Search tips
Search criteria

Results 1-25 (813803)

Clipboard (0)

Related Articles

1.  The Role of Metabotropic Glutamate Receptor 5 on the Stromal Cell-Derived Factor-1/CXCR4 System in Oral Cancer 
PLoS ONE  2013;8(11):e80773.
We have demonstrated that blocking CXCR4 may be a potent anti-metastatic therapy for CXCR4-related oral cancer. However, as CXCR4 antagonists are currently in clinical use to induce the mobilization of hematopoietic stem cells, continuous administration as an inhibitor for the metastasis may lead to persistent leukocytosis. In this study, we investigated the novel therapeutic downstream target(s) of the SDF-1/CXCR4 system, using B88-SDF-1 cells, which have an autocrine SDF-1/CXCR4 system and exhibit distant metastatic potential in vivo. Microarray analysis revealed that 418 genes were upregulated in B88-SDF-1 cells. We identified a gene that is highly upregulated in B88-SDF-1 cells, metabotropic glutamate receptor 5 (mGluR5), which was downregulated following treatment with 1,1’ -[1,4-Phenylenebis(methylene)]bis-1,4,8,11-tetraazacyclotetradecane octahydrochloride (AMD3100), a CXCR4 antagonist. The upregulation of mGluR5 mRNA in the SDF-1/CXCR4 system was predominately regulated by the Ras-extracellular signal-regulated kinase (ERK)1/2 pathway. Additionally, the growth of B88-SDF-1 cells was not affected by the mGluR5 agonist (S)-3,5-DHPG (DHPG) or the mGluR5 antagonists 2-Methyl-6-(phenylethynyl)pyridine (MPEP) and 3-((2-Methyl-1,3-thiazol-4-yl)ethynyl)pyridine (MTEP). However, we observed that DHPG promoted B88-SDF-1 cell migration, whereas both MPEP and MTEP inhibited B88-SDF-1 cell migration. To assess drug toxicity, the antagonists were intraperitoneally injected into immunocompetent mice for 4 weeks. Mice injected with MPEP (5 mg/kg) and MTEP (5 mg/kg) did not exhibit any side effects, such as hematotoxicity, allergic reactions or weight loss. The administration of antagonists significantly inhibited the metastasis of B88-SDF-1 cells to the lungs of nude mice. These results suggest that blocking mGluR5 with antagonists such as MPEP and MTEP could prevent metastasis in CXCR4-related oral cancer without causing side effects.
PMCID: PMC3827474  PMID: 24236200
2.  CXCR7 receptors facilitate the progression of colon carcinoma within lung not within liver 
British Journal of Cancer  2012;107(12):1944-1949.
Liver and lung metastases are the predominant cause of colorectal cancer (CRC)-related mortality. Chemokine-receptor pairs have a critical role in determining the metastatic progression of tumours. Our hypothesis was that disruption of CXCR7/CXCR7 ligands axis could lead to a decrease in CRC metastases.
Primary tumours and metastatic tissues from patients with CRC were tested for the expression of CXCR7 and its ligands. Relevance of CXCR7/CXCR7 ligands for CRC metastasis was then investigated in mice using small pharmacological CXCR7 antagonists and CRC cell lines of human and murine origins, which – injected into mice – enable the development of lung and liver metastases.
Following injection of CRC cells, mice treated daily with CXCR7 antagonists exhibited a significant reduction in lung metastases. However, CXCR7 antagonists failed to reduce the extent of liver metastasis. Moreover, there were subtle differences in the expression of CXCR7 and its ligands between lung and liver metastases.
Our study suggests that the activation of CXCR7 on tumour blood vessels by its ligands may facilitate the progression of CRC within lung but not within liver. Moreover, we provide evidence that targeting the CXCR7 axis may be beneficial to limit metastasis from colon cancer within the lungs.
PMCID: PMC3516689  PMID: 23169289
chemokines/receptors; CXCR7 antagonists; colon cancer; metastasis; animal models
3.  miR-133b, a muscle-specific microRNA, is a novel prognostic marker that participates in the progression of human colorectal cancer via regulation of CXCR4 expression 
Molecular Cancer  2013;12:164.
MicroRNA-133b (miR-133b), which is a muscle-specific microRNA, has been reported to be downregulated in human colorectal carcinoma (CRC) when compared to adjacent non-tumor tissue. However, its diagnostic value and role in CRC have yet to be described. CXC chemokine receptor-4 (CXCR4), which participates in multiple cell processes such as cell invasion-related signaling pathways, was predicted to be a potential target of miR-133b. The aim of this study was to investigate the associations and functions of miR-133b and CXCR4 in CRC initiation and invasion.
Mature miR-133b and CXCR4 expression levels were detected in 31 tumor samples and their adjacent, non-tumor tissues from patients with CRC, as well as in 6 CRC cell lines, using real-time quantitative RT-PCR (qRT-PCR). Luciferase reporter assays and Western blots were used to validate CXCR4 as a putative target gene of miR-133b. Regulation of CXCR4 expression by miR-133b was assessed using qRT-PCR and Western blot analysis, and the effects of exogenous miR-133b and CXCR4 on cell invasion and migration were evaluated in vitro using the SW-480 and SW-620 CRC cell lines.
A significant downregulation of miR-133b was observed in 93.55% of CRC tissues, and the expression of miR-133b was much lower in metastatic tumors (stage C and D, stratified by the Modified Dukes Staging System) than in primary tumors (stage A and B). In contrast, CXCR4 protein expression significantly increased in 52.63% of CRC samples, and increased CXCR4 expression in CRC was associated with advanced tumor stage. CXCR4 was shown to be a direct target of miR-133b by luciferase reporter assays, and transfection of miR-133b mimics inhibited invasion and stimulated apoptosis of SW-480 and SW-620 CRC cells.
Our study demonstrated that downregulated miR-133b contributed to increased cell invasion and migration in CRC by negatively regulating CXCR4. These findings may be significant for the development of therapy target for CRC.
PMCID: PMC3866930  PMID: 24330809
CXCR4; miR-133b; Colorectal cancer; Tumor progression; Metastasis; Targeted therapy
4.  Expression of SDF-1α and nuclear CXCR4 predicts lymph node metastasis in colorectal cancer 
British Journal of Cancer  2008;98(10):1682-1689.
