Search tips
Search criteria

Results 1-25 (864040)

Clipboard (0)

Related Articles

1.  Electrophysiological differences between Hirayama disease, amyotrophic lateral sclerosis and cervical spondylotic amyotrophy 
Hirayama disease (HD), amyotrophic lateral sclerosis (ALS) or cervical spondylotic amyotrophy (CSA) may result in atrophy of intrinsic hand and forearm muscles. The incidence of HD is low, and it is rarely encountered in the clinical setting. Consequently, HD is often misdiagnosed as ALS or CSA. It is important to differentiate these diseases because HD is caused by a benign focal lesion that is limited to the upper limbs.
The thenar and hypothenar compound muscle action potential (CMAP) amplitude of the upper limbs of 100 HD, 97 ALS and 32 CSA cases were reviewed; 35 healthy individuals were included as controls. Seventy-eight percent, 38% and 69% of patients with HD, ALS or CSA had unilateral involvement; the remaining patients were affected bilaterally. Thenar and hypothenar CMAP amplitude evoked by ulnar stimulation was compared with CMAP evoked by median stimulation.
The ulnar/median CMAP ratio was found to be lower in HD (0.55 ± 0.41, P < 0.0001), higher in ALS (2.28 ± 1.15, P < 0.0001) and no different in CSA (1.21 ± 0.53, P > 0.05) compared with the normal range from previous studies (0.89-1.60) and with the healthy controls (1.15 ± 0.23). Conduction velocities of the sensory and motor nerves, the amplitude of the sensory nerve action potential, and the CMAP amplitude of the unaffected limb were all normal.
The hand muscles were differentially affected between patients with HD, ALS and CSA. The ulnar/median CMAP ratio could be used to distinguish these three diseases.
PMCID: PMC4216382  PMID: 25319248
Hirayama disease; Electrophysiological differentiation; Amyotrophic lateral aclerosis; Spondylotic amyotrophy; Action potential
2.  Flail arm–like syndrome associated with HIV-1 infection 
During the last 20 years at least 23 cases of motor neuron disease have been reported in HIV-1 seropositive patients. In this report we describe the clinical picture of a young man with HIV-1 clade C infection and flail arm-like syndrome, who we were able to follow-up for a long period. We investigated and prospectively monitored a 34-year-old man with features of flail arm syndrome, who developed the weakness and wasting 1 year after being diagnosed with HIV-1 infection after a routine blood test. He presented in 2003 with progressive, symmetrical wasting and weakness of the proximal muscles of the upper limb of 2 years' duration. He had severe wasting and weakness of the shoulder and arm muscles. There were no pyramidal signs. He has been on HAART for the last 4 years and the weakness or wasting has not worsened. At the last follow-up in July 2007, the patient had the same neurological deficit and no other symptoms or signs of HIV-1 infection. MRI of the spinal cord in 2007 showed characteristic T2 hyperintense signals in the central part of the spinal cord, corresponding to the central gray matter. Thus, our patient had HIV-1 clade C infection associated with a ‘flail arm–like syndrome.’ The causal relationship between HIV-1 infection and amyotrophic lateral sclerosis (ALS)-like syndrome is still uncertain. The syndrome usually manifests as a lower motor neuron syndrome, as was seen in our young patient. It is known that treatment with antiretroviral therapy (ART) stabilizes/improves the condition. In our patient the weakness and atrophy remained stable over a period of 3.5 years after commencing HAART regimen.
PMCID: PMC2812739  PMID: 20142861
Flail arm syndrome; HIV-1; amyotrophic lateral sclerosis; highly active antiretroviral therapy; HIV-1 clade C
3.  Amyotrophic lateral sclerosis 
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterised by progressive muscular paralysis reflecting degeneration of motor neurones in the primary motor cortex, corticospinal tracts, brainstem and spinal cord. Incidence (average 1.89 per 100,000/year) and prevalence (average 5.2 per100,000) are relatively uniform in Western countries, although foci of higher frequency occur in the Western Pacific. The mean age of onset for sporadic ALS is about 60 years. Overall, there is a slight male prevalence (M:F ratio~1.5:1). Approximately two thirds of patients with typical ALS have a spinal form of the disease (limb onset) and present with symptoms related to focal muscle weakness and wasting, where the symptoms may start either distally or proximally in the upper and lower limbs. Gradually, spasticity may develop in the weakened atrophic limbs, affecting manual dexterity and gait. Patients with bulbar onset ALS usually present with dysarthria and dysphagia for solid or liquids, and limbs symptoms can develop almost simultaneously with bulbar symptoms, and in the vast majority of cases will occur within 1–2 years. Paralysis is progressive and leads to death due to respiratory failure within 2–3 years for bulbar onset cases and 3–5 years for limb onset ALS cases. Most ALS cases are sporadic but 5–10% of cases are familial, and of these 20% have a mutation of the SOD1 gene and about 2–5% have mutations of the TARDBP (TDP-43) gene. Two percent of apparently sporadic patients have SOD1 mutations, and TARDBP mutations also occur in sporadic cases. The diagnosis is based on clinical history, examination, electromyography, and exclusion of 'ALS-mimics' (e.g. cervical spondylotic myelopathies, multifocal motor neuropathy, Kennedy's disease) by appropriate investigations. The pathological hallmarks comprise loss of motor neurones with intraneuronal ubiquitin-immunoreactive inclusions in upper motor neurones and TDP-43 immunoreactive inclusions in degenerating lower motor neurones. Signs of upper motor neurone and lower motor neurone damage not explained by any other disease process are suggestive of ALS. The management of ALS is supportive, palliative, and multidisciplinary. Non-invasive ventilation prolongs survival and improves quality of life. Riluzole is the only drug that has been shown to extend survival.
PMCID: PMC2656493  PMID: 19192301
4.  Leukocyte-derived microparticles and scanning electron microscopic structures in two fractions of fresh cerebrospinal fluid in amyotrophic lateral sclerosis: a case report 
Amyotrophic lateral sclerosis is a progressive neurodegenerative disorder characterized by degeneration of motoneuron cells in anterior spinal horns. There is a need for early and accurate diagnosis with this condition. In this case report we used two complementary methods: scanning electron microscopy and fluorescence-activated cell sorting. This is the first report to our knowledge of microparticles in the cerebrospinal fluid of a patient with amyotrophic lateral sclerosis.
