Search tips
Search criteria

Results 1-25 (1478040)

Clipboard (0)

Related Articles

1.  Phylogeny and evolution of Rab7 and Rab9 proteins 
An important role in the evolution of intracellular trafficking machinery in eukaryotes played small GTPases belonging to the Rab family known as pivotal regulators of vesicle docking, fusion and transport. The Rab family is very diversified and divided into several specialized subfamilies. We focused on the VII functional group comprising Rab7 and Rab9, two related subfamilies, and analysed 210 sequences of these proteins. Rab7 regulates traffic from early to late endosomes and from late endosome to vacuole/lysosome, whereas Rab9 participates in transport from late endosomes to the trans-Golgi network.
Although Rab7 and Rab9 proteins are quite small and show heterogeneous rates of substitution in different lineages, we found a phylogenetic signal and inferred evolutionary relationships between them. Rab7 proteins evolved before radiation of main eukaryotic supergroups while Rab9 GTPases diverged from Rab7 before split of choanoflagellates and metazoans. Additional duplication of Rab9 and Rab7 proteins resulting in several isoforms occurred in the early evolution of vertebrates and next in teleost fishes and tetrapods. Three Rab7 lineages emerged before divergence of monocots and eudicots and subsequent duplications of Rab7 genes occurred in particular angiosperm clades. Interestingly, several Rab7 copies were identified in some representatives of excavates, ciliates and amoebozoans. The presence of many Rab copies is correlated with significant differences in their expression level. The diversification of analysed Rab subfamilies is also manifested by non-conserved sequences and structural features, many of which are involved in the interaction with regulators and effectors. Individual sites discriminating different subgroups of Rab7 and Rab9 GTPases have been identified.
Phylogenetic reconstructions of Rab7 and Rab9 proteins were performed by a variety of methods. These Rab GTPases show diversification both at the phylogenetic, expression and structural levels. The presence of many Rab7 and Rab9 isoforms suggests their functional specialization and complexity of subcellular trafficking even in unicellular eukaryotes. The identified less conserved regions in analysed Rab sequences may directly contribute to such a differentiation.
PMCID: PMC2693434  PMID: 19442299
2.  Rab32 and Rab38 genes in chordate pigmentation: an evolutionary perspective 
The regulation of cellular membrane trafficking in all eukaryotes is a very complex mechanism, mostly regulated by the Rab family proteins. Among all membrane-enclosed organelles, melanosomes are the cellular site for synthesis, storage and transport of melanin granules, making them an excellent model for studies on organelle biogenesis and motility. Specific Rab proteins, as Rab32 and Rab38, have been shown to play a key role in melanosome biogenesis. We analysed the Rab32 and Rab38 genes in the teleost zebrafish and in the cephalochordate amphioxus, gaining insight on their evolutionary history following gene and genome duplications.
We studied the molecular evolution of Rab supergroup III in deuterostomes by phylogenetic reconstruction, intron and synteny conservation. We discovered a novel amino acid stretch, named FALK, shared by three related classes belonging to Rab supergroup III: Rab7L1, Rab32LO and Rab32/Rab38. Among these, we demonstrated that the Rab32LO class, already present in the last common eukaryotic ancestor, was lost in urochordates and vertebrates. Synteny shows that one zebrafish gene, Rab38a, which is expressed in pigmented cells, retained the linkage with tyrosinase, a protein essential for pigmentation. Moreover, the chromosomal linkage of Rab32 or Rab38 with a member of the glutamate receptor metabotropic (Grm) family has been retained in all analysed gnathostomes, suggesting a conserved microsynteny in the vertebrate ancestor. Expression patterns of Rab32 and Rab38 genes in zebrafish, and Rab32/38 in amphioxus, indicate their involvement in development of pigmented cells and notochord.
Phylogenetic, intron conservation and synteny analyses point towards an evolutionary scenario based on a duplication of a single invertebrate Rab32/38 gene giving rise to vertebrate Rab32 and Rab38. The expression patterns of Rab38 paralogues highlight sub-functionalization event. Finally, the discovery of a chromosomal linkage between the Rab32 or Rab38 gene with a Grm opens new perspectives on possible conserved bystander gene regulation across the vertebrate evolution.
Electronic supplementary material
The online version of this article (doi:10.1186/s12862-016-0596-1) contains supplementary material, which is available to authorized users.
PMCID: PMC4728774  PMID: 26818140
Pigmentation; Amphioxus; Zebrafish; Synteny; Phylogeny; Intron Conservation; Gene Duplication, Genome Duplication
3.  Thousands of Rab GTPases for the Cell Biologist 
PLoS Computational Biology  2011;7(10):e1002217.
Rab proteins are small GTPases that act as essential regulators of vesicular trafficking. 44 subfamilies are known in humans, performing specific sets of functions at distinct subcellular localisations and tissues. Rab function is conserved even amongst distant orthologs. Hence, the annotation of Rabs yields functional predictions about the cell biology of trafficking. So far, annotating Rabs has been a laborious manual task not feasible for current and future genomic output of deep sequencing technologies. We developed, validated and benchmarked the Rabifier, an automated bioinformatic pipeline for the identification and classification of Rabs, which achieves up to 90% classification accuracy. We cataloged roughly 8.000 Rabs from 247 genomes covering the entire eukaryotic tree. The full Rab database and a web tool implementing the pipeline are publicly available at For the first time, we describe and analyse the evolution of Rabs in a dataset covering the whole eukaryotic phylogeny. We found a highly dynamic family undergoing frequent taxon-specific expansions and losses. We dated the origin of human subfamilies using phylogenetic profiling, which enlarged the Rab repertoire of the Last Eukaryotic Common Ancestor with Rab14, 32 and RabL4. Furthermore, a detailed analysis of the Choanoflagellate Monosiga brevicollis Rab family pinpointed the changes that accompanied the emergence of Metazoan multicellularity, mainly an important expansion and specialisation of the secretory pathway. Lastly, we experimentally establish tissue specificity in expression of mouse Rabs and show that neo-functionalisation best explains the emergence of new human Rab subfamilies. With the Rabifier and RabDB, we provide tools that easily allows non-bioinformaticians to integrate thousands of Rabs in their analyses. RabDB is designed to enable the cell biology community to keep pace with the increasing number of fully-sequenced genomes and change the scale at which we perform comparative analysis in cell biology.
Author Summary
Intracellular compartmentalisation via membrane-delimited organelles is a fundamental feature of the eukaryotic cell. Understanding its origins and specialisation into functionally distinct compartments is a major challenge in evolutionary cell biology. We focus on the Rab enzymes, critical organisers of the trafficking pathways that link the endomembrane system. Rabs form a large family of evolutionarily related proteins, regulating distinct steps in vesicle transport. They mark pathways and organelles due to their specific subcellular and tissue localisation. We propose a solution to the problem of identifying and annotating Rabs in hundreds of sequenced genomes. We developed an accurate bioinformatics pipeline that is able to take into account pre-existing and often inconsistent, manual annotations. We made it available to the community in form of a web tool, as well as a database containing thousands of Rabs assigned to sub-families, which yields clear functional predictions. Thousands of Rabs allow for a new level of analysis. We illustrate this by characterising for the first time the global evolutionary dynamics of the Rab family. We dated the emergence of subfamilies and suggest that the Rab family expands by duplicates acquiring new functions.
