF3 phosphorylation and IFN-β induction and define virulence determinants within GnTs that may permit the attenuation of pathogenic hantaviruses.
PMCID: PMC3911538  PMID: 24390324
4.  An Innate Immunity-Regulating Virulence Determinant Is Uniquely Encoded within the Andes Virus Nucleocapsid Protein 
mBio  2014;5(1):e01088-13.
Andes virus (ANDV) is the only hantavirus known to spread from person to person and shown to cause highly lethal hantavirus pulmonary syndrome (HPS) in patients and Syrian hamsters. Hantaviruses replicate in human endothelial cells and accomplish this by restricting the early induction of beta interferon (IFN-β)- and IFN-stimulated genes (ISGs). Our studies reveal that the ANDV nucleocapsid (N) protein uniquely inhibits IFN signaling responses directed by cytoplasmic double-stranded RNA (dsRNA) sensors RIG-I and MDA5. In contrast, N proteins from Sin Nombre, New York-1, and Prospect Hill hantaviruses had no effect on RIG-I/MDA5-directed transcriptional responses from IFN-β-, IFN-stimulated response element (ISRE)-, or κB-containing promoters. Ablating a potential S-segment nonstructural open reading frame (ORF) (NSs) within the ANDV plasmid expressing N protein failed to alter IFN regulation by ANDV N protein. Further analysis demonstrated that expressing the ANDV N protein inhibited downstream IFN pathway activation directed by MAVS, TBK1, and IκB kinase ε (IKKε) but failed to inhibit transcriptional responses directed by constitutive expression of active interferon regulatory factor IRF3-5D or after stimulation by alpha interferon (IFN-α) or tumor necrosis factor alpha (TNF-α). Consistent with IFN pathway-specific regulation, the ANDV N protein inhibited TBK1-directed IRF3 phosphorylation (phosphorylation of serine 396 [pS396]) and TBK1 autophosphorylation (pS172). Collectively, these findings indicate that the ANDV N inhibits IFN signaling responses by interfering with TBK1 activation, upstream of IRF3 phosphorylation and NF-κB activation. Moreover, our findings reveal that ANDV uniquely carries a gene encoding a virulence determinant within its N protein that is capable of restricting ISG and IFN-β induction and provide a rationale for the novel pathogenesis and spread of ANDV.
Andes virus (ANDV) is distinguished from other hantaviruses by its unique ability to spread from person to person and cause lethal hantavirus pulmonary syndrome (HPS)-like disease in Syrian hamsters. However, virulence determinants that distinguish ANDV from other pathogenic hantaviruses have yet to be defined. Here we reveal that ANDV uniquely contains a virulence determinant within its nucleocapsid (N) protein that potently inhibits innate cellular signaling pathways. This novel function of the N protein provides a new mechanism for hantaviruses to regulate interferon (IFN) and IFN-stimulated gene (ISG) induction that is likely to contribute to the enhanced ability of ANDV to replicate, spread, and cause disease. These findings differentiate ANDV from other HPS-causing hantaviruses and provide a potential target for viral attenuation that needs to be considered in vaccine development.
PMCID: PMC3944819  PMID: 24549848
5.  The NY-1 Hantavirus Gn Cytoplasmic Tail Coprecipitates TRAF3 and Inhibits Cellular Interferon Responses by Disrupting TBK1-TRAF3 Complex Formation▿  
Journal of Virology  2008;82(18):9115-9122.
Pathogenic hantaviruses replicate within human endothelial cells and cause two diseases, hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome. In order to replicate in endothelial cells pathogenic hantaviruses inhibit the early induction of beta interferon (IFN-β). Expression of the cytoplasmic tail of the pathogenic NY-1 hantavirus Gn protein is sufficient to inhibit RIG-I- and TBK1-directed IFN responses. The formation of TBK1-TRAF3 complexes directs IRF-3 phosphorylation, and both IRF-3 and NF-κB activation are required for transcription from the IFN-β promoter. Here we report that the NY-1 virus (NY-1V) Gn tail inhibits both TBK1-directed NF-κB activation and TBK1-directed transcription from promoters containing IFN-stimulated response elements. The NY-1V Gn tail coprecipitated TRAF3 from cellular lysates, and analysis of TRAF3 deletion mutants demonstrated that the TRAF3 N terminus is sufficient for interacting with the NY-1V Gn tail. In contrast, the Gn tail of the nonpathogenic hantavirus Prospect Hill virus (PHV) failed to coprecipitate TRAF3 or inhibit NF-κB or IFN-β transcriptional responses. Further, expression of the NY-1V Gn tail blocked TBK1 coprecipitation of TRAF3 and infection by NY-1V, but not PHV, blocked the formation of TBK1-TRAF3 complexes. These findings indicate that the NY-1V Gn cytoplasmic tail forms a complex with TRAF3 which disrupts the formation of TBK1-TRAF3 complexes and downstream signaling responses required for IFN-β transcription.
PMCID: PMC2546897  PMID: 18614628
6.  Andes and Prospect Hill Hantaviruses Differ in Early Induction of Interferon although Both Can Downregulate Interferon Signaling▿  
Journal of Virology  2007;81(6):2769-2776.