Case presentation
An 80-year-old Swedish man of Caucasian ethnicity presented to our facility with symptoms of amyotrophic lateral sclerosis starting a year before his first hospital examination, such as muscle weakness and twitching in his right hand progressing to arms, body and leg muscles. Electromyography showed classical neurophysiological findings of amyotrophic lateral sclerosis. Routine blood sample results were normal. A lumbar puncture was performed as a routine investigation and his cerebrospinal fluid was normal with regard to cell count and protein levels, and there were no signs of inflammation. However, scanning electron microscopy and fluorescence-activated cell sorting showed pronounced abnormalities compared to healthy controls. Flow cytometry analysis of two fractions of cerebrospinal fluid from our patient with amyotrophic lateral sclerosis was used to measure the specific binding of antibodies to CD42a, CD144 and CD45, and of phosphatidylserine to lactadherin. Our patient displayed over 100 times more phosphatidylserine-positive microparticles and over 400 times more cell-derived microparticles of leukocyte origin in his cerebrospinal fluid compared to healthy control subjects. The first cerebrospinal fluid fraction contained about 50% more microparticles than the second fraction. The scanning electron microscopy filters used with cerebrospinal fluid from our patient were filled with compact aggregates of spherical particles of lipid appearance, sticking together in a viscous batter. The quantitative increase in scanning electron microscopy findings corresponded to the flow cytometry result of an increase in leukocyte-derived microparticles.
Microparticles represent subcellular arrangements that can influence the pathogenesis of amyotrophic lateral sclerosis and may serve as biomarkers for underlying cellular disturbances. The increased number of leukocyte-derived microparticles with normal cell counts in cerebrospinal fluid may contribute to the amyotrophic lateral sclerosis inflammatory process by formation of immune complexes of prion-like propagation, possibly due to misfolded proteins. The two complementary methods used in this report may be additional tools for revealing the etiology of amyotrophic lateral sclerosis, for early diagnostic purposes and for evaluation of clinical trials, long-term follow-up studies and elucidating the pathophysiology in amyotrophic lateral sclerosis.
PMCID: PMC3492039  PMID: 22943439
Amyotrophic lateral sclerosis; Antibodies; Cerebrospinal fluid; Complementary methods; Electromyography; Flow cytometry; Microparticles; Phosphatidylserine; Scanning electron microscopy
5.  Analysis of Neurotrophic Factors in Limb and Extraocular Muscles of Mouse Model of Amyotrophic Lateral Sclerosis 
PLoS ONE  2014;9(10):e109833.
Amyotrophic lateral sclerosis (ALS) is currently an incurable fatal motor neuron syndrome characterized by progressive weakness, muscle wasting and death ensuing 3–5 years after diagnosis. Neurotrophic factors (NTFs) are known to be important in both nervous system development and maintenance. However, the attempt to translate the potential of NTFs into the therapeutic options remains limited despite substantial number of approaches, which have been tested clinically. Using quantitative RT-PCR (qRT-PCR) technique, the present study investigated mRNA expression of four different NTFs: brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), neurotrophin-4/5 (NT-4) and glial cell line-derived neurotrophic factor (GDNF) in limb muscles and extraocular muscles (EOMs) from SOD1G93A transgenic mice at early and terminal stages of ALS. General morphological examination revealed that muscle fibres were well preserved in both limb muscles and EOMs in early stage ALS mice. However, in terminal ALS mice, most muscle fibres were either atrophied or hypertrophied in limb muscles but unaffected in EOMs. qRT-PCR analysis showed that in early stage ALS mice, NT-4 was significantly down-regulated in limb muscles whereas NT-3 and GDNF were markedly up-regulated in EOMs. In terminal ALS mice, only GDNF was significantly up-regulated in limb muscles. We concluded that the early down-regulation of NT-4 in limb muscles is closely associated with muscle dystrophy and dysfunction at late stage, whereas the early up-regulations of GDNF and NT-3 in EOMs are closely associated with the relatively well-preserved muscle morphology at late stage. Collectively, the data suggested that comparing NTFs expression between limb muscles and EOMs from different stages of ALS animal models is a useful method in revealing the patho-physiology and progression of ALS, and eventually rescuing motor neuron in ALS patients.
PMCID: PMC4198138  PMID: 25334047
6.  Application of magnetic motor stimulation for measuring conduction time across the lower part of the brachial plexus 
The objective of this study was to calculate central motor conduction time (CMCT) of median and ulnar nerves in normal volunteers. Conduction time across the lower part of the brachial plexus was measured by using magnetic stimulation over the motor cortex and brachial plexus and recording the evoked response in hand muscles.
This descriptive study was done on 112 upper limbs of healthy volunteers. Forty-six limbs belonging to men and sixty-six belonging to women were studied by magnetic stimulation of both motor cortex and brachial plexus and recording the evoked response in thenar and hypothenar muscles. Stimulation of the motor cortex gives rise to absolute latency of each nerve whereas stimulation of the brachial plexus results in peripheral conduction time. The difference between these two values was considered the central motor conduction time (CMCT).
In summary the result are as follows; Cortex-thenar latency = 21.4 ms (SD = 1.7), CMCT-thenar = 9.6 ms (SD = 1.9), Cortex-hypothenar latency = 21.3 ms (SD = 1.8), CMCT-hypothenar = 9.4 ms (SD = 1.8).
These findings showed that there is no meaningful difference between two genders. CMCT calculated by this method is a little longer than that obtained by electrical stimulation that is due to the more distally placed second stimulation. We recommend magnetic stimulation as the method of choice to calculate CMCT and its use for lower brachial plexus conduction time. This method could serve as a diagnostic tool for diagnosis of lower plexus entrapment and injuries especially in early stages.
PMCID: PMC2292182  PMID: 18321392
7.  A patient with amyotrophic lateral sclerosis and atypical clinical and electrodiagnostic features: a case report 
Amyotrophic lateral sclerosis is a rapidly progressive, fatal neurodegenerative disorder for which there is no effective treatment. The diagnosis is dependent on the clinical presentation and consistent electrodiagnostic studies. Typically, there is a combination of upper and lower motor neuron signs as well as electrodiagnostic studies indicative of diffuse motor axonal injury. The presentation of amyotrophic lateral sclerosis, however, may be variable. At the same time, the diagnosis is essential for patient prognosis and management. It is therefore important to appreciate the range of possible presentations of amyotrophic lateral sclerosis.