Although stromal cell-derived factor (SDF)-1α and its receptor CXCR4 are experimentally suggested to be involved in tumorigenicity, the clinicopathological significance of their expression in human disease is not fully understood. We examined SDF-1α and CXCR4 expression in colorectal cancers (CRCs) and their related lymph nodes (LNs), and investigated its relationship to clinicopathological features. Specimens of 60 primary CRCs and 27 related LNs were examined immunohistochemically for not only positivity but also immunostaining patterns for SDF-1α and CXCR4. The relationships between clinicopathological features and SDF-1α or CXCR4 expression were then analysed. Stromal cell-derived factor-1α and CXCR4 expression were significantly associated with LN metastasis, tumour stage, and survival of CRC patients. Twenty-nine of 47 CXCR4-positive CRCs (61.7%) showed clear CXCR4 immunoreactivity in the nucleus and a weak signal in the cytoplasm (nuclear type), whereas others showed no nuclear immunoreactivity but a diffuse signal in the cytoplasm and at the plasma membrane (cytomembrane type). Colorectal cancer patients with nuclear CXCR4 expression showed significantly more frequent LN metastasis than did those with cytomembrane expression. Colorectal cancer patients with nuclear CXCR4 expression in the primary lesion frequently had cytomembrane CXCR4-positive tumours in their LNs. In conclusion, expression of SDF-1α and nuclear CXCR4 predicts LN metastasis in CRCs.
PMCID: PMC2391124  PMID: 18443596
chemokines; SDF-1α; CXCR4; colorectal cancer; lymph node metastasis
Experimental data indicate that colorectal cancer cells with CD133 expression exhibit enhanced tumorigenicity over CD133− cells. We hypothesized that CD133+ cells, compared to CD133−, are more tumorigenic because they are more interactive with and responsive to their stromal microenvironment. Freshly dissected and dissociated cells from a primary colon cancer were separated into carcinoma –associated fibroblasts (CAF) and the epithelial cells; the latter were further separated into CD133+ and – cells using FACS. The CD133+ cells formed large tumors in NOD-SCID mice, demonstrating the phenotypic cellular diversity of the original tumor, whereas CD133− cells were unable to sustain significant growth. Affymetrix gene array analyses using t-test, fold-change, and multiple test correction identified candidate genes that were differentially expressed between the CD133+ vs. − cells. RT PCR verified differences in expression for 30 of the 46 genes selected. Genes upregulated (+ vs − cells) included CD133 (9.3-fold) and CXCR4 (4-fold), integrin β8 and fibroblast growth factor receptor 2 (FGFR2). The CAF highly express the respective ligands: SDF-1, vitronectin, and FGF family members, suggesting a reciprocal relationship between the CD133+ and CAF cells. SDF-1 caused an increase in [Ca2+]I in cells expressing both CD133 and CXCR4, confirming functional CXCR4. The CD133+/CXCR4+ phenotype is increased to 32% when the cells are grown in suspension, compared to only 9% when the cells were allowed to attach. In Matrigel 3-D culture, the CD133+/CXCR4+ group treated with SDF-1 grew both more colonies compared to vehicle as well as significantly larger colony sizes of tumor spheres. These data demonstrate proof of principle that the enhanced tumorigenic potential of CD133+, compared to CD133−, cells is due to their increased ability to interact with their neighboring CAF.
PMCID: PMC3289715  PMID: 22157717
CD133; colon cancer; CXCR4; tumor microenvironment
6.  CXCR4 expression in feline mammary carcinoma cells: evidence of a proliferative role for the SDF-1/CXCR4 axis 
Mammary tumours frequently develop in female domestic cats being highly malignant in a large percentage of cases. Chemokines regulate many physiological and pathological processes including organogenesis, chemotaxis of inflammatory cells, as well as tumour progression and metastasization. In particular, the chemokine/receptor pair SDF-1/CXCR4 has been involved in the regulation of metastatic potential of neoplastic cells, including breast cancer. The aim of this study was the immunohistochemical defininition of the expression profile of CXCR4 in primary and metastatic feline mammary carcinomas and the evaluation of the role of SDF-1 in feline mammary tumour cell proliferation.
A total of 45 mammary surgical samples, including 33 primary tumours (31 carcinomas and 2 adenomas), 6 metastases, and 4 normal mammary tissues were anlyzed. Tumor samples were collected from a total number of 26 animals, as in some cases concurrent occurrence of neoplasm in more than one mammary gland was observed. Tissues were processed for standard histological examination, and all lesions were classified according to the World Health Organization criteria. CXCR4 expression in neoplastic cells was evaluated by immunohistochemistry. The level of CXCR4 immunoreactivity was semi-quantitatively estimated as CXCR4 score evaluating both the number of positive cells and the intensity of staining. Six primary, fibroblast-free primary cultures were obtained from fresh feline mammary carcinomas and characterized by immunofluorescence for CXCR4 and malignant mammary cell marker expression. SDF-1-dependent in vitro proliferative effects were also assayed. CXCR4 expression was observed in 29 out of 31 malignant tissues with a higher CXCR4 score observed in 4 out of 6 metastatic lesions than in the respective primary tumours. In 2 benign lesions analyzed, only the single basaloid adenoma showed a mild positive immunostaining against CXCR4. Normal tissue did not show CXCR4 immunoreactivity. CXCR4 score was statistically significantly associated with the histological features of the samples, showing an increase accordingly with the degree of neoplastic transformation (from normal tissue to metastatic lesions). Finally, in the primary cultures obtained from 6 primary feline mammary carcinomas CXCR4 expression was detected in all cells and its activation by SDF-1 in vitro treatment caused a significant increase in the proliferation rate in 5 out of 6 tumours.
These results indicate that malignant feline mammary tumours commonly express CXCR4, with a higher level in malignant tumours, and, in most of the cases analysed, metastatic cells display stronger immunoreactivity for CXCR4 than the corresponding primary tumours. Moreover, CXCR4 activation in primary cultures of feline mammary carcinomas causes increase in the proliferative rate. Thus, SDF-1/CXCR4 system seems to play a tumorigenic in feline mammary gland malignancy and in vitro cultures from these tumour samples may represent an experimental model to investigate the biological and pharmacological role of this chemokinergic axis.