Hantavirus pulmonary syndrome (HPS) is a severe respiratory disease which is thought to result from a dysregulated immune response to infection with pathogenic hantaviruses, such as Sin Nombre virus or Andes virus (ANDV). Other New World hantaviruses, such as Prospect Hill virus (PHV), have not been associated with human disease. Activation of an antiviral state and cell signaling in response to hantavirus infection were examined using human primary lung endothelial cells, the main target cell infected in HPS patients. PHV, but not ANDV, was found to induce a robust beta interferon (IFN-β) response early after infection of primary lung endothelial cells. The level of IFN induction correlated with IFN regulatory factor 3 (IRF-3) activation, in that IRF-3 dimerization and nuclear translocation were detected in PHV but not ANDV infection. In addition, phosphorylated Stat-1/2 levels were significantly lower in the ANDV-infected cells relative to PHV. Presumably, this reflects the lower level of IRF-3 activation and initial IFN induced by ANDV relative to PHV. To determine whether, in addition, ANDV interference with IFN signaling also contributed to the low Stat-1/2 activation seen in ANDV infection, the levels of exogenous IFN-β-induced Stat-1/2 activation detectable in uninfected versus ANDV- or PHV-infected Vero-E6 cells were examined. Surprisingly, both viruses were found to downregulate IFN-induced Stat-1/2 activation. Analysis of cells transiently expressing only ANDV or PHV glycoproteins implicated these proteins in this downregulation. In conclusion, while both viruses can interfere with IFN signaling, there is a major difference in the initial interferon induction via IRF-3 activation between ANDV and PHV in infected primary endothelial cells, and this correlates with the reported differences in pathogenicity of these viruses.
PMCID: PMC1866013  PMID: 17202220
7.  Differential Antiviral Response of Endothelial Cells after Infection with Pathogenic and Nonpathogenic Hantaviruses 
Journal of Virology  2004;78(12):6143-6150.
Hantaviruses represent important human pathogens and can induce hemorrhagic fever with renal syndrome (HFRS), which is characterized by endothelial dysfunction. Both pathogenic and nonpathogenic hantaviruses replicate without causing any apparent cytopathic effect, suggesting that immunopathological mechanisms play an important role in pathogenesis. We compared the antiviral responses triggered by Hantaan virus (HTNV), a pathogenic hantavirus associated with HFRS, and Tula virus (TULV), a rather nonpathogenic hantavirus, in human umbilical vein endothelial cells (HUVECs). Both HTNV- and TULV-infected cells showed increased levels of molecules involved in antigen presentation. However, TULV-infected HUVECs upregulated HLA class I molecules more rapidly. Interestingly, HTNV clearly induced the production of beta interferon (IFN-β), whereas expression of this cytokine was barely detectable in the supernatant or in extracts from TULV-infected HUVECs. Nevertheless, the upregulation of HLA class I on both TULV- and HTNV-infected cells could be blocked by neutralizing anti-IFN-β antibodies. Most strikingly, the antiviral MxA protein, which interferes with hantavirus replication, was already induced 16 h after infection with TULV. In contrast, HTNV-infected HUVECs showed no expression of MxA until 48 h postinfection. In accordance with the kinetics of MxA expression, TULV replicated only inefficiently in HUVECs, whereas HTNV-infected cells produced high titers of virus particles that decreased after 48 h postinfection. Both hantavirus species, however, could replicate equally well in Vero E6 cells, which lack an IFN-induced MxA response. Thus, delayed induction of antiviral MxA in endothelial cells after infection with HTNV could allow viral dissemination and contribute to the pathogenesis leading to HFRS.
PMCID: PMC416501  PMID: 15163707
8.  Alpha/Beta Interferon (IFN-α/β)-Independent Induction of IFN-λ1 (Interleukin-29) in Response to Hantaan Virus Infection▿  
Journal of Virology  2010;84(18):9140-9148.
Type III interferons ([IFNs]IFN-λ and interleukin-28 and -29 [IL-28/29]) are recently recognized cytokines with innate antiviral effects similar to those of type I IFNs (IFN-α/β). Like IFN-α/β, IFN-λ-expression can be induced by viruses, and it is believed that type I and III IFNs are regulated in the same manner. Hantaviruses are weak IFN-α/β inducers and have surprisingly been shown to activate IFN-α/β-independent IFN-stimulated gene (ISG) expression. Here, we show that in Hantaan virus (HTNV)-infected human epithelial A549 cells, induction of IFN-λ1 preceded induction of MxA and IFN-β by 12 and 24 h, respectively, and IFN-α was not induced at all. Furthermore, induction of IFN-λ1 and MxA was observed in HTNV-infected African green monkey epithelial Vero E6 cells, a cell line that cannot produce type I IFNs, clearly showing that HTNV can induce IFN-λ1 and ISGs in the complete absence of IFN-α/β. In HTNV-infected human fibroblast MRC-5 cells, which lack the IFN-λ receptor, induction of MxA coincided in time with IFN-β-induction. UV-inactivated HTNV did not induce any IFNs or MxA in any cell line, showing that activation of IFN-λ1 is dependent on replicating virus. Induction of both IFN-β and IFN-λ1 in A549 cells after poly(I:C)-stimulation was strongly inhibited in HTNV-infected cells, suggesting that HTNV can inhibit signaling pathways used to simultaneously activate types I and III IFNs. In conclusion, we show that HTNV can cause type I IFN-independent IFN-λ1 induction and IFN-λ1-specific ISG induction. Importantly, the results suggest the existence of specific signaling pathways that induce IFN-λ1 without simultaneous type I IFN induction during virus infection.
PMCID: PMC2937636  PMID: 20592090
9.  Pathogenic Hantaviruses Andes Virus and Hantaan Virus Induce Adherens Junction Disassembly by Directing Vascular Endothelial Cadherin Internalization in Human Endothelial Cells▿  
Journal of Virology  2010;84(14):7405-7411.
