PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1308638)

Clipboard (0)
None

Related Articles

1.  Isolation and Characterization of Small-Colony Variants of Ornithobacterium rhinotracheale 
Journal of Clinical Microbiology  2013;51(10):3228-3236.
Ornithobacterium rhinotracheale is a Gram-negative bacterium associated with respiratory diseases in many avian species, with worldwide distribution, and it causes significant economic loss to the poultry industry. In this study, the isolation and characterization of O. rhinotracheale small-colony variants (SCVs) are described for the first time. O. rhinotracheale isolates (n = 27) were recovered from tracheal samples (n = 321) collected from different avian species with clinical signs of respiratory disease. Of the 27 O. rhinotracheale isolates, 21 (77.8%) showed SCVs in their primary cultures. Five O. rhinotracheale SCV isolates showed high levels of stability and were chosen for further characterization with their wild-type (WT) isolates. Stable O. rhinotracheale SCVs were oxidase negative, while their WT isolates were positive. Growth curves for stable O. rhinotracheale SCVs indicated lower growth rates and longer lag phases than for their WT isolates. Furthermore, it was possible to increase the efficacy of the broth medium in supporting the growth of O. rhinotracheale WT isolates by supplementing it with 5% fetal bovine serum (FBS) and 2% IsoVitaleX Enrichment. Antibiotic susceptibility tests showed that O. rhinotracheale SCVs had higher MIC values than their WT isolates. This study suggests that successful antibiotic treatment of respiratory diseases associated with O. rhinotracheale must take into consideration the resistance patterns of O. rhinotracheale SCVs. Intracellular persistence in murine RAW 264.7 macrophages revealed that O. rhinotracheale SCV28 had higher survival rates than its WT isolate. Finally, small-colony variants may be important contributors to the pathogenesis of O. rhinotracheale.
doi:10.1128/JCM.01337-13
PMCID: PMC3811667  PMID: 23863572
2.  Molecular epidemiology of Ornithobacterium rhinotracheale. 
Journal of Clinical Microbiology  1997;35(11):2894-2898.
Ornithobacterium rhinotracheale is a recently described gram-negative rod-shaped bacterium associated with respiratory tract infections in poultry. In order to determine the molecular epidemiology of this bacterium, we characterized 55 O. rhinotracheale isolates from eight countries on four continents by multilocus enzyme electrophoresis (MLEE), repetitive sequence based-PCR (rep-PCR), and 16S rRNA gene sequencing. MLEE discriminated the O. rhinotracheale isolates into six electrophoretic types (ETs), of which only three ETs were recovered from domesticated poultry. The 16S rRNA gene sequence and rep-PCR analyses confirmed the results obtained by MLEE and indicated limited heterogeneity among isolates of O. rhinotracheale recovered from poultry. Taken together, the results of our analysis demonstrate that the majority of O. rhinotracheale isolates recovered from domesticated poultry throughout the world are represented by a small group of closely related clones and suggest that the bacterium was recently introduced to domesticated poultry from wild bird populations.
PMCID: PMC230082  PMID: 9350754
3.  Identification and serotyping of Ornithobacterium rhinotracheale. 
Journal of Clinical Microbiology  1997;35(2):418-421.
In the present study 443 strains of Ornithobacterium rhinotracheale, a causative agent of respiratory disease in fowl, were investigated biochemically and serologically. In both ways O. rhinotracheale could be differentiated from other gram-negative rods and, more particularly, from the Pasteurella-like bacteria potentially pathogenic for fowl. For the biochemical characterization of O. rhinotracheale the API 2ONE identification strip proved to be useful, although O. rhinotracheale is not included in the API system. Serologically, by using monovalent antisera in agar gel precipitation (AGP) tests and enzyme-linked immunosorbent assays (ELISAs), seven serotypes (serotypes A to G) of O. rhinotracheale could be discriminated. The AGP test was chosen as the preferred method to be used for serotyping. Isolates of serotype A were found to be the most prevalent, especially in chickens. Isolates from turkeys were more heterogeneously divided over the serotypes. Some strains showed cross-reactivity between serotypes A, B, and E. Five O. rhinotracheale strains could not be serotyped with the available antisera. Relationships between the geographic origin and the serotypes were found. By the ELISA the presence of antibodies against O. rhinotracheale could be detected in 1-day-old birds as well as in birds with clinical signs, and therefore, it might be useful for diagnostic purposes.
PMCID: PMC229592  PMID: 9003608
4.  Successful Selection of Cross-Protective Vaccine Candidates for Ornithobacterium rhinotracheale Infection  
Infection and Immunity  2005;73(10):6812-6821.