PMCID: PMC3192815  PMID: 22022256
4.  Comprehensive Analysis Reveals Dynamic and Evolutionary Plasticity of Rab GTPases and Membrane Traffic in Tetrahymena thermophila 
PLoS Genetics  2010;6(10):e1001155.
Cellular sophistication is not exclusive to multicellular organisms, and unicellular eukaryotes can resemble differentiated animal cells in their complex network of membrane-bound structures. These comparisons can be illuminated by genome-wide surveys of key gene families. We report a systematic analysis of Rabs in a complex unicellular Ciliate, including gene prediction and phylogenetic clustering, expression profiling based on public data, and Green Fluorescent Protein (GFP) tagging. Rabs are monomeric GTPases that regulate membrane traffic. Because Rabs act as compartment-specific determinants, the number of Rabs in an organism reflects intracellular complexity. The Tetrahymena Rab family is similar in size to that in humans and includes both expansions in conserved Rab clades as well as many divergent Rabs. Importantly, more than 90% of Rabs are expressed concurrently in growing cells, while only a small subset appears specialized for other conditions. By localizing most Rabs in living cells, we could assign the majority to specific compartments. These results validated most phylogenetic assignments, but also indicated that some sequence-conserved Rabs were co-opted for novel functions. Our survey uncovered a rare example of a nuclear Rab and substantiated the existence of a previously unrecognized core Rab clade in eukaryotes. Strikingly, several functionally conserved pathways or structures were found to be associated entirely with divergent Rabs. These pathways may have permitted rapid evolution of the associated Rabs or may have arisen independently in diverse lineages and then converged. Thus, characterizing entire gene families can provide insight into the evolutionary flexibility of fundamental cellular pathways.
Author Summary
Single-celled organisms appear simple compared to multicellular organisms, but this may not be true at the level of the individual cell. In fact, microscopic observations suggest that protists can possess networks of organelles just as elaborate as those in animal cells. Consistent with this idea, recent analysis has identified large families of genes in protists that are predicted to act as determinants for complex membrane networks. To test these predictions and to probe relationships between cellular structures across a wide swath of evolution, we focused on one gene family in the single-celled organism Tetrahymena. These genes control the traffic between organelles, with each gene controlling a single step in this traffic. We asked three questions about each of 56 genes in the family. First, what is the gene related to in humans? Second, under what conditions is the gene being used in Tetrahymena? Third, what is the role of each gene? The results provide insights into both the dynamics and evolution of membrane traffic, including the finding that some pathways appearing both structurally and functionally similar in protists and animals are likely to have arisen independently in the two lineages.
PMCID: PMC2954822  PMID: 20976245
5.  Toward a Comprehensive Map of the Effectors of Rab GTPases 
Developmental Cell  2014;31(3):358-373.
The Rab GTPases recruit peripheral membrane proteins to intracellular organelles. These Rab effectors typically mediate the motility of organelles and vesicles and contribute to the specificity of membrane traffic. However, for many Rabs, few, if any, effectors have been identified; hence, their role remains unclear. To identify Rab effectors, we used a comprehensive set of Drosophila Rabs for affinity chromatography followed by mass spectrometry to identify the proteins bound to each Rab. For many Rabs, this revealed specific interactions with Drosophila orthologs of known effectors. In addition, we found numerous Rab-specific interactions with known components of membrane traffic as well as with diverse proteins not previously linked to organelles or having no known function. We confirm over 25 interactions for Rab2, Rab4, Rab5, Rab6, Rab7, Rab9, Rab18, Rab19, Rab30, and Rab39. These include tethering complexes, coiled-coiled proteins, motor linkers, Rab regulators, and several proteins linked to human disease.
Graphical Abstract
•Proteomic screen identifies effectors of Drosophila Rabs with a human ortholog•Specific hits include orthologs of numerous known effectors of mammalian Rabs•Validated effectors include traffic proteins and those of unknown function•Orthologs of disease genes CLEC16A, LRRK2, and SPG20 are validated as effectors
Rab GTPases organize cellular compartments by recruiting specific effectors to organelle membranes. This paper describes affinity chromatography using all Drosophila Rabs with a mammalian ortholog. The Rab interactors found include known effectors, tethering complexes, coiled-coil proteins, motor proteins, proteins of unknown function, and several proteins linked to human disease.
PMCID: PMC4232348  PMID: 25453831
6.  Structural Insights into a Unique Legionella pneumophila Effector LidA Recognizing Both GDP and GTP Bound Rab1 in Their Active State 
PLoS Pathogens  2012;8(3):e1002528.
The intracellular pathogen Legionella pneumophila hijacks the endoplasmic reticulum (ER)-derived vesicles to create an organelle designated Legionella-containing vacuole (LCV) required for bacterial replication. Maturation of the LCV involved acquisition of Rab1, which is mediated by the bacterial effector protein SidM/DrrA. SidM/DrrA is a bifunctional enzyme having the activity of both Rab1-specific GDP dissociation inhibitor (GDI) displacement factor (GDF) and guanine nucleotide exchange factor (GEF). LidA, another Rab1-interacting bacterial effector protein, was reported to promote SidM/DrrA-mediated recruitment of Rab1 to the LCV as well. Here we report the crystal structures of LidA complexes with GDP- and GTP-bound Rab1 respectively. Structural comparison revealed that GDP-Rab1 bound by LidA exhibits an active and nearly identical conformation with that of GTP-Rab1, suggesting that LidA can disrupt the switch function of Rab1 and render it persistently active. As with GTP, LidA maintains GDP-Rab1 in the active conformation through interaction with its two conserved switch regions. Consistent with the structural observations, biochemical assays showed that LidA binds to GDP- and GTP-Rab1 equally well with an affinity approximately 7.5 nM. We propose that the tight interaction with Rab1 allows LidA to facilitate SidM/DrrA-catalyzed release of Rab1 from GDIs. Taken together, our results support a unique mechanism by which a bacterial effector protein regulates Rab1 recycling.
Author Summary
Legionella pneumophila delivers 275 validated substrates into the host cytosol by its Dot/Icm type IV secretion system. Several substrates including SidM/DrrA and LidA directly interact with the host Rab GTPases and interfere with the vesicle secretion pathway. SidM/DrrA is necessary for Rab1 recruitment, function as a Rab1 specific GDI displacement factor and guanine nucleotide exchange factor. LidA has the auxiliary activity for Rab1 recruitment, whereas it is more important for the formation of the replication vacuole compared with SidM/DrrA. LidA is predicted to be the first substrate secreted by the Dot/Icm system and is critical for maintaining the integrity of the bacterial cell. Moreover, it expresses throughout the intracellular growth phase, localizes to early secretory compartments, and interacts with several members of Rab family. Here we present the crystal structures of LidA coiled-coil domain in complex with two different states of Rab1, GDP- and GTP-bound. The GDP-bound Rab1 in the complex surprisingly has the same conformation with the GTP-bound Rab1, revealing that LidA can retain Rab1 persistently in its active state. Our structures add a new insight into the regulation of the host Rab1 membrane cycle by pathogen-secreted coiled-coil effector.