Hantaviruses infect endothelial cells and cause 2 vascular permeability-based diseases. Pathogenic hantaviruses enhance the permeability of endothelial cells in response to vascular endothelial growth factor (VEGF). However, the mechanism by which hantaviruses hyperpermeabilize endothelial cells has not been defined. The paracellular permeability of endothelial cells is uniquely determined by the homophilic assembly of vascular endothelial cadherin (VE-cadherin) within adherens junctions, which is regulated by VEGF receptor-2 (VEGFR2) responses. Here, we investigated VEGFR2 phosphorylation and the internalization of VE-cadherin within endothelial cells infected by pathogenic Andes virus (ANDV) and Hantaan virus (HTNV) and nonpathogenic Tula virus (TULV) hantaviruses. We found that VEGF addition to ANDV- and HTNV-infected endothelial cells results in the hyperphosphorylation of VEGFR2, while TULV infection failed to increase VEGFR2 phosphorylation. Concomitant with the VEGFR2 hyperphosphorylation, VE-cadherin was internalized to intracellular vesicles within ANDV- or HTNV-, but not TULV-, infected endothelial cells. Addition of angiopoietin-1 (Ang-1) or sphingosine-1-phosphate (S1P) to ANDV- or HTNV-infected cells blocked VE-cadherin internalization in response to VEGF. These findings are consistent with the ability of Ang-1 and S1P to inhibit hantavirus-induced endothelial cell permeability. Our results suggest that pathogenic hantaviruses disrupt fluid barrier properties of endothelial cell adherens junctions by enhancing VEGFR2-VE-cadherin pathway responses which increase paracellular permeability. These results provide a pathway-specific mechanism for the enhanced permeability of hantavirus-infected endothelial cells and suggest that stabilizing VE-cadherin within adherens junctions is a primary target for regulating endothelial cell permeability during pathogenic hantavirus infection.
PMCID: PMC2898267  PMID: 20463083
10.  Characterization of Two Substrains of Puumala Virus That Show Phenotypes That Are Different from Each Other and from the Original Strain ▿  
Journal of Virology  2010;85(4):1747-1756.
Hantaviruses, the causative agents of two emerging diseases, are negative-stranded RNA viruses with a tripartite genome. We isolated two substrains from a parental strain of Puumala hantavirus (PUUV-Pa), PUUV-small (PUUV-Sm) and PUUV-large (PUUV-La), named after their focus size when titrated. The two isolates were sequenced; this revealed differences at two positions in the nucleocapsid protein and two positions in the RNA-dependent RNA polymerase, but the glycoproteins were identical. We also detected a 43-nucleotide deletion in the PUUV-La S-segment 5′ noncoding region covering a predicted hairpin loop structure that was found to be conserved among all hantaviruses with members of the rodent subfamily Arvicolinae as their hosts. Stocks of PUUV-La showed a lower ratio of viral RNA to infectious particles than stocks of PUUV-Sm and PUUV-Pa, indicating that PUUV-La replicated more efficiently in alpha/beta interferon (IFN-α/β)-defective Vero E6 cells. In Vero E6 cells, PUUV-La replicated to higher titers and PUUV-Sm replicated to lower titers than PUUV-Pa. In contrast, in IFN-competent MRC-5 cells, PUUV-La and PUUV-Sm replicated to similar levels, while PUUV-Pa progeny virus production was strongly inhibited. The different isolates clearly differed in their potential to induce innate immune responses in MRC-5 cells. PUUV-Pa caused stronger induction of IFN-β, ISG56, and MxA than PUUV-La and PUUV-Sm, while PUUV-Sm caused stronger MxA and ISG56 induction than PUUV-La. These data demonstrate that the phenotypes of isolated hantavirus substrains can have substantial differences compared to each other and to the parental strain. Importantly, this implies that the reported differences in phenotypes for hantaviruses might depend more on chance due to spontaneous mutations during passage than inherited true differences between hantaviruses.
PMCID: PMC3028883  PMID: 21106742
11.  New World Hantaviruses Activate IFNλ Production in Type I IFN-Deficient Vero E6 Cells 
PLoS ONE  2010;5(6):e11159.
Hantaviruses indigenous to the New World are the etiologic agents of hantavirus cardiopulmonary syndrome (HCPS). These viruses induce a strong interferon-stimulated gene (ISG) response in human endothelial cells. African green monkey-derived Vero E6 cells are used to propagate hantaviruses as well as many other viruses. The utility of the Vero E6 cell line for virus production is thought to owe to their lack of genes encoding type I interferons (IFN), rendering them unable to mount an efficient innate immune response to virus infection. Interferon λ, a more recently characterized type III IFN, is transcriptionally controlled much like the type I IFNs, and activates the innate immune system in a similar manner.
Methodology/Principal Findings
We show that Vero E6 cells respond to hantavirus infection by secreting abundant IFNλ. Three New World hantaviruses were similarly able to induce IFNλ expression in this cell line. The IFNλ contained within virus preparations generated with Vero E6 cells independently activates ISGs when used to infect several non-endothelial cell lines, whereas innate immune responses by endothelial cells are specifically due to viral infection. We show further that Sin Nombre virus replicates to high titer in human hepatoma cells (Huh7) without inducing ISGs.
Herein we report that Vero E6 cells respond to viral infection with a highly active antiviral response, including secretion of abundant IFNλ. This cytokine is biologically active, and when contained within viral preparations and presented to human epithelioid cell lines, results in the robust activation of innate immune responses. We also show that both Huh7 and A549 cell lines do not respond to hantavirus infection, confirming that the cytoplasmic RNA helicase pathways possessed by these cells are not involved in hantavirus recognition. We demonstrate that Vero E6 actively respond to virus infection and inhibiting IFNλ production in these cells might increase their utility for virus propagation.
PMCID: PMC2887373  PMID: 20567522
12.  Antagonism of Type I Interferon Responses by New World Hantaviruses▿  
Journal of Virology  2010;84(22):11790-11801.