Ornithobacterium rhinotracheale is a bacterial pathogen known for causing respiratory disease in poultry. In this study, we demonstrate for the first time that cross-protective immunity against different O. rhinotracheale serotypes can be induced by live vaccination. Sera from these live-vaccinated and cross-protected birds were used to identify new vaccine targets by screening an O. rhinotracheale expression library. Out of 20,000 screened plaques, a total of 30 cross-reactive clones were selected for further analysis. Western blot analysis and DNA sequencing identified eight different open reading frames. The genes encoding the eight cross-reactive antigens were amplified, cloned in an expression vector, and expressed in Escherichia coli. Purified recombinant proteins with a molecular mass ranging from 35.9 kDa to 62.9 kDa were mixed and tested as a subunit vaccine for (cross-)protection against challenge with homologous and heterologous O. rhinotracheale serotypes in chickens. Subunit vaccination resulted in the production of antibodies reactive to the recombinant proteins on Western blot, and this eight-valent vaccine conferred both homologous and heterologous protection against O. rhinotracheale challenge in chickens.
doi:10.1128/IAI.73.10.6812-6821.2005
PMCID: PMC1230975  PMID: 16177359
5.  Epidemiology of Campylobacter spp. at two Dutch broiler farms. 
Epidemiology and Infection  1995;114(3):413-421.
Broiler flocks on two Dutch poultry farms were screened weekly for the presence of campylobacter in fresh caecal droppings during eight consecutive production cycles. Hatchery and fresh litter samples were taken at the start of each new cycle. Water, feed, insects, and faeces of domestic animals, present on the farms were also included in the sampling. Penner serotyping of isolates was used to identify epidemiological factors that contribute to campylobacter colonization in the broiler flocks. Generally, broiler flocks became colonized with campylobacter at about 3-4 weeks of age with isolation percentages of 100%, and stayed colonized up to slaughter. A similar pattern of serotypes was found within the various broiler houses on one farm during one production cycle. New flocks generally showed also a new pattern of serotypes. Most serotypes isolated from the laying hens, pigs, sheep and cattle were different from those isolated from the broilers at the same time. Campylobacter serotypes from darkling beetles inside the broiler houses were identical to the ones isolated from the broilers. No campylobacter was isolated from any of the hatchery, water, feed or fresh litter samples. Conclusive evidence of transmission routes was not found, but results certainly point towards horizontal transmission from the environment. Horizontal transmission from one broiler flock to the next one via a persistent contamination within the broiler house, as well as vertical transmission from breeder flocks via the hatchery to progeny, did not seem to be very likely.
PMCID: PMC2271305  PMID: 7781729
6.  Molecular Epidemiology of Campylobacter Isolates from Poultry Production Units in Southern Ireland 
PLoS ONE  2011;6(12):e28490.
This study aimed to identify the sources and routes of transmission of Campylobacter in intensively reared poultry farms in the Republic of Ireland. Breeder flocks and their corresponding broilers housed in three growing facilities were screened for the presence of Campylobacter species from November 2006 through September 2007. All breeder flocks tested positive for Campylobacter species (with C. jejuni and C. coli being identified). Similarly, all broiler flocks also tested positive for Campylobacter by the end of the rearing period. Faecal and environmental samples were analyzed at regular intervals throughout the rearing period of each broiler flock. Campylobacter was not detected in the disinfected house, or in one-day old broiler chicks. Campylobacter jejuni was isolated from environmental samples including air, water puddles, adjacent broiler flocks and soil. A representative subset of isolates from each farm was selected for further characterization using flaA-SVR sub-typing and multi-locus sequence typing (MLST) to determine if same-species isolates from different sources were indistinguishable or not. Results obtained suggest that no evidence of vertical transmission existed and that adequate cleaning/disinfection of broiler houses contributed to the prevention of carryover and cross-contamination. Nonetheless, the environment appears to be a potential source of Campylobacter. The population structure of Campylobacter isolates from broiler farms in Southern Ireland was diverse and weakly clonal.
doi:10.1371/journal.pone.0028490
PMCID: PMC3232229  PMID: 22163024
7.  Population genetic structure of Ascaridia galli re-emerging in non-caged laying hens 
Parasites & Vectors  2012;5:97.
Background
The poultry roundworm Ascaridia galli has reappeared in hens kept for egg production in Sweden after having been almost absent a decade ago. Today this is a frequent intestinal nematode parasite in non-caged laying hens. The aim of this study was to investigate the genetic diversity (Fst) in A. galli collected from different poultry production sites in southern Sweden, to identify possible common routes of colonization.
Methods
Adult parasites (n = 153) from 10 farms, including both broiler breeder parents and laying hens, were investigated by amplified restriction fragment length polymorphism analysis (AFLP). Worms from a Danish laying hen farm were also included for comparison. Most of the farms were represented by worms from a single host, but on two farms multiple samples from different hosts were assessed in order to study flock variation.
Results
A total of 97 fragments (loci) were amplified among which 81% were variable alleles. The average genetic diversity was 0.13 (range = 0.09-0.38), which is comparable to other AFLP studies on nematodes of human and veterinary importance. Within-farm variation showed that worms harboured by a single hen in a flock covered most of the A. galli genetic variation within the same flock (Fst = 0.01 and 0.03 for two farms). Between-farm analysis showed a moderate population genetic structure (Fst = 0.13), along with a low mutational rate but high gene flow between different farms, and absence of strong genetic selection. Network analysis showed repeated genetic patterns among the farms, with most worms on each farm clustering together as supported by high re-allocation rates.
Conclusions
The investigated A. galli populations were not strongly differentiated, indicating that they have undergone a genetic bottlenecking and subsequent drift. This supports the view that the investigated farms have been recently colonized, and that new flocks are reinfected upon arrival with a stationary infection.
doi:10.1186/1756-3305-5-97
PMCID: PMC3403953  PMID: 22607623
AFLP; Ascaridia galli; Nematoda; Parasite infection; Population genetics; Network analysis
8.  Characterization of Plasmid pOR1 from Ornithobacterium rhinotracheale and Construction of a Shuttle Plasmid 
Applied and Environmental Microbiology  2004;70(10):5853-5858.
