PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (596492)

Clipboard (0)
None

Related Articles

1.  Crystallization and preliminary X-ray diffraction analysis of the C-terminal domain of the human spliceosomal DExD/H-box protein hPrp22 
The cloning, purification and crystallization of the C-terminal domain of human hPrp22 are reported. This communication also contains data for the preliminary X-ray diffraction analysis.
The Homo sapiens DExD/H-box protein hPrp22 is a crucial component of the eukaryotic pre-mRNA splicing machinery. Within the splicing cycle, it is involved in the ligation of exons and generation of the lariat and it additionally catalyzes the release of mature mRNA from the spliceosomal U5 snRNP. The yeast homologue of this protein, yPrp22, shows ATP-dependent RNA-helicase activity and is capable of unwinding RNA/RNA duplex molecules. A truncated construct coding for residues 950–1183 of human Prp22, comprising the structurally and functionally uncharacterized C-terminal domain, was cloned into an Escherichia coli expression vector. The protein was subsequently overproduced, purified and crystallized. The crystals obtained diffracted to 2.1 Å resolution, belonged to the tetragonal space group P41212 or P43212, with unit-cell parameters a = b = 78.2, c = 88.4 Å, and contained one molecule in the asymmetric unit.
doi:10.1107/S1744309109031844
PMCID: PMC2795611  PMID: 19724143
Prp22; DUF1605; DExD/H-box RNA helicases; splicing; unwinding; spliceosome
2.  Structural Basis of Brr2-Prp8 Interactions and Implications for U5 snRNP Biogenesis and the Spliceosome Active Site 
Structure(London, England:1993)  2013;21(6):910-919.
Summary
The U5 small nuclear ribonucleoprotein particle (snRNP) helicase Brr2 disrupts the U4/U6 small nuclear RNA (snRNA) duplex and allows U6 snRNA to engage in an intricate RNA network at the active center of the spliceosome. Here, we present the structure of yeast Brr2 in complex with the Jab1/MPN domain of Prp8, which stimulates Brr2 activity. Contrary to previous reports, our crystal structure and mutagenesis data show that the Jab1/MPN domain binds exclusively to the N-terminal helicase cassette. The residues in the Jab1/MPN domain, whose mutations in human Prp8 cause the degenerative eye disease retinitis pigmentosa, are found at or near the interface with Brr2, clarifying its molecular pathology. In the cytoplasm, Prp8 forms a precursor complex with U5 snRNA, seven Sm proteins, Snu114, and Aar2, but after nuclear import, Brr2 replaces Aar2 to form mature U5 snRNP. Our structure explains why Aar2 and Brr2 are mutually exclusive and provides important insights into the assembly of U5 snRNP.
Graphical Abstract
Highlights
•We report the structure of Brr2 helicase in complex with the Jab1/MPN domain of Prp8•Retinitis pigmentosa mutations in the Jab1/MPN domain of Prp8 disrupt this complex•Mechanism is proposed for the U4/U6 snRNA duplex unwinding and spliceosome activation•The Brr2-Jab1/MPN and Aar2-Prp8 complexes provide insight into U5 snRNP biogenesis
Brr2 helicase unwinds the U4/U6 snRNA duplex and introduces U6 snRNA into the active site cavity of the spliceosome formed within Prp8. Nguyen et al. report a crystal structure of Brr2 helicase together with the Jab1/MPN domain of Prp8 and provide new insights into this process as well as retinitis pigmentosa.
doi:10.1016/j.str.2013.04.017
PMCID: PMC3677097  PMID: 23727230
3.  A Stochastic View of Spliceosome Assembly and Recycling in the Nucleus  
PLoS Computational Biology  2007;3(10):e201.
How splicing factors are recruited to nascent transcripts in the nucleus in order to assemble spliceosomes on newly synthesised pre-mRNAs is unknown. To address this question, we compared the intranuclear trafficking kinetics of small nuclear ribonucleoprotein particles (snRNP) and non-snRNP proteins in the presence and absence of splicing activity. Photobleaching experiments clearly show that spliceosomal proteins move continuously throughout the entire nucleus independently of ongoing transcription or splicing. Using quantitative experimental data, a mathematical model was applied for spliceosome assembly and recycling in the nucleus. The model assumes that splicing proteins move by Brownian diffusion and interact stochastically with binding sites located at different subnuclear compartments. Inhibition of splicing, which reduces the number of pre-mRNA binding sites available for spliceosome assembly, was modeled as a decrease in the on-rate binding constant in the nucleoplasm. Simulation of microscopy experiments before and after splicing inhibition yielded results consistent with the experimental observations. Taken together, our data argue against the view that spliceosomal components are stored in nuclear speckles until a signal triggers their recruitment to nascent transcripts. Rather, the results suggest that splicing proteins are constantly diffusing throughout the entire nucleus and collide randomly and transiently with pre-mRNAs.