Case presentation
We present the case of a 57-year-old Caucasian man with pathological findings on postmortem examination consistent with amyotrophic lateral sclerosis but atypical clinical and electrodiagnostic features. He died after a rapid course of progressive weakness. The patient did not respond to immunosuppressive therapy.
Amyotrophic lateral sclerosis should be considered in patients with a rapidly progressive, unexplained neuropathic process. This should be true even if there are atypical clinical and electrodiagnostic findings. Absence of response to therapy and the development of upper motor neuron signs should reinforce the possibility that amyotrophic lateral sclerosis may be present. Since amyotrophic lateral sclerosis is a fatal illness, however, the possibility of this disease in patients with atypical clinical features should not diminish the need for a thorough diagnostic evaluation and treatment trials.
PMCID: PMC3240922  PMID: 22047468
8.  Widespread grey matter pathology dominates the longitudinal cerebral MRI and clinical landscape of amyotrophic lateral sclerosis 
Brain  2014;137(9):2546-2555.
Menke/Koerner et al. use structural MRI to explore the extent of longitudinal changes in cerebral pathology in amyotrophic lateral sclerosis, and their relationship to clinical features. A characteristic white matter tract pathological signature is seen cross-sectionally, while cortical involvement dominates longitudinally. This has implications for the development of biomarkers for diagnosis versus therapeutic monitoring.
Diagnosis, stratification and monitoring of disease progression in amyotrophic lateral sclerosis currently rely on clinical history and examination. The phenotypic heterogeneity of amyotrophic lateral sclerosis, including extramotor cognitive impairments is now well recognized. Candidate biomarkers have shown variable sensitivity and specificity, and studies have been mainly undertaken only cross-sectionally. Sixty patients with sporadic amyotrophic lateral sclerosis (without a family history of amyotrophic lateral sclerosis or dementia) underwent baseline multimodal magnetic resonance imaging at 3 T. Grey matter pathology was identified through analysis of T1-weighted images using voxel-based morphometry. White matter pathology was assessed using tract-based spatial statistics analysis of indices derived from diffusion tensor imaging. Cross-sectional analyses included group comparison with a group of healthy controls (n = 36) and correlations with clinical features, including regional disability, clinical upper motor neuron signs and cognitive impairment. Patients were offered 6-monthly follow-up MRI, and the last available scan was used for a separate longitudinal analysis (n = 27). In cross-sectional study, the core signature of white matter pathology was confirmed within the corticospinal tract and callosal body, and linked strongly to clinical upper motor neuron burden, but also to limb disability subscore and progression rate. Localized grey matter abnormalities were detected in a topographically appropriate region of the left motor cortex in relation to bulbar disability, and in Broca’s area and its homologue in relation to verbal fluency. Longitudinal analysis revealed progressive and widespread changes in the grey matter, notably including the basal ganglia. In contrast there was limited white matter pathology progression, in keeping with a previously unrecognized limited change in individual clinical upper motor neuron scores, despite advancing disability. Although a consistent core white matter pathology was found cross-sectionally, grey matter pathology was dominant longitudinally, and included progression in clinically silent areas such as the basal ganglia, believed to reflect their wider cortical connectivity. Such changes were significant across a range of apparently sporadic patients rather than being a genotype-specific effect. It is also suggested that the upper motor neuron lesion in amyotrophic lateral sclerosis may be relatively constant during the established symptomatic period. These findings have implications for the development of effective diagnostic versus therapeutic monitoring magnetic resonance imaging biomarkers. Amyotrophic lateral sclerosis may be characterized initially by a predominantly white matter tract pathological signature, evolving as a widespread cortical network degeneration.
PMCID: PMC4132644  PMID: 24951638
motor neuron disease; biomarker; magnetic resonance imaging; voxel-based morphometry; diffusion tensor imaging
9.  A proposed staging system for amyotrophic lateral sclerosis 
Brain  2012;135(3):847-852.
Amyotrophic lateral sclerosis is a neurodegenerative disorder characterized by progressive loss of upper and lower motor neurons, with a median survival of 2–3 years. Although various phenotypic and research diagnostic classification systems exist and several prognostic models have been generated, there is no staging system. Staging criteria for amyotrophic lateral sclerosis would help to provide a universal and objective measure of disease progression with benefits for patient care, resource allocation, research classifications and clinical trial design. We therefore sought to define easily identified clinical milestones that could be shown to occur at specific points in the disease course, reflect disease progression and impact prognosis and treatment. A tertiary referral centre clinical database was analysed, consisting of 1471 patients with amyotrophic lateral sclerosis seen between 1993 and 2007. Milestones were defined as symptom onset (functional involvement by weakness, wasting, spasticity, dysarthria or dysphagia of one central nervous system region defined as bulbar, upper limb, lower limb or diaphragmatic), diagnosis, functional involvement of a second region, functional involvement of a third region, needing gastrostomy and non-invasive ventilation. Milestone timings were standardized as proportions of time elapsed through the disease course using information from patients who had died by dividing time to a milestone by disease duration. Milestones occurred at predictable proportions of the disease course. Diagnosis occurred at 35% through the disease course, involvement of a second region at 38%, a third region at 61%, need for gastrostomy at 77% and need for non-invasive ventilation at 80%. We therefore propose a simple staging system for amyotrophic lateral sclerosis. Stage 1: symptom onset (involvement of first region); Stage 2A: diagnosis; Stage 2B: involvement of second region; Stage 3: involvement of third region; Stage 4A: need for gastrostomy; and Stage 4B: need for non-invasive ventilation. Validation of this staging system will require further studies in other populations, in population registers and in other clinic databases. The standardized times to milestones may well vary between different studies and populations, although the stages themselves and their meanings are likely to remain unchanged.