Evasion of interferon (IFN)-mediated antiviral signaling is a common defense strategy for pathogenic RNA viruses. To date, research on IFN antagonism by hantaviruses is limited and has focused on only a subset of the numerous recognized hantavirus species. The host IFN response has two phases, an initiation phase, resulting in the induction of alpha/beta IFN (IFN-α/β), and an amplification phase, whereby IFN-α/β signals through the Jak/STAT pathway, resulting in the establishment of the cellular antiviral state. We examined interactions between these critical host responses and the New World hantaviruses. We observed delayed cellular responses in both Andes virus (ANDV)- and Sin Nombre virus (SNV)-infected A549 and Huh7-TLR3 cells. We found that IFN-β induction is inhibited by coexpression of ANDV nucleocapsid protein (NP) and glycoprotein precursor (GPC) and is robustly inhibited by SNV GPC alone. Downstream amplification by Jak/STAT signaling is also inhibited by SNV GPC and by either NP or GPC of ANDV. Therefore, ANDV- and SNV-encoded proteins have the potential for inhibiting both IFN-β induction and signaling, with SNV exhibiting the more potent antagonism ability. Herein we identify ANDV NP, a previously unrecognized inhibitor of Jak/STAT signaling, and show that IFN antagonism by ANDV relies on expression of both the glycoproteins and NP, whereas the glycoproteins appear to be sufficient for antagonism by SNV. These data suggest that IFN antagonism strategies by hantaviruses are quite variable, even between species with similar disease phenotypes, and may help to better elucidate species-specific pathogenesis.
PMCID: PMC2977899  PMID: 20844031
13.  Pathogenic Hantaviruses Direct the Adherence of Quiescent Platelets to Infected Endothelial Cells▿  
Journal of Virology  2010;84(9):4832-4839.
Hantavirus infections are noted for their ability to infect endothelial cells, cause acute thrombocytopenia, and trigger 2 vascular-permeability-based diseases. However, hantavirus infections are not lytic, and the mechanisms by which hantaviruses cause capillary permeability and thrombocytopenia are only partially understood. The role of β3 integrins in hemostasis and the inactivation of β3 integrin receptors by pathogenic hantaviruses suggest the involvement of hantaviruses in altered platelet and endothelial cell functions that regulate permeability. Here, we determined that pathogenic hantaviruses bind to quiescent platelets via a β3 integrin-dependent mechanism. This suggests that platelets may contribute to hantavirus dissemination within infected patients and provides a means by which hantavirus binding to β3 integrin receptors prevents platelet activation. The ability of hantaviruses to bind platelets further suggested that cell-associated hantaviruses might recruit platelets to the endothelial cell surface. Our findings indicate that Andes virus (ANDV)- or Hantaan virus (HTNV)-infected endothelial cells specifically direct the adherence of calcein-labeled platelets. In contrast, cells comparably infected with nonpathogenic Tula virus (TULV) failed to recruit platelets to the endothelial cell surface. Platelet adherence was dependent on endothelial cell β3 integrins and neutralized by the addition of the anti-β3 Fab fragment, c7E3, or specific ANDV- or HTNV-neutralizing antibodies. These findings indicate that pathogenic hantaviruses displayed on the surface of infected endothelial cells bind platelets and that a platelet layer covers the surface of infected endothelial cells. This fundamentally changes the appearance of endothelial cells and has the potential to alter cellular immune responses, platelet activation, and endothelial cell functions that affect vascular permeability. Hantavirus-directed platelet quiescence and recruitment to vast endothelial cell beds further suggests mechanisms by which hantaviruses may cause thrombocytopenia and induce hypoxia. These findings are fundamental to our understanding of pathogenic-hantavirus regulation of endothelial cell responses that contribute to vascular permeability.
PMCID: PMC2863738  PMID: 20181715
14.  Andes Virus Regulation of Cellular MicroRNAs Contributes to Hantavirus-Induced Endothelial Cell Permeability▿  
Journal of Virology  2010;84(22):11929-11936.
Hantaviruses infect human endothelial cells (ECs) and cause two diseases marked by vascular permeability defects, hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS). Vascular permeability occurs in the absence of EC lysis, suggesting that hantaviruses alter normal EC fluid barrier functions. ECs infected by pathogenic hantaviruses are hyperresponsive to vascular endothelial growth factor (VEGF), and this alters the fluid barrier function of EC adherens junctions, resulting in enhanced paracellular permeability. Vascular permeability and VEGF-directed responses are determined by EC-specific microRNAs (miRNAs), which regulate cellular mRNA transcriptional responses. miRNAs mature within cytoplasmic processing bodies (P bodies), and the hantavirus nucleocapsid (N) protein binds RNA and localizes to P bodies, suggesting that hantaviruses may modify miRNA functions within infected ECs. Here we assessed changes in EC miRNAs following infection by the HPS-causing Andes hantavirus (ANDV). We analyzed 352 human miRNAs within ANDV-infected ECs using quantitative real-time (RT)-PCR arrays. Fourteen miRNAs, including six miRNAs that are associated with regulating vascular integrity, were upregulated >4-fold following infection by ANDV. Nine miRNAs were downregulated 3- to 3,400-fold following ANDV infection; these included miR-410, involved in regulating secretion, and miR-218, which is linked to the regulation of EC migration and vascular permeability. We further analyzed changes in miR-126, an EC-specific miRNA that regulates vascular integrity by suppressing SPRED1 and PIK3R2 mRNAs. While miR-126 levels were only slightly altered, we found that SPRED1 and PIK3R2 mRNA levels were increased 10- and 7-fold, respectively, in ANDV-infected ECs but were unaltered in ECs infected by the nonpathogenic Tula hantavirus (TULV). Consistent with increased SPRED1 expression, we found that the level of phospho-cofilin was decreased within ANDV-infected ECs. Moreover, small interfering RNA (siRNA) knockdown of SPRED1 dramatically decreased the permeability of ANDV-infected ECs in response to VEGF, suggesting that increased SPRED1 contributes to EC permeability following ANDV infection. These findings suggest that interference with normal miRNA functions contributes to the enhanced paracellular permeability of ANDV-infected ECs and that hantavirus regulation of miRNA functions is an additional determinant of hantavirus pathogenesis.
PMCID: PMC2977893  PMID: 20844033
15.  Induction of Innate Immune Response Genes by Sin Nombre Hantavirus Does Not Require Viral Replication 
Journal of Virology  2005;79(24):15007-15015.
