Search tips
Search criteria

Results 1-25 (1023970)

Clipboard (0)

Related Articles

1.  Intrinsic Disorder in the Human Spliceosomal Proteome 
PLoS Computational Biology  2012;8(8):e1002641.
The spliceosome is a molecular machine that performs the excision of introns from eukaryotic pre-mRNAs. This macromolecular complex comprises in human cells five RNAs and over one hundred proteins. In recent years, many spliceosomal proteins have been found to exhibit intrinsic disorder, that is to lack stable native three-dimensional structure in solution. Building on the previous body of proteomic, structural and functional data, we have carried out a systematic bioinformatics analysis of intrinsic disorder in the proteome of the human spliceosome. We discovered that almost a half of the combined sequence of proteins abundant in the spliceosome is predicted to be intrinsically disordered, at least when the individual proteins are considered in isolation. The distribution of intrinsic order and disorder throughout the spliceosome is uneven, and is related to the various functions performed by the intrinsic disorder of the spliceosomal proteins in the complex. In particular, proteins involved in the secondary functions of the spliceosome, such as mRNA recognition, intron/exon definition and spliceosomal assembly and dynamics, are more disordered than proteins directly involved in assisting splicing catalysis. Conserved disordered regions in spliceosomal proteins are evolutionarily younger and less widespread than ordered domains of essential spliceosomal proteins at the core of the spliceosome, suggesting that disordered regions were added to a preexistent ordered functional core. Finally, the spliceosomal proteome contains a much higher amount of intrinsic disorder predicted to lack secondary structure than the proteome of the ribosome, another large RNP machine. This result agrees with the currently recognized different functions of proteins in these two complexes.
Author Summary
In eukaryotic cells, introns are spliced out of proteincoding mRNAs by a highly dynamic and extraordinarily plastic molecular machine called the spliceosome. In recent years, multiple regions of intrinsic structural disorder were found in spliceosomal proteins. Intrinsically disordered regions lack stable native three-dimensional structure in solutions, which makes them structurally flexible and/or able to switch between different conformations. Hence, intrinsically disordered regions are the ideal candidate responsible for the spliceosome's plasticity. Intrinsically disordered regions are also frequently the sites of post-translational modifications, which were also proven to be important in spliceosome dynamics. In this article, we describe the results of a structural bioinformatics analysis focused on intrinsic disorder in the spliceosomal proteome. We systematically analyzed all known human spliceosomal proteins with regards to the presence and type of intrinsic disorder. Almost a half of the combined sequence of these spliceosomal proteins is predicted to be intrinsically disordered, and the type of intrinsic disorder in a protein varies with its function and its location in the spliceosome. The parts of the spliceosome that act earlier in the process are more disordered, which corresponds to their role in establishing a network of interactions, while the parts that act later are more ordered.
PMCID: PMC3415423  PMID: 22912569
2.  Structural and functional analysis of the human spliceosomal DEAD-box helicase Prp28 
The crystal structure of the helicase domain of the human spliceosomal DEAD-box protein Prp28 was solved by SAD. The binding of ADP and ATP by Prp28 was studied biochemically and analysed with regard to the crystal structure.
The DEAD-box protein Prp28 is essential for pre-mRNA splicing as it plays a key role in the formation of an active spliceosome. Prp28 participates in the release of the U1 snRNP from the 5′-splice site during association of the U5·U4/U6 tri-snRNP, which is a crucial step in the transition from a pre-catalytic spliceosome to an activated spliceosome. Here, it is demonstrated that the purified helicase domain of human Prp28 (hPrp28ΔN) binds ADP, whereas binding of ATP and ATPase activity could not be detected. ATP binding could not be observed for purified full-length hPrp28 either, but within an assembled spliceosomal complex hPrp28 gains ATP-binding activity. In order to understand the structural basis for the ATP-binding deficiency of isolated hPrp28, the crystal structure of hPrp28ΔN was determined at 2.0 Å resolution. In the crystal the helicase domain adopts a wide-open conformation, as the two RecA-like domains are extraordinarily displaced from the productive ATPase conformation. Binding of ATP is hindered by a closed conformation of the P-loop, which occupies the space required for the γ-phosphate of ATP.
PMCID: PMC4051504  PMID: 24914973
Prp28; DEAD-box proteins; helicase domain
3.  Structural Basis of Brr2-Prp8 Interactions and Implications for U5 snRNP Biogenesis and the Spliceosome Active Site 
Structure(London, England:1993)  2013;21(6):910-919.
The U5 small nuclear ribonucleoprotein particle (snRNP) helicase Brr2 disrupts the U4/U6 small nuclear RNA (snRNA) duplex and allows U6 snRNA to engage in an intricate RNA network at the active center of the spliceosome. Here, we present the structure of yeast Brr2 in complex with the Jab1/MPN domain of Prp8, which stimulates Brr2 activity. Contrary to previous reports, our crystal structure and mutagenesis data show that the Jab1/MPN domain binds exclusively to the N-terminal helicase cassette. The residues in the Jab1/MPN domain, whose mutations in human Prp8 cause the degenerative eye disease retinitis pigmentosa, are found at or near the interface with Brr2, clarifying its molecular pathology. In the cytoplasm, Prp8 forms a precursor complex with U5 snRNA, seven Sm proteins, Snu114, and Aar2, but after nuclear import, Brr2 replaces Aar2 to form mature U5 snRNP. Our structure explains why Aar2 and Brr2 are mutually exclusive and provides important insights into the assembly of U5 snRNP.