PMCID: PMC3286327  PMID: 22271664
amyotrophic lateral sclerosis; staging; motor neuron disease; natural history; El Escorial criteria
10.  Comparison between Flail Arm Syndrome and Upper Limb Onset Amyotrophic Lateral Sclerosis: Clinical Features and Electromyographic Findings 
Experimental Neurobiology  2014;23(3):253-257.
Flail arm syndrome (FAS), an atypical presentation of amyotrophic lateral sclerosis (ALS), is characterized by progressive, predominantly proximal, weakness of upper limbs, without involvement of the lower limb, bulbar, or respiratory muscles. When encountering a patient who presents with this symptomatic profile, possible diagnoses include upper limb onset ALS (UL-ALS), and FAS. The lack of information regarding FAS may make differential diagnosis between FAS and UL-ALS difficult in clinical settings. The aim of this study was to compare clinical and electromyographic findings from patients diagnosed with FAS with those from patients diagnosed with UL-ALS. To accomplish this, 18 patients with FAS and 56 patients with UL-ALS were examined. Significant differences were observed between the 2 groups pertaining to the rate of fasciculation, patterns of predominantly affected muscles, and the Medical Research Council scale of the weakest muscle. The presence of upper motor neuron signs and lower motor neuron involvement evidenced through electromyography showed no significant between-group differences.
PMCID: PMC4174617  PMID: 25258573
flail arm syndrome; amyotrophic lateral sclerosis; brachial amyotrophic diplegia; electromyography; motor neuron disease
11.  Wasting of the hand associated with a cervical rib or band 1 
Nine patients are described with unilateral wasting of the hand muscles associated with elongated C7 transverse processes or with rudimentary cervical ribs. In three patients there was selective wasting of the lateral part of the thenar pad, accompanied by mild weakness of the other hand muscles. In four patients all the hand muscles were wasted, but this was more marked in the lateral part of the thenar pad than elsewhere. In two patients wasting was uniformly distributed throughout the hand. Weakness and wasting in the forearm was only present in four patients and was relatively mild. Sensory loss, when present, affected mainly the inner side of the forearm. Nerve conduction studies revealed no abnormality in the distal part of the median nerve, but some patients had reduced or absent sensory action potentials when the fifth finger was stimulated. In all nine patients a sharp fibrous band was found at operation, which extended from an elongated C7 transverse process or from a rudimentary cervical rib to the region of the scalene tubercle on the first rib. The fibrous band caused angulation of the C8 and T1 roots in five patients, and of the lower trunk of the brachial plexus in three. Pathological changes were frequently visible in affected nerves at the site of angulation. Division of the fibrous band relieved pain and paraesthesiae in eight patients and arrested muscle wasting and weakness in nine patients. There was, however, only slight recovery of power in affected muscles; wasting in the hand appeared to be unchanged after periods of up to eight years.
PMCID: PMC493540  PMID: 5478944
12.  Cortical Dysfunction Underlies the Development of the Split-Hand in Amyotrophic Lateral Sclerosis 
PLoS ONE  2014;9(1):e87124.
The split-hand phenomenon, a specific feature of amyotrophic lateral sclerosis (ALS), refers to preferential wasting of abductor pollicis brevis (APB) and first dorsal interosseous (FDI) with relative preservation of abductor digiti minimi (ADM). The pathophysiological mechanisms underlying the split-hand phenomenon remain elusive and resolution of this issue would provide unique insights into ALS pathophysiology. Consequently, the present study dissected out the relative contribution of cortical and peripheral processes in development of the split-hand phenomenon in ALS. Cortical and axonal excitability studies were undertaken on 26 ALS patients, with motor responses recorded over the APB, FDI and ADM muscles. Results were compared to 21 controls. Short interval intracortical inhibition (SICI), a biomarker of cortical excitability, was significantly reduced across the range of intrinsic hand muscles (APBSICI ALS 0.3±2.0%, APBSICI controls 16.0±1.9%, P<0.0001; FDISICI ALS 2.7±1.7%, FDI SICI controls 14.8±1.9%, P<0.0001; ADMSICI ALS 2.6±1.5%, ADM SICI controls 9.7±2.2%, P<0.001), although the reduction was most prominent when recorded over APB/FDI. Changes in SICI were accompanied by a significant increase in motor evoked potential amplitude and reduction of cortical silent period duration, all indicative of cortical hyperexcitability, and these were most prominent from the APB/FDI. At a peripheral level, a significant increase in strength-duration time constant and reduction in depolarising threshold electrotonus were evident in ALS, although these changes did not follow a split-hand distribution. Cortical dysfunction contributed to development of the split-hand in ALS, thereby implying an importance of cortical hyperexcitability in ALS pathogenesis.
PMCID: PMC3901749  PMID: 24475241
13.  Transcranial magnetic stimulation in ALS 
Neurology  2009;72(6):498-504.
To investigate transcranial magnetic stimulation (TMS) measures as clinical correlates and longitudinal markers of amyotrophic lateral sclerosis (ALS).
We prospectively studied 60 patients with ALS subtypes (sporadic ALS, familial ALS, progressive muscular atrophy, and primary lateral sclerosis) using single pulse TMS, recording from abductor digiti minimi (ADM) and tibialis anterior (TA) muscles. We evaluated three measures: 1) TMS motor response threshold to the ADM, 2) central motor conduction time (CMCT), and 3) motor evoked potential amplitude (correcting for peripheral changes). Patients were evaluated at baseline, compared with controls, and followed every 3 months for up to six visits. Changes were analyzed using generalized estimation equations to test linear trends with time.
TMS threshold, CMCT, and TMS amplitude correlated (p < 0.05) with clinical upper motor neuron (UMN) signs at baseline and were different (p < 0.05) from normal controls in at least one response. Seventy-eight percent of patients with UMN (41/52) and 50% (4/8) of patients without clinical UMN signs had prolonged CMCT. All three measures revealed significant deterioration over time: TMS amplitude showed the greatest change, decreasing 8% per month; threshold increased 1.8% per month; and CMCT increased by 0.9% per month.
Transcranial magnetic stimulation (TMS) findings, particularly TMS amplitude, can objectively discriminate corticospinal tract involvement in amyotrophic lateral sclerosis (ALS) from controls and assess the progression of ALS. While central motor conduction time and response threshold worsen by less than 2% per month, TMS amplitude decrease averages 8% per month, and may be a useful objective marker of disease progression.