Maladaptive immune responses are considered to be important factors in the pathogenesis of the two diseases caused by hantaviruses, hemorrhagic fever with renal syndrome and hantavirus cardiopulmonary syndrome (HCPS). While the intensity of adaptive antiviral T-cell responses seems to correlate with the severity of HCPS, there is increasing evidence that innate antiviral responses by endothelial cells, the native targets for hantavirus infection in vivo, are induced within hours of exposure to infectious hantaviruses. To investigate early events in the innate response to Sin Nombre virus (SNV), the principal etiologic agent of HCPS in North America, we treated human endothelial cells with live virus, or virus subjected to inactivation by UV irradiation at minimal doses required to inhibit replication, and assayed host expression of interferon-stimulated genes (ISG) by microarray and reverse transcription-PCR. We show herein that a variety of ISG are induced between 4 and 24 h after exposure to both live and killed virus. The levels of such induction at early time points (before 24 h) were generally higher in cells treated with SNV particles that had been killed by exposure to UV irradiation. Additionally, SNV exposed to increasing doses of UV irradiation induced ISG better than live virus despite increased disruption of viral RNA integrity. However, SNV replication was required for continued ISG overexpression by 3 days posttreatment. These results suggest that hantavirus particles may themselves be capable of early induction of ISG and that ongoing production of viral particles during infection could contribute to the pathogenic process.
PMCID: PMC1316025  PMID: 16306571
16.  Cellular Entry of Hantaviruses Which Cause Hemorrhagic Fever with Renal Syndrome Is Mediated by β3 Integrins 
Journal of Virology  1999;73(5):3951-3959.
Hantaviruses replicate primarily in the vascular endothelium and cause two human diseases, hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS). In this report, we demonstrate that the cellular entry of HFRS-associated hantaviruses is facilitated by specific integrins expressed on platelets, endothelial cells, and macrophages. Infection of human umbilical vein endothelial cells and Vero E6 cells by the HFRS-causing hantaviruses Hantaan (HTN), Seoul (SEO), and Puumala (PUU) is inhibited by antibodies to αvβ3 integrins and by the integrin ligand vitronectin. The cellular entry of HTN, SEO, and PUU viruses, but not the nonpathogenic Prospect Hill (PH) hantavirus (i.e., a virus with no associated human disease), was also mediated by introducting recombinant αIIbβ3 or αvβ3 integrins into β3-integrin-deficient CHO cells. In addition, PH infectivity was not inhibited by αvβ3-specific sera or vitronectin but was blocked by α5β1-specific sera and the integrin ligand fibronectin. RGD tripeptides, which are required for many integrin-ligand interactions, are absent from all hantavirus G1 and G2 surface glycoproteins, and GRGDSP peptides did not inhibit hantavirus infectivity. Further, a mouse-human hybrid β3 integrin-specific Fab fragment, c7E3 (ReoPro), also inhibited the infectivity of HTN, SEO, and PUU as well as HPS-associated hantaviruses, Sin Nombre (SN) and New York-1 (NY-1). These findings indicate that pathogenic HPS- and HFRS-causing hantaviruses enter cells via β3 integrins, which are present on the surfaces of platelets, endothelial cells, and macrophages. Since β3 integrins regulate vascular permeability and platelet function, these findings also correlate β3 integrin usage with common elements of hantavirus pathogenesis.
PMCID: PMC104173  PMID: 10196290
17.  Indirect Immunofluorescence Assay for the Simultaneous Detection of Antibodies against Clinically Important Old and New World Hantaviruses 
In order to detect serum antibodies against clinically important Old and New World hantaviruses simultaneously, multiparametric indirect immunofluorescence assays (IFAs) based on biochip mosaics were developed. Each of the mosaic substrates consisted of cells infected with one of the virus types Hantaan (HTNV), Puumala (PUUV), Seoul (SEOV), Saaremaa (SAAV), Dobrava (DOBV), Sin Nombre (SNV) or Andes (ANDV). For assay evaluation, serum IgG and IgM antibodies were analyzed using 184 laboratory-confirmed hantavirus-positive sera collected at six diagnostic centers from patients actively or previously infected with the following hantavirus serotypes: PUUV (Finland, n = 97); SEOV (China, n = 5); DOBV (Romania, n = 7); SNV (Canada, n = 23); ANDV (Argentina and Chile, n = 52). The control panel comprised 89 sera from healthy blood donors. According to the reference tests, all 184 patient samples were seropositive for hantavirus-specific IgG (n = 177; 96%) and/or IgM (n = 131; 72%), while all control samples were tested negative. In the multiparametric IFA applied in this study, 183 (99%) of the patient sera were IgG and 131 (71%) IgM positive (accordance with the reference tests: IgG, 96%; IgM, 93%). Overall IFA sensitivity for combined IgG and IgM analysis amounted to 100% for all serotypes, except for SNV (96%). Of the 89 control sera, 2 (2%) showed IgG reactivity against the HTNV substrate, but not against any other hantavirus. Due to the high cross-reactivity of hantaviral nucleocapsid proteins, endpoint titrations were conducted, allowing serotype determination in >90% of PUUV- and ANDV-infected patients. Thus, multiparametric IFA enables highly sensitive and specific serological diagnosis of hantavirus infections and can be used to differentiate PUUV and ANDV infection from infections with Murinae-borne hantaviruses (e.g. DOBV and SEOV).
Author Summary
Hantaviruses are the causative agents of hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS) — serious emerging diseases, with case-fatality rates of up to 15% and about 35%, respectively. So far, over 21 human pathogenic serotypes have been described, which are classified into New World (circulating in the Americas) and Old World (Asia and Europe) hantaviruses. The prodromal phase of hantavirus infections — fever, myalgia, headache and gastrointestinal symptoms — is indistinguishable from those of many other viral infections. The cardiopulmonary phase of HFRS and diuretic phase of HFRS mimic the acute respiratory distress syndrome and renal failure, respectively. In this context, clinical diagnosis has to be confirmed by laboratory testing, which is predominantly based on serology. Although there is an increasing awareness of hantaviruses, infections are still underdiagnosed, in part due to a lack of available standardized serological assays. This study evaluated a commercial multiparametric indirect immunofluorescence assay for the simultaneous detection of antibodies against clinically important Old World (Hantaan, Puumala, Seoul, Saaremaa and Dobrava) and New World (Sin Nombre and Andes) hantaviruses. Test performance was found to be comparable to established highly sensitive and specific in-house assays.