PMCID: PMC3364888  PMID: 22417013
7.  Down-regulation of CXCR7 inhibits the growth and lung metastasis of human hepatocellular carcinoma cells with highly metastatic potential 
CXCR7, a recently identified chemokine receptor, has been implicated in directing cancer metastasis. In the present study, the potential roles of CXCR7 in the growth and metastasis of hepatocellular carcinoma (HCC) were evaluated. A chemokine receptor gene chip was used to compare the expression of CXCR7 in HCC cell lines with different metastatic potential. Effects of targeting CXCR7 by RNA interference (RNAi) on the proliferation and metastasis of HCCLM3 cells were observed in vitro and in vivo. CXCR7 expression in 116 specimens from patients with or without metastatic HCC was assessed by tissue microarray. As a result, the gene chip showed that expression of CXCR7 was significantly higher in the highly metastatic HCCLM3 cells, which was confirmed by real-time RT-PCR and Western blotting. Chemotaxis assays showed that HCCLM3 cells responded to SDF-1α from 1 to 100 μg/l and lung extractions (1 g/l). Furthermore, down-regulation of CXCR7 in HCCLM3 cells by RNAi inhibited the proliferation and invasion of tumor cells in vitro. Moreover, CXCR7 knockdown significantly reduced the activity of matrix metalloproteinase-2 and matrix metalloproteinase-9. RNAi of CXCR7 in the HCCLM3 cells also decreased the growth of tumors and the number of lung metastases in nude mice. The tissue microarray showed that HCCs with high expression of CXCR7 were prone to metastasize to the lung. These findings suggest that CXCR7 plays critical roles in the growth and metastasis of HCC. RNAi of CXCR7 inhibits the growth and invasion of tumor cells, which indicates that CXCR7 may be a potential molecular target for use in HCC therapy.
PMCID: PMC3438632  PMID: 22969855
chemokine receptor; CXCR7; metastasis; hepatocellular carcinoma; lung
8.  Co-expression of CXCR4 and CD133 proteins is associated with poor prognosis in stage II–III colon cancer patients 
Although CXCR4 and CD133 have been implicated in the metastatic process of malignant tumors, the clinicopathological significance of their expression in human colon cancer is not fully understood. The present study aimed to examine the expression of the CXCR4 and CD133 proteins in cases of stage II or III colon cancer and the related lymph nodes and to investigate the clinical and prognostic significance of these proteins in colon cancer. Immunohistochemical analysis was performed to examine CXCR4 and CD133 protein expression in paraffin-embedded stage II or III primary colon cancer tissues and matched lymph nodes. The correlation between the expression of the two proteins and clinicopathological parameters and the patient 5-year survival was analyzed. CXCR4 expression was detected in 74 of the 125 tumors (59.2%) and CD133 expression was detected in 45 (36.0%). The co-expression of CXCR4 and CD133 (both CXCR4 and CD133 were positive) was detected in 29 of the 125 tumors (23.2%). Compared with the other combinations, the co-expression of the CXCR4 and CD133 proteins was significantly associated with American Joint Committee on Cancer (AJCC) stage (P=0.029) and lymph node status (P=0.020). Log-rank analysis revealed that AJCC stage (P=0.014), lymph node status (P=0.011), CXCR4 expression (P=0.023), CD133 expression (P=0.034) and the co-expression of the CXCR4 and CD133 proteins (P=0.003) were significant prognostic indicators for the overall survival of patients. The results of the present study show that the co-expression of the CXCR4 and CD133 proteins is a risk factor for poor overall survival in stage II or III colon cancer patients, indicating that the co-expression of the CXCR4 and CD133 proteins contributes to the progression of colon cancer.
PMCID: PMC3438782  PMID: 22970002
CXCR4; CD133; colon cancer; immunohistochemistry
9.  Cytokine Receptor CXCR4 Mediates Estrogen-Independent Tumorigenesis, Metastasis, and Resistance to Endocrine Therapy in Human Breast Cancer 
Cancer research  2010;71(2):603-613.
Estrogen independence and progression to a metastatic phenotype are hallmarks of therapeutic resistance and mortality in breast cancer patients. Metastasis has been associated with chemokine signaling through the SDF-1–CXCR4 axis. Thus, the development of estrogen independence and endocrine therapy resistance in breast cancer patients may be driven by SDF-1–CXCR4 signaling. Here we report that CXCR4 overexpression is indeed correlated with worse prognosis and decreased patient survival irrespective of the status of the estrogen receptor (ER). Constitutive activation of CXCR4 in poorly metastatic MCF-7 cells led to enhanced tumor growth and metastases that could be reversed by CXCR4 inhibition. CXCR4 overexpression in MCF-7 cells promoted estrogen independence in vivo, whereas exogenous SDF-1 treatment negated the inhibitory effects of treatment with the anti-estrogen ICI 182,780 on CXCR4-mediated tumor growth. The effects of CXCR4 overexpression were correlated with SDF-1–mediated activation of downstream signaling via ERK1/2 and p38 MAPK (mitogen activated protein kinase) and with an enhancement of ER-mediated gene expression. Together, these results show that enhanced CXCR4 signaling is sufficient to drive ER-positive breast cancers to a metastatic and endocrine therapy-resistant phenotype via increased MAPK signaling. Our findings highlight CXCR4 signaling as a rational therapeutic target for the treatment of ER-positive, estrogen-independent breast carcinomas needing improved clinical management.
PMCID: PMC3140407  PMID: 21123450
10.  Overlapping and Distinct Role of CXCR7-SDF-1/ITAC and CXCR4-SDF-1 Axes in Regulating Metastatic Behavior of Human Rhabdomyosarcomas 
We have demonstrated that the α-chemokine stromal-derived factor (SDF)-1-CXCR4 axis plays an important role in rhabdomyosarcoma (RMS) metastasis. With the recent descriptionof CXCR7, a new receptor for SDF-1 that also binds the interferon-inducible T-cell alpha chemoattractant (ITAC) chemokine, we became interested in the role of the CXCR7-SDF-1/ITAC axis in RMS progression. To address this issue, we evaluated 6 highly metastatic alveolar (A)RMS and 3 less metastatic embryonal (E)RMS cell lines and found that all these cell lines express CXCR7. While CXCR4 was expressed at a much higher level by highly metastatic ARMS lines, CXCR7 was present at a high level on ERMS lines. We also noticed that CXCR7 expression on RMS cells was downregulated in hypoxic conditions. More importantly, the CXCR7 receptor on RMS cell lines was functional after stimulation with ITAC and SDF-1 as evidenced by mitogen-activated protein kinase (MAPK)p42/44 and AKT phosphorylation as well as CXCR7 internalization, chemotaxis, cell motility, and adhesion assays. Similarly to CXCR4, signaling from activated CXCR7 was not associated with increased RMS proliferation or cell survival. Moreover, CXCR7+ RMS cells responded to SDF-1 and I-TAC in the presence of CXCR4 antagonists (T140, AMD3100). Furthermore, while intravenous injection of RMS cells with overexpressed CXCR7 resulted in increased seeding efficiency of tumor cells to bone marrow, CXCR7 downregulation showed the opposite effect. In conclusion, the CXCR7-SDF-1/ITAC axis is involved in the progression of RMS; targeting of the CXCR4-SDF-1 axis alone without simultaneous blockage of CXCR7 will be an inefficient strategy for inhibiting SDF-1-mediated pro-metastatic responses of RMS cells.