Graphical Abstract
•We report the structure of Brr2 helicase in complex with the Jab1/MPN domain of Prp8•Retinitis pigmentosa mutations in the Jab1/MPN domain of Prp8 disrupt this complex•Mechanism is proposed for the U4/U6 snRNA duplex unwinding and spliceosome activation•The Brr2-Jab1/MPN and Aar2-Prp8 complexes provide insight into U5 snRNP biogenesis
Brr2 helicase unwinds the U4/U6 snRNA duplex and introduces U6 snRNA into the active site cavity of the spliceosome formed within Prp8. Nguyen et al. report a crystal structure of Brr2 helicase together with the Jab1/MPN domain of Prp8 and provide new insights into this process as well as retinitis pigmentosa.
PMCID: PMC3677097  PMID: 23727230
4.  A Stochastic View of Spliceosome Assembly and Recycling in the Nucleus  
PLoS Computational Biology  2007;3(10):e201.
How splicing factors are recruited to nascent transcripts in the nucleus in order to assemble spliceosomes on newly synthesised pre-mRNAs is unknown. To address this question, we compared the intranuclear trafficking kinetics of small nuclear ribonucleoprotein particles (snRNP) and non-snRNP proteins in the presence and absence of splicing activity. Photobleaching experiments clearly show that spliceosomal proteins move continuously throughout the entire nucleus independently of ongoing transcription or splicing. Using quantitative experimental data, a mathematical model was applied for spliceosome assembly and recycling in the nucleus. The model assumes that splicing proteins move by Brownian diffusion and interact stochastically with binding sites located at different subnuclear compartments. Inhibition of splicing, which reduces the number of pre-mRNA binding sites available for spliceosome assembly, was modeled as a decrease in the on-rate binding constant in the nucleoplasm. Simulation of microscopy experiments before and after splicing inhibition yielded results consistent with the experimental observations. Taken together, our data argue against the view that spliceosomal components are stored in nuclear speckles until a signal triggers their recruitment to nascent transcripts. Rather, the results suggest that splicing proteins are constantly diffusing throughout the entire nucleus and collide randomly and transiently with pre-mRNAs.
Author Summary
Understanding the genomic program of an organism requires knowledge of how the information encoded in DNA is processed to generate messenger RNAs that can be translated into proteins. The initial products of gene transcription are extensively modified in the cell nucleus, and a major processing reaction consists of splicing of specific sequences from the middle of the primary transcripts. Splicing is catalyzed by the spliceosome, a large complex composed of five small RNAs and over 100 different proteins. Spliceosomes form anew on primary transcripts and disassemble after splicing, but what triggers the recruitment of individual spliceosomal components to selected gene products is unclear. Here, we have combined imaging and computational approaches to address this question. We obtained quantitative experimental data on the mobility and subnuclear distribution of splicing proteins before and after splicing inhibition, and we applied mathematical models to analyze and interpret the results. We conclude that spliceosomal components do not require a signal in order to be recruited to nascent transcripts. Our results favor the view that splicing proteins are constantly diffusing throughout the entire nucleus and collide randomly and transiently with primary gene products.
PMCID: PMC2041977  PMID: 17967051
5.  Spliceosomal Proteomics in Trypanosoma brucei Reveal New RNA Splicing Factors▿ †  
Eukaryotic Cell  2009;8(7):990-1000.
In trypanosomatid parasites, spliced leader (SL) trans splicing is an essential nuclear mRNA maturation step which caps mRNAs posttranscriptionally and, in conjunction with polyadenylation, resolves individual mRNAs from polycistronic precursors. While all trypanosomatid mRNAs are trans spliced, intron removal by cis splicing is extremely rare and predicted to occur in only four pre-mRNAs. trans- and cis-splicing reactions are carried out by the spliceosome, which consists of U-rich small nuclear ribonucleoprotein particles (U snRNPs) and of non-snRNP factors. Mammalian and yeast spliceosome complexes are well characterized and found to be associated with up to 170 proteins. Despite the central importance of trans splicing in trypanosomatid gene expression, only the core RNP proteins and a few snRNP-specific proteins are known. To characterize the trypanosome spliceosomal protein repertoire, we conducted a proteomic analysis by tagging and tandem affinity-purifying the canonical core RNP protein SmD1 in Trypanosoma brucei and by identifying copurified proteins by mass spectrometry. The set of 47 identified proteins harbored nearly all spliceosomal snRNP factors characterized in trypanosomes thus far and 21 proteins lacking a specific annotation. A bioinformatic analysis combined with protein pull-down assays and immunofluorescence microscopy identified 10 divergent orthologues of known splicing factors, including the missing U1-specific protein U1A. In addition, a novel U5-specific, and, as we show, an essential splicing factor was identified that shares a short, highly conserved N-terminal domain with the yeast protein Cwc21p and was thus tentatively named U5-Cwc21. Together, these data strongly indicate that most of the identified proteins are components of the spliceosome.