Author Summary
Understanding the genomic program of an organism requires knowledge of how the information encoded in DNA is processed to generate messenger RNAs that can be translated into proteins. The initial products of gene transcription are extensively modified in the cell nucleus, and a major processing reaction consists of splicing of specific sequences from the middle of the primary transcripts. Splicing is catalyzed by the spliceosome, a large complex composed of five small RNAs and over 100 different proteins. Spliceosomes form anew on primary transcripts and disassemble after splicing, but what triggers the recruitment of individual spliceosomal components to selected gene products is unclear. Here, we have combined imaging and computational approaches to address this question. We obtained quantitative experimental data on the mobility and subnuclear distribution of splicing proteins before and after splicing inhibition, and we applied mathematical models to analyze and interpret the results. We conclude that spliceosomal components do not require a signal in order to be recruited to nascent transcripts. Our results favor the view that splicing proteins are constantly diffusing throughout the entire nucleus and collide randomly and transiently with primary gene products.
doi:10.1371/journal.pcbi.0030201
PMCID: PMC2041977  PMID: 17967051
4.  Protein Composition and Electron Microscopy Structure of Affinity-Purified Human Spliceosomal B Complexes Isolated under Physiological Conditions 
Molecular and Cellular Biology  2006;26(14):5528-5543.
The spliceosomal B complex is the substrate that undergoes catalytic activation leading to catalysis of pre-mRNA splicing. Previous characterization of this complex was performed in the presence of heparin, which dissociates less stably associated components. To obtain a more comprehensive inventory of the B complex proteome, we isolated this complex under low-stringency conditions using two independent methods. MS2 affinity-selected B complexes supported splicing when incubated in nuclear extract depleted of snRNPs. Mass spectrometry identified over 110 proteins in both independently purified B complex preparations, including ∼50 non-snRNP proteins not previously found in the spliceosomal A complex. Unexpectedly, the heteromeric hPrp19/CDC5 complex and 10 additional hPrp19/CDC5-related proteins were detected, indicating that they are recruited prior to spliceosome activation. Electron microscopy studies revealed that MS2 affinity-selected B complexes exhibit a rhombic shape with a maximum dimension of 420 Å and are structurally more homogeneous than B complexes treated with heparin. These data provide novel insights into the composition and structure of the spliceosome just prior to its catalytic activation and suggest a potential role in activation for proteins recruited at this stage. Furthermore, the spliceosomal complexes isolated here are well suited for complementation studies with purified proteins to dissect factor requirements for spliceosome activation and splicing catalysis.
doi:10.1128/MCB.00582-06
PMCID: PMC1592722  PMID: 16809785
5.  Spliceosomal Small Nuclear Ribonucleoprotein Particles Repeatedly Cycle through Cajal Bodies 
Molecular Biology of the Cell  2008;19(6):2534-2543.
The Cajal body (CB) is a nuclear structure closely associated with import and biogenesis of small nuclear ribonucleoprotein particles (snRNPs). Here, we tested whether CBs also contain mature snRNPs and whether CB integrity depends on the ongoing snRNP splicing cycle. Sm proteins tagged with photoactivatable and color-maturing variants of fluorescent proteins were used to monitor snRNP behavior in living cells over time; mature snRNPs accumulated in CBs, traveled from one CB to another, and they were not preferentially replaced by newly imported snRNPs. To test whether CB integrity depends on the snRNP splicing cycle, two human orthologues of yeast proteins involved in distinct steps in spliceosome disassembly after splicing, hPrp22 and hNtr1, were depleted by small interfering RNA treatment. Surprisingly, depletion of either protein led to the accumulation of U4/U6 snRNPs in CBs, suggesting that reassembly of the U4/U6·U5 tri-snRNP was delayed. Accordingly, a relative decrease in U5 snRNPs compared with U4/U6 snRNPs was observed in CBs, as well as in nuclear extracts of treated cells. Together, the data show that particular phases of the spliceosome cycle are compartmentalized in living cells, with reassembly of the tri-snRNP occurring in CBs.
doi:10.1091/mbc.E07-12-1259
PMCID: PMC2397305  PMID: 18367544
6.  The C-terminal domain of coilin interacts with Sm proteins and U snRNPs 
Chromosoma  2005;114(3):155-166.