PMCID: PMC2907445  PMID: 20162608
Rhabdomyosarcoma; SDF-1; I-TAC; CXCR4; CXCR7
11.  The CXCR4-CXCL12 axis in Ewing sarcoma: promotion of tumor growth rather than metastatic disease 
Chemokine receptor CXCR4, together with its ligand CXCL12, plays critical roles in cancer progression, including growth, metastasis and angiogenesis. Ewing sarcoma is a sarcoma with poor prognosis despite current therapies, particularly for patients with advanced-stage disease. Lungs and bone (marrow), organs of predilection for (primary/metastatic) Ewing sarcoma, represent predominant CXCL12 sources.
To gain insight into the role of the CXCR4-CXCL12 axis in Ewing sarcoma, CXCR4, CXCL12 and hypoxia-inducible factor-1α protein expression was studied in therapy-naïve and metastatic tumors by immunohistochemistry. CXCR4 function was assessed in vitro, by flow cytometry and proliferation/ cell viability assays, in the presence of recombinant CXCL12 and/or CXCR4-antagonist AMD3100 or under hypoxic conditions.
Whereas CXCR4 was predominantly expressed by tumor cells, CXCL12 was observed in both tumor and stromal areas. Survival analysis revealed an (expression level-dependent) negative impact of CXCR4 expression (p < 0.04). A role for the CXCR4-CXCL12 axis in Ewing sarcoma growth was suggested by our observations that i) CXCR4 expression correlated positively with tumor volume at diagnosis (p = 0.013), ii) CXCL12 was present within the microenvironment of virtually all cases, iii) CXCL12 induced proliferation of CXCR4-positive Ewing sarcoma cell lines, which could be abrogated by AMD3100. CXCR4 expression was not correlated with occurrence of metastatic disease. Also, therapy-naïve tumors demonstrated higher CXCR4 expression as compared to metastases (p = 0.027). Evaluation of in vivo hypoxia-inducible factor-1α expression and culture of cells under hypoxic conditions revealed no role for hypoxia in CXCR4 expression.
Together, our results imply a crucial role for the CXCR4-CXCL12 axis in auto- and/or paracrine growth stimulation. Integration of CXCR4-targeting strategies into first- and/or second-line treatment regimens may represent a promising treatment option for Ewing sarcoma.
PMCID: PMC3549731  PMID: 23249693
Ewing sarcoma; CXCR4; CXCL12 (stromal-cell derived factor-1 (SDF-1)); Chemokine; Growth signaling; Hypoxia; Metastasis; Prognosis; Therapy
12.  CD133 expression is not restricted to stem cells, and both CD133+ and CD133– metastatic colon cancer cells initiate tumors  
The Journal of Clinical Investigation  2008;118(6):2111-2120.
Colon cancer stem cells are believed to originate from a rare population of putative CD133+ intestinal stem cells. Recent publications suggest that a small subset of colon cancer cells expresses CD133, and that only these CD133+ cancer cells are capable of tumor initiation. However, the precise contribution of CD133+ tumor-initiating cells in mediating colon cancer metastasis remains unknown. Therefore, to temporally and spatially track the expression of CD133 in adult mice and during tumorigenesis, we generated a knockin lacZ reporter mouse (CD133lacZ/+), in which the expression of lacZ is driven by the endogenous CD133 promoters. Using this model and immunostaining, we discovered that CD133 expression in colon is not restricted to stem cells; on the contrary, CD133 is ubiquitously expressed on differentiated colonic epithelium in both adult mice and humans. Using Il10–/–CD133lacZ mice, in which chronic inflammation in colon leads to adenocarcinomas, we demonstrated that CD133 is expressed on a full gamut of colonic tumor cells, which express epithelial cell adhesion molecule (EpCAM). Similarly, CD133 is widely expressed by human primary colon cancer epithelial cells, whereas the CD133– population is composed mostly of stromal and inflammatory cells. Conversely, CD133 expression does not identify the entire population of epithelial and tumor-initiating cells in human metastatic colon cancer. Indeed, both CD133+ and CD133– metastatic tumor subpopulations formed colonospheres in in vitro cultures and were capable of long-term tumorigenesis in a NOD/SCID serial xenotransplantation model. Moreover, metastatic CD133– cells form more aggressive tumors and express typical phenotypic markers of cancer-initiating cells, including CD44 (CD44+CD24–), whereas the CD133+ fraction is composed of CD44lowCD24+ cells. Collectively, our data suggest that CD133 expression is not restricted to intestinal stem or cancer-initiating cells, and during the metastatic transition, CD133+ tumor cells might give rise to the more aggressive CD133– subset, which is also capable of tumor initiation in NOD/SCID mice.
PMCID: PMC2391278  PMID: 18497886
13.  Organ-specific inhibition of metastatic colon carcinoma by CXCR3 antagonism 
British Journal of Cancer  2009;100(11):1755-1764.
Liver and lung metastases are the predominant cause of colorectal cancer (CRC)-related mortality. Recent research has indicated that CXCR3/chemokines interactions that orchestrate haematopoetic cell movement are implicated in the metastatic process of malignant tumours, including that of CRC cells to lymph nodes. To date, however, the contribution of CXCR3 to liver and lung metastasis in CRC has not been addressed. To determine whether CXCR3 receptors regulate malignancy-related properties of CRC cells, we have used CXCR3-expressing CRC cell lines of human (HT29 cells) and murine (C26 cells) origins that enable the development of liver and lung metastases when injected into immunodeficient and immunocompetent mice, respectively, and assessed the effect of CXCR3 blockade using AMG487, a small molecular weight antagonist. In vitro, activation of CXCR3 on human and mouse CRC cells by its cognate ligands induced migratory and growth responses, both activities being abrogated by AMG487. In vivo, systemic CXCR3 antagonism by preventive or curative treatments with AMG487 markedly inhibited the implantation and the growth of human and mouse CRC cells within lung without affecting that in the liver. In addition, we measured increased levels of CXCR3 and ligands expression within lung nodules compared with liver tumours. Altogether, our findings indicate that activation of CXCR3 receptors by its cognate ligands facilitates the implantation and the progression of CRC cells within lung tissues and that inhibition of this axis decreases pulmonary metastasis of CRC in two murine tumour models.