PMCID: PMC2708463  PMID: 19429779
6.  Protein Composition and Electron Microscopy Structure of Affinity-Purified Human Spliceosomal B Complexes Isolated under Physiological Conditions 
Molecular and Cellular Biology  2006;26(14):5528-5543.
The spliceosomal B complex is the substrate that undergoes catalytic activation leading to catalysis of pre-mRNA splicing. Previous characterization of this complex was performed in the presence of heparin, which dissociates less stably associated components. To obtain a more comprehensive inventory of the B complex proteome, we isolated this complex under low-stringency conditions using two independent methods. MS2 affinity-selected B complexes supported splicing when incubated in nuclear extract depleted of snRNPs. Mass spectrometry identified over 110 proteins in both independently purified B complex preparations, including ∼50 non-snRNP proteins not previously found in the spliceosomal A complex. Unexpectedly, the heteromeric hPrp19/CDC5 complex and 10 additional hPrp19/CDC5-related proteins were detected, indicating that they are recruited prior to spliceosome activation. Electron microscopy studies revealed that MS2 affinity-selected B complexes exhibit a rhombic shape with a maximum dimension of 420 Å and are structurally more homogeneous than B complexes treated with heparin. These data provide novel insights into the composition and structure of the spliceosome just prior to its catalytic activation and suggest a potential role in activation for proteins recruited at this stage. Furthermore, the spliceosomal complexes isolated here are well suited for complementation studies with purified proteins to dissect factor requirements for spliceosome activation and splicing catalysis.
PMCID: PMC1592722  PMID: 16809785
7.  Structure of the spliceosomal U4 snRNP core domain and its implication for snRNP biogenesis 
Nature  2011;473(7348):536-539.
The spliceosome is a dynamic macromolecular machine that assembles on pre-mRNA substrates and catalyses the excision of non-coding intervening sequences (introns)1-3. Four of the five major components of the spliceosome, U1, U2, U4 and U5 snRNPs, contain seven Sm proteins (SmB/B’, SmD1, SmD2, SmD3, SmE, SmF and SmG) in common4,5. Following export of the U1, U2, U4 and U5 snRNAs to the cytoplasm6,7, the seven Sm proteins chaperoned by the survival of motor neurons (SMN) complex assemble around a single-stranded, U-rich sequence called the Sm site in each snRNA, to form the core domain of the respective snRNP particle8,9. Core domain formation is a prerequisite for re-import into the nucleus10, where these snRNPs mature via addition of their particle-specific proteins. Here we present a crystal structure of the U4 snRNP core domain at 3.6 Å resolution, detailing how the Sm site heptad (AUUUUUG) binds inside the central hole of the heptameric ring of Sm proteins, interacting one-to-one with SmE-SmG-SmD3-SmB-SmD1-SmD2-SmF. An irregular backbone conformation of the Sm site sequence combined with the asymmetric structure of the heteromeric protein ring allows each base to interact in a distinct manner with four key residues at equivalent positions in the L3 and L5 loops of the Sm fold. A comparison of this structure with the U1 snRNP at 5.5 Å resolution11,12 reveals snRNA-dependent structural changes outside the Sm fold, which may facilitate the binding of particle-specific proteins that is crucial to biogenesis of spliceosomal snRNPs.
PMCID: PMC3103711  PMID: 21516107
8.  Malleable ribonucleoprotein machine: protein intrinsic disorder in the Saccharomyces cerevisiae spliceosome 
PeerJ  2013;1:e2.
Recent studies revealed that a significant fraction of any given proteome is presented by proteins that do not have unique 3D structures as a whole or in significant parts. These intrinsically disordered proteins possess dramatic structural and functional variability, being especially enriched in signaling and regulatory functions since their lack of fixed structure defines their ability to be involved in interaction with several proteins and allows them to be re-used in multiple pathways. Among recognized disorder-based protein functions are interactions with nucleic acids and multi-target binding; i.e., the functions ascribed to many spliceosomal proteins. Therefore, the spliceosome, a multimegadalton ribonucleoprotein machine catalyzing the excision of introns from eukaryotic pre-mRNAs, represents an attractive target for the focused analysis of the abundance and functionality of intrinsic disorder in its proteinaceous components. In yeast cells, spliceosome consists of five small nuclear RNAs (U1, U2, U4, U5, and U6) and a range of associated proteins. Some of these proteins constitute cores of the corresponding snRNA-protein complexes known as small nuclear ribonucleoproteins (snRNPs). Other spliceosomal proteins have various auxiliary functions. To gain better understanding of the functional roles of intrinsic disorder, we have studied the prevalence of intrinsically disordered proteins in the yeast spliceosome using a wide array of bioinformatics methods. Our study revealed that similar to the proteins associated with human spliceosomes (Korneta & Bujnicki, 2012), proteins found in the yeast spliceosome are enriched in intrinsic disorder.
PMCID: PMC3628832  PMID: 23638354
Spliceosome; Intrinsically disordered protein; Protein structure; RNA–protein complex; Protein–protein interaction; Intrinsic disorder; Protein–RNA interaction; Protein hub; Splicing; Protein function
9.  Spliceosomal Small Nuclear Ribonucleoprotein Particles Repeatedly Cycle through Cajal Bodies 
Molecular Biology of the Cell  2008;19(6):2534-2543.