PMCID: PMC3295573  PMID: 22416225
7.  Vimentin phosphorylation and assembly are regulated by the small GTPase Rab7a 
Biochimica et Biophysica Acta  2013;1833(6):1283-1293.
Intermediate filaments are cytoskeletal elements important for cell architecture. Recently it has been discovered that intermediate filaments are highly dynamic and that they are fundamental for organelle positioning, transport and function thus being an important regulatory component of membrane traffic. We have identified, using the yeast two-hybrid system, vimentin, a class III intermediate filament protein, as a Rab7a interacting protein. Rab7a is a member of the Rab family of small GTPases and it controls vesicular membrane traffic to late endosomes and lysosomes. In addition, Rab7a is important for maturation of phagosomes and autophagic vacuoles. We confirmed the interaction in HeLa cells by co-immunoprecipitation and pull-down experiments, and established that the interaction is direct using bacterially expressed recombinant proteins. Immunofluorescence analysis on HeLa cells indicate that Rab7a-positive vesicles sometimes overlap with vimentin filaments. Overexpression of Rab7a causes an increase in vimentin phosphorylation at different sites and causes redistribution of vimentin in the soluble fraction. Consistently, Rab7a silencing causes an increase of vimentin present in the insoluble fraction (assembled). Also, expression of Charcot–Marie–Tooth 2B-causing Rab7a mutant proteins induces vimentin phosphorylation and increases the amount of vimentin in the soluble fraction. Thus, modulation of expression levels of Rab7a wt or expression of Rab7a mutant proteins changes the assembly of vimentin and its phosphorylation state indicating that Rab7a is important for the regulation of vimentin function.
► We searched for new Rab7a interacting proteins and we found vimentin. ► We demonstrated that Rab7a interacts directly with vimentin. ► Rab7a influences vimentin's phosphorylation and soluble/insoluble ratio. ► Rab7a regulates vimentin organization and function.
PMCID: PMC3787733  PMID: 23458836
GST, Glutathione-S-Transferase; HA, Hemagglutinin; EGFP, Enhanced Green Fluorescent Protein; Rab7a; Vimentin; Rab protein; Intermediate filaments; Phosphorylation; Two-hybrid
8.  The Trypanosome Rab-Related Proteins RabX1 and RabX2 Play No Role in IntraCellular Trafficking but May Be Involved in Fly Infectivity 
PLoS ONE  2009;4(9):e7217.
Rab GTPases constitute the largest subgroup of the Ras superfamily and are primarily involved in vesicle targeting. The full extent of Rab family function is unexplored. Several divergent Rab-like proteins are known but few have been characterized. In Trypanosoma brucei there are sixteen Rab genes, but RabX1, RabX2 and RabX3 are divergent within canonical sequence regions. Where known, trypanosome Rab functions are broadly conserved when orthologous relationships may be robustly established, but specific functions for RabX1, X2 and X3 have yet to be determined. RabX1 and RabX2 originated via tandem duplication and subcellular localization places RabX1 at the endoplasmic reticulum, while RabX2 is at the Golgi complex, suggesting distinct functions. We wished to determine whether RabX1 and RabX2 are involved in vesicle transport or other cellular processes.
Methodology/Principal Findings
Using comparative genomics we find that RabX1 and RabX2 are restricted to trypanosomatids. Gene knockout indicates that RabX1 and RabX2 are non-essential. Simultaneous RNAi knockdown of both RabX1 and RabX2, while partial, was also non-lethal and may suggest non-redundant function, consistent with the distinct locations of the proteins. Analysis of the knockout cell lines unexpectedly failed to uncover a defect in exocytosis, endocytosis or in the morphology or location of multiple markers for the endomembrane system, suggesting that neither RabX1 nor RabX2 has a major role in intracellular transport. However, it was apparent that RabX1 and RabX2 knockout cells displayed somewhat enhanced survival within flies.
RabX1 and RabX2, two members of the trypanosome Rab subfamily, were shown to have no major detectable role in intracellular transport, despite the localization of each gene product to highly specific endomembrane compartments. These data extend the functional scope of Rab proteins in trypanosomes to include non-canonical roles in differentiation-associated processes in protozoa.
PMCID: PMC2748683  PMID: 19787065
9.  Supporting Role for GTPase Rab27a in Hepatitis C Virus RNA Replication through a Novel miR-122-Mediated Effect 
PLoS Pathogens  2015;11(8):e1005116.
The small GTPase Rab27a has been shown to control membrane trafficking and microvesicle transport pathways, in particular the secretion of exosomes. In the liver, high expression of Rab27a correlates with the development of hepatocellular carcinoma. We discovered that low abundance of Rab27a resulted in decreased hepatitis C virus (HCV) RNA and protein abundances in virus-infected cells. Curiously, both cell-associated and extracellular virus yield decreased in Rab27a depleted cells, suggesting that reduced exosome secretion did not cause the observed effect. Instead, Rab27a enhanced viral RNA replication by a mechanism that involves the liver-specific microRNA miR-122. Rab27a surrounded lipid droplets and was enriched in membrane fractions that harbor viral replication proteins, suggesting a supporting role for Rab27a in viral gene expression. Curiously, Rab27a depletion decreased the abundance of miR-122, whereas overexpression of miR-122 in Rab27a-depleted cells rescued HCV RNA abundance. Because intracellular HCV RNA abundance is enhanced by the binding of two miR-122 molecules to the extreme 5’ end of the HCV RNA genome, the diminished amounts of miR-122 in Rab27a-depleted cells could have caused destabilization of HCV RNA. However, the abundance of HCV RNA carrying mutations on both miR-122-binding sites and whose stability was supported by ectopically expressed miR-122 mimetics with compensatory mutations also decreased in Rab27a-depleted cells. This result indicates that the effect of Rab27a depletion on HCV RNA abundance does not depend on the formation of 5’ terminal HCV/miR-122 RNA complexes, but that miR-122 has a Rab27a-dependent function in the HCV lifecycle, likely the downregulation of a cellular inhibitor of HCV gene expression. These findings suggest that the absence of miR-122 results in a vulnerability not only to exoribonucleases that attack the viral genome, but also to upregulation of one more cellular factor that inhibit viral gene expression.