The bacterium Ornithobacterium rhinotracheale has been recognized as an emerging pathogen in poultry since about 10 years ago. Knowledge of this bacterium and its mechanisms of virulence is still very limited. Here we report the development of a transformation system that enables genetic modification of O. rhinotracheale. The system is based on a cryptic plasmid, pOR1, that was derived from an O. rhinotracheale strain of serotype K. Sequencing indicated that the plasmid consisted of 14,787 nucleotides. Sequence analysis revealed one replication origin and several rep genes that control plasmid replication and copy number, respectively. In addition, pOR1 contains genes with similarity to a heavy-metal-transporting ATPase, a TonB-linked siderophore receptor, and a laccase. Reverse transcription-PCR demonstrated that these genes were transcribed. Other putative open reading frames exhibited similarities with a virulence-associated protein in Actinobacillus actinomycetemcomitans and a number of genes coding for proteins with unknown function. An Escherichia coli-O. rhinotracheale shuttle plasmid (pOREC1) was constructed by cloning the replication origin and rep genes from pOR1 and the cfxA gene from Bacteroides vulgatus, which codes for resistance to the antibiotic cefoxitin, into plasmid pGEM7 by using E. coli as a host. pOREC1 was electroporated into O. rhinotracheale and yielded cefoxitin-resistant transformants. The pOREC1 isolated from these transformants was reintroduced into E. coli, demonstrating that pOREC1 acts as an independent replicon in both E. coli and O. rhinotracheale, fulfilling the criteria for a shuttle plasmid that can be used for transformation, targeted mutagenesis, and the construction of defined attenuated vaccine strains.
doi:10.1128/AEM.70.10.5853-5858.2004
PMCID: PMC522087  PMID: 15466524
9.  Epidemiological study on risk factors and risk reducing measures for campylobacter infections in Dutch broiler flocks. 
Epidemiology and Infection  1996;117(2):245-250.
From September 1991 until August 1993 an epidemiological study involving 20 Dutch broiler farms was conducted to identify risk factors and risk reducing measures for campylobacter infections in broiler flocks. Campylobacter spp. were detected in 64 (57%) of the 112 broiler flocks and in 25 (63%) of the 40 broiler cycles examined. Univariate analysis of farm management data was performed followed by logistic regression analysis of selected risk and risk reducing factors. The presence of other farm animals, including pigs, cattle, sheep and fowl, other than broilers, was found to be independently associated with an increased risk of campylobacter infections in broiler flocks (odds ratio (OR) = 11.81; P = 0.041). Further, the results indicate that application of specific hygiene measures during the rearing period, such as washing hands before tending the broiler flocks, the use of separate boots for each broiler house and the use of footbath disinfection when entering a broiler house, may significantly reduce the risk of campylobacter infections in broiler flocks.
PMCID: PMC2271711  PMID: 8870621
10.  Commercially laid eggs vs. discarded hatching eggs: contamination by Salmonella spp 
Brazilian Journal of Microbiology  2013;44(2):367-370.
Salmonella enterica is frequently associated with outbreaks of human salmonellosis, and products of avian origin, such as eggs and chicken meat, are the main vehicles of its transmission. The present study describes the occurrence of different serovars of Salmonella enterica and phagotypes of S. enterica serovar Enteritidis in eggs destined for human consumption. Four thousand eggs obtained from commercial egg laying farms and one thousand discarded hatching eggs from broiler farms, which were acquired at farmers’ markets and informal shops, were analyzed. Salmonella spp. was isolated from 52.0% of the discarded hatching eggs, in which the predominant serovar was Enteritidis (84.6%), and the predominant Salmonella Enteritidis phagotype (PT) was PT7 (26.9%). Salmonella spp. was not isolated from eggs obtained from commercial egg laying farms. The antimicrobial resistance profile showed that 23.1% (n = 6) of the SE strains were resistant to nalidixic acid. The results suggest that the consumption of discarded hatching eggs represents an important source of Salmonella transmission to humans.
doi:10.1590/S1517-83822013005000036
PMCID: PMC3833129  PMID: 24294223
discarded eggs; Salmonella Enteritidis; antimicrobial resistance; salmonellosis
11.  Campylobacter jejuni in broilers: the role of vertical transmission. 
The Journal of Hygiene  1986;96(2):153-159.
The role of broiler eggs in the transmission of Campylobacter jejuni to broiler grow-out flocks was investigated. Six breeder flocks supplying broiler eggs to hatcheries were examined for cloacal carriage of C. jejuni. Of 240 birds tested, 178 (74%) were C. jejuni-positive. Eggs from these birds examined for C. jejuni penetration of the egg shell indicated that 185 of 187 were campylobacter-free. Eggs from breeder flocks of unknown C. jejuni status were also examined for C. jejuni shell penetration. C. jejuni was not isolated from 142 eggs examined. A further 193 hatchery eggs incubated and hatched in the laboratory were campylobacter-free. Six farms containing the progeny of C. jejuni-positive breeder flocks were monitored. Eight hundred and forty birds from 14 flocks in these grow-out farms were campylobacter-free during their 6-week grow-out period. Experimental egg-penetration studies indicated that C. jejuni transmission via the egg is not easily effected. Of 257 eggs surface-challenged with C. jejuni, 162 hatched; all were campylobacter-free. Of 167 eggs injected with C. jejuni, 12 hatched; 2 of these were colonized with C. jejuni. Our data do not support a role for vertical transmission of C. jejuni in commercial broiler production.