PMCID: PMC3617148  PMID: 23593524
18.  Hantavirus-infection Confers Resistance to Cytotoxic Lymphocyte-Mediated Apoptosis 
PLoS Pathogens  2013;9(3):e1003272.
Hantaviruses cause hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardio-pulmonary syndrome (HCPS; also called hantavirus pulmonary syndrome (HPS)), both human diseases with high case-fatality rates. Endothelial cells are the main targets for hantaviruses. An intriguing observation in patients with HFRS and HCPS is that on one hand the virus infection leads to strong activation of CD8 T cells and NK cells, on the other hand no obvious destruction of infected endothelial cells is observed. Here, we provide an explanation for this dichotomy by showing that hantavirus-infected endothelial cells are protected from cytotoxic lymphocyte-mediated induction of apoptosis. When dissecting potential mechanisms behind this phenomenon, we discovered that the hantavirus nucleocapsid protein inhibits the enzymatic activity of both granzyme B and caspase 3. This provides a tentative explanation for the hantavirus-mediated block of cytotoxic granule-mediated apoptosis-induction, and hence the protection of infected cells from cytotoxic lymphocytes. These findings may explain why infected endothelial cells in hantavirus-infected patients are not destroyed by the strong cytotoxic lymphocyte response.
Author Summary
Rodent-born hantaviruses cause two severe emerging diseases with high case-fatality rates in humans; hemorrhagic fever with renal syndrome (HFRS) in Eurasia and hantavirus cardio-pulmonary syndrome (HCPS; also called hantavirus pulmonary syndrome (HPS)) in the Americas. A hallmark of HFRS/HCPS is increased vascular permeability. While endothelial cells are the main targets for hantaviruses, infection per se is not lytic. Patients suffering from HFRS and HCPS show remarkable strong cytotoxic lymphocyte responses including high numbers of activated NK cells and antigen-specific CD8 T cells. Hence, it has been suggested that cytotoxic lymphocyte-mediated killing of hantavirus-infected endothelial cells might contribute to HFRS/HCPS-pathogenesis. Here, we show that hantaviruses protect infected endothelial cells from being killed by cytotoxic lymphocytes. Further, we also show that hantaviruses inhibit apoptosis in general. Hantaviruses are negative-stranded RNA viruses encoding four structural proteins. Interestingly, the nucleocapsid protein was shown to inhibit the enzymatic functions of both granzyme B and caspase 3, two enzymes crucial for cytotoxic lymphocyte-mediated killing of virus-infected cells. Our study provides new insights into the interactions between hantaviruses, infected cells, and cytotoxic lymphocytes, and argues against a role for cytotoxic lymphocyte-mediated killing of virus-infected endothelial cells in causing HFRS/HCPS.
PMCID: PMC3610645  PMID: 23555267
19.  Varicella-Zoster Virus Immediate-Early Protein 62 Blocks Interferon Regulatory Factor 3 (IRF3) Phosphorylation at Key Serine Residues: a Novel Mechanism of IRF3 Inhibition among Herpesviruses▿  
Journal of Virology  2010;84(18):9240-9253.
Varicella-zoster virus (VZV) is an alphaherpesvirus that is restricted to humans. VZV infection of differentiated cells within the host and establishment of latency likely require evasion of innate immunity and limited secretion of antiviral cytokines. Since interferons (IFNs) severely limit VZV replication, we examined the ability of VZV to modulate the induction of the type I IFN response in primary human embryonic lung fibroblasts (HELF). IFN-β production was not detected, and transcription of two interferon response factor 3 (IRF3)-dependent interferon-stimulated genes (ISGs), ISG54 and ISG56, in response to poly(I:C) stimulation was downregulated in VZV-infected HELF. Inhibition of IRF3 function did not require VZV replication; the viral immediate-early protein 62 (IE62) alone was sufficient to produce this effect. IE62 blocked TBK1-mediated IFN-β secretion and IRF3 function, as shown in an IFN-stimulated response element (ISRE)-luciferase reporter assay. However, IRF3 function was preserved if constitutively active IRF3 (IRF3-5D) was expressed in VZV-infected or IE62-transfected cells, indicating that VZV interferes with IRF3 phosphorylation. IE62-mediated inhibition was mapped to blocking phosphorylation of at least three serine residues on IRF3. However, IE62 binding to TBK1 or IRF3 was not detected and IE62 did not perturb TBK1-IRF3 complex formation. IE62-mediated inhibition of IRF3 function was maintained even if IE62 transactivator activity was disrupted. Thus, IE62 has two critical but discrete roles following VZV entry: to induce expression of VZV genes and to disarm the IFN-dependent antiviral defense through a novel mechanism that prevents IRF3 phosphorylation.
PMCID: PMC2937611  PMID: 20631144
20.  Lambda Interferon (IFN-λ) in Serum Is Decreased in Hantavirus-Infected Patients, and In Vitro-Established Infection Is Insensitive to Treatment with All IFNs and Inhibits IFN-γ-Induced Nitric Oxide Production▿  
Journal of Virology  2007;81(16):8685-8691.