The Cajal body (CB) is a nuclear structure closely associated with import and biogenesis of small nuclear ribonucleoprotein particles (snRNPs). Here, we tested whether CBs also contain mature snRNPs and whether CB integrity depends on the ongoing snRNP splicing cycle. Sm proteins tagged with photoactivatable and color-maturing variants of fluorescent proteins were used to monitor snRNP behavior in living cells over time; mature snRNPs accumulated in CBs, traveled from one CB to another, and they were not preferentially replaced by newly imported snRNPs. To test whether CB integrity depends on the snRNP splicing cycle, two human orthologues of yeast proteins involved in distinct steps in spliceosome disassembly after splicing, hPrp22 and hNtr1, were depleted by small interfering RNA treatment. Surprisingly, depletion of either protein led to the accumulation of U4/U6 snRNPs in CBs, suggesting that reassembly of the U4/U6·U5 tri-snRNP was delayed. Accordingly, a relative decrease in U5 snRNPs compared with U4/U6 snRNPs was observed in CBs, as well as in nuclear extracts of treated cells. Together, the data show that particular phases of the spliceosome cycle are compartmentalized in living cells, with reassembly of the tri-snRNP occurring in CBs.
PMCID: PMC2397305  PMID: 18367544
10.  The spliceosomal proteome: at the heart of the largest cellular ribonucleoprotein machine 
Proteomics  2010;10(22):4128-4141.
Almost all primary transcripts in higher eukaryotes undergo several splicing events and alternative splicing is a major factor in generating proteomic diversity. Thus, the spliceosome, the ribonucleoprotein assembly that performs splicing, is a highly critical cellular machine and as expected, a very complex one. Indeed, the spliceosome is one of the largest, if not the largest, molecular machine in the cell with over 150 different components in human. A large fraction of the spliceosomal proteome is organized into ribonucleoprotein particles (snRNPs) by associating with one of the small nuclear RNAs (snRNAs), and the function of many spliceosomal proteins revolve around their association or interaction with the spliceosomal RNAs or the substrate pre-messenger RNAs. In addition to the complex web of protein-RNA interactions, an equally complex network of protein-protein interactions exists in the spliceosome which includes a number of large, conserved proteins with critical functions in the spliceosomal catalytic core. These include the largest conserved nuclear protein, Prp8, which plays a critical role in spliceosomal function in a hitherto unknown manner. Taken together, the large spliceosomal proteome and its dynamic nature has made it a highly challenging system to study, and at the same time, provides an exciting example of the evolution of a proteome around a backbone of primordial RNAs likely dating from the RNA World.
PMCID: PMC3575088  PMID: 21080498
Proteome; Prp8; RNA helicases; Spliceosome; Splicing
11.  A 69-kD protein that associates reversibly with the Sm core domain of several spliceosomal snRNP species 
The Journal of Cell Biology  1994;124(3):261-272.
The biogenesis of the spliceosomal small nuclear ribonucleoproteins (snRNPs) U1, U2, U4, and U5 involves: (a) migration of the snRNA molecules from the nucleus to the cytoplasm; (b) assembly of a group of common proteins (Sm proteins) and their binding to a region on the snRNAs called the Sm-binding site; and (c) translocation of the RNP back to the nucleus. A first prerequisite for understanding the assembly pathway and nuclear transport of the snRNPs in more detail is the knowledge of all the snRNP proteins that play essential roles in these processes. We have recently observed a previously undetected 69- kD protein in 12S U1 snRNPs isolated from HeLa nuclear extracts under non-denaturing conditions that is clearly distinct from the U1-70K protein. The following evidence indicates that the 69-kD protein is a common, rather than a U1-specific, protein, possibly associating with the snRNP core particles by protein-protein interaction. (a) Antibodies raised against the 69-kD protein, which did not cross-react with any of the Sm proteins B'-G, precipitated not only U1 snRNPs, but also the other spliceosomal snRNPs U2, U4/U6 and U5, albeit to a lower extent. (b) U1, U2, and U5 core RNP particles reconstituted in vitro contain the 69-kD protein. (c) Xenopus laevis oocytes contain an immunologically related homologue of the human 69-kD protein. When U1 snRNA as well as a mutant U1 snRNA, that can bind the Sm core proteins but lacks the capacity to bind the U1-specific proteins 70K, A, and C, were injected into Xenopus oocytes to allow assembly in vivo, they were recognized by antibodies specific against the 69-kD protein in the ooplasm and in the nucleus. The 69-kD protein is under-represented, if present at all, in purified 17S U2 and in 25S [U4/U6.U5] tri-snRNPs, isolated from HeLa nuclear extracts. Our results are consistent with the working hypothesis that this protein may either play a role in the cytoplasmic assembly of the core domain of the snRNPs and/or in the nuclear transport of the snRNPs. After transport of the snRNPs into the nucleus, it may dissociate from the particles as for example in the case of the 17S U2 or the 25S [U4/U6.U5] tri-snRNP, which bind more than 10 different snRNP specific proteins each in the nucleus.
PMCID: PMC2119936  PMID: 8294511
12.  Human U4/U6.U5 and U4atac/U6atac.U5 Tri-snRNPs Exhibit Similar Protein Compositions 
Molecular and Cellular Biology  2002;22(10):3219-3229.