Coilin is the signature protein of the Cajal body (CB), a nuclear suborganelle involved in the biogenesis of small nuclear ribonucleoproteins (snRNPs). Newly imported Sm-class snRNPs are thought to traffic through CBs before proceeding to their final nuclear destinations. Loss of coilin function in mice leads to significant viability and fertility problems. Coilin interacts directly with the spinal muscular atrophy (SMA) protein via dimethylarginine residues in its C-terminal domain. Although coilin hypomethylation results in delocalization of survival of motor neurons (SMN) from CBs, high concentrations of snRNPs remain within these structures. Thus, CBs appear to be involved in snRNP maturation, but factors that tether snRNPs to CBs have not been described. In this report, we demonstrate that the coilin C-terminal domain binds directly to various Sm and Lsm proteins via their Sm motifs. We show that the region of coilin responsible for this binding activity is separable from that which binds to SMN. Interestingly, U2, U4, U5, and U6 snRNPs interact with the coilin C-terminal domain in a glutathione S-transferase (GST)-pulldown assay, whereas U1 and U7 snRNPs do not. Thus, the ability to interact with free Sm (and Lsm) proteins as well as with intact snRNPs, indicates that coilin and CBs may facilitate the modification of newly formed snRNPs, the regeneration of ‘mature’ snRNPs, or the reclamation of unassembled snRNP components.
doi:10.1007/s00412-005-0003-y
PMCID: PMC1389727  PMID: 16003501
7.  Polypeptide components of Drosophila small nuclear ribonucleoprotein particles. 
Nucleic Acids Research  1991;19(21):5877-5882.
In eukaryotes splicing of pre-mRNAs is mediated by the spliceosome, a dynamic complex of small nuclear ribonucleoprotein particles (snRNPs) that associate transiently during spliceosome assembly and the splicing reaction. We have purified snRNPs from nuclear extracts of Drosophila cells by affinity chromatography with an antibody specific for the trimethylguanosine (m3G) cap structure of snRNAs U1-U5. The polypeptide components of Drosophila snRNPs have been characterized and shown to consist of a number of proteins shared by all the snRNPs, and some proteins which appear to be specific to individual snRNP particles. On the basis of their apparent molecular weight and antigenicity many of these common and particle specific Drosophila snRNP proteins are remarkably conserved between Drosophila and human spliceosomes. By probing western blots of the Drosophila snRNP polypeptides with a number of antisera raised against human snRNP proteins, Drosophila polypeptides equivalent to many of the HeLa snRNP-common proteins have been identified, as well as candidates for a number of U1, U2 and U5-specific proteins.
Images
PMCID: PMC329041  PMID: 1834995
8.  prp8 mutations that cause human Retinitis pigmentosa lead to a U5 snRNP maturation defect in yeast 
Nature structural & molecular biology  2007;14(11):1077-1083.
Prp8 protein is a highly conserved pre-mRNA splicing factor and a component of spliceosomal U5 snRNPs. Intriguingly, although it is ubiquitously expressed, mutations in the C-terminus of human Prp8p cause the retina-specific disease Retinitis pigmentosa (RP). The biogenesis of U5 snRNPs is poorly characterized. We present evidence for a cytoplasmic precursor U5 snRNP in yeast that lacks a mature U5 snRNP component, Brr2p, and depends on a nuclear localization signal in Prp8p for its efficient nuclear import. The association of Brr2p with the U5 snRNP occurs within the nucleus. RP mutations in Prp8p in yeast result in nuclear accumulation of the precursor U5 snRNP, apparently as a consequence of disrupting the interaction of Prp8p with Brr2p. We therefore propose a novel assembly pathway for U5 snRNP complexes, which is disrupted by mutations that cause human RP.
doi:10.1038/nsmb1303
PMCID: PMC2584834  PMID: 17934474
9.  A Unique Spatial Arrangement of the snRNPs within the Native Spliceosome Emerges from In-Silico Studies 
Structure(London, England:1993)  2012;20(6):1097-1106.
Summary
The spliceosome is a mega-Dalton ribonucleoprotein (RNP) assembly that processes primary RNA transcripts, producing functional mRNA. The electron microscopy structures of the native spliceosome and of several spliceosomal subcomplexes are available but the spatial arrangement of the latter within the native spliceosome is not known. We designed a new computational procedure to efficiently fit thousands of conformers into the spliceosome envelope. Despite the low resolution limitations, we obtained only one model that complies with the available biochemical data. Our model localizes the five small nuclear RNPs (snRNPs) mostly within the large subunit of the native spliceosome, requiring only minor conformation changes. The remaining free volume presumably accommodates additional spliceosomal components. The constituents of the active core of the spliceosome are juxtaposed, forming a continuous surface deep within the large spliceosomal cavity, which provides a sheltered environment for the splicing reaction.