Author Summary
Eukaryotic cells constantly expel a variety of small vesicles that are loaded with proteins, nucleic acids and other small compounds that were produced inside the cell. One particular kind of vesicle is called exosome. Exosomes are initially located in multivesicular compartments inside cells and are docked at the cell surface membrane by the small GTPase Rab27a. In the liver, high expression of Rab27a correlates with the development of hepatocellular carcinoma, suggesting a high trafficking capacity for exosomes. Also, it has been shown that hepatitis C virus (HCV) can spread from cell to cell via exosomes. We discovered that Rab27a abundance affects HCV virion abundance that independent from its role in exosome secretion. The presence of Rab27a in membrane-enriched replication complexes and nearby lipid droplets points to functions of Rab27a in the viral life cycle. Depletion of Rab27a resulted in a lower abundance of the liver-specific microRNA miR-122. It is known that two molecules of miR-122 form an oligomeric complex with the 5’ end of the viral RNA leading to protection of the viral RNA against cellular nucleases. However, we show that the Rab27a-mediated loss of miR-122 was independent of its role in protecting the viral RNA, very likely by the downregulation of a cellular inhibitor of HCV gene expression. These findings argue for novel, hitherto undetected roles for miR-122 in the viral life cycle.
PMCID: PMC4549268  PMID: 26305877
10.  α1B-Adrenergic Receptors Differentially Associate with Rab Proteins during Homologous and Heterologous Desensitization 
PLoS ONE  2015;10(3):e0121165.
Internalization of G protein-coupled receptors can be triggered by agonists or by other stimuli. The process begins within seconds of cell activation and contributes to receptor desensitization. The Rab GTPase family controls endocytosis, vesicular trafficking, and endosomal fusion. Among their remarkable properties is the differential distribution of its members on the surface of various organelles. In the endocytic pathway, Rab 5 controls traffic from the plasma membrane to early endosomes, whereas Rab 4 and Rab 11 regulate rapid and slow recycling from early endosomes to the plasma membrane, respectively. Moreover, Rab 7 and Rab 9 regulate the traffic from late endosomes to lysosomes and recycling to the trans-Golgi. We explore the possibility that α1B-adrenergic receptor internalization induced by agonists (homologous) and by unrelated stimuli (heterologous) could involve different Rab proteins. This possibility was explored by Fluorescence Resonance Energy Transfer (FRET) using cells coexpressing α1B-adrenergic receptors tagged with the red fluorescent protein, DsRed, and different Rab proteins tagged with the green fluorescent protein. It was observed that when α1B-adrenergic receptors were stimulated with noradrenaline, the receptors interacted with proteins present in early endosomes, such as the early endosomes antigen 1, Rab 5, Rab 4, and Rab 11 but not with late endosome markers, such as Rab 9 and Rab 7. In contrast, sphingosine 1-phosphate stimulation induced rapid and transient α1B-adrenergic receptor interaction of relatively small magnitude with Rab 5 and a more pronounced and sustained one with Rab 9; interaction was also observed with Rab 7. Moreover, the GTPase activity of the Rab proteins appears to be required because no FRET was observed when dominant-negative Rab mutants were employed. These data indicate that α1B-adrenergic receptors are directed to different endocytic vesicles depending on the desensitization type (homologous vs. heterologous).
PMCID: PMC4370394  PMID: 25799564
11.  Rab11 Regulates the Compartmentalization of Early Endosomes Required for Efficient Transport from Early Endosomes to the Trans-Golgi Network 
The Journal of Cell Biology  2000;151(6):1207-1220.
Several GTPases of the Rab family, known to be regulators of membrane traffic between organelles, have been described and localized to various intracellular compartments. Rab11 has previously been reported to be associated with the pericentriolar recycling compartment, post-Golgi vesicles, and the trans-Golgi network (TGN). We compared the effect of overexpression of wild-type and mutant forms of Rab11 on the different intracellular transport steps in the endocytic/degradative and the biosynthetic/exocytic pathways in HeLa cells. We also studied transport from endosomes to the Golgi apparatus using the Shiga toxin B subunit (STxB) and TGN38 as reporter molecules. Overexpression of both Rab11 wild-type (Rab11wt) and mutants altered the localization of the transferrrin receptor (TfR), internalized Tf, the STxB, and TGN38. In cells overexpressing Rab11wt and in a GTPase-deficient Rab11 mutant (Rab11Q70L), these proteins were found in vesicles showing characteristics of sorting endosomes lacking cellubrevin (Cb). In contrast, they were redistributed into an extended tubular network, together with Cb, in cells overexpressing a dominant negative mutant of Rab11 (Rab11S25N). This tubularized compartment was not accessible to Tf internalized at temperatures <20°C, suggesting that it is of recycling endosomal origin. Overexpression of Rab11wt, Rab11Q70L, and Rab11S25N also inhibited STxB and TGN38 transport from endosomes to the TGN. These results suggest that Rab11 influences endosome to TGN trafficking primarily by regulating membrane distribution inside the early endosomal pathway.
PMCID: PMC2190589  PMID: 11121436
Rab11; intracellular trafficking; endosomes; Shiga toxin; TGN38
12.  Novel interaction of Rab13 and Rab8 with endospanins☆ 
FEBS Open Bio  2013;3:83-88.
Rab GTPases regulate vesicular traffic in eukaryotic cells by cycling between the active GTP-bound and inactive GDP-bound states. Their functions are modulated by the diverse selection of effector proteins that bind to specific Rabs in their activated state. We previously described the expression of Rab13 in bone cells. To search for novel Rab13 interaction partners, we screened a newborn rat bone marrow cDNA library for Rab13 effectors with a bacterial two-hybrid system. We found that Rab13 binds to the C-terminus of Endospanin-2, a small transmembrane protein. In addition to Rab13 also Rab8 bound to Endospanin-2, while no binding of Rab7, Rab10, Rab11 or Rab32 was observed. Rab13 and Rab8 also interacted with Endospanin-1, a close homolog of Endospanin-2. Rab13 and Endospanin-2 colocalised in perinuclear vesicular structures in Cos1 cells suggesting direct binding also in vivo. Endospanin-2 is implicated in the regulation of the cell surface growth hormone receptor (GHR), but the inhibition of Rab13 expression did not affect GHR cell surface expression. This suggests that the Rab13–Endospanin-2 interaction may have functions other than GHR regulation. In conclusion, we have identified a novel interaction for Rab13 and Rab8 with Endospanin-2 and Endospanin-1. The role of this interaction in cell physiology, however, remains to be elucidated.
▸ Rab13 and Rab8 both interact with Endospanin-2 and Endospanin-1. ▸ Rab13 and Rab8 binding to endospanins is specific; Rabs 7, 10, 11 and 32 do not bind. ▸ Rab13 binding to Endospanin-2 is nucleotide-dependent. ▸ Rab13 and Endospanin-2 colocalise in perinuclear vesicles and at the cell periphery.
PMCID: PMC3668521  PMID: 23772379
Vesicle trafficking; Rab13; Rab effector; Protein interaction; Endospanin; Osteoclast; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; GFP, green fluorescent protein; GHR, growth hormone receptor; GST, glutathione-S-transferase; HA, human influenza hemagglutinin; MBP, maltose binding protein; OB-R, leptin receptor; VPS55, vacuolar protein sorting 55.