In the U12-dependent spliceosome, the U4atac/U6atac snRNP represents the functional analogue of the major U4/U6 snRNP. Little information is available presently regarding the protein composition of the former snRNP and its association with other snRNPs. In this report we show that human U4atac/U6atac di-snRNPs associate with U5 snRNPs to form a 25S U4atac/U6atac.U5 trimeric particle. Comparative analysis of minor and major tri-snRNPs by using immunoprecipitation experiments revealed that their protein compositions are very similar, if not identical. Not only U5-specific proteins but, surprisingly, all tested U4/U6- and major tri-snRNP-specific proteins were detected in the minor tri-snRNP complex. Significantly, the major tri-snRNP-specific proteins 65K and 110K, which are required for integration of the major tri-snRNP into the U2-dependent spliceosome, were among those proteins detected in the minor tri-snRNP, raising an interesting question as to how the specificity of addition of tri-snRNP to the corresponding spliceosome is maintained. Moreover, immunodepletion studies demonstrated that the U4/U6-specific 61K protein, which is involved in the formation of major tri-snRNPs, is essential for the association of the U4atac/U6atac di-snRNP with U5 to form the U4atac/U6atac.U5 tri-snRNP. Subsequent immunoprecipitation studies demonstrated that those proteins detected in the minor tri-snRNP complex are also incorporated into U12-dependent spliceosomes. This remarkable conservation of polypeptides between minor and major spliceosomes, coupled with the absence of significant sequence similarity between the functionally analogous snRNAs, supports an evolutionary model in which most major and minor spliceosomal proteins, but not snRNAs, are derived from a common ancestor.
PMCID: PMC133795  PMID: 11971955
13.  Spliceosome Structure and Function 
Pre-mRNA splicing is catalyzed by the spliceosome, a multimegadalton ribonucleoprotein (RNP) complex comprised of five snRNPs and numerous proteins. Intricate RNA-RNA and RNP networks, which serve to align the reactive groups of the pre-mRNA for catalysis, are formed and repeatedly rearranged during spliceosome assembly and catalysis. Both the conformation and composition of the spliceosome are highly dynamic, affording the splicing machinery its accuracy and flexibility, and these remarkable dynamics are largely conserved between yeast and metazoans. Because of its dynamic and complex nature, obtaining structural information about the spliceosome represents a major challenge. Electron microscopy has revealed the general morphology of several spliceosomal complexes and their snRNP subunits, and also the spatial arrangement of some of their components. X-ray and NMR studies have provided high resolution structure information about spliceosomal proteins alone or complexed with one or more binding partners. The extensive interplay of RNA and proteins in aligning the pre-mRNA's reactive groups, and the presence of both RNA and protein at the core of the splicing machinery, suggest that the spliceosome is an RNP enzyme. However, elucidation of the precise nature of the spliceosome's active site, awaits the generation of a high-resolution structure of its RNP core.
Spliceosomes contain five snRNPs and numerous non-snRNP proteins. These continuously rearrange during spliceosome assembly and activation so that the reactive groups in the pre-mRNA substrate are correctly aligned for catalysis.
PMCID: PMC3119917  PMID: 21441581
14.  Structural and Functional Characterization of the N Terminus of Schizosaccharomyces pombe Cwf10 
Eukaryotic Cell  2013;12(11):1472-1489.
The spliceosome is a dynamic macromolecular machine that catalyzes the removal of introns from pre-mRNA, yielding mature message. Schizosaccharomyces pombe Cwf10 (homolog of Saccharomyces cerevisiae Snu114 and human U5-116K), an integral member of the U5 snRNP, is a GTPase that has multiple roles within the splicing cycle. Cwf10/Snu114 family members are highly homologous to eukaryotic translation elongation factor EF2, and they contain a conserved N-terminal extension (NTE) to the EF2-like portion, predicted to be an intrinsically unfolded domain. Using S. pombe as a model system, we show that the NTE is not essential, but cells lacking this domain are defective in pre-mRNA splicing. Genetic interactions between cwf10-ΔNTE and other pre-mRNA splicing mutants are consistent with a role for the NTE in spliceosome activation and second-step catalysis. Characterization of Cwf10-NTE by various biophysical techniques shows that in solution the NTE contains regions of both structure and disorder. The first 23 highly conserved amino acids of the NTE are essential for its role in splicing but when overexpressed are not sufficient to restore pre-mRNA splicing to wild-type levels in cwf10-ΔNTE cells. When the entire NTE is overexpressed in the cwf10-ΔNTE background, it can complement the truncated Cwf10 protein in trans, and it immunoprecipitates a complex similar in composition to the late-stage U5.U2/U6 spliceosome. These data show that the structurally flexible NTE is capable of independently incorporating into the spliceosome and improving splicing function, possibly indicating a role for the NTE in stabilizing conformational rearrangements during a splice cycle.
PMCID: PMC3837936  PMID: 24014766
15.  Conserved domains of human U4 snRNA required for snRNP and spliceosome assembly. 
Nucleic Acids Research  1990;18(21):6223-6229.