doi:10.1016/j.str.2012.03.022
PMCID: PMC3372696  PMID: 22578543
10.  Spliceosome Structure and Function 
SUMMARY
Pre-mRNA splicing is catalyzed by the spliceosome, a multimegadalton ribonucleoprotein (RNP) complex comprised of five snRNPs and numerous proteins. Intricate RNA-RNA and RNP networks, which serve to align the reactive groups of the pre-mRNA for catalysis, are formed and repeatedly rearranged during spliceosome assembly and catalysis. Both the conformation and composition of the spliceosome are highly dynamic, affording the splicing machinery its accuracy and flexibility, and these remarkable dynamics are largely conserved between yeast and metazoans. Because of its dynamic and complex nature, obtaining structural information about the spliceosome represents a major challenge. Electron microscopy has revealed the general morphology of several spliceosomal complexes and their snRNP subunits, and also the spatial arrangement of some of their components. X-ray and NMR studies have provided high resolution structure information about spliceosomal proteins alone or complexed with one or more binding partners. The extensive interplay of RNA and proteins in aligning the pre-mRNA's reactive groups, and the presence of both RNA and protein at the core of the splicing machinery, suggest that the spliceosome is an RNP enzyme. However, elucidation of the precise nature of the spliceosome's active site, awaits the generation of a high-resolution structure of its RNP core.
Spliceosomes contain five snRNPs and numerous non-snRNP proteins. These continuously rearrange during spliceosome assembly and activation so that the reactive groups in the pre-mRNA substrate are correctly aligned for catalysis.
doi:10.1101/cshperspect.a003707
PMCID: PMC3119917  PMID: 21441581
11.  Structure of spliceosomal ribonucleoproteins 
Splicing of the precursors of eukaryotic mRNA and some non-coding RNAs is catalyzed by the ‘spliceosome’, which comprises five RNA-protein complexes (small nuclear ribonucleoproteins, or snRNPs) that assemble in an ordered manner onto precursor-mRNAs. Much progress has been made in determining the gross morphology of spliceosomal assembly intermediates. Recently, the first crystal structure of a spliceosomal snRNP has provided significant insight into assembly and architecture of spliceosomal snRNPs in general and the structure-function relationship of human U1 snRNP in particular.
doi:10.3410/B2-39
PMCID: PMC2950031  PMID: 20948795
12.  Solution structure of the core SMN–Gemin2 complex 
Biochemical Journal  2012;445(Pt 3):361-370.
In humans, assembly of spliceosomal snRNPs (small nuclear ribonucleoproteins) begins in the cytoplasm where the multi-protein SMN (survival of motor neuron) complex mediates the formation of a seven-membered ring of Sm proteins on to a conserved site of the snRNA (small nuclear RNA). The SMN complex contains the SMN protein Gemin2 and several additional Gemins that participate in snRNP biosynthesis. SMN was first identified as the product of a gene found to be deleted or mutated in patients with the neurodegenerative disease SMA (spinal muscular atrophy), the leading genetic cause of infant mortality. In the present study, we report the solution structure of Gemin2 bound to the Gemin2-binding domain of SMN determined by NMR spectroscopy. This complex reveals the structure of Gemin2, how Gemin2 binds to SMN and the roles of conserved SMN residues near the binding interface. Surprisingly, several conserved SMN residues, including the sites of two SMA patient mutations, are not required for binding to Gemin2. Instead, they form a conserved SMN/Gemin2 surface that may be functionally important for snRNP assembly. The SMN–Gemin2 structure explains how Gemin2 is stabilized by SMN and establishes a framework for structure–function studies to investigate snRNP biogenesis as well as biological processes involving Gemin2 that do not involve snRNP assembly.
doi:10.1042/BJ20120241
PMCID: PMC3462613  PMID: 22607171
Gemin2; survival of motor neuron (SMN); small nuclear ribonucleoprotein (snRNP) assembly; spinal muscular atrophy; APS, Advanced Photon Source; CHESS, Cornell High Energy Synchrotron Source; DTT, dithiothreitol; GST, glutathione transferase; HSQC, heteronuclear single-quantum coherence; MTSL, S-(2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-3-yl)methyl methanesulfonothioate; NOE, nuclear Overhauser effect; NP40, Nonidet P40; PRE, paramagnetic relaxation enhancement; RDC, residual dipolar coupling; RMSD, root mean square deviation; SAXS, small-angle X-ray scattering; SMA, spinal muscular atrophy; SMN, survival of motor neuron; snRNA, small nuclear RNA; snRNP, small nuclear ribonucleoprotein
13.  Yeast Pre-mRNA Splicing Requires a Pair of U1 snRNP-Associated Tetratricopeptide Repeat Proteins 
Molecular and Cellular Biology  1998;18(1):353-360.