= abductor digiti minimi;
= amyotrophic lateral sclerosis;
= analysis of variance;
= confidence interval;
= compound motor action potential;
= central motor conduction time;
= deep tendon stretch reflex;
= familial ALS;
= generalized estimation equations;
= lower motor neuron;
= motor evoked potential;
= primary lateral sclerosis;
= progressive muscular atrophy;
= sporadic ALS;
= tibialis anterior;
= transcranial magnetic stimulation;
= upper motor neuron.
PMCID: PMC2677511  PMID: 19204259
14.  Study of 962 patients indicates progressive muscular atrophy is a form of ALS 
Neurology  2009;73(20):1686-1692.
Progressive muscular atrophy (PMA) is clinically characterized by signs of lower motor neuron dysfunction and may evolve into amyotrophic lateral sclerosis (ALS). Whether PMA is actually a form of ALS has important consequences clinically and for therapeutic trials. We compared the survival of patients with PMA or ALS to analyze the clinical features that influence survival in PMA.
We reviewed the medical records of patients with PMA (n = 91) or ALS (n = 871) from our ALS Center and verified survival by telephoning the families or using the National Death Index.
In PMA, patients were more likely to be male (p < 0.001), older (p = 0.007), and lived longer (p = 0.01) than in ALS. Cox model analysis suggested that the risk of death increased with age at onset in both patient groups (p < 0.005). Upper motor neuron (UMN) signs developed in 22% of patients with PMA within 61 months after diagnosis. Demographic and other clinical variables did not differ at diagnosis between those who did or did not develop UMN signs. In PMA, the factors present at diagnosis that predicted shorter survival were greater number of body regions affected, lower forced vital capacity, and lower ALS Functional Rating Scale–Revised score. Noninvasive ventilation and gastrostomy were used frequently in PMA.
Although patients with progressive muscular atrophy (PMA) tended to live longer than those with amyotrophic lateral sclerosis (ALS), shorter survival in PMA is associated with the same risk factors that predict poor survival in ALS. Additionally, PMA is relentlessly progressive, and UMN involvement can occur, as also reported in imaging and postmortem studies. For these reasons, PMA should be considered a form of ALS.
= amyotrophic lateral sclerosis;
= ALS Functional Rating Scale–Revised;
= confidence interval;
= forced vital capacity;
= hazard ratio;
= lower motor neuron;
= motor neuron disease;
= magnetic resonance spectroscopy;
= noninvasive ventilation;
= percutaneous endoscopic gastrostomy;
= progressive muscular atrophy;
= transcranial magnetic stimulation;
= upper motor neuron.
PMCID: PMC2788803  PMID: 19917992
15.  White matter alterations differ in primary lateral sclerosis and amyotrophic lateral sclerosis 
Brain  2011;134(9):2642-2655.
Primary lateral sclerosis is a sporadic disorder characterized by slowly progressive corticospinal dysfunction. Primary lateral sclerosis differs from amyotrophic lateral sclerosis by its lack of lower motor neuron signs and long survival. Few pathological studies have been carried out on patients with primary lateral sclerosis, and the relationship between primary lateral sclerosis and amyotrophic lateral sclerosis remains uncertain. To detect in vivo structural differences between the two disorders, diffusion tensor imaging of white matter tracts was carried out in 19 patients with primary lateral sclerosis, 18 patients with amyotrophic lateral sclerosis and 19 age-matched controls. Fibre tracking was used to reconstruct the intracranial portion of the corticospinal tract and three regions of the corpus callosum: the genu, splenium and callosal fibres connecting the motor cortices. Both patient groups had reduced fractional anisotropy, a measure associated with axonal organization, and increased mean diffusivity of the reconstructed corticospinal and callosal motor fibres compared with controls, without changes in the genu or splenium. Voxelwise comparison of the whole brain white matter using tract-based spatial statistics confirmed the differences between patients and controls in the diffusion properties of the corticospinal tracts and motor fibres of the callosum. This analysis further revealed differences in the regional distribution of white matter alterations between the patient groups. In patients with amyotrophic lateral sclerosis, the greatest reduction in fractional anisotropy occurred in the distal portions of the intracranial corticospinal tract, consistent with a distal axonal degeneration. In patients with primary lateral sclerosis, the greatest loss of fractional anisotropy and mean diffusivity occurred in the subcortical white matter underlying the motor cortex, with reduced volume, suggesting tissue loss. Clinical measures of upper motor neuron dysfunction correlated with reductions in fractional anisotropy in the corticospinal tract in patients with amyotrophic lateral sclerosis and increased mean diffusivity and volume loss of the corticospinal tract in patients with primary lateral sclerosis. Changes in the diffusion properties of the motor fibres of the corpus callosum were strongly correlated with changes in corticospinal fibres in patients, but not in controls. These findings indicate that degeneration is not selective for corticospinal neurons, but affects callosal neurons within the motor cortex in motor neuron disorders.
PMCID: PMC3170531  PMID: 21798965
diffusion tensor imaging; diffusion tensor tractography; motor neuron disorders; primary lateral sclerosis; corpus callosum
16.  Brown-Vialetto-Van Laere syndrome 
The Brown-Vialetto-Van Laere syndrome (BVVL) is a rare neurological disorder characterized by progressive pontobulbar palsy associated with sensorineural deafness. Fifty-eight cases have been reported in just over 100 years. The female to male ratio is approximately 3:1. The age of onset of the initial symptom varies from infancy to the third decade. The syndrome most frequently presents with sensorineural deafness, which is usually progressive and severe. Lower cranial nerve involvement and lower and upper motor neuron limb signs are common neurological features. Other features include respiratory compromise (the most frequent non-neurological finding), limb weakness, slurring of speech, facial weakness, and neck and shoulder weakness. Optic atrophy, retinitis pigmentosa, macular hyperpigmentation, autonomic dysfunction, epilepsy may occur. The etiopathogenesis of the condition remains elusive. Approximately 50% of cases are familial, of which autosomal recessive is suggested. The remaining cases are sporadic. The diagnosis is usually based on the clinical presentation. Investigations (neurophysiological studies, magnetic resonance imaging of the brain, muscle biopsy, cerebrospinal fluid examination) are done to exclude other causes or to confirm the clinical findings. The differential diagnoses include the Fazio-Londe syndrome, amyotrophic lateral sclerosis, Nathalie syndrome, Boltshauser syndrome and Madras motor neuron disease. Treatment with steroids or intravenous immunoglobulin may result in temporary stabilization of the syndrome. However, the mainstays of management are supportive and symptomatic treatment, in particular assisted ventilation and maintenance of nutrition via gastrostomy. The clinical course of BVVL is variable and includes gradual deterioration (almost half of cases), gradual deterioration with stable periods in between (a third of cases) and deterioration with abrupt periods of worsening (just under a fifth of cases). After the initial presentation, one third of patients survive for ten years or longer.