13.  Construction of a Plasmodium falciparum Rab-interactome identifies CK1 and PKA as Rab-effector kinases in malaria parasites 
Biology of the Cell  2011;104(1):34-47.
Background information
The pathology causing stages of the human malaria parasite Plasmodium falciparum reside within red blood cells that are devoid of any regulated transport system. The parasite, therefore, is entirely responsible for mediating vesicular transport within itself and in the infected erythrocyte cytoplasm, and it does so in part via its family of 11 Rab GTPases. Putative functions have been ascribed to Plasmodium Rabs due to their homology with Rabs of yeast, particularly with Saccharomyces that has an equivalent number of rab/ypt genes and where analyses of Ypt function is well characterized.
Rabs are important regulators of vesicular traffic due to their capacity to recruit specific effectors. In order to identify P. falciparum Rab (PfRab) effectors, we first built a Ypt-interactome by exploiting genetic and physical binding data available at the Saccharomyces genome database (SGD). We then constructed a PfRab-interactome using putative parasite Rab-effectors identified by homology to Ypt-effectors. We demonstrate its potential by wet-bench testing three predictions; that casein kinase-1 (PfCK1) is a specific Rab5B interacting protein and that the catalytic subunit of cAMP-dependent protein kinase A (PfPKA-C) is a PfRab5A and PfRab7 effector.
The establishment of a shared set of physical Ypt/PfRab-effector proteins sheds light on a core set Plasmodium Rab-interactants shared with yeast. The PfRab-interactome should benefit vesicular trafficking studies in malaria parasites. The recruitment of PfCK1 to PfRab5B+ and PfPKA-C to PfRab5A+ and PfRab7+ vesicles, respectively, suggests that PfRab-recruited kinases potentially play a role in early and late endosome function in malaria parasites.
PMCID: PMC3437490  PMID: 22188458
Interactom; Kinase; Plasmodium; Rab; Yeast; Ypt
14.  An Overexpression Screen of Toxoplasma gondii Rab-GTPases Reveals Distinct Transport Routes to the Micronemes 
PLoS Pathogens  2013;9(3):e1003213.
The basic organisation of the endomembrane system is conserved in all eukaryotes and comparative genome analyses provides compelling evidence that the endomembrane system of the last common eukaryotic ancestor (LCEA) is complex with many genes required for regulated traffic being present. Although apicomplexan parasites, causative agents of severe human and animal diseases, appear to have only a basic set of trafficking factors such as Rab-GTPases, they evolved unique secretory organelles (micronemes, rhoptries and dense granules) that are sequentially secreted during invasion of the host cell. In order to define the secretory pathway of apicomplexans, we performed an overexpression screen of Rabs in Toxoplasma gondii and identified Rab5A and Rab5C as important regulators of traffic to micronemes and rhoptries. Intriguingly, we found that not all microneme proteins traffic depends on functional Rab5A and Rab5C, indicating the existence of redundant microneme targeting pathways. Using two-colour super-resolution stimulated emission depletion (STED) we verified distinct localisations of independent microneme proteins and demonstrate that micronemal organelles are organised in distinct subsets or subcompartments. Our results suggest that apicomplexan parasites modify classical regulators of the endocytic system to carryout essential parasite-specific roles in the biogenesis of their unique secretory organelles.
Author Summary
Eukaryotic cells evolved a highly complex endomembrane system, consisting of secretory and endocytic organelles. In the case of apicomplexan parasites unique secretory organelles have evolved that are essential for the invasion of the host cell. Surprisingly these protozoans show a paucity of trafficking factors, such as Rabs and it appears that they lost several factors involved in endocytosis. Here, we demonstrate that Rab5A and Rab5C, normally involved in endocytic uptake, actually regulate secretion in Toxoplasma gondii, since functional ablation of Rab5A or Rab5C results in aberrant transport of proteins to specialised secretory organelles called micronemes and rhoptries. Furthermore, we demonstrate that independent transport routes to micronemes exist indicating that apicomplexans have remodelled Rab5-mediated vesicular traffic into a secretory system that is essential for host cell invasion.
PMCID: PMC3591302  PMID: 23505371
15.  Rab11-FIP2 influences multiple components of the endosomal system in polarized MDCK cells 
Cellular Logistics  2011;1(2):57-68.
The Rab11 Family Interacting Proteins (Rab11-FIPs) are hypothesized to regulate sequential steps in the apical recycling and transcytotic pathways of polarized epithelial cells. Previous studies have suggested that Rab11-FIP proteins assemble into multi-protein complexes regulating plasma membrane recycling. Rab11-FIP2 interacts with both myosin Vb and Rab11. Recent investigations have noted that that Rab11-FIP2 mutants [Rab11-FIP2(129–512), also designated Rab11-FIP2(ΔC2) and Rab11-FIP2(S229A, R413G), also designated Rab11-FIP2(SARG)], are potent inhibitors of transcytosis in polarized MDCK cells. Interestingly, Rab11-FIP2(ΔC2), but not Rab11-FIP2(SARG), also altered the morphology of the EEA-1 positive early endosomal compartment. These findings suggested that Rab11-FIP2 mutants could differentiate different points along the recycling pathway. We therefore sought to investigate whether Rab11-FIP2 is a general regulator of the early endosomal system. Both Rab11-FIP2 mutants altered the localization and co-localized with dynein heavy chain. In contrast, both clathrin heavy chain and AP-1 accumulated with membranes containing Rab11-FIP2(SARG), but not with Rab11-FIP2(ΔC2). Expression of Rab11-FIP2(ΔC2), but not Rab11-FIP2(SARG), caused clustering of early endosomal markers Rab5b, Epsin 4 and IQGAP1, around a collapsed Rab11-FIP2 containing membranous cisternum. Interestingly, neither Rab11-FIP2 mutant had any effect on the distribution of Rab5a, a classical early endosome marker. The results support the view that Rab11-FIP2 may influence microtubule-dependent centripetal movement of subsets of early endosomes as well as processing through the common and recycling endosomal systems.
PMCID: PMC3116584  PMID: 21686255
Rab11-FIP2; Rab11; trafficking; apical recycling; endosome; MDCK cells; clathrin; dynein; Rab5; epsin
16.  The Glyceraldehyde-3-Phosphate Dehydrogenase and the Small GTPase Rab 2 Are Crucial for Brucella Replication 
PLoS Pathogens  2009;5(6):e1000487.