The U1 snRNP functions to nucleate spliceosome assembly on newly transcribed pre-mRNA. Saccharomyces cerevisiae is unusual among eukaryotes in the greatly extended length of its U1 snRNA and the apparent increased polypeptide complexity of the corresponding U1 snRNP. In this paper, we report the identification of a novel U1 snRNP protein, Prp42p, with unexpected properties. Prp42p was identified by its surprising structural similarity to the essential U1 snRNP protein, Prp39p. Both Prp39p and Prp42p possess multiple copies of a variant tetratricopeptide repeat, an element implicated in a wide range of protein assembly events. Yeast strains depleted of Prp42p by transcriptional repression of a GAL1::PRP42 fusion gene arrest for splicing prior to pre-mRNA 5′ splice site cleavage. Prp42p was not observed in a recent biochemical analysis of purified U1 snRNPs from S. cerevisiae (28). Nevertheless, antibodies directed against an epitope-tagged version of Prp42p specifically precipitate U1 snRNA from yeast extracts. Furthermore, Prp42p is required for U1 snRNP biogenesis, because yeast strains depleted of Prp42p formed incomplete U1 snRNPs that failed to produce stable complexes with pre-mRNA in vitro. The evidence shows that Prp39p and Prp42p are both required to configure the atypical yeast U1 snRNP into a structure compatible with its evolutionarily conserved role in pre-mRNA splicing.
PMCID: PMC121504  PMID: 9418882
14.  The differential interaction of snRNPs with pre-mRNA reveals splicing kinetics in living cells 
The Journal of Cell Biology  2010;191(1):75-86.
GFP-tagged snRNP components reveal the dynamics and rate for spliceosome assembly in vivo.
Precursor messenger RNA (pre-mRNA) splicing is catalyzed by the spliceosome, a large ribonucleoprotein (RNP) complex composed of five small nuclear RNP particles (snRNPs) and additional proteins. Using live cell imaging of GFP-tagged snRNP components expressed at endogenous levels, we examined how the spliceosome assembles in vivo. A comprehensive analysis of snRNP dynamics in the cell nucleus enabled us to determine snRNP diffusion throughout the nucleoplasm as well as the interaction rates of individual snRNPs with pre-mRNA. Core components of the spliceosome, U2 and U5 snRNPs, associated with pre-mRNA for 15–30 s, indicating that splicing is accomplished within this time period. Additionally, binding of U1 and U4/U6 snRNPs with pre-mRNA occurred within seconds, indicating that the interaction of individual snRNPs with pre-mRNA is distinct. These results are consistent with the predictions of the step-wise model of spliceosome assembly and provide an estimate on the rate of splicing in human cells.
doi:10.1083/jcb.201004030
PMCID: PMC2953428  PMID: 20921136
15.  The spliceosomal proteome: at the heart of the largest cellular ribonucleoprotein machine 
Proteomics  2010;10(22):4128-4141.
Almost all primary transcripts in higher eukaryotes undergo several splicing events and alternative splicing is a major factor in generating proteomic diversity. Thus, the spliceosome, the ribonucleoprotein assembly that performs splicing, is a highly critical cellular machine and as expected, a very complex one. Indeed, the spliceosome is one of the largest, if not the largest, molecular machine in the cell with over 150 different components in human. A large fraction of the spliceosomal proteome is organized into ribonucleoprotein particles (snRNPs) by associating with one of the small nuclear RNAs (snRNAs), and the function of many spliceosomal proteins revolve around their association or interaction with the spliceosomal RNAs or the substrate pre-messenger RNAs. In addition to the complex web of protein-RNA interactions, an equally complex network of protein-protein interactions exists in the spliceosome which includes a number of large, conserved proteins with critical functions in the spliceosomal catalytic core. These include the largest conserved nuclear protein, Prp8, which plays a critical role in spliceosomal function in a hitherto unknown manner. Taken together, the large spliceosomal proteome and its dynamic nature has made it a highly challenging system to study, and at the same time, provides an exciting example of the evolution of a proteome around a backbone of primordial RNAs likely dating from the RNA World.
doi:10.1002/pmic.201000354
PMCID: PMC3575088  PMID: 21080498
Proteome; Prp8; RNA helicases; Spliceosome; Splicing
16.  Tim50a, a nuclear isoform of the mitochondrial Tim50, interacts with proteins involved in snRNP biogenesis 
BMC Cell Biology  2005;6:29.