U4 snRNA is phylogenetically highly conserved and organized in several domains. To determine the function of each of the domains of human U4 snRNA in the multi-step process of snRNP and spliceosome assembly, we used reconstitution procedures in combination with snRNA mutagenesis. The highly conserved 5' terminal domain of U4 snRNA consists of the stem I and stem II regions that have been proposed to base pair with U6 snRNA, and the 5' stem-loop structure. We found that each of these structural elements is essential for spliceosome assembly. However, only the stem II region is required for U4-U6 interaction, and none of these elements for Sm protein binding. In contrast, the 3' terminal domain of U4 snRNA containing the Sm binding site is dispensable for both U4-U6 interaction and spliceosome assembly. Our results support an organization of the U4 snRNP into multiple functional domains, each of which acts at distinct stages of snRNP and spliceosome assembly.
PMCID: PMC332485  PMID: 2147057
16.  The role of exon sequences in C complex spliceosome structure 
Journal of molecular biology  2009;394(2):363-375.
Pre-mRNA splicing is catalyzed by a large ribonucleoprotein complex called the spliceosome. Previous electron microscopy reconstruction of C complex spliceosomes arrested between the chemical two steps of splicing revealed an averaged core structure consisting of three primary domains surrounding a central cavity. Here we characterize the involvement of pre-mRNA in this structured core of C complex by protection mapping. We find that the end of the cleaved 5′ exon and intron sequences flanking the branched lariat are buried in the complex. Upstream regions of the 5′ exon and the entire 3′ exon, including the mutant 3′ splice site are accessible and can be removed by nucleolytic cleavage. Furthermore, we show that the second step active site of the complex, which is arrested by a 3′ splice site mutation, can accept a normal 3′ splice site in trans to catalyze exon ligation. Removing the accessible exon regions alters the protein composition of the complex, but the core spliceosome proteins associated with the U2, U5, U6 snRNPs, the Prp19 complex as well as several other proteins remain intact. 2D averaged images of the exon-trimmed complex closely resemble the C complex assembled on a full-length pre-mRNA, supporting the hypothesis that the EM model of C complex reflects the core structure of a catalytically competent particle. Trimming the 3′ exon does, however, alter the distribution of particles that appear to be missing some density, suggesting that the exon plays a role in stabilizing C complex.
PMCID: PMC2783800  PMID: 19761775
pre-mRNA splicing; spliceosome; electron microscopy; mass spectrometry; C complex
17.  Ongoing U snRNP Biogenesis Is Required for the Integrity of Cajal Bodies 
Molecular Biology of the Cell  2006;17(7):3221-3231.
Cajal bodies (CBs) have been implicated in the nuclear phase of the biogenesis of spliceosomal U small nuclear ribonucleoproteins (U snRNPs). Here, we have investigated the distribution of the CB marker protein coilin, U snRNPs, and proteins present in C/D box small nucleolar (sno)RNPs in cells depleted of hTGS1, SMN, or PHAX. Knockdown of any of these three proteins by RNAi interferes with U snRNP maturation before the reentry of U snRNA Sm cores into the nucleus. Strikingly, CBs are lost in the absence of hTGS1, SMN, or PHAX and coilin is dispersed in the nucleoplasm into numerous small foci. This indicates that the integrity of canonical CBs is dependent on ongoing U snRNP biogenesis. Spliceosomal U snRNPs show no detectable concentration in nuclear foci and do not colocalize with coilin in cells lacking hTGS1, SMN, or PHAX. In contrast, C/D box snoRNP components concentrate into nuclear foci that partially colocalize with coilin after inhibition of U snRNP maturation. We demonstrate by siRNA-mediated depletion that coilin is required for the condensation of U snRNPs, but not C/D box snoRNP components, into nucleoplasmic foci, and also for merging these factors into canonical CBs. Altogether, our data suggest that CBs have a modular structure with distinct domains for spliceosomal U snRNPs and snoRNPs.
PMCID: PMC1483051  PMID: 16687569
18.  SMA-Causing Missense Mutations in Survival motor neuron (Smn) Display a Wide Range of Phenotypes When Modeled in Drosophila 
PLoS Genetics  2014;10(8):e1004489.
Mutations in the human survival motor neuron 1 (SMN) gene are the primary cause of spinal muscular atrophy (SMA), a devastating neuromuscular disorder. SMN protein has a well-characterized role in the biogenesis of small nuclear ribonucleoproteins (snRNPs), core components of the spliceosome. Additional tissue-specific and global functions have been ascribed to SMN; however, their relevance to SMA pathology is poorly understood and controversial. Using Drosophila as a model system, we created an allelic series of twelve Smn missense mutations, originally identified in human SMA patients. We show that animals expressing these SMA-causing mutations display a broad range of phenotypic severities, similar to the human disease. Furthermore, specific interactions with other proteins known to be important for SMN's role in RNP assembly are conserved. Intragenic complementation analyses revealed that the three most severe mutations, all of which map to the YG box self-oligomerization domain of SMN, display a stronger phenotype than the null allele and behave in a dominant fashion. In support of this finding, the severe YG box mutants are defective in self-interaction assays, yet maintain their ability to heterodimerize with wild-type SMN. When expressed at high levels, wild-type SMN is able to suppress the activity of the mutant protein. These results suggest that certain SMN mutants can sequester the wild-type protein into inactive complexes. Molecular modeling of the SMN YG box dimer provides a structural basis for this dominant phenotype. These data demonstrate that important structural and functional features of the SMN YG box are conserved between vertebrates and invertebrates, emphasizing the importance of self-interaction to the proper functioning of SMN.