PMCID: PMC2129649  PMID: 3701037
12.  A survey for maintenance of virulent newcastle disease virus-free area in poultry production in Brazil 
Brazilian Journal of Microbiology  2010;41(2):368-375.
In 2003, Brazil was recognized as a pathogenic Newcastle Disease Virus (NDV) strain-free country for commercial poultry. This research was conducted in Brazil between December 2003 and March 2005 to verify the maintenance of this virulent NDV-free status. Serum samples from 5,455 flocks for commercial poultry farms were collected, comprising 81,825 broiler chickens. The farms were located in nine states of the country, grouped in three geographic regions. Serological evidence of NDV infection was detected in 28.8% of the surveyed farms. However, all fifteen viruses isolated and identified as Newcastle Disease Virus (NDV) were characterized as nonpathogenic strains, based on the Intracerebral Pathogenicity Index. These results showed that Brazil preserves the virulent NDV-free status for commercial flocks.
doi:10.1590/S1517-838220100002000017
PMCID: PMC3768700  PMID: 24031506
Newcastle Disease Virus; pathogenicity; poultry; biological characterization
13.  Maternal transmission of immunity to Eimeria maxima: enzyme-linked immunosorbent assay analysis of protective antibodies induced by infection. 
Infection and Immunity  1994;62(4):1348-1357.
Vaccination of broiler chickens against Eimeria infection is problematic because of the need to ensure that birds are protected from the time of hatching. We have therefore investigated the feasibility of protecting hatchling broilers via maternal transfer of protective antibodies from hens to their offspring. Oral infection of broiler breeder hens with 20,000 sporulated Eimeria maxima oocysts caused production of antibodies which were passed into the egg yolk and subsequently to hatchlings. The level of specific antibodies in the yolks to unsporulated oocysts, sporulated oocysts, merozoites, and gametocytes was assessed by enzyme-linked immunosorbent assays. The levels in yolks of antibodies to all developmental stages peaked 3 to 4 weeks after infection of the hens. Groups of 10 hatchlings were challenged at 3 days of age by oral infection with 100 sporulated E. maxima oocysts. In the first experiment, the mean 4-day (days 6 to 9 post-infection) total number of oocysts excreted in the feces of chicks from eggs collected 3 weeks after infection of the hens was (0.6 +/- 0.4) x 10(6) (mean +/- standard error) compared with (9.9 +/- 1.4) x 10(6) for the progeny of uninfected hens, which represents a greater than 90% reduction. However, oocyst excretion by chicks from eggs collected 7 or 8 weeks after infection of the hens was only 47 or 68% lower than control values, reflecting declining levels of protective antibodies. In a second experiment, in which the hens were somewhat older and pretreated by intramuscular injection of saline in the emulsifying agent, Arlacel A, the period for which protective antibodies were transferred to hatchlings was prolonged. Thus, oocyst excretion by challenged hatchlings from eggs collected for an 8-week period after infection of the hens was more than 90% lower than oocyst excretion by control chicks, and even hatchlings of eggs collected 19 weeks after infection of the hens showed a 60% reduction in oocyst output. In both experiments, the levels of immunoglobulin G (IgG) antibodies to all developmental stages in yolks or hatchling sera were very strongly correlated with maternally derived immunity to E. maxima. In contrast, parasite-specific IgM or IgA was not detectable, either in egg yolk or egg white. These results demonstrate the ability of IgG antibodies to protect against E. maxima in poultry, thus raising the possibility of using protective maternally derived IgG antibodies to identify potentially protective parasite antigens and indicating the feasibility of using maternal immunization as a means for parasite control.
PMCID: PMC186285  PMID: 8132342
14.  Identification of novel candidate genes for follicle selection in the broiler breeder ovary 
BMC Genomics  2012;13:494.
Background
Broiler breeders fed ad libitum are characterised by multiple ovulation, which leads to poor shell quality and egg production. Multiple ovulation is controlled by food restriction in commercial flocks. However, the level of food restriction raises welfare concerns, including that of severe hunger. Reducing the rate of multiple ovulation by genetic selection would facilitate progress towards developing a growth profile for optimum animal welfare.
Results
The study utilised 3 models of ovarian follicle development; laying hens fed ad libitum (experiment 2) and broiler breeders fed ad libitum or a restricted diet (experiments 1 & 3). This allowed us to investigate gene candidates for follicular development by comparing normal, abnormal and “controlled” follicle hierarchies at different stages of development. Several candidate genes for multiple ovulation were identified by combining microarray analysis of restricted vs. ad libitum feeding, literature searches and QPCR expression profiling throughout follicle development. Three candidate genes were confirmed by QPCR as showing significant differential expression between restricted and ad libitum feeding: FSHR, GDF9 and PDGFRL. PDGFRL, a candidate for steroidogenesis, showed significantly up-regulated expression in 6–8 mm follicles of ad libitum fed broiler breeders (P = 0.016), the period at which follicle recruitment occurs.