The intracellular pathogen Brucella abortus survives and replicates inside host cells within an endoplasmic reticulum (ER)-derived replicative organelle named the “Brucella-containing vacuole” (BCV). Here, we developed a subcellular fractionation method to isolate BCVs and characterize for the first time the protein composition of its replicative niche. After identification of BCV membrane proteins by 2 dimensional (2D) gel electrophoresis and mass spectrometry, we focused on two eukaryotic proteins: the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the small GTPase Rab 2 recruited to the vacuolar membrane of Brucella. These proteins were previously described to localize on vesicular and tubular clusters (VTC) and to regulate the VTC membrane traffic between the endoplasmic reticulum (ER) and the Golgi. Inhibition of either GAPDH or Rab 2 expression by small interfering RNA strongly inhibited B. abortus replication. Consistent with this result, inhibition of other partners of GAPDH and Rab 2, such as COPI and PKC ι, reduced B. abortus replication. Furthermore, blockage of Rab 2 GTPase in a GDP-locked form also inhibited B. abortus replication. Bacteria did not fuse with the ER and instead remained in lysosomal-associated membrane vacuoles. These results reveal an essential role for GAPDH and the small GTPase Rab 2 in B. abortus virulence within host cells.
Author Summary
A key determinant for intracellular pathogenic bacteria to ensure their virulence within host cells is their ability to bypass the endocytic pathway and to reach a safe replication niche. Brucella bacteria reach the endoplasmic reticulum (ER) to create their replicating niche called the Brucella-containing vacuole (BCV). The ER is a suitable strategic place for pathogenic Brucella. Bacteria can be hidden from host cell defences to persist within the host, and can take advantage of the membrane reservoir delivered by the ER to replicate. Interactions between BCV and the ER lead to the presence of ER proteins on the BCV membrane. Currently, no other proteins (eukaryotic or prokaryotic) have yet been associated with the BCV membrane. Here we show that non-ER related proteins are also present on the BCV membrane, in particular, the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the small GTPase Rab 2 known to be located on secretory vesicles that traffic between the ER and the Golgi apparatus. GAPDH and the small GTPase Rab 2 are involved in Brucella replication at late post-infection. Similarly, integrity of secretory vesicle trafficking is also necessary for Brucella replication. Here, we show that recruitment of the two eukaryotic proteins GAPDH and Rab 2 on BCV membranes is necessary for the establishment of the replicative niche by sustaining interactions between the ER and secretory membrane vesicles.
PMCID: PMC2695806  PMID: 19557163
17.  Rab41 Is a Novel Regulator of Golgi Apparatus Organization That Is Needed for ER-To-Golgi Trafficking and Cell Growth 
PLoS ONE  2013;8(8):e71886.
The 60+ members of the mammalian Rab protein family group into subfamilies postulated to share common functionality. The Rab VI subfamily contains 5 Rab proteins, Rab6a/a’, Rab6b, Rab6c and Rab41. High-level knockdown of Rab6a/a’ has little effect on the tightly organized Golgi ribbon in HeLa cells as seen by fluorescence microscopy. In striking contrast, we found Rab41 was strongly required for normal Golgi ribbon organization.
Treatment of HeLa cells with Rab41 siRNAs scattered the Golgi ribbon into clustered, punctate Golgi elements. Overexpression of GDP-locked Rab41, but not wild type or GTP-locked Rab41, produced a similar Golgi phenotype. By electron microscopy, Rab41 depletion produced short, isolated Golgi stacks. Golgi-associated vesicles accumulated. At low expression levels, wild type and GTP-locked Rab41 showed little concentration in the Golgi region, but puncta were observed and most were in ruffled regions at the cell periphery. There was 25% co-localization of GTP-locked Rab41 with the ER marker, Sec61p. GDP-locked Rab41, as expected, displayed an entirely diffuse cytoplasmic distribution. Depletion of Rab41 or overexpression of GDP-locked Rab41 partially inhibited ER-to-Golgi transport of VSV-G protein. However, Rab41 knockdown had little, if any, effect on endosome-to-Golgi transport of SLTB. Additionally, after a 2-day delay, treatment with Rab41 siRNA inhibited cell growth, while overexpression of GDP-locked Rab41, but not wild type or GTP-locked Rab41, produced a rapid, progressive cell loss. In double knockdown experiments with Rab6, the Golgi ribbon was fragmented, a result consistent with Rab41 and Rab6 acting in parallel.
We provide the first evidence for distinctive Rab41 effects on Golgi organization, ER-to-Golgi trafficking and cell growth. When combined with the evidence that Rab6a/a’ and Rab6b have diverse roles in Golgi function, while Rab6c regulates mitotic function, our data indicate that Rab VI subfamily members, although related by homology and structure, share limited functional conservation.
PMCID: PMC3735572  PMID: 23936529
18.  Regulation of Synaptic Transmission by RAB-3 and RAB-27 in Caenorhabditis elegans 
Molecular Biology of the Cell  2006;17(6):2617-2625.
Rab small GTPases are involved in the transport of vesicles between different membranous organelles. RAB-3 is an exocytic Rab that plays a modulatory role in synaptic transmission. Unexpectedly, mutations in the Caenorhabditis elegans RAB-3 exchange factor homologue, aex-3, cause a more severe synaptic transmission defect as well as a defecation defect not seen in rab-3 mutants. We hypothesized that AEX-3 may regulate a second Rab that regulates these processes with RAB-3. We found that AEX-3 regulates another exocytic Rab, RAB-27. Here, we show that C. elegans RAB-27 is localized to synapse-rich regions pan-neuronally and is also expressed in intestinal cells. We identify aex-6 alleles as containing mutations in rab-27. Interestingly, aex-6 mutants exhibit the same defecation defect as aex-3 mutants. aex-6; rab-3 double mutants have behavioral and pharmacological defects similar to aex-3 mutants. In addition, we demonstrate that RBF-1 (rabphilin) is an effector of RAB-27. Therefore, our work demonstrates that AEX-3 regulates both RAB-3 and RAB-27, that both RAB-3 and RAB-27 regulate synaptic transmission, and that RAB-27 potentially acts through its effector RBF-1 to promote soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) function.
PMCID: PMC1474797  PMID: 16571673
19.  The GTPase Rab26 links synaptic vesicles to the autophagy pathway 
eLife  null;4:e05597.
Small GTPases of the Rab family not only regulate target recognition in membrane traffic but also control other cellular functions such as cytoskeletal transport and autophagy. Here we show that Rab26 is specifically associated with clusters of synaptic vesicles in neurites. Overexpression of active but not of GDP-preferring Rab26 enhances vesicle clustering, which is particularly conspicuous for the EGFP-tagged variant, resulting in a massive accumulation of synaptic vesicles in neuronal somata without altering the distribution of other organelles. Both endogenous and induced clusters co-localize with autophagy-related proteins such as Atg16L1, LC3B and Rab33B but not with other organelles. Furthermore, Atg16L1 appears to be a direct effector of Rab26 and binds Rab26 in its GTP-bound form, albeit only with low affinity. We propose that Rab26 selectively directs synaptic and secretory vesicles into preautophagosomal structures, suggesting the presence of a novel pathway for degradation of synaptic vesicles.
eLife digest
Our brain contains billions of cells called neurons that form an extensive network through which information is readily exchanged. These cells connect to each other via junctions called synapses. Our developing brain starts off with far more synapses than it needs, but the excess synapses are destroyed as the brain matures. Even in adults, synapses are continuously made and destroyed in response to experiences and learning.
