Search tips
Search criteria

Results 1-25 (666511)

Clipboard (0)

Related Articles

1.  Dissecting the Functional Role of Key Residues in Triheme Cytochrome PpcA: A Path to Rational Design of G. sulfurreducens Strains with Enhanced Electron Transfer Capabilities 
PLoS ONE  2014;9(8):e105566.
PpcA is the most abundant member of a family of five triheme cytochromes c7 in the bacterium Geobacter sulfurreducens (Gs) and is the most likely carrier of electrons destined for outer surface during respiration on solid metal oxides, a process that requires extracellular electron transfer. This cytochrome has the highest content of lysine residues (24%) among the family, and it was suggested to be involved in e−/H+ energy transduction processes. In the present work, we investigated the functional role of lysine residues strategically located in the vicinity of each heme group. Each lysine was replaced by glutamine or glutamic acid to evaluate the effects of a neutral or negatively charged residue in each position. The results showed that replacing Lys9 (located near heme IV), Lys18 (near heme I) or Lys22 (between hemes I and III) has essentially no effect on the redox properties of the heme groups and are probably involved in redox partner recognition. On the other hand, Lys43 (near heme IV), Lys52 (between hemes III and IV) and Lys60 (near heme III) are crucial in the regulation of the functional mechanism of PpcA, namely in the selection of microstates that allow the protein to establish preferential e−/H+ transfer pathways. The results showed that the preferred e−/H+ transfer pathways are only established when heme III is the last heme to oxidize, a feature reinforced by a higher difference between its reduction potential and that of its predecessor in the order of oxidation. We also showed that K43 and K52 mutants keep the mechanistic features of PpcA by establishing preferential e−/H+ transfer pathways at lower reduction potential values than the wild-type protein, a property that can enable rational design of Gs strains with optimized extracellular electron transfer capabilities.
PMCID: PMC4143306  PMID: 25153891
2.  Role of Met58 in the regulation of electron/proton transfer in trihaem cytochrome PpcA from Geobacter sulfurreducens 
Bioscience Reports  2012;33(1):e00002.
The bacterium Gs (Geobacter sulfurreducens) is capable of oxidizing a large variety of compounds relaying electrons out of the cytoplasm and across the membranes in a process designated as extracellular electron transfer. The trihaem cytochrome PpcA is highly abundant in Gs and is most probably the reservoir of electrons destined for the outer surface. In addition to its role in electron transfer pathways, we have previously shown that this protein could perform e−/H+ energy transduction. This mechanism is achieved by selecting the specific redox states that the protein can access during the redox cycle and might be related to the formation of proton electrochemical potential gradient across the periplasmic membrane. The regulatory role of haem III in the functional mechanism of PpcA was probed by replacing Met58, a residue that controls the solvent accessibility of haem III, with serine, aspartic acid, asparagine or lysine. The data obtained from the mutants showed that the preferred e−/H+ transfer pathway observed