Conclusions
Gene candidates have been identified and evidence provided to support a possible role in regulation of ovarian function and follicle number. Further characterisation of these genes will be required to assess their potential for inclusion into breeding programmes to improve the regulation of follicle selection and reduce the need for feed restriction.
doi:10.1186/1471-2164-13-494
PMCID: PMC3511242  PMID: 22992265
Broiler breeder; Multiple ovulation; Follicle development; Ovary; Microarray
15.  Measuring the costs of biosecurity on poultry farms: a case study in broiler production in Finland 
Background
Farm-level biosecurity provides the foundation for biosecurity along the entire production chain. Many risk management practices are constantly in place, regardless of whether there is a disease outbreak or not. Nonetheless, the farm-level costs of preventive biosecurity have rarely been assessed. We examined the costs incurred by preventive biosecurity for Finnish poultry farms.
Methods
We used a semi-structured phone interview and obtained results from 17 broiler producers and from 5 hatching egg producers, corresponding to about 10% of all producers in Finland.
Results
Our results indicate that the average cost of biosecurity is some 3.55 eurocent per bird for broiler producers (0.10 eurocent per bird per rearing day) and 75.7 eurocent per bird for hatching egg producers (0.27 eurocent per bird per rearing day). For a batch of 75,000 broilers, the total cost would be €2,700. The total costs per bird are dependent on the annual number of birds: the higher the number of birds, the lower the cost per bird. This impact is primarily due to decreasing labour costs rather than direct monetary costs. Larger farms seem to utilise less labour per bird for biosecurity actions. There are also differences relating to the processor with which the producer is associated, as well as to the gender of the producer, with female producers investing more in biosecurity. Bird density was found to be positively related to the labour costs of biosecurity. This suggests that when the bird density is higher, greater labour resources need to be invested in their health and welfare and hence disease prevention. The use of coccidiostats as a preventive measure to control coccidiosis was found to have the largest cost variance between the producers, contributing to the direct costs.
Conclusions
The redesign of cost-sharing in animal diseases is currently ongoing in the European Union. Before we can assert how the risk should be shared or resort to the 'polluter pays' principle, we need to understand how the costs are currently distributed. The ongoing study contributes towards understanding these issues. The next challenge is to link the costs of preventive biosecurity to the benefits thus acquired.
doi:10.1186/1751-0147-54-12
PMCID: PMC3349596  PMID: 22373060
Biosecurity; Poultry; On-farm costs; Infectious disease; Prevention; Broiler production
16.  Seroprevalence of low pathogenic avian influenza (H9N2) and associated risk factors in the Gyeonggi-do of Korea during 2005-2006 
Journal of Veterinary Science  2008;9(2):161-168.
Between November 2005 and March 2006, a total of 253 poultry flocks in the Gyeonggi-do of Korea were examined for seroprevalence against avian influenza (AI) using a hemagglutination inhibition (HI) test and an agar gel precipitation test. No low pathogenic avian influenza (LPAI) virus was isolated from 47 seropositive flocks that lacked clinical signs during sampling. The unadjusted percentage of seroprevalence rates of layer and broiler flocks were not significantly different, i.e., 26% (25/96) and 23% (22/97), respectively. The HI titer of the layers (mean = 89) was higher than the broilers (mean = 36; p < 0.001). A cross-sectional study was conducted for the seroprevalence of LPAI in the layers. Of 7 risk factors, farms employing one or more workers had a higher seropositive prevalence as compared to farms without hired employees (adjusted prevalence OR = 11.5, p = 0.031). Layer flocks older than 400 d had higher seropositivity than flocks younger than 300 d (OR = 4.9, p = 0.017). The farmers recognized at least one of the clinical signs in seropositive flocks, such as decreased egg production, respiratory syndromes, and increased mortality (OR = 2.3, p = 0.082). In a matched case-control study, 20 pairs of case and control flocks matched for type of flock, hired employees, age, and flock size were compared. Frequent cleansing with disinfectants was associated with a decreased risk of seropositivity (OR = 0.2, p = 0.022). Although there was a low statistical association, using a foot disinfectant when entering the building led to a decreased rate of seropositivity (OR = 0.3, p = 0.105).
doi:10.4142/jvs.2008.9.2.161
PMCID: PMC2839093  PMID: 18487937
avian influenza; HPAI virus; LPAI virus; risk factors; seroprevalence
17.  Bacteriophage Therapy To Reduce Campylobacter jejuni Colonization of Broiler Chickens†  
Applied and Environmental Microbiology  2005;71(11):6554-6563.