Inside neurons there are tiny bubble-like compartments called vesicles that supply the synapses with many of the proteins and other components that they need. There is a growing body of evidence that suggests these vesicles are rapidly destroyed once a synapse is earmarked for destruction, but it is not clear how this may occur.
Here, Binotti, Pavlos et al. found that a protein called Rab26 sits on the surface of the vesicles near synapses. This protein promotes the formation of clusters of vesicles, and a membrane sometimes surrounds these clusters. Further experiments indicate that several proteins involved in a process called autophagy—where unwanted proteins and debris are destroyed—may also be found around the clusters of vesicles.
Autophagy starts with the formation of a membrane around the material that needs to be destroyed. This seals the material off from rest of the cell so that enzymes can safely break it down. Binotti, Pavlos et al. found that one of the autophagy proteins—called Atg16L—can bind directly to Rab26, but only when Rab26 is in an ‘active’ state.
These findings suggest that excess vesicles at synapses may be destroyed by autophagy. Further work will be required to establish how this process is controlled and how it is involved in the loss of synapses.
PMCID: PMC4337689  PMID: 25643395
synaptic vesicles; rab proteins; autophagy; D. melanogaster; human; rat
20.  A Rab1 mutant affecting guanine nucleotide exchange promotes disassembly of the Golgi apparatus 
The Journal of Cell Biology  1994;125(3):557-571.
The Golgi apparatus is a dynamic organelle whose structure is sensitive to vesicular traffic and to cell cycle control. We have examined the potential role for rab1a, a GTPase previously associated with ER to Golgi and intra-Golgi transport, in the formation and maintenance of Golgi structure. Bacterially expressed, recombinant rab1a protein was microinjected into rat embryonic fibroblasts, followed by analysis of Golgi morphology by fluorescence and electron microscopy. Three recombinant proteins were tested: wild-type rab, mutant rab1a(S25N), a constitutively GDP-bound form (Nuoffer, C., H. W. Davidson, J. Matteson, J. Meinkoth, and W. E. Balch, 1994. J. Cell Biol. 125: 225- 237), and mutant rab1a(N124I) defective in guanine nucleotide binding. Microinjection of wild-type rab1a protein or a variety of negative controls (injection buffer alone or activated ras protein) did not affect the appearance of the Golgi, as visualized by immunofluorescence of alpha-mannosidase II (Man II), used as a Golgi marker. In contrast, microinjection of the mutant forms promoted the disassembly of the Golgi stacks into dispersed vesicular structures visualized by immunofluorescence. When S25N-injected cells were analyzed by EM after immunoperoxidase labeling, Man II was found in isolated ministacks and large vesicular elements that were often surrounded by numerous smaller unlabeled vesicles resembling carrier vesicles. Golgi disassembly caused by rab1a mutants differs from BFA-induced disruption, since beta- COP remains membrane associated, and Man II does not redistribute to the ER. BFA can still cause these residual Golgi elements to fuse and disperse, albeit at a slower rate. Moreover, BFA recovery is incomplete in the presence of rab1 mutants or GTP gamma S. We conclude that GTP exchange and hydrolysis by GTPases, specifically rab1a, are required to form and maintain normal Golgi stacks. The similarity of Golgi disassembly seen with rab1a mutants to that occurring during mitosis, may point to a molecular basis involving rab1a for fragmentation of the Golgi apparatus during cell division.
PMCID: PMC2119990  PMID: 8175881
21.  AMPylation Is Critical for Rab1 Localization to Vacuoles Containing Legionella pneumophila 
mBio  2014;5(1):e01035-13.
Legionella pneumophila is an intracellular pathogen that resides within a membrane-bound compartment that is derived from vesicles exiting the endoplasmic reticulum (ER). To create this compartment, these bacteria use a type IV secretion system to deliver effector proteins that subvert host cell functions. Several Legionella effector proteins modulate the function of the host protein Rab1, which is a GTPase that is recruited to the Legionella-containing vacuole (LCV). Here, we examined which of the Rab1-directed enzymatic activities displayed by Legionella effectors are important for localizing the Rab1 protein to the LCV membrane. The guanine nucleotide exchange factor (GEF) domain in the effector protein DrrA (SidM) was essential for Rab1 recruitment to the LCV and Rab1 AMPylation by the nucleotidyltransferase domain in DrrA was important for Rab1 retention. Legionella organisms producing mutant DrrA proteins that were severely attenuated for GEF activity in vitro retained the ability to localize Rab1 to the LCV. Rab1 localization to the LCV mediated by these GEF-defective mutants required AMPylation. Importantly, we found that efficient localization of Rab1 to the LCV occurred when Rab1 GEF activity and Rab1 AMPylation activity were provided by separate proteins. Rab1 phosphocholination (PCylation) by the effector protein AnkX, however, was unable to substitute for Rab1 AMPylation. Lastly, the defect in Rab1 localization to the LCV in AMPylation-deficient strains of Legionella was partially suppressed if the GTPase-activating protein (GAP) LepB was eliminated. Thus, our data indicate that AMPylation of Rab1 is an effective strategy to maintain this GTPase on the LCV membrane.
Activities that enable the intracellular pathogen Legionella pneumophila to subvert the function of the host protein Rab1 were investigated. Our data show that a posttranslational modification called AMPylation is critical for maintaining a pool of Rab1 on the LCV membrane. AMPylation of Rab1 led to the accumulation of GTP-bound Rab1 on the LCV membrane by protecting the protein from inactivation by GAPs. Importantly, PCylation of Rab1 by the Legionella effector protein AnkX was neither necessary nor sufficient to maintain Rab1 on the LCV, indicating that AMPylation and PCylation represent functionally distinct activities. We conclude that modification of Rab1 by AMPylation is an effective strategy to spatially and temporally regulate the function of this GTPase on a membrane-bound organelle.
PMCID: PMC3950522  PMID: 24520063
22.  A Rab8-specific GDP/GTP Exchange Factor Is Involved in Actin Remodeling and Polarized Membrane Transport 
Molecular Biology of the Cell  2002;13(9):3268-3280.
The mechanisms mediating polarized delivery of vesicles to cell surface domains are poorly understood in animal cells. We have previously shown that expression of Rab8 promotes the formation of new cell surface domains through reorganization of actin and microtubules. To unravel the function of Rab8, we used the yeast two-hybrid system to search for potential Rab8-specific activators. We identified a coil-coiled protein (Rabin8), homologous to the rat Rabin3 that stimulated nucleotide exchange on Rab8 but not on Rab3A and Rab5. Furthermore, we show that rat Rabin3 has exchange activity on Rab8 but not on Rab3A, supporting the view that rat Rabin3 is the rat equivalent of human Rabin8. Rabin8 localized to the cortical actin and expression of Rabin8 resulted in remodeling of actin and the formation of polarized cell surface domains. Activation of PKC by phorbol esters enhanced translocation of both Rabin8 and Rab8-specific vesicles to the outer edge of lamellipodial structures. Moreover, coexpression of Rabin8 with dominant negative Rab8 (T22N) redistributes Rabin8 from cortical actin to Rab8-specific vesicles and promotes their polarized transport to cell protrusions. The C-terminal region of Rabin8 plays an essential role in this transport. We propose that Rabin8 is a Rab8-specific activator that is connected to processes that mediate polarized membrane traffic to dynamic cell surface structures.