PMCID: PMC2695685  PMID: 19436305
chemokine receptor; metastasis; colon cancer; anti-tumour strategy; animal model
14.  Brain Metastases from Colorectal Cancer: Risk Factors, Incidence, and the Possible Role of Chemokines 
Clinical colorectal cancer  2009;8(2):100-105.
Brain metastases from colorectal cancer (CRC) are uncommon. There has been relatively little published on the host and tumor factors that might lead to this clinical scenario. We reviewed all cases of brain metastases from CRC at Dartmouth-Hitchcock Medical Center over a more than 20-year period to establish incidence and to identify patient and cancer characteristics which were associated with their development.
Patients and Methods
We present a retrospective review of 39 confirmed cases of brain metastases from CRC diagnosed between 1984 and 2006. Immunohistochemical staining for CXCR4 was performed on all available brain metastasis biopsy specimens.
The incidence of brain metastases from CRC was 2.3%. Left-sided primary colon tumors predominated. The majority of patients had pulmonary metastases at the time brain metastases were identified, and those with preexisting pulmonary metastases had progression of that disease. All patients were symptomatic from brain metastases, and the cerebellum was the most common area of brain involvement. Immunohistochemical analysis confirmed strong expression of CXCR4 in all brain metastases sampled.
The incidence of brain metastases from CRC is low. Primary tumor in the left colon, long-standing pulmonary metastases, especially those with recent progression, and CXCR4 expression by tumor cells are all associated with increased risk of brain metastases. Increased survival among patients with metastatic CRC will likely result in an increased incidence of brain metastases. Further characterization of the role of tumor and host factors might yield better insight into the development, and potentially the prevention, of this devastating situation.
PMCID: PMC3909497  PMID: 19739271
Cerebellar metastasis; CXCR4; Gait disturbance; Pulmonary metastases
15.  Curcumin Suppresses Crosstalk between Colon Cancer Stem Cells and Stromal Fibroblasts in the Tumor Microenvironment: Potential Role of EMT 
PLoS ONE  2014;9(9):e107514.
Interaction of stromal and tumor cells plays a dynamic role in initiating and enhancing carcinogenesis. In this study, we investigated the crosstalk between colorectal cancer (CRC) cells with stromal fibroblasts and the anti-cancer effects of curcumin and 5-Fluorouracil (5-FU), especially on cancer stem cell (CSC) survival in a 3D-co-culture model that mimics in vivo tumor microenvironment.
Colon carcinoma cells HCT116 and MRC-5 fibroblasts were co-cultured in a monolayer or high density tumor microenvironment model in vitro with/without curcumin and/or 5-FU.
Monolayer tumor microenvironment co-cultures supported intensive crosstalk between cancer cells and fibroblasts and enhanced up-regulation of metastatic active adhesion molecules (β1-integrin, ICAM-1), transforming growth factor-β signaling molecules (TGF-β3, p-Smad2), proliferation associated proteins (cyclin D1, Ki-67) and epithelial-to-mesenchymal transition (EMT) factor (vimentin) in HCT116 compared with tumor mono-cultures. High density tumor microenvironment co-cultures synergistically increased tumor-promoting factors (NF-κB, MMP-13), TGF-β3, favored CSC survival (characterized by up-regulation of CD133, CD44, ALDH1) and EMT-factors (increased vimentin and Slug, decreased E-cadherin) in HCT116 compared with high density HCT116 mono-cultures. Interestingly, this synergistic crosstalk was even more pronounced in the presence of 5-FU, but dramatically decreased in the presence of curcumin, inducing biochemical changes to mesenchymal-epithelial transition (MET), thereby sensitizing CSCs to 5-FU treatment.
Enrichment of CSCs, remarkable activation of tumor-promoting factors and EMT in high density co-culture highlights that the crosstalk in the tumor microenvironment plays an essential role in tumor development and progression, and this interaction appears to be mediated at least in part by TGF-β and EMT. Modulation of this synergistic crosstalk by curcumin might be a potential therapy for CRC and suppress metastasis.
PMCID: PMC4169561  PMID: 25238234
16.  Lymph Node Stromal Cells Enhance Drug-Resistant Colon Cancer Cell Tumor Formation through SDF-1α/CXCR4 Paracrine Signaling1 
Neoplasia (New York, N.Y.)  2011;13(9):874-886.
Colorectal cancer (CRC) is the third most common malignancy and the second leading cause of cancer-related deaths in America. Nearly two thirds of newly diagnosed CRC cases include lymph node (LN) involvement, and LN metastasis is one of the strongest negative prognostic factors for CRC. It is thought that CRC tumors contain a small population of drug-resistant CRC tumor-initiating cells (Co-TICs) that may be responsible for cancer recurrence. To evaluate the effects of the LN stromal cells on Co-TICs, we established a unique xenoplant model using CRC cells isolated by enzymatic digestion from consented patient specimens, HT-29 cells, HCA-7 cells, and LN stromal cell line HK cells. We found that HK cells and HK cell-conditioned media enhanced CRC tumor formation and tumor angiogenesis. Cells expressing CD133+ and the stromal cell-derived factor 1α (SDF-1α) receptor CXCR4 were enriched in chemotherapeutic-resistant CRC cells. CD133+CXCR4+ Co-TICs isolated from patient specimens are more tumorigenic than unsorted tumor cells. Furthermore, the inhibitors specific to HK cell-derived SDF-1α reduced tumor formation and tumor angiogenesis. Our results have demonstrated a role for Co-TICs in tumor growth and defined the influence of LN stromal cells on Co-TICs. We have identified a major Co-TIC/LN microenvironment-specific mechanism for CRC resistance to chemotherapeutic agents and established experimental platforms for both in vitro and in vivo testing, indicating that SDF-1α and its receptor, CXCR4, may be targets for clinical therapy.