Hantaviruses, causing hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS), are known to be sensitive to nitric oxide (NO) and to pretreatment with type I and II interferons (alpha interferon [IFN-α]/IFN-β and IFN-γ, respectively). Elevated serum levels of NO and IFN-γ have been observed in HFRS patients, but little is known regarding the systemic levels of other IFNs and the possible effects of hantaviruses on innate antiviral immune responses. In Puumala virus-infected HFRS patients (n = 18), we report that the levels of IFN-α and IFN-β are similar, whereas the level of IFN-λ (type III IFN) is significantly decreased, during acute (day of hospitalization) compared to the convalescent phase. The possible antiviral effects of IFN-λ on the prototypic hantavirus Hantaan virus (HTNV) replication was then investigated. Pretreatment of A549 cells with IFN-λ alone inhibited HTNV replication, and IFN-λ combined with IFN-γ induced additive antiviral effects. We then studied the effect of postinfection treatment with IFNs. Interestingly, an already-established HTNV infection was insensitive to subsequent IFN-α, -β, -γ, and -λ stimulation, and HTNV-infected cells produced less NO compared to noninfected cells when stimulated with IFN-γ and IL-1β. Furthermore, less phosphorylated STAT1 after IFN treatment was observed in the nuclei of infected cells than in those of noninfected cells. The results suggest that hantavirus can interfere with the activation of antiviral innate immune responses in patients and inhibit the antiviral effects of all IFNs. We believe that future studies addressing the mechanisms by which hantaviruses interfere with the activation and shaping of immune responses may bring more knowledge regarding HFRS and HCPS pathogenesis.
PMCID: PMC1951347  PMID: 17522204
21.  Peptide Antagonists That Inhibit Sin Nombre Virus and Hantaan Virus Entry through the β3-Integrin Receptor 
Journal of Virology  2005;79(12):7319-7326.
Specific therapy is not available for the treatment of hantavirus cardiopulmonary syndrome caused by Sin Nombre virus (SNV). The entry of pathogenic hantaviruses into susceptible human cells is dependent upon expression of the αvβ3 integrin, and transfection of human β3 integrin is sufficient to confer infectibility onto CHO (Chinese hamster ovary) cells. Furthermore, pretreatment of susceptible cells with anti-β3 antibodies such as c7E3 or its Fab fragment ReoPro prevents hantavirus entry. By using repeated selection of a cyclic nonamer peptide phage display library on purified αvβ3, we identified 70 peptides that were competitively eluted with ReoPro. Each of these peptides was examined for its ability to reduce the number of foci of SNV strain SN77734 in a fluorescence-based focus reduction assay according to the method of Gavrilovskaya et al. (I. N. Gavrilovskaya, M. Shepley, R. Shaw, M. H. Ginsberg, and E. R. Mackow, Proc. Natl. Acad. Sci. USA 95:7074-7079, 1998). We found that 11 peptides reduced the number of foci to a greater extent than did 80 μg/ml ReoPro when preincubated with Vero E6 cells. In addition, 8 of the 70 peptides had sequence similarity to SNV glycoproteins. We compared all 18 peptide sequences (10 most potent, 7 peptides with sequence similarity to hantavirus glycoproteins, and 1 peptide that was in the group that displayed the greatest potency and had significant sequence similarity) for their abilities to inhibit SNV, Hantaan virus (HTNV), and Prospect Hill virus (PHV) infection. There was a marked trend for the peptides to inhibit SNV and HTNV to a greater extent than they inhibited PHV, a finding that supports the contention that SNV and HTNV use β3 integrins and PHV uses a different receptor, β1 integrin. We then chemically synthesized the four peptides that showed the greatest ability to neutralize SNV. These peptides inhibited viral entry in vitro as free peptides outside of the context of a phage. Some combinations of peptides proved more inhibitory than did individual peptides. In all, we have identified novel peptides that inhibit entry by SNV and HTNV via β3 integrins and that can be used as lead compounds for further structural optimization and consequent enhancement of activity.
PMCID: PMC1143646  PMID: 15919886
22.  Distinct Innate Immune Responses in Human Macrophages and Endothelial Cells Infected with Shrew-borne Hantaviruses 
Virology  2012;434(1):43-49.
Although hantaviruses have been previously considered as rodent-borne pathogens, recent studies demonstrate genetically distinct hantaviruses in evolutionarily distant non-rodent reservoirs, including shrews, moles and bats. The immunological responses to these newfound hantaviruses in humans are unknown. We compared the innate immune responses to Imjin virus (MJNV) and Thottapalayam virus (TPMV), two shrew-borne hantaviruses, with that toward two rodent-borne hantaviruses, pathogenic Hantann virus (HTNV) and nonpathogenic Prospect Hill virus (PHV). Infection of human macrophages and endothelial cells with either HTNV or MJNV triggered productive viral replication and up-regulation of anti-viral responsive gene expression from day 1 to day 3 postinfection, compared with PHV and TPMV. Furthermore, HTNV, MJNV and TPMV infection led to prolonged increased production of pro-inflammatory cytokines from days 3 to 7 postinfection. By contrast, PHV infection failed to induce pro-inflammatory responses. Distinct patterns of innate immune activation caused by MJNV suggest that it might be pathogenic to humans.
PMCID: PMC3752032  PMID: 22944108
hantavirus; Imjin virus; shrew; innate immune response; anti-viral response
23.  Murine Gammaherpesvirus 68 Encoding Open Reading Frame 11 Targets TANK Binding Kinase 1 To Negatively Regulate the Host Type I Interferon Response 
Journal of Virology  2014;88(12):6832-6846.