Colonization of broiler chickens by the enteric pathogen Campylobacter jejuni is widespread and difficult to prevent. Bacteriophage therapy is one possible means by which this colonization could be controlled, thus limiting the entry of campylobacters into the human food chain. Prior to evaluating the efficacy of phage therapy, experimental models of Campylobacter colonization of broiler chickens were established by using low-passage C. jejuni isolates HPC5 and GIIC8 from United Kingdom broiler flocks. The screening of 53 lytic bacteriophage isolates against a panel of 50 Campylobacter isolates from broiler chickens and 80 strains isolated after human infection identified two phage candidates with broad host lysis. These phages, CP8 and CP34, were orally administered in antacid suspension, at different dosages, to 25-day-old broiler chickens experimentally colonized with the C. jejuni broiler isolates. Phage treatment of C. jejuni-colonized birds resulted in Campylobacter counts falling between 0.5 and 5 log10 CFU/g of cecal contents compared to untreated controls over a 5-day period postadministration. These reductions were dependent on the phage-Campylobacter combination, the dose of phage applied, and the time elapsed after administration. Campylobacters resistant to bacteriophage infection were recovered from phage-treated chickens at a frequency of <4%. These resistant types were compromised in their ability to colonize experimental chickens and rapidly reverted to a phage-sensitive phenotype in vivo. The selection of appropriate phage and their dose optimization are key elements for the success of phage therapy to reduce campylobacters in broiler chickens.
doi:10.1128/AEM.71.11.6554-6563.2005
PMCID: PMC1287621  PMID: 16269681
18.  Prevalence of Helicobacter pullorum in Conventional, Organic, and Free-Range Broilers and Typing of Isolates▿ †  
Helicobacter pullorum represents a potential food-borne pathogen, and avian species appear to be a relevant reservoir of this organism. In this study, the prevalence of H. pullorum was investigated at 30 conventional farms where 169 ceca from 34 flocks were tested, at eight organic farms where 39 ceca from eight flocks were tested, and at seven free-range farms where 40 ceca from eight flocks were tested. All of the ceca were obtained from healthy broiler chickens. Moreover, amplified fragment length polymorphism, pulsed-field gel electrophoresis, and automated ribotyping were employed to estimate the levels of genetic variability of H. pullorum broiler isolates within and between flocks. Overall, Gram-negative, slender, curved rods, identified as H. pullorum by PCR, were isolated at 93.3% of the farms tested. The percentage of positive free-range farms (54.2%) was significantly lower than that of conventional (100%) or organic (100%) farms (P < 0.001). The level of within-flock genetic variability, calculated as the number of flocks colonized by isolates genetically different by all of the typing methods, was 34.9%. Isolates showing identical profiles by each typing method were observed in 11.6% of the flocks, but they were never detected between flocks. However, groups of isolates clustered together with an overall similarity level of ≥85%. Our results suggest that even though a high level of genetic variability is attributable to H. pullorum broiler isolates, their hierarchical genotyping produces data useful for epidemiological investigations.
doi:10.1128/AEM.01712-10
PMCID: PMC3020539  PMID: 21097592
19.  Analysis of simultaneous space-time clusters of Campylobacter spp. in humans and in broiler flocks using a multiple dataset approach 
Background
Campylobacteriosis is the most frequently reported zoonosis in the EU and the epidemiology of sporadic campylobacteriosis, especially the routes of transmission, is to a great extent unclear. Poultry easily become colonised with Campylobacter spp., being symptom-less intestinal carriers. Earlier it was estimated that internationally between 50% and 80% of the cases could be attributed to chicken as a reservoir. In a Norwegian surveillance programme all broiler flocks under 50 days of age were tested for Campylobacter spp. The aim of the current study was to identify simultaneous local space-time clusters each year from 2002 to 2007 for human cases of campylobacteriosis and for broiler flocks testing positive for Campylobacter spp. using a multivariate spatial scan statistic method. A cluster occurring simultaneously in humans and broilers could indicate the presence of common factors associated with the dissemination of Campylobacter spp. for both humans and broilers.
Results
Local space-time clusters of humans and broilers positive for Campylobacter spp. occurring simultaneously were identified in all investigated years. All clusters but one were identified from May to August. Some municipalities were included in clusters all years.
Conclusions
The simultaneous occurrence of clusters of humans and broilers positive for Campylobacter spp. combined with the knowledge that poultry meat has a nation-wide distribution indicates that campylobacteriosis cases might also be caused by other risk factors than consumption and handling of poultry meat.
Broiler farms that are positive could contaminate the environment with further spread to new broiler farms or to humans living in the area and local environmental factors, such as climate, might influence the spread of Campylobacter spp. in an area. Further studies to clarify the role of such factors are needed.
doi:10.1186/1476-072X-9-48
PMCID: PMC2954933  PMID: 20860801
20.  Contribution of Company Affiliation and Social Contacts to Risk Estimates of Between-Farm Transmission of Avian Influenza 
PLoS ONE  2010;5(3):e9888.
Background
Models of between-farm transmission of pathogens have identified service vehicles and social groups as risk factors mediating the spread of infection. Because of high levels of economic organization in much of the poultry industry, we examined the importance of company affiliation, as distinct from social contacts, in a model of the potential spread of avian influenza among broiler poultry farms in a poultry-dense region in the United States. The contribution of company affiliation to risk of between-farm disease transmission has not been previously studied.
Methodology/Principal Findings
We obtained data on the nature and frequency of business and social contacts through a national survey of broiler poultry growers in the United States. Daily rates of contact were estimated using Monte Carlo analysis. Stochastic modeling techniques were used to estimate the exposure risk posed by a single infectious farm to other farms in the region and relative risk of exposure for farms under different scenarios. The mean daily rate of vehicular contact was 0.82 vehicles/day. The magnitude of exposure risk ranged from <1% to 25% under varying parameters. Risk of between-farm transmission was largely driven by company affiliation, with farms in the same company group as the index farm facing as much as a 5-fold increase in risk compared to farms contracted with different companies. Employment of part-time workers contributed to significant increases in risk in most scenarios, notably for farms who hired day-laborers. Social visits were significantly less important in determining risk.