PMCID: PMC3182279  PMID: 21969820
17.  CXCR4 drives the metastatic phenotype in breast cancer through induction of CXCR2 and activation of MEK and PI3K pathways 
Molecular Biology of the Cell  2014;25(5):566-582.
Continuous signaling of CXCR4 in MCF-7 cells results in epithelial-to-mesenchymal transition (EMT), up-regulation of metastasis-associated cytokines, cell migration, and metastasis. The EMT phenotype was reversed in 3D rBM with combined inhibition of CXCR4 and CXCR2 together or in combination with MEK or PI3K, supporting development for combinational therapy treatment in breast cancer.
Aberrant expression of CXCR4 in human breast cancer correlates with metastasis to tissues secreting CXCL12. To understand the mechanism by which CXCR4 mediates breast cancer metastasis, MCF-7 breast carcinoma cells were transduced to express wild-type CXCR4 (CXCR4WT) or constitutively active CXCR4 (CXCR4ΔCTD) and analyzed in two-dimensional (2D) cultures, three-dimensional reconstituted basement membrane (3D rBM) cultures, and mice using intravital imaging. Two-dimensional cultures of MCF-7 CXCR4ΔCTD cells, but not CXCR4WT, exhibited an epithelial-to-mesenchymal transition (EMT) characterized by up-regulation of zinc finger E box–binding homeobox 1, loss of E-cadherin, up-regulation of cadherin 11, p120 isoform switching, activation of extracellular signal-regulated kinase 1/2, and matrix metalloproteinase-2. In contrast to the 2D environment, MCF-7 CXCR4WT cells cultured in 3D rBM exhibited an EMT phenotype, accompanied by expression of CXCR2, CXCR7, CXCL1, CXCL8, CCL2, interleukin-6, and granulocyte–macrophage colony stimulating factor. Dual inhibition of CXCR2 with CXCR4, or inhibition of either receptor with inhibitors of mitogen-activated protein kinase 1 or phosphatidylinositol 3-kinase, reversed the aggressive phenotype of MCF-7 CXCR4-expressing or MDA-MB-231 cells in 3D rBM. Intravital imaging of CXCR4-expressing MCF-7 cells revealed that tumor cells migrate toward blood vessels and metastasize to lymph nodes. Thus CXCR4 can drive EMT along with an up-regulation of chemokine receptors and cytokines important in cell migration, lymphatic invasion, and tumor metastasis.
PMCID: PMC3937084  PMID: 24403602
18.  Intra-Tumoral Heterogeneity in Metastatic Potential and Survival Signaling between Iso-Clonal HCT116 and HCT116b Human Colon Carcinoma Cell Lines 
PLoS ONE  2013;8(4):e60299.
Colorectal cancer (CRC) metastasis is a leading cause of cancer-related deaths in the United States. The molecular mechanisms underlying this complex, multi-step pathway are yet to be completely elucidated. Recent reports have stressed the importance of intra-tumoral heterogeneity in the development of a metastatic phenotype. The purpose of this study was to characterize the intra-tumoral phenotypic heterogeneity between two iso-clonal human colon cancer sublines HCT116 and HCT116b on their ability to undergo metastatic colonization and survive under growth factor deprivation stress (GFDS).
Materials and Methods
HCT116 and HCT116b cells were transfected with green fluorescence protein and subcutaneously injected into BALB/c nude male mice. Once xenografts were established, they were excised and orthotopically implanted into other male BALB/c nude mice using microsurgical techniques. Animal tissues were studied for metastases using histochemical techniques. Microarray analysis was performed to generate gene signatures associated with each subline. In vitro assessment of growth factor signaling pathway was performed under GFDS for 3 and 5 days.
Both HCT116 and HCT116b iso-clonal variants demonstrated 100% primary tumor growth, invasion and peritoneal spread. However, HCT116 was highly metastatic with 68% metastasis observed in liver and/or lungs compared to 4% in HCT116b. Microarray analysis revealed an upregulation of survival and metastatic genes in HCT116 cells compared to HCT116b cells. In vitro analysis showed that HCT116 upregulated survival and migratory signaling proteins and downregulated apoptotic agents under GFDS. However, HCT116b cells effectively showed the opposite response under stress inducing cell death.
We demonstrate the importance of clonal variation in determining metastatic potential of colorectal cancer cells using the HCT116/HCT116b iso-clonal variants in an orthotopic metastatic mouse model. Determination of clonal heterogeneity in patient tumors can serve as useful tools to identify clinically relevant biomarkers for diagnostic and therapeutic assessment of metastatic colorectal cancer.
PMCID: PMC3613369  PMID: 23560089
European journal of pharmacology  2009;625(1-3):31-40.
Cancer metastasis is a major clinical problem that contributes to unsuccessful therapy. Augmenting evidence indicates that metastasizing cancer cells employ several mechanisms that are involved in developmental trafficking of normal stem cells. Stromal-derived factor-1 (SDF-1) is an important α-chemokine that binds to the G-protein-coupled seven-transmembrane span CXCR4. The SDF-1-CXCR4 axis regulates trafficking of normal and malignant cells. SDF-1 is an important chemoattractant for a variety of cells including hematopoietic stem/progenitor cells. For many years, it was believed that CXCR4 was the only receptor for SDF-1. However, several reports recently provided evidence that SDF-1 also binds to another seven-transmembrane span receptor called CXCR7, sharing this receptor with another chemokine family member called Interferon-inducible T-cell chemoattractant (I-TAC). Thus, with CXCR7 identified as a new receptor for SDF-1, the role of the SDF-1-CXCR4 axis in regulating several biological processes becomes more complex. Based on the available literature, this review addresses the biological significance of SDF-1’s interaction with CXCR7, which may act as a kind of decoy or signaling receptor depending on cell type. Augmenting evidence suggests that CXCR7 is involved in several aspects of tumorogenesis and could become an important target for new anti-metastatic and anti-cancer drugs.
PMCID: PMC2783873  PMID: 19835865
SDF-1; CXCR7; CXCR4; cancer metastasis
20.  Role of chemokine receptor CXCR2 expression in mammary tumor growth, angiogenesis and metastasis 
Chemokines and their receptors have long been known to regulate metastasis in various cancers. Previous studies have shown that CXCR2 expression is upregulated in malignant breast cancer tissues but not in benign ductal epithelial samples. The functional role of CXCR2 in the metastatic phenotype of breast cancer still remains unclear. We hypothesize that the chemokine receptor, CXCR2, mediates tumor cell invasion and migration and promotes metastasis in breast cancer. The objective of this study is to investigate the potential role of CXCR2 in the metastatic phenotype of mouse mammary tumor cells.