Upon viral infection, type I interferons, such as alpha and beta interferon (IFN-α and IFN-β, respectively), are rapidly induced and activate multiple antiviral genes, thereby serving as the first line of host defense. Many DNA and RNA viruses counteract the host interferon system by modulating the production of IFNs. In this study, we report that murine gammaherpesvirus 68 (MHV-68), a double-stranded DNA virus, encodes open reading frame 11 (ORF11), a novel immune modulator, to block IFN-β production. ORF11-deficient recombinant viruses induced more IFN-β production in fibroblast and macrophage cells than the MHV-68 wild type or a marker rescue virus. MHV-68 ORF11 decreased IFN-β promoter activation by various factors, the signaling of which converges on TBK1-IRF3 activation. MHV-68 ORF11 directly interacted with both overexpressed and endogenous TBK1 but not with IRF3. Physical interactions between ORF11 and endogenous TBK1 were further confirmed during virus replication in fibroblasts using a recombinant virus expressing FLAG-ORF11. ORF11 efficiently reduced interaction between TBK1 and IRF3 and subsequently inhibited activation of IRF3, thereby negatively regulating IFN-β production. Our domain-mapping study showed that the central domain of ORF11 was responsible for both TBK1 binding and inhibition of IFN-β induction, while the kinase domain of TBK1 was sufficient for ORF11 binding. Taken together, these results suggest a mechanism underlying inhibition of IFN-β production by a gammaherpesvirus and highlight the importance of TBK1 in DNA virus replication.
IMPORTANCE Gammaherpesviruses are important human pathogens, as they are associated with various kinds of tumors. Upon virus infection, the type I interferon pathway is activated by a series of signaling molecules and stimulates antiviral gene expression. To subvert such interferon antiviral responses, viruses are equipped with multiple factors that can inhibit its critical steps. In this study, we took an unbiased genomic approach using a mutant library of murine gammaherpesvirus 68 to screen a novel viral immune modulator that negatively regulates the type I interferon pathway and identified ORF11 as a strong candidate. ORF11-deficient virus infection produced more interferon than the wild type in both fibroblasts and macrophages. During virus replication, ORF11 directly bound to TBK1, a key regulatory protein in the interferon pathway, and inhibited TBK1-mediated interferon production. Our results highlight a crucial role of TBK1 in controlling DNA virus infection and a viral strategy to curtail host surveillance.
PMCID: PMC4054366  PMID: 24696485
24.  Dynein-Dependent Transport of the Hantaan Virus Nucleocapsid Protein to the Endoplasmic Reticulum-Golgi Intermediate Compartment▿  
Journal of Virology  2007;81(16):8634-8647.
In contrast to most negative-stranded RNA viruses, hantaviruses and other viruses in the family Bunyaviridae mature intracellularly, deriving the virion envelope from the endoplasmic reticulum (ER) or Golgi compartment. While it is generally accepted that Old World hantaviruses assemble and bud into the Golgi compartment, some studies with New World hantaviruses have raised the possibility of maturation at the plasma membrane as well. Overall, the steps leading to virion assembly remain largely undetermined for hantaviruses. Because hantaviruses do not have matrix proteins, the nucleocapsid protein (N) has been proposed to play a key role in assembly. Herein, we examine the intracellular trafficking and morphogenesis of the prototype Old World hantavirus, Hantaan virus (HTNV). Using confocal microscopy, we show that N colocalized with the ER-Golgi intermediate compartment (ERGIC) in HTNV-infected Vero E6 cells, not with the ER, Golgi compartment, or early endosomes. Brefeldin A, which effectively disperses the ER, the ERGIC, and Golgi membranes, redistributed N with the ERGIC, implicating membrane association; however, subcellular fractionation experiments showed the majority of N in particulate fractions. Confocal microscopy revealed that N was juxtaposed to and distributed along microtubules and, over time, became surrounded by vimentin cages. To probe cytoskeletal association further, we probed trafficking of N in cells treated with nocodazole and cytochalasin D, which depolymerize microtubules and actin, respectively. We show that nocodazole, but not cytochalasin D, affected the distribution of N and reduced levels of intracellular viral RNA. These results suggested the involvement of microtubules in trafficking of N, whose movement could occur via molecular motors such as dynein. Overexpression of dynamitin, which is associated with dynein-mediated transport, creates a dominant-negative phenotype blocking transport on microtubules. Overexpression of dynamitin reduced N accumulation in the perinuclear region, which further supports microtubule components in N trafficking. The combined results of these experiments support targeting of N to the ERGIC prior to its movement to the Golgi compartment and the requirement of an intact ERGIC for viral replication and, thus, the possibility of virus factories in this region.
PMCID: PMC1951367  PMID: 17537852
25.  Host mTORC1 Signaling Regulates Andes Virus Replication 
Journal of Virology  2013;87(2):912-922.
Hantavirus pulmonary syndrome (HPS) is a severe respiratory disease characterized by pulmonary edema, with fatality rates of 35 to 45%. Disease occurs following infection with pathogenic New World hantaviruses, such as Andes virus (ANDV), which targets lung microvascular endothelial cells. During replication, the virus scavenges 5′-m7G caps from cellular mRNA to ensure efficient translation of viral proteins by the host cell cap-dependent translation machinery. In cells, the mammalian target of rapamycin (mTOR) regulates the activity of host cap-dependent translation by integrating amino acid, energy, and oxygen availability signals. Since there is no approved pharmacological treatment for HPS, we investigated whether inhibitors of the mTOR pathway could reduce hantavirus infection. Here, we demonstrate that treatment with the FDA-approved rapamycin analogue temsirolimus (CCI-779) blocks ANDV protein expression and virion release but not entry into primary human microvascular endothelial cells. This effect was specific to viral proteins, as temsirolimus treatment did not block host protein synthesis. We confirmed that temsirolimus targeted host mTOR complex 1 (mTORC1) and not a viral protein, as knockdown of mTORC1 and mTORC1 activators but not mTOR complex 2 components reduced ANDV replication. Additionally, primary fibroblasts from a patient with tuberous sclerosis exhibited increased mTORC1 activity and increased ANDV protein expression, which were blocked following temsirolimus treatment. Finally, we show that ANDV glycoprotein Gn colocalized with mTOR and lysosomes in infected cells. Together, these data demonstrate that mTORC1 signaling regulates ANDV replication and suggest that the hantavirus Gn protein may modulate mTOR and lysosomal signaling during infection, thus bypassing the cellular regulation of translation.
PMCID: PMC3554081  PMID: 23135723

Results 1-25 (916829)