Author Summary
Spinal Muscular Atrophy (SMA) is a prevalent childhood neuromuscular disease, which in its most common form causes death by the age of two. One in fifty Americans is a carrier for SMA, making this genetic disease a serious health concern. SMA is caused by loss of function mutations in the survival motor neuron 1 (SMN1) gene. SMN is an essential protein and has a well-characterized function in the assembly of small nuclear ribonucleoproteins (snRNPs), which are core components of the spliceosome. To elucidate the phenotypic consequences of disrupting specific SMN protein interactions, we have generated a series of SMA-causing point mutations, modeled in Drosophila melanogaster. Using this system, we have shown that key aspects of SMN structure and function are conserved between humans and flies. Intragenic complementation analyses reveal the potential for dominant negative interactions between wild-type and mutant SMN subunits, highlighting the essential nature of the YG box in formation of higher-order SMN multimers. These results provide a basis for future studies investigating therapy targeted at restoration of functional SMN oligomers.
PMCID: PMC4140637  PMID: 25144193
19.  Domain structure of U2 and U4/U6 small nuclear ribonucleoprotein particles from Trypanosoma brucei: identification of trans-spliceosomal specific RNA-protein interactions. 
Molecular and Cellular Biology  1992;12(2):468-479.
Maturation of mRNAs in trypanosomes involves trans splicing of the 5' end of the spliced leader RNA and the exons of polycistronic pre-mRNAs, requiring small nuclear ribonucleoproteins (snRNPs) as cofactors. We have mapped protein-binding sites in the U2 and U4/U6 snRNPs by a combination of RNase H protection analysis, native gel electrophoresis, and CsCl density gradient centrifugation. In the U2 snRNP, protein binding occurs primarily in the 3'-terminal domain; through U2 snRNP reconstitution and chemical modification-interference assays, we have identified discrete positions within stem-loop IV of Trypanosoma brucei U2 RNA that are essential for protein binding; significantly, some of these positions differ from the consensus sequence derived from cis-spliceosomal U2 RNAs. In the U4/U6 snRNP, the major protein-binding region is contained within the 3'-terminal half of U4 RNA. In sum, while the overall domain structure of the U2 and U4/U6 snRNPs is conserved between cis- and trans-splicing systems, our data suggest that there are also trans-spliceosomal specific determinants of RNA-protein binding.
PMCID: PMC364191  PMID: 1310147
20.  The U5 snRNA Internal Loop 1 Is a Platform for Brr2, Snu114 and Prp8 Protein Binding During U5 snRNP Assembly 
Journal of Cellular Biochemistry  2013;114(12):2770-2784.
The U5 small nuclear ribonucleoprotein particle (snRNP) forms the heart of the spliceosome which is required for intron removal from pre-mRNA. The proteins Prp8, Snu114 and Brr2 all assemble with the U5 small nuclear RNA (snRNA) to produce the U5 snRNP. Successful assembly of the U5 snRNP, then incorporation of this snRNP into the U4/U6.U5 tri-snRNP and the spliceosome, is essential for producing an active spliceosome. We have investigated the requirements for Prp8, Snu114 and Brr2 association with the U5 snRNA to form the U5 snRNP in yeast. Mutations were constructed in the highly conserved loop 1 and internal loop 1 (IL1) of the U5 snRNA and their function assessed in vivo. The influence of these U5 mutations on association of Prp8, Snu114 and Brr2 with the U5 snRNA were then determined. U5 snRNA loop 1 and both sides of IL1 in U5 were important for association of Prp8, Snu114 and Brr2 with the U5 snRNA. Mutations in the 3′ side of U5 IL1 resulted in the greatest reduction of Prp8, Snu114 and Brr2 association with the U5 snRNA. Genetic screening of brr2 and U5 snRNA mutants revealed synthetic lethal interactions between alleles in Brr2 and the 3′ side of U5 snRNA IL1 which reflects reduced association between Brr2 and U5 IL1. We propose that the U5 snRNA IL1 is a platform for protein binding and is required for Prp8, Brr2 and Snu114 association with the U5 snRNA to form the U5 snRNP. J. Cell. Biochem. 114: 2770–2784, 2013. © 2013 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals Inc.
PMCID: PMC4065371  PMID: 23857713
21.  The Supraspliceosome — A Multi-Task Machine for Regulated Pre-mRNA Processing in the Cell Nucleus 
Pre-mRNA splicing of Pol II transcripts is executed in the mammalian cell nucleus within a huge (21 MDa) and highly dynamic RNP machine — the supraspliceosome. It is composed of four splicing active native spliceosomes, each resembling an in vitro assembled spliceosome, which are connected by the pre-mRNA. Supraspliceosomes harbor protein splicing factors and all the five-spliceosomal U snRNPs. Recent analysis of specific supraspliceosomes at defined splicing stages revealed that they harbor all five spliceosomal U snRNAs at all splicing stages. Supraspliceosomes harbor additional pre-mRNA processing components, such as the 5′-end and 3′-end processing components, and the RNA editing enzymes ADAR1 and ADAR2. The structure of the native spliceosome, at a resolution of 20 Å, was determined by cryo-EM. A unique spatial arrangement of the spliceosomal U snRNPs within the native spliceosome emerged from in-silico studies, localizing the five U snRNPs mostly within its large subunit, and sheltering the active core components deep within the spliceosomal cavity. The supraspliceosome provides a platform for coordinating the numerous processing steps that the pre-mRNA undergoes: 5′ and 3′-end processing activities, RNA editing, constitutive and alternative splicing, and processing of intronic microRNAs. It also harbors a quality control mechanism termed suppression of splicing (SOS) that, under normal growth conditions, suppresses splicing at abundant intronic latent 5′ splice sites in a reading frame-dependent fashion. Notably, changes in these regulatory processing activities are associated with human disease and cancer. These findings emphasize the supraspliceosome as a multi-task master regulator of pre-mRNA processing in the cell nucleus.