Conclusions/Significance
Biosecurity interventions should be based on information on industry structure and company affiliation, and include part-time workers as potentially unrecognized sources of viral transmission. Modeling efforts to understand pathogen transmission in the context of industrial food animal production should consider company affiliation in addition to geospatial factors and pathogen characteristics. Restriction of social contacts among farmers may be less useful in reducing between-farm transmission.
doi:10.1371/journal.pone.0009888
PMCID: PMC2845626  PMID: 20360859
21.  Muscle specific differences in the regulation of myogenic differentiation in chickens genetically selected for divergent growth rates 
With the human population predicted to reach 9 billion by 2050, increasing food supplies while maintaining adequate standards of animal welfare has become a global priority. In the poultry industry, broilers are genetically selected for greater pectoral but not leg muscularity yield leading to leg disorders and thereby welfare issues. It is known that the pectoralis major of broilers contains more muscle fibres of larger diameters than egg-layers but little is known about the leg gastrocnemius muscle cellular characteristics. As muscle fibre numbers are set by hatch, the molecular regulation of myogenesis was investigated in pectoral (selected) and gastrocnemius (unselected) muscles of chick embryos to help explain diverging post-hatch phenotypes. Results showed that broilers were more active from embryonic day (ED) 8 and heavier from ED12 to 18 than layers. The pectoral muscle of broilers exhibited increased myoblast proliferation on ED15 (raised myonuclei, MyoD and PCNA) followed by increased differentiation from ED16 (raised myogenin, IGF-I) leading to increased muscle fibre hyperplasia and mass by ED18 compared to layers. In the gastrocnemius muscle of broilers, cell proliferation was also raised up to ED15 accompanied by increased PCNA, MyoD and IGF-I mRNAs. However, from ED16, myogenin and IGF-I mRNAs were similar to that of layers and PCNA was reduced leading to similar fibre area, nuclei numbers and muscle mass at ED18. We conclude that genetic selection for enhanced post-hatch pectoral muscle growth has altered the temporal expression of IGF-I and thereby myogenin transcription affecting cellular characteristics and mass by hatch in a muscle specific manner. These observations should help develop intervention strategies aimed at improving leg muscle strength and thereby animal welfare to meet growing consumer demand.
Highlights
► We compared myogenesis in chicken strains of divergent post-hatch growth rates. ► Broilers showed raised embryonic activity from ED8 and were heavier by hatch. ► mRNA levels of MyoD, myogenin and IGF-I were altered in a muscle-dependant manner. ► Cellular characteristics were altered accordingly.
doi:10.1016/j.diff.2011.05.012
PMCID: PMC3181402  PMID: 21723031
MyoD; Myogenin; IGF-I; Muscle; Chick embryo; Movement
22.  Molecular clonality and antimicrobial resistance in Salmonella enterica serovars Enteritidis and Infantis from broilers in three Northern regions of Iran 
Background
Multidrug-resistant Salmonella strains are frequently encountered problems worldwide with considerable increased occurrences in recent years. The aim of this study was to investigate the occurrence and frequency of antimicrobial resistance and associated resistance genes in Salmonella isolates from broiler farms in different regions of Iran covering a time period of four years.
Results
From 2007 to 2011, 36 Salmonella strains were isolated from broiler farms located in three northern provinces of Iran. The isolates were serotyped, antimicrobial susceptibility tested, and characterized for antimicrobial resistance genes associated to the phenotype. Pulsed-field gel electrophoresis (PFGE) was applied for comparison of genetic relatedness.
Two serovars were detected among the isolates; Salmonella enterica serovar Infantis (75%) and S. Enteritidis (25%). Thirty-four (94%) of the isolates exhibited resistance to nalidixic acid and ciprofloxacin caused by a single mutation in the quinolone resistance-determining region (QRDR) of gyrA. For all strains this mutation occurred in the codon of Asp87 leading to a Asp87-Tyr, Asp87-Gly or Asp87-Asn substitutions. All S. Infantis (n = 27) were resistant to tetracycline, spectinomycin, streptomycin, and sulfamethoxazole and harbored the associated resistance genes; tetA, dfrA14, aadA1, and sulI together with class 1 integrons. The isolates revealed highly similar PFGE patterns indicating clonal relatedness across different geographical locations.
Conclusion
The data provided fundamental information applicable when launching future control programs for broilers in Iran with the aim to conserve the effectiveness of important antimicrobials for treatment in humans.
doi:10.1186/1746-6148-9-66
PMCID: PMC3623788  PMID: 23561048
Salmonella infantis; Salmonella enteritidis; Antimicrobial resistance; MIC determination; Resistance gene; PFGE; Fluoroquinolone; Poultry; Iran
23.  Genome sequence and comparative analysis of Avibacterium paragallinarum 
Bioinformation  2013;9(10):528-536.