Materials and Methods:
We evaluated the functional role of CXCR2 in breast cancer by stably downregulating the expression of CXCR2 in metastatic mammary tumor cell lines Cl66 and 4T1, using short hairpin RNA (shRNA). The effects of CXCR2 downregulation on tumor growth, invasion and metastatic potential were analyzed in vitro and in vivo.
We demonstrated knock down of CXCR2 in Cl66 and 4T1 cells (Cl66-shCXCR2 and 4T1-shCXCR2) cells by reverse transcriptase polymerase chain reaction (RT-PCR) at the transcriptional level and by immunohistochemistry at the protein level. We did not observe a significant difference in in vitro cell proliferation between vector control and CXCR2 knock-down Cl66 or 4T1 cells. Next, we examined the invasive potential of Cl66-shCXCR2 cells by in vitro Matrigel invasion assay. We observed a significantly lower number (52 ± 5) of Cl66-shCXCR2 cells invading through Matrigel compared to control cells (Cl66-control) (182 ± 3) (P < 0.05). We analyzed the in vivo metastatic potential of Cl66-shCXCR2 using a spontaneous metastasis model by orthotopically implanting cells into the mammary fat pad of female BALB/c mice. Animals were sacrificed 12 weeks post tumor implantation and tissue samples were analyzed for metastatic nodules. CXCR2 downregulation significantly inhibited tumor cell metastasis. All the mice (n = 10) implanted with control Cl66 cells spontaneously developed lung metastasis, whereas a significantly lower number of mice (40%) implanted with Cl66-shCXCR2 cells exhibited lung metastases.
Together, these results suggest that CXCR2 may play a critical role in breast cancer invasion and metastasis.
PMCID: PMC3284109  PMID: 22368515
CXC chemokines; CXCR2; metastasis; tumor growth
21.  CXCR4 Expression and Treatment with SDF-1α or Plerixafor Modulate Proliferation and Chemosensitivity of Colon Cancer Cells1 
Translational Oncology  2013;6(2):124-132.
BACKGROUND: Signaling through stromal cell-derived factor-1α (SDF-1α), strongly secreted by bone marrow stromal cells and the CXC chemokine receptor 4 (CXCR4) exposed on tumor cells has pivotal roles in proliferation, metastasis, and tumor cell “dormancy.” Dormancy is associated with cytostatic drug resistance and is probably a property of tumor stem cells and minimal residual disease. Thus, hampering the SDF-1α/CXCR4 cross talk by a CXCR4 antagonist like Plerixafor (AMD3100) should overcome tumor cell dormancy bymobilization of tumor cells from “sanctuary” niches. Our aim was to elucidate the direct effects exerted by SDF-1α and Plerixafor on proliferation, chemosensitivity, and apoptosis of CXCR4-expressing tumor cells. METHODS: The ability of SDF-1α and Plerixafor to regulate intracellular signaling, proliferation, and invasion was investigated using two colon cancer cell lines (HT-29 and SW480) with either high endogenous or lentiviral expression of CXCR4 compared to their respective low CXCR4-expressing counterparts as a model system. Efficacy of Plerixafor on sensitivity of these cell lines against 5-fluorouracil, irinotecan, or oxaliplatin was determined in a cell viability assay as well as stroma-dependent cytotoxicity and apoptosis assays. RESULTS: SDF-1α increased proliferation, invasion, and ERK signaling of endogenously and lentivirally CXCR4-expressing cells. Exposure to Plerixafor reduced proliferation, invasion, and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling. Combination of chemotherapy with Plerixafor showed an additive effect on chemosensitivity and apoptosis in CXCR4-overexpressing cells. An SDF-1-secreting feeder layer provideda“protective niche” for CXCR4-overexpressing cells resulting in decreased chemosensitivity. CONCLUSION: CXCR4-antagonistic therapy mobilizes and additionally sensitizes tumor cells toward cytoreductive chemotherapy.
PMCID: PMC3610551  PMID: 23544165
22.  Nef-M1, a CXCR4 Peptide Antagonist, Enhances Apoptosis and Inhibits Primary Tumor Growth and Metastasis in Breast Cancer 
Journal of cancer therapy  2013;4(4):898-906.
Results from studies with animal models suggest that, in many cancers, CXCR4 is an important therapeutic target and that CXCR4 antagonists may be promising treatments for primary cancers and for metastases. The Nef protein effectively competes with CXCR4’s natural ligand, SDF-1α, and induces apoptosis. As described in this report, the Nef-M1 peptide (Nef protein amino acids 50 – 60) inhibits primary tumor growth and metastasis of breast cancer (BC). Four BC cell lines (MDA-MB-231, MDA-MB-468, MCF 7, and DU4475) and primary human mammary epithelium (HME) cells were evaluated for their response to the Nef protein and to the Nef-M1 peptide. The presence of CXCR4 receptors in these cells was determined by RT-PCR, Western blot (WB), and immunohistochemical analyses. The apoptotic effect of Nef-M1 was assessed by terminal transferase dUTP nick-end labeling (TUNEL). WBs was used to assess caspase 3 activation. BC xenografts grown in SCID mice were evaluated for the presence of CXCR4 and for their metastatic potential. CXCR4 was presented in MDA-MB-231, MCF 7, and DU 4475 BC cells but not in MDA-MB-468 BC or HME cells. Cells expressing CXCR4 and treated with Nef-M1 peptide or the Nef protein had higher rates of apoptosis than untreated cells. Caspase-3 activation increased in MDA-MB 231 cells treated with the Nef protein, the Nef 41 – 60 peptide, or Nef-M1. Nef-M1, administered to mice starting at the time of xenograft implantation, inhibited growth of primary tumors and metastatic spread. Untreated mice developed diffuse intraperitoneal metastases. We conclude that, in BCs, Nef-M1, through interaction with CXCR4, inhibits primary tumor growth and metastasis by causing apoptosis.
PMCID: PMC4181386  PMID: 25285238
Breast Cancer; Nef-M1; CXCR4; Apoptosis; Metastasis
23.  Stromal Derived Factor-1 (SDF-1) and Its Receptors CXCR4 and CXCR7 in Endometrial Cancer Patients 
PLoS ONE  2014;9(1):e84629.