PMCID: PMC124888  PMID: 12221131
23.  Rab6 Is Required for Multiple Apical Transport Pathways but Not the Basolateral Transport Pathway in Drosophila Photoreceptors 
PLoS Genetics  2016;12(2):e1005828.
Polarized membrane trafficking is essential for the construction and maintenance of multiple plasma membrane domains of cells. Highly polarized Drosophila photoreceptors are an excellent model for studying polarized transport. A single cross-section of Drosophila retina contains many photoreceptors with 3 clearly differentiated plasma membrane domains: a rhabdomere, stalk, and basolateral membrane. Genome-wide high-throughput ethyl methanesulfonate screening followed by precise immunohistochemical analysis identified a mutant with a rare phenotype characterized by a loss of 2 apical transport pathways with normal basolateral transport. Rapid gene identification using whole-genome resequencing and single nucleotide polymorphism mapping identified a nonsense mutation of Rab6 responsible for the apical-specific transport deficiency. Detailed analysis of the trafficking of a major rhabdomere protein Rh1 using blue light-induced chromophore supply identified Rab6 as essential for Rh1 to exit the Golgi units. Rab6 is mostly distributed from the trans-Golgi network to a Golgi-associated Rab11-positive compartment that likely recycles endosomes or transport vesicles going to recycling endosomes. Furthermore, the Rab6 effector, Rich, is required for Rab6 recruitment in the trans-Golgi network. Moreover, a Rich null mutation phenocopies the Rab6 null mutant, indicating that Rich functions as a guanine nucleotide exchange factor for Rab6. The results collectively indicate that Rab6 and Rich are essential for the trans-Golgi network–recycling endosome transport of cargoes destined for 2 apical domains. However, basolateral cargos are sorted and exported from the trans-Golgi network in a Rab6-independent manner.
Author Summary
Cells in animal bodies have multiple plasma membrane domains; this polarized characteristic of cells is essential for their specific functions. Selective membrane transport pathways play key roles in the construction and maintenance of polarized structures. Drosophila photoreceptors with multiple plasma membrane domains are an excellent model of polarized transport. We performed genetic screening and identified a Rab6 null mutant with a rare phenotype characterized by a loss of 2 apical transport pathways with normal basolateral transport. Although Rab6 functions in the Golgi are well known, its function in polarized transport was unexpected. Here, we found that Rab6 and its effector, Rich, are required for multiple apical transport pathways but not the basolateral transport pathway. Our findings strongly indicate that the membrane proteins delivered to multiple polarized domains are not sorted simultaneously: basolateral cargos are segregated before the Rab6-dependent process, and cargos going to multiple apical domains are sorted after Rab6-dependent transport from the trans-Golgi network to the Golgi-associated Rab11-positive compartment, which presumably recycles endosomes. Our finding of the function of Rab6 in polarized transport will elucidate the molecular mechanisms of polarized transport.
PMCID: PMC4758697  PMID: 26890939
24.  Interaction with the effector dynamin-related protein 1 (Drp1) is an ancient function of Rab32 subfamily proteins 
Cellular Logistics  2014;4(4):e986399.
The mitochondria-associated membrane (MAM) is an endoplasmic reticulum (ER) domain that forms contacts with mitochondria and accommodates Ca2+ transfer between the two organelles. The GTPase Rab32 regulates this function of the MAM via determining the localization of the Ca2+ regulatory transmembrane protein calnexin to the MAM. Another function of the MAM is the regulation of mitochondrial dynamics mediated by GTPases such as dynamin-related protein 1 (Drp1). Consistent with the importance of the MAM for mitochondrial dynamics and the role of Rab32 in MAM enrichment, the inactivation of Rab32 leads to mitochondrial collapse around the nucleus. However, Rab32 and related Rabs also perform intracellular functions at locations other than the MAM including melanosomal trafficking, autophagosome formation and maturation, and retrograde trafficking to the trans-Golgi network (TGN). This plethora of functions raises questions concerning the original cellular role of Rab32 in the last common ancestor of animals and its possible role in the last eukaryotic common ancestor (LECA). Our results now shed light on this conundrum and identify a role in Drp1-mediated mitochondrial dynamics as one common denominator of this group of Rabs, which includes the paralogues Rab32A and Rab32B, as well as the more recently derived Rab29 and Rab38 proteins. Moreover, we provide evidence that this mitochondrial function is dictated by the extent of ER-association of Rab32 family proteins.
PMCID: PMC4355727  PMID: 25767741
Drp1; Mitochondrial dynamics; Rab32 Rab38; Rab29
25.  Overexpression of a Mutant Form of EhRabA, a Unique Rab GTPase of Entamoeba histolytica, Alters Endoplasmic Reticulum Morphology and Localization of the Gal/GalNAc Adherence Lectin▿  
Eukaryotic Cell  2009;8(7):1014-1026.
Entamoeba histolytica is a protozoan parasite that causes amoebic dysentery and liver abscess. Vesicle trafficking events, such as phagocytosis and delivery of plasma membrane proteins, have been implicated in pathogenicity. Rab GTPases are proteins whose primary function is to regulate vesicle trafficking; therefore, understanding the function of Rabs in this organism may provide insight into virulence. E. histolytica possesses a number of unique Rabs that exhibit limited homology to host Rabs. In this study we examined the function of one such Rab, EhRabA, by characterizing a mutant overexpressing a constitutively GTP-bound version of the protein. Overexpression of mutant EhRabA resulted in decreased adhesion to and phagocytosis of human red blood cells and in the appearance of large tubular organelles that could be stained with endoplasmic reticulum (ER)-specific but not Golgi complex-specific antibodies. Consistent with the adhesion defect, two subunits of a cell surface adhesin, the galactose/N-acetylgalactosamine lectin, were mislocalized to the novel organelle. A cysteine protease, EhCP2, was also localized to the ER-like compartment in the mutant; however, the localization of two additional cell surface proteins, Igl and SREHP, remained unchanged in the mutant. The phenotype of the mutant could be recapitulated by treatment with brefeldin A, a cellular toxin that disrupts ER-to-Golgi apparatus vesicle traffic. This suggests that EhRabA influences vesicle trafficking pathways that are also sensitive to brefeldin A. Together, the data indicate that EhRabA directly or indirectly influences the morphology of secretory organelles and regulates trafficking of a subset of secretory proteins in E. histolytica.
PMCID: PMC2708452  PMID: 19377040

Results 1-25 (1478040)