Background: Avibacterium paragallinarum, the causative agent of infectious coryza, is a highly contagious respiratory acute disease of poultry, which affects commercial chickens, laying hens and broilers worldwide. Methodology: In this study, we performed the whole genome sequencing, assembly and annotation of a Peruvian isolate of A. paragallinarum. Genome was sequenced in a 454 GS FLX Titanium system. De novo assembly was performed and annotation was completed with GS De Novo Assembler 2.6 using the H. influenzae str. F3031 gene model. Manual curation of the genome was performed with Artemis. Putative function of genes was predicted with Blast2GO. Virulence factors were identified by comparison with the Virulence Factor Database. Results: The genome obtained has a length of 2.47 Mb with 40.66% of GC content. Seventy five large contigs (>500 nt) were obtained, which comprised 1,204 predicted genes. All the contigs are available in Genbank [GenBank: PRJNA64665]. A total of 103 virulence factors, reported in the Virulence Factor Database, were found in A. paragallinarum. Forty four of them are present in 7 species of Haemophilus, which are related with pathogenesis, virulence and host immune system evasion. A tetracycline-resistance associated transposon (Tn10), was found in A. paragallinarum, possibly acting as a defense mechanism. Discussion and conclusion: The availability of A. paragallinarum genome represents an important source of information for the development of diagnostic tests, genotyping, and novel antigens for potential vaccines against infectious coryza. Identification of virulence factors contributes to better understanding the pathogenesis, and planning efforts for prevention and control of the disease.
doi:10.6026/97320630009528
PMCID: PMC3705629  PMID: 23861570
Infectious coryza; genome sequencing; virulence factors; syntenic homology; Tn10 transposon
24.  Presence of ESBL/AmpC -Producing Escherichia coli in the Broiler Production Pyramid: A Descriptive Study 
PLoS ONE  2013;8(11):e79005.
Broilers and broiler meat products are highly contaminated with extended spectrum beta-lactamase (ESBL) or plasmid-mediated AmpC beta-lactamase producing Escherichia coli and are considered to be a source for human infections. Both horizontal and vertical transmission might play a role in the presence of these strains in broilers. As not much is known about the presence of these strains in the whole production pyramid, the epidemiology of ESBL/AmpC-producing E. coli in the Dutch broiler production pyramid was examined. Cloacal swabs of Grandparent stock (GPS) birds (one−/two-days (breed A and B), 18 and 31 weeks old (breed A)), one-day old Parent stock birds (breed A and B) and broiler chickens of increasing age (breed A) were selectively cultured to detect ESBL/AmpC-producing isolates. ESBL/AmpC-producing isolates were found at all levels in the broiler production pyramid in both broiler breeds examined. Prevalence was already relatively high at the top of the broiler production pyramid. At broiler farms ESBL/AmpC producing E. coli were still present in the environment of the poultry house after cleaning and disinfection. Feed samples taken in the poultry house also became contaminated with ESBL/AmpC producing E. coli after one or more production weeks. The prevalence of ESBL/AmpC-positive birds at broiler farms increased within the first week from 0–24% to 96–100% independent of the use of antibiotics and stayed 100% until slaughter. In GPS breed A, prevalence at 2 days, 18 weeks and 31 weeks stayed below 50% except when beta-lactam antibiotics were administered. In that case prevalence increased to 100%. Interventions minimizing ESBL/AmpC contamination in broilers should focus on preventing horizontal and vertical spread, especially in relation to broiler production farms.
doi:10.1371/journal.pone.0079005
PMCID: PMC3820706  PMID: 24244401
25.  Evidence that Certain Clones of Campylobacter jejuni Persist during Successive Broiler Flock Rotations 
Through the national surveillance program for Campylobacter spp., nine broiler chicken farms that were infected with Campylobacter jejuni in at least five rotations in 1998 were identified. One additional farm, located at the island of Bornholm where divided slaughter is used extensively, was also selected. Twelve broiler houses located on 10 farms were included in the study. The C. jejuni isolates collected from the selected houses during the surveillance were typed using fla typing and macrorestriction profiling (MRP), and a subset of the isolates, representing each of the identified clones, was serotyped according to the Penner scheme. Pulsed-field gel electrophoresis typing using SmaI and KpnI revealed that the majority of houses (11 of 12) carried identical isolates in two or more broiler flocks. Such persistent clones were found in 63% of all flocks (47 of 75). The majority of persistent clones (7 of 13) had fla type 1/1, but MRPs distinguished between isolates from different houses, and fla type 1/1 clones belonged to different serotypes. Seven houses carried persistent clones that covered an interval of at least four broiler flock rotations, or at least one half year. The dominant fla type (1/1) was represented by 44% of isolates, or by at least one isolate from 31 of 62 broiler flocks. This significantly exceeded the prevalence of fla type 1/1 C. jejuni isolates that we have estimated from other studies and suggests that isolates carrying this fla type are overrepresented in flocks with recurrent Campylobacter problems. The MRPs of clones belonging to fla type 1/1 serotype O:2 isolated from persistently infected flocks shared a high percentage of bands compared to the remaining isolates, indicating that some clones that have the ability to cause persistent infections in broiler farms are highly related to each other.
doi:10.1128/AEM.67.6.2739-2745.2001
PMCID: PMC92933  PMID: 11375189

Results 1-25 (1308638)