One of the most important function of stromal derived factor-1 (SDF-1) and its receptors, is regulating the process of metastasis formation. The aim of our study was to investigate the correlation between SDF-1, CXCR4 and CXCR7 protein levels measured by immunohistochemistry with the clinicopathological features and the survival of endometrial cancer patients.
Materials and Methods
92 patients aged 37–84 (mean 65.1±9.5) were enrolled to our study between January 2000 and December 2007. After the diagnosis of endometrial cancer, all women underwent total abdominal hysterectomy, with bilateral salpingoophorectomy and pelvic lymph node dissection. In all patients clinical stage (according to FIGO classification), histologic grade, myometrial invasion, lymph node and distant metastases were determined.Furthermore, the survival time was assessed. Immunohistochemical analyses of SDF-1, CXCR4 and CXCR7 were performed on archive formalin fixed paraffin embedded tissue sections.
Statistically significant correlations (p<0.01) were reported between SDF-1 and the clinical stage of disease, lymph node metastases, distant metastases, deep myometrial invasion (≥50%), cervical involvement, involvement of adnexa. Statistically significant correlation (p<0.01) was found between SDF-1 expression and the risk of the recurrence. Higher SDF-1 expression was associated with ahigher risk of recurrence (p = 0.0001). The results of CXCR4and CXCR7 expression didn't reveal any significant differences(p>0.05) between the proteins expression in the primary tumor cells and the clinicopathological features. Moreover, the Kaplan-Meier analyses demonstrated a stepwise impairment of cancer overall survival (OS) with increasing SDF-1 expression.
The important role of SDF-1 as a predictor of negative clinicopathological characteristics of atumor suggests that the expression of this stromal factor should be included in the panel of accessory pathomorphological tests and could be helpful in establishing a more accurate prognosis in endometrial cancer patients.
PMCID: PMC3887002  PMID: 24416254
24.  Hypoxia differentially regulated CXCR4 and CXCR7 signaling in colon cancer 
Molecular Cancer  2014;13:58.
HIF-1α and CXCR4/CXCL12 have crucial roles in the metastatic process of colorectal cancer. Our aim was to study the significance of targeting HIF-1α and the CXCR4/CXCL12 axis in colorectal cancer to prevent the dissemination process in vitro.
We investigated CXCR4 and CXCR7 mRNA and protein expression in human colon carcinomas and the modulation of their expression by hypoxia and HIF-1α in colon cancer cell lines. The migration of tumor cells in a Boyden chamber was studied after CXCR4 inhibition with siRNA or the CXCR4/CXCL12 neutraligand, chalcone 4.
Analysis of a cohort of colon polyps and chromosome-unstable carcinomas showed that the expression of CXCR4 and CXCR7 was similar to that of the normal mucosa in the polyps and early-stage carcinomas but significantly increased in late stage carcinomas. Our data demonstrate that hypoxia strongly induced the expression of CXCR4 transcript and protein at the cell membrane, both regulated by HIF-1α, whereas CXCR7 expression was independent of hypoxia. After transient hypoxia, CXCR4 levels remained stable at the cell membrane up to 48 hours. Furthermore, reducing CXCR4 expression impaired CXCL12-induced Akt phosphorylation, whereas Erk activation remained unchanged. In contrast, reducing CXCR7 expression did not affect Akt nor Erk activation. In the presence of CXCR4 or CXCR7 siRNAs, a significant reduction in cell migration occurred (37% and 17%, respectively). Although irinotecan inhibited cell migration by 20% (p <0.001), the irinotecan and chalcone 4 combination further increased inhibition to 40% (p <0.001).
We demonstrated, for the first time, that hypoxia upregulated CXCR4 but not CXCR7 expression in tumor cells and that the CXCR4 receptor protein level remains high at the cell membrane when the tumor cells return to normoxia for up to 48 hours. In addition we showed the interest to inhibit the CXCR4 signaling by inhibiting both the HIF-1α and CXCR4/CXCL12 pathway. CXCR4 seems to be a relevant target because it is continuously expressed and functional both in normoxic and hypoxic conditions in tumor cells.
PMCID: PMC3975457  PMID: 24629239
Chemokines; Hypoxia; Colon; Migration; Metastasis
25.  Expression of SDF-1 and CXCR4 transcript variants and CXCR7 in epithelial ovarian cancer 
Oncology Letters  2014;7(5):1618-1624.
Chemokine stromal cell-derived factor-1 (SDF-1) and its receptors, CXCR4 and CXCR7, have been implicated in epithelial ovarian cancer progression and metastasis. However, limited data are available on the expression levels of SDF-1 and CXCR4 variants and CXCR7 in human epithelial ovarian cancer. The present study aimed to characterize the expression pattern and levels of SDF-1, CXCR4 and CXCR7 in normal human ovaries and epithelial ovarian cancer. The expression of SDF-1 and CXCR4 transcript variants and CXCR7 was determined by quantitative polymerase chain reaction (qPCR). Plasma SDF-1α levels were determined by commercially available EIA kits and cancer antigen 125 (CA 125) levels were quantified by automated microparticle enzyme immunosorbent assay. High expression levels of SDF-1 transcript variant 1 were identified in ovarian cancer and control ovaries. By contrast, in both groups the expression levels of SDF-1 transcript variants 3 and 4 were extremely low. Furthermore, SDF-1 variant 1 levels were notably higher in epithelial ovarian cancer than in control ovaries, while data for the remaining transcripts were similar in both groups. CXCR4 transcript variant 2 and CXCR7 expression levels in normal and neoplastic ovaries were similar. In both groups, CXCR4 transcript variant 2 was not detected. Plasma SDF-1α levels were notably higher in females with epithelial ovarian cancer than in the control ovaries. Elevated levels of blood SDF-1α were found prior to surgery, 6 days after surgery and following completion of the first chemotherapy course. These increases were independent of the type of epithelial ovarian cancer. Our results suggest that the expression of SDF-1 and the genes controlling alternative splicing are elevated in epithelial ovarian cancer, leading to an increased formation of SDF-1 variant 1. Elevated plasma SDF-1α levels in epithelial ovarian cancer patients are not associated with the presence of tumors and/or metastases, however reflect a general response to the disease.
PMCID: PMC3997724  PMID: 24765189
SDF-1; CXCR4; CXCR7; transcript variants; epithelial ovarian cancer; plasma SDF-1α; plasma CA 125

Results 1-25 (813803)