PMCID: PMC2346457  PMID: 18416855
17.  Quantification of functional hand grip using electromyography and inertial sensor-derived accelerations: clinical implications 
Assessing hand injury is of great interest given the level of involvement of the hand with the environment. Knowing different assessment systems and their limitations generates new perspectives. The integration of digital systems (accelerometry and electromyography) as a tool to supplement functional assessment allows the clinician to know more about the motor component and its relation to movement. Therefore, the purpose of this study was the kinematic and electromyography analysis during functional hand movements.
Ten subjects carried out six functional movements (terminal pinch, termino-lateral pinch, tripod pinch, power grip, extension grip and ball grip). Muscle activity (hand and forearm) was measured in real time using electromyograms, acquired with the Mega ME 6000, whilst acceleration was measured using the AcceleGlove.
Electrical activity and acceleration variables were recorded simultaneously during the carrying out of the functional movements. The acceleration outcome variables were the modular vectors of each finger of the hand and the palm. In the electromyography, the main variables were normalized by the mean and by the maximum muscle activity of the thenar region, hypothenar, first interosseous dorsal, wrist flexors, carpal flexors and wrist extensors.
Knowing muscle behavior allows the clinician to take a more direct approach in the treatment. Based on the results, the tripod grip shows greater kinetic activity and the middle finger is the most relevant in this regard. Ball grip involves most muscle activity, with the thenar region playing a fundamental role in hand activity.
Clinical relevance
Relating muscle activation, movements, individual load and displacement offers the possibility to proceed with rehabilitation by individual component.
PMCID: PMC4273320  PMID: 25496710
Assessment; Kinematic; Signal; Electromyography; Functions
18.  A Case of Amyotrophic Lateral Sclerosis Presented as Oropharyngeal Dysphagia 
Amyotrophic lateral sclerosis is a rare disease. It is a fatal neurodegenerative disease characterized by progressive muscular paralysis reflecting degeneration of motor neurons which leads to muscle weakness and muscle wasting. Respiratory failure limits survival to 2-5 years after disease onset. Several clinical manifestations including dysphagia can result in reductions in both the quality of life and life expectancy. Dysphagia occurs at onset in about one third of case, although generally it occurs in later stage of the disease. Evaluation of dysphagia includes video-fluoroscopic swallow study, radiological esophagogram, flexible endoscopic examination, ultrasound examination, conventional manometry and electromyography. We report a case of amyotrophic lateral sclerosis in a 54-year-old man presenting oropharyngeal dysphagia which was diagnosed by high resolution esophageal manometry presenting abnormality of the upper esophageal sphincter.
PMCID: PMC2912126  PMID: 20680172
Oropharyngeal dysphagia; Amyotrophic lateral sclerosis; High resolution manometry
19.  Non-human primate model of amyotrophic lateral sclerosis with cytoplasmic mislocalization of TDP-43 
Brain  2012;135(3):833-846.
Amyotrophic lateral sclerosis is a fatal neurodegenerative disease characterized by progressive motoneuron loss. Redistribution of transactive response deoxyribonucleic acid-binding protein 43 from the nucleus to the cytoplasm and the presence of cystatin C-positive Bunina bodies are considered pathological hallmarks of amyotrophic lateral sclerosis, but their significance has not been fully elucidated. Since all reported rodent transgenic models using wild-type transactive response deoxyribonucleic acid-binding protein 43 failed to recapitulate these features, we expected a species difference and aimed to make a non-human primate model of amyotrophic lateral sclerosis. We overexpressed wild-type human transactive response deoxyribonucleic acid-binding protein 43 in spinal cords of cynomolgus monkeys and rats by injecting adeno-associated virus vector into the cervical cord, and examined the phenotype using behavioural, electrophysiological, neuropathological and biochemical analyses. These monkeys developed progressive motor weakness and muscle atrophy with fasciculation in distal hand muscles first. They also showed regional cytoplasmic transactive response deoxyribonucleic acid-binding protein 43 mislocalization with loss of nuclear transactive response deoxyribonucleic acid-binding protein 43 staining in the lateral nuclear group of spinal cord innervating distal hand muscles and cystatin C-positive cytoplasmic aggregates, reminiscent of the spinal cord pathology of patients with amyotrophic lateral sclerosis. Transactive response deoxyribonucleic acid-binding protein 43 mislocalization was an early or presymptomatic event and was later associated with neuron loss. These findings suggest that the transactive response deoxyribonucleic acid-binding protein 43 mislocalization leads to α-motoneuron degeneration. Furthermore, truncation of transactive response deoxyribonucleic acid-binding protein 43 was not a prerequisite for motoneuronal degeneration, and phosphorylation of transactive response deoxyribonucleic acid-binding protein 43 occurred after degeneration had begun. In contrast, similarly prepared rat models expressed transactive response deoxyribonucleic acid-binding protein 43 only in the nucleus of motoneurons. There is thus a species difference in transactive response deoxyribonucleic acid-binding protein 43 pathology, and our monkey model recapitulates amyotrophic lateral sclerosis pathology to a greater extent than rodent models, providing a valuable tool for studying the pathogenesis of sporadic amyotrophic lateral sclerosis.
PMCID: PMC3286326  PMID: 22252998
TDP-43; Bunina bodies; cystatin C; cynomolgus monkeys; amyotrophic lateral sclerosis
20.  Is IVIg therapy warranted in progressive lower motor neuron syndromes without conduction block? 
Neurology  2013;81(24):2116-2120.