Background
The Cajal body (CB) is a nuclear suborganelle involved in the biogenesis of small nuclear ribonucleoproteins (snRNPs), which are vital for pre-mRNA splicing. Newly imported Sm-class snRNPs traffic through CBs, where the snRNA component of the snRNP is modified, and then target to other nuclear domains such as speckles and perichromatin fibrils. It is not known how nascent snRNPs localize to the CB and are released from this structure after modification. The marker protein for CBs, coilin, may play a role in snRNP biogenesis given that it can interact with snRNPs and SMN, the protein mutated in Spinal Muscular Atrophy. Loss of coilin function in mice leads to significant viability and fertility problems and altered CB formation.
Results
In this report, we identify a minor isoform of the mitochondrial Tim50, Tim50a, as a coilin interacting protein. The Tim50a transcript can be detected in some cancer cell lines and normal brain tissue. The Tim50a protein differs only from Tim50 in that it contains an additional 103 aa N-terminal to the translation start of Tim50. Importantly, a putative nuclear localization signal is found within these 103 residues. In contrast to Tim50, which localizes to the cytoplasm and mitochondria, Tim50a is strictly nuclear and is enriched in speckles with snRNPs. In addition to coilin, Tim50a interacts with snRNPs and SMN. Competition binding experiments demonstrate that coilin competes with Sm proteins of snRNPs and SMN for binding sites on Tim50a.
Conclusion
Tim50a may play a role in snRNP biogenesis given its cellular localization and protein interaction characteristics. We hypothesize that Tim50a takes part in the release of snRNPs and SMN from the CB.
doi:10.1186/1471-2121-6-29
PMCID: PMC1177934  PMID: 16008839
17.  Two distinct arginine methyltransferases are required for biogenesis of Sm-class ribonucleoproteins 
The Journal of Cell Biology  2007;178(5):733-740.
Small nuclear ribonucleoproteins (snRNPs) are core components of the spliceosome. The U1, U2, U4, and U5 snRNPs each contain a common set of seven Sm proteins. Three of these Sm proteins are posttranslationally modified to contain symmetric dimethylarginine (sDMA) residues within their C-terminal tails. However, the precise function of this modification in the snRNP biogenesis pathway is unclear. Several lines of evidence suggest that the methyltransferase protein arginine methyltransferase 5 (PRMT5) is responsible for sDMA modification of Sm proteins. We found that in human cells, PRMT5 and a newly discovered type II methyltransferase, PRMT7, are each required for Sm protein sDMA modification. Furthermore, we show that the two enzymes function nonredundantly in Sm protein methylation. Lastly, we provide in vivo evidence demonstrating that Sm protein sDMA modification is required for snRNP biogenesis in human cells.
doi:10.1083/jcb.200702147
PMCID: PMC2064538  PMID: 17709427
18.  Human U1 snRNA forms a new chromatin-associated snRNP with TAF15 
EMBO Reports  2009;10(5):494-500.
The U1 small nuclear RNA (snRNA)—in the form of the U1 spliceosomal Sm small nuclear ribonucleoprotein particle (snRNP) that contains seven Sm and three U1-specific RNP proteins—has a crucial function in the recognition and removal of pre-messenger RNA introns. Here, we show that a fraction of human U1 snRNA specifically associates with the nuclear RNA-binding protein TBP-associated factor 15 (TAF15). We show that none of the known protein components of the spliceosomal U1-Sm snRNP interacts with the newly identified U1-TAF15 snRNP. In addition, the U1-TAF15 snRNP tightly associates with chromatin in an RNA-dependent manner and accumulates in nucleolar caps upon transcriptional inhibition. The Sm-binding motif of U1 snRNA is essential for the biogenesis of both U1-Sm and U1-TAF15 snRNPs, suggesting that the U1-TAF15 particle is produced by remodelling of the U1-Sm snRNP. A demonstration that human U1 snRNA forms at least two structurally distinct snRNPs supports the idea that the U1 snRNA has many nuclear functions.
doi:10.1038/embor.2009.24
PMCID: PMC2680868  PMID: 19282884
TAFII68; non-coding RNA; U1-70K
19.  Enhancement of U4/U6 Small Nuclear Ribonucleoprotein Particle Association in Cajal Bodies Predicted by Mathematical Modeling 
Molecular Biology of the Cell  2006;17(12):4972-4981.