PMCID: PMC4232567  PMID: 25408845
Pre-mRNA splicing; Riponucleoproteins (RNPs); U snRNPs; Alternative splicing; Intronic microRNA biogenesis; Suppression of splicing
22.  The differential interaction of snRNPs with pre-mRNA reveals splicing kinetics in living cells 
The Journal of Cell Biology  2010;191(1):75-86.
GFP-tagged snRNP components reveal the dynamics and rate for spliceosome assembly in vivo.
Precursor messenger RNA (pre-mRNA) splicing is catalyzed by the spliceosome, a large ribonucleoprotein (RNP) complex composed of five small nuclear RNP particles (snRNPs) and additional proteins. Using live cell imaging of GFP-tagged snRNP components expressed at endogenous levels, we examined how the spliceosome assembles in vivo. A comprehensive analysis of snRNP dynamics in the cell nucleus enabled us to determine snRNP diffusion throughout the nucleoplasm as well as the interaction rates of individual snRNPs with pre-mRNA. Core components of the spliceosome, U2 and U5 snRNPs, associated with pre-mRNA for 15–30 s, indicating that splicing is accomplished within this time period. Additionally, binding of U1 and U4/U6 snRNPs with pre-mRNA occurred within seconds, indicating that the interaction of individual snRNPs with pre-mRNA is distinct. These results are consistent with the predictions of the step-wise model of spliceosome assembly and provide an estimate on the rate of splicing in human cells.
PMCID: PMC2953428  PMID: 20921136
23.  A Unique Spatial Arrangement of the snRNPs within the Native Spliceosome Emerges from In-Silico Studies 
Structure(London, England:1993)  2012;20(6):1097-1106.
The spliceosome is a mega-Dalton ribonucleoprotein (RNP) assembly that processes primary RNA transcripts, producing functional mRNA. The electron microscopy structures of the native spliceosome and of several spliceosomal subcomplexes are available but the spatial arrangement of the latter within the native spliceosome is not known. We designed a new computational procedure to efficiently fit thousands of conformers into the spliceosome envelope. Despite the low resolution limitations, we obtained only one model that complies with the available biochemical data. Our model localizes the five small nuclear RNPs (snRNPs) mostly within the large subunit of the native spliceosome, requiring only minor conformation changes. The remaining free volume presumably accommodates additional spliceosomal components. The constituents of the active core of the spliceosome are juxtaposed, forming a continuous surface deep within the large spliceosomal cavity, which provides a sheltered environment for the splicing reaction.
PMCID: PMC3372696  PMID: 22578543
24.  Structure of spliceosomal ribonucleoproteins 
Splicing of the precursors of eukaryotic mRNA and some non-coding RNAs is catalyzed by the ‘spliceosome’, which comprises five RNA-protein complexes (small nuclear ribonucleoproteins, or snRNPs) that assemble in an ordered manner onto precursor-mRNAs. Much progress has been made in determining the gross morphology of spliceosomal assembly intermediates. Recently, the first crystal structure of a spliceosomal snRNP has provided significant insight into assembly and architecture of spliceosomal snRNPs in general and the structure-function relationship of human U1 snRNP in particular.
PMCID: PMC2950031  PMID: 20948795
25.  Purified U5 small nuclear ribonucleoprotein can relieve the inhibition of spliceosome assembly and splicing by snRNP-free nuclear proteins. 
Nucleic Acids Research  1989;17(13):5223-5243.
As demonstrated by RNase T1 protection assays at 0 degrees C without ATP, U1 and U5 snRNPs purified by isopycnic centrifugation in cesium chloride bind to the 5' and 3' splice sites of human beta-globin pre-mRNA, respectively. We also devised a saturation-complementation assay and have found that this purified U5 snRNP, unlike U1, successfully competes with snRNP-free fractions of nuclear proteins which inhibit spliceosome assembly and splicing. Restoration of activity requires intact U5 snRNA and correlates with the presence of the 100 Kd intron binding protein (IBP) which we have previously characterized (Tazi et al., 1986, Cell 47, 755-766). Our results are compatible with a model in which the recognition of the 3' splice site by IBP-U5 snRNP is one of the earliest events of the spliceosome assembly. It could organize the structure of the 3' splice site region of the human beta-globin like pre-mRNAs. However, on the basis of results showing that beta-globin and major late adenovirus seem to have different requirements with respect to IBP-U5 snRNP, it appears that some pre-mRNAs could have a native structure that necessitates less if at all IBP-U5.
PMCID: PMC318107  PMID: 2527352

Results 1-25 (1023970)