To evaluate the likelihood of response to IV immunoglobulin (IVIg) by studying consecutive patients presenting with progressive, asymmetric, pure lower motor neuron (LMN) limb weakness, and to determine the clinical phenotype of those who respond.
Thirty-one consecutive patients with progressive, focal-onset LMN limb weakness, without evidence of clinical upper motor neuron signs; sensory, respiratory, or bulbar involvement; or evidence of motor nerve conduction block on electrodiagnostic studies, were prospectively included in this study. Each patient underwent treatment with IVIg (2 g/kg) for a minimum of 3 months. Electrodiagnostic studies, a neuromuscular symptom score, and expanded Medical Research Council sum score were documented before and after IVIg treatment. The final diagnosis was determined after prolonged clinical follow-up.
Only 3 of 31 patients (10%) responded to IVIg. All responders demonstrated distal upper limb–onset weakness, EMG abnormalities confined to the clinically weak muscles, and a normal creatine kinase. This set of features was also identified in 31% of nonresponders presenting with distal upper limb weakness. Sex, age at onset, number of involved limb regions, and the duration of symptoms before treatment were not significantly different between groups.
The findings of the present study do not support uniform use of IVIg in patients presenting with progressive asymmetric LMN limb weakness. It is suggested that IVIg treatment be limited to patients who demonstrate clinical and laboratory features suggestive of multifocal motor neuropathy.
Classification of evidence:
This study provides Class IV evidence that IVIg will not improve muscle function in 90% of patients with progressive, asymmetric, pure LMN weakness.
PMCID: PMC3863347  PMID: 24212395
21.  A large tuberculosis abscess causing spinal cord compression of the cervico-thoracic region in a young child 
European Spine Journal  2013;22(7):1459-1463.
Despite numerous descriptive publications, the guidelines for treatment of cervical spinal tuberculosis (TB) are not very clear. The authors report a case of a young girl with cervico-thoracic spinal TB extending from C5 to T3 vertebrae presenting with weakness of the right hand and unsteady gait.
Case report
An 11-year-old female who is an immigrant to the UK from Afghanistan, presented to our clinic with a 10-day history of difficulty in walking with an unsteady gait and 3-month history of progressive weakness in both her arms, the right side more affected than the left. Her immunisation history was unclear. Examination of the arms showed bilateral thenar and hypothenar wasting, more so on the right than the left. An MRI scan revealed a large para-spinal abscess extending from C3/4 to T4/5 with a significant anterior epidural cord compression from C5/6 to T2/3. Therapeutic/diagnostic aspiration was performed under ultrasound guidance and the aspirate was sent for microbiology. She was started empirically on multidrug anti-tubercular treatment and steroids. Although Ziehl–Neelsen stain was negative for acid-fast bacilli, microbiological confirmation of TB was obtained by positive TB culture sensitive to all first-line anti-TB drugs. She made a dramatic improvement within 3 weeks of anti-tubercular treatment. A follow-up MRI scan at 8 months showed complete resolution of the abscess. At 2 years of follow-up, she was a healthy looking child, back to her school with no residual clinical signs/symptoms of the disease.
Our case of cervico-thoracic tuberculous abscess in a young child suggests that even with incomplete neurological deficit caused by epidural cord compression, ultrasound (or CT)-guided aspiration and anti-tubercular medication provide acceptable results at 2 years of follow-up.
PMCID: PMC3698362  PMID: 23604937
Tuberculous spondylitis; Cervical spine; Tuberculous cervical abscess
22.  Amyotrophic Lateral Sclerosis: An update for 2013 Clinical Features, Pathophysiology, Management and Therapeutic Trials 
Aging and Disease  2013;4(5):295-310.
Amyotrophic lateral sclerosis (ALS), first described by Jean-Martin Charcot in the 1870s, is an age-related disorder that leads to degeneration of motor neurons. The disease begins focally in the central nervous system and then spreads relentlessly. The clinical diagnosis, defined by progressive signs and symptoms of upper and lower motor neuron dysfunction, is confirmed by electromyography. Additional testing excludes other conditions. The disease is heterogeneous, but most patients die of respiratory muscle weakness less than 3 years from symptom-onset. Like other age-related neurodegenerative diseases, ALS has genetic and environmental triggers. Of the five to 10% of cases that are inherited, mutations have been discovered for a high proportion. In addition to genetic factors, age, tobacco use, and athleticism may contribute to sporadic ALS, but important etiologies are unidentified for most patients. Complex pathophysiological processes, including mitochondrial dysfunction, aggregation of misfolded protein, oxidative stress, excitotoxicity, inflammation and apoptosis, involve both motor neurons and surrounding glial cells. There is clinical and pathological overlap with other neurodegenerative diseases, particularly frontotemporal dementia. The mechanisms leading to disease propagation in the brain are a current focus of research. To date, one medication, riluzole, licensed in 1996, has been proved to prolong survival in ALS. Numerous clinical trials have so far been unable to identify another neuroprotective agent. Researchers now aim to slow disease progression by targeting known pathophysiological pathways or genetic defects. Current approaches are directed at muscle proteins such as Nogo, energetic balance, cell replacement, and abnormal gene products resulting from mutations. Until better understanding of the causes and mechanisms underlying progression lead to more robust neuroprotective agents, symptomatic therapies can extend life and improve quality of life. Palliative care programs such as hospice give emotional and physical support to patients and families throughout much of the disease course.
PMCID: PMC3794725  PMID: 24124634
amyotrophic lateral sclerosis; neurodegeneration; epidemiology; pathophysiology; diagnosis; treatment
23.  Characterization of frontotemporal dementia and/or amyotrophic lateral sclerosis associated with the GGGGCC repeat expansion in C9ORF72 
Brain  2012;135(3):765-783.