Spliceosomal small nuclear ribonucleoprotein particles (snRNPs) undergo specific assembly steps in Cajal bodies (CBs), nonmembrane-bound compartments within cell nuclei. An example is the U4/U6 di-snRNP, assembled from U4 and U6 monomers. These snRNPs can also assemble in the nucleoplasm when cells lack CBs. Here, we address the hypothesis that snRNP concentration in CBs facilitates assembly, by comparing the predicted rates of U4 and U6 snRNP association in nuclei with and without CBs. This was accomplished by a random walk-and-capture simulation applied to a three-dimensional model of the HeLa cell nucleus, derived from measurements of living cells. Results of the simulations indicated that snRNP capture is optimal when nuclei contain three to four CBs. Interestingly, this is the observed number of CBs in most cells. Microinjection experiments showed that U4 snRNA targeting to CBs was U6 snRNP independent and that snRNA concentration in CBs is ∼20-fold higher than in nucleoplasm. Finally, combination of the simulation with calculated association rates predicted that the presence of CBs enhances U4 and U6 snRNP association by up to 11-fold, largely owing to this concentration difference. This provides a chemical foundation for the proposal that these and other cellular compartments promote molecular interactions, by increasing the local concentration of individual components.
doi:10.1091/mbc.E06-06-0513
PMCID: PMC1679666  PMID: 16987958
20.  Differential interaction of splicing snRNPs with coiled bodies and interchromatin granules during mitosis and assembly of daughter cell nuclei 
The Journal of Cell Biology  1994;126(1):11-23.
In the interphase nucleus of mammalian cells the U1, U2, U4/U6, and U5 small nuclear ribonucleoproteins (snRNPs), which are subunits of spliceosomes, associate with specific subnuclear domains including interchromatin granules and coiled bodies. Here, we analyze the association of splicing snRNPs with these structures during mitosis and reassembly of daughter nuclei. At the onset of mitosis snRNPs are predominantly diffuse in the cytoplasm, although a subset remain associated with remnants of coiled bodies and clusters of mitotic interchromatin granules, respectively. The number and size of mitotic coiled bodies remain approximately unchanged from metaphase to early telophase while snRNP-containing clusters of mitotic interchromatin granules increase in size and number as cells progress from anaphase to telophase. During telophase snRNPs are transported into daughter nuclei while the clusters of mitotic interchromatin granules remain in the cytoplasm. The timing of nuclear import of splicing snRNPs closely correlates with the onset of transcriptional activity in daughter nuclei. When transcription restarts in telophase cells snRNPs have a diffuse nucleoplasmic distribution. As cells progress to G1 snRNP- containing clusters of interchromatin granules reappear in the nucleus. Coiled bodies appear later in G1, although the coiled body antigen, p80 coilin, enters early into telophase nuclei. After inhibition of transcription we still observe nuclear import of snRNPs and the subsequent appearance of snRNP-containing clusters of interchromatin granules, but not coiled body formation. These data demonstrate that snRNP associations with coiled bodies and interchromatin granules are differentially regulated during the cell division cycle and suggest that these structures play distinct roles connected with snRNP structure, transport, and/or function.
PMCID: PMC2120090  PMID: 8027171
21.  ATP-dependent unwinding of U4/U6 snRNAs by the Brr2 helicase requires the C-terminus of Prp8 
Summary
The spliceosome is a highly dynamic machine requiring multiple RNA-dependent ATPases of the DExD/H-box family. A fundamental unanswered question is how their activities are regulated. Brr2 function is necessary for unwinding the U4/U6 duplex, a step essential for catalytic activation of the spliceosome. Here we show that Brr2-dependent dissociation of U4/U6 snRNAs in vitro is activated by a fragment from the C-terminus of the U5 snRNP protein Prp8. In contrast to its helicase-stimulating activity, this fragment inhibits Brr2 U4/U6-dependent ATPase activity. Notably, U4/U6 unwinding activity is not stimulated by fragments carrying alleles of prp8 that in humans confers an autosomal dominant form of retinitis pigmentosa. Because Brr2 activity must be restricted to prevent premature catalytic activation, our results have important implications for fidelity maintenance in the spliceosome.
doi:10.1038/nsmb.1535
PMCID: PMC2707180  PMID: 19098916
pre-mRNA splicing; spliceosome; retinitis pigmentosa; protein co-factor
22.  Reconstitution of functional mammalian U4 small nuclear ribonucleoprotein: Sm protein binding is not essential for splicing in vitro. 
Molecular and Cellular Biology  1992;12(4):1460-1468.
We have developed an in vitro splicing complementation assay to investigate the domain structure of the mammalian U4 small nuclear RNA (snRNA) through mutational analysis. The addition of affinity-purified U4 snRNP or U4 RNA to U4-depleted nuclear extract efficiently restores splicing activity. In the U4-U6 interaction domain of U4 RNA, only stem II was found to be essential for splicing activity; the 5' loop is important for spliceosome stability. In the central domain, we have identified a U4 RNA sequence element that is important for splicing and spliceosome assembly. Surprisingly, an intact Sm domain is not essential for splicing in vitro. Our data provide evidence that several distinct regions of U4 RNA contribute to snRNP assembly, spliceosome assembly and stability, and splicing activity.