Numerous kindreds with familial frontotemporal dementia and/or amyotrophic lateral sclerosis have been linked to chromosome 9, and an expansion of the GGGGCC hexanucleotide repeat in the non-coding region of chromosome 9 open reading frame 72 has recently been identified as the pathogenic mechanism. We describe the key characteristics in the probands and their affected relatives who have been evaluated at Mayo Clinic Rochester or Mayo Clinic Florida in whom the hexanucleotide repeat expansion were found. Forty-three probands and 10 of their affected relatives with DNA available (total 53 subjects) were shown to carry the hexanucleotide repeat expansion. Thirty-six (84%) of the 43 probands had a familial disorder, whereas seven (16%) appeared to be sporadic. Among examined subjects from the 43 families (n = 63), the age of onset ranged from 33 to 72 years (median 52 years) and survival ranged from 1 to 17 years, with the age of onset <40 years in six (10%) and >60 in 19 (30%). Clinical diagnoses among examined subjects included behavioural variant frontotemporal dementia with or without parkinsonism (n = 30), amyotrophic lateral sclerosis (n = 18), frontotemporal dementia/amyotrophic lateral sclerosis with or without parkinsonism (n = 12), and other various syndromes (n = 3). Parkinsonism was present in 35% of examined subjects, all of whom had behavioural variant frontotemporal dementia or frontotemporal dementia/amyotrophic lateral sclerosis as the dominant clinical phenotype. No subject with a diagnosis of primary progressive aphasia was identified with this mutation. Incomplete penetrance was suggested in two kindreds, and the youngest generation had significantly earlier age of onset (>10 years) compared with the next oldest generation in 11 kindreds. Neuropsychological testing showed a profile of slowed processing speed, complex attention/executive dysfunction, and impairment in rapid word retrieval. Neuroimaging studies showed bilateral frontal abnormalities most consistently, with more variable degrees of parietal with or without temporal changes; no case had strikingly focal or asymmetric findings. Neuropathological examination of 14 patients revealed a range of transactive response DNA binding protein molecular weight 43 pathology (10 type A and four type B), as well as ubiquitin-positive cerebellar granular neuron inclusions in all but one case. Motor neuron degeneration was detected in nine patients, including five patients without ante-mortem signs of motor neuron disease. While variability exists, most cases with this mutation have a characteristic spectrum of demographic, clinical, neuropsychological, neuroimaging and especially neuropathological findings.
PMCID: PMC3286335  PMID: 22366793
frontotemporal dementia; amyotrophic lateral sclerosis; motor neuron disease; TDP-43; neurogenetics; chromosome 9
24.  Clinico-pathological features in amyotrophic lateral sclerosis with expansions in C9ORF72 
Brain  2012;135(3):751-764.
Intronic expansion of the GGGGCC hexanucleotide repeat within the C9ORF72 gene causes frontotemporal dementia and amyotrophic lateral sclerosis/motor neuron disease in both familial and sporadic cases. Initial reports indicate that this variant within the frontotemporal dementia/amyotrophic lateral sclerosis spectrum is associated with transactive response DNA binding protein (TDP-43) proteinopathy. The amyotrophic lateral sclerosis/motor neuron disease phenotype is not yet well characterized. We report the clinical and pathological phenotypes associated with pathogenic C9ORF72 mutations in a cohort of 563 cases from Northern England, including 63 with a family history of amyotrophic lateral sclerosis. One hundred and fifty-eight cases from the cohort (21 familial, 137 sporadic) were post-mortem brain and spinal cord donors. We screened DNA for the C9ORF72 mutation, reviewed clinical case histories and undertook pathological evaluation of brain and spinal cord. Control DNA samples (n = 361) from the same population were also screened. The C9ORF72 intronic expansion was present in 62 cases [11% of the cohort; 27/63 (43%) familial, 35/500 (7%) cases with sporadic amyotrophic lateral sclerosis/motor neuron disease]. Disease duration was significantly shorter in cases with C9ORF72-related amyotrophic lateral sclerosis (30.5 months) compared with non-C9ORF72 amyotrophic lateral sclerosis/motor neuron disease (36.3 months, P < 0.05). C9ORF72 cases included both limb and bulbar onset disease and all cases showed combined upper and lower motor neuron degeneration (amyotrophic lateral sclerosis). Thus, clinically, C9ORF72 cases show the features of a relatively rapidly progressive, but otherwise typical, variant of amyotrophic lateral sclerosis associated with both familial and sporadic presentations. Dementia was present in the patient or a close family member in 22/62 cases with C9ORF72 mutation (35%) based on diagnoses established from retrospective clinical case note review that may underestimate significant cognitive changes in late disease. All the C9ORF72 mutation cases showed classical amyotrophic lateral sclerosis pathology with TDP-43 inclusions in spinal motor neurons. Neuronal cytoplasmic inclusions and glial inclusions positive for p62 immunostaining in non-motor regions were strongly over-represented in the C9ORF72 cases. Extra-motor pathology in the frontal cortex (P < 0.0005) and the hippocampal CA4 subfield neurons (P < 0.0005) discriminated C9ORF72 cases strongly from the rest of the cohort. Inclusions in CA4 neurons were not present in non-C9ORF72 cases, indicating that this pathology predicts mutation status.
PMCID: PMC3286332  PMID: 22366792
amyotrophic lateral sclerosis; C9ORF72; dementia; neurodegeneration
25.  Distal Spinal and Bulbar Muscular Atrophy Caused by Dynactin Mutation 
Annals of neurology  2005;57(5):687-694.
Impaired axonal transport has been postulated to play a role in the pathophysiology of multiple neurodegenerative disorders. In this report, we describe the results of clinical and neuropathological studies in a family with an inherited form of motor neuron disease caused by mutation in the p150Glued subunit of dynactin, a microtubule motor protein essential for retrograde axonal transport. Affected family members had a distinct clinical phenotype characterized by early bilateral vocal fold paralysis affecting the adductor and abductor laryngeal muscles. They later experienced weakness and atrophy in the face, hands, and distal legs. The extremity involvement was greater in the hands than in the legs, and it had a particular predilection for the thenar muscles. No clinical or electrophysiological sensory abnormality existed; however, skin biopsy results showed morphological abnormalities of epidermal nerve fibers. An autopsy study of one patient showed motor neuron degeneration and axonal loss in the ventral horn of the spinal cord and hypoglossal nucleus of the medulla. Immunohistochemistry showed abnormal inclusions of dynactin and dynein in motor neurons. This mutation of dynactin, a ubiquitously expressed protein, causes a unique pattern of motor neuron degeneration that is associated with the accumulation of dynein and dynactin in neuronal inclusions.
PMCID: PMC1351270  PMID: 15852399

Results 1-25 (864040)