Images
PMCID: PMC369587  PMID: 1532228
23.  Cross-Talk between Snurportin1 SubdomainsD⃞ 
Molecular Biology of the Cell  2005;16(10):4660-4671.
The initial steps of spliceosomal small nuclear ribonucleoprotein (snRNP) maturation take place in the cytoplasm. After formation of an Sm-core and a trimethylguanosine (TMG) cap, the RNPs are transported into the nucleus via the import adaptor snurportin1 (SPN) and the import receptor importin-β. To better understand this process, we identified SPN residues that are required to mediate interactions with TMG caps, importin-β, and the export receptor, exportin1 (Xpo1/Crm1). Mutation of a single arginine residue within the importin-β binding domain (IBB) disrupted the interaction with importin-β, but preserved the ability of SPN to bind Xpo1 or TMG caps. Nuclear transport assays showed that this IBB mutant is deficient for snRNP import but that import can be rescued by addition of purified survival of motor neurons (SMN) protein complexes. Conserved tryptophan residues outside of the IBB are required for TMG binding. However, SPN can be imported into the nucleus without cargo. Interestingly, SPN targets to Cajal bodies when U2 but not U1 snRNPs are imported as cargo. SPN also relocalizes to Cajal bodies upon treatment with leptomycin B. Finally, we uncovered an interaction between the N- and C-terminal domains of SPN, suggesting an autoregulatory function similar to that of importin-α.
doi:10.1091/mbc.E05-04-0316
PMCID: PMC1237072  PMID: 16030253
24.  Crystal structure of Prp8 reveals active site cavity of the spliceosome 
Nature  2013;493(7434):638-643.
The active centre of the spliceosome consists of an intricate network formed by U5, U2 and U6 snRNAs, and a pre-mRNA substrate. Prp8, a component of the U5 snRNP, crosslinks extensively with this RNA catalytic core. We present the crystal structure of yeast Prp8 (residues 885-2413) in complex with the U5 snRNP assembly factor Aar2. The structure reveals new tightly associated domains of Prp8 resembling a bacterial group II intron reverse transcriptase and a type II restriction endonuclease. Suppressors of splice site mutations and an intron branchpoint crosslink map to a large cavity formed by the reverse transcriptase thumb, endonuclease-like and the RNaseH-like domains. This cavity is large enough to accommodate the catalytic core of group II intron RNA. The structure provides crucial insights into the architecture of the spliceosome’s active site and reinforces the notion that nuclear pre-mRNA splicing and group II intron splicing have a common origin.
doi:10.1038/nature11843
PMCID: PMC3672837  PMID: 23354046
25.  Identification of an snRNP-associated kinase activity that phosphorylates arginine/serine rich domains typical of splicing factors. 
Nucleic Acids Research  1993;21(12):2815-2822.
The U1 snRNP-specific 70K protein is one of the few snRNP proteins from higher eukaryotic cells that is phosphorylated in vivo (1,2). Immunoaffinity purified spliceosomal snRNPs (U1, U2, U5, and U4/U6) were tested for their ability to phosphorylate in vitro the U1-specific 70K protein. An snRNP-associated kinase activity which phosphorylates all U1-70K isoelectric variants was identified. Like its in vivo counterpart, this snRNP-associated enzyme phosphorylates solely serine residues of the 70K protein, preferentially utilizing ATP as a phosphodonor. Tryptic phosphopeptide analysis revealed an overlapping set of at least four radiolabeled peptides in the in vivo and in vitro phosphorylated protein, suggesting that the snRNP-associated serine kinase is responsible, at least in part, for the 70K protein phosphorylation observed in vivo. Chymotryptic digestion of in vitro, 32P-labeled 70K protein and in vitro phosphorylation studies with a synthetic peptide, indicated that the multiple 70K phosphorylation sites are limited to a highly charged, C-terminal domain of the protein. In vitro phosphorylation studies with the splicing factor ASF/SF2 and several deletion mutants demonstrated that, similar to the U1-70K protein, the snRNP-associated serine kinase phosphorylates the carboxy terminal RS-rich domain of ASF/SF2. A potential general role for this enzyme in the phosphorylation of splicing factors and its consequences for pre-mRNA splicing regulation are discussed.
Images
PMCID: PMC309659  PMID: 8332490

Results 1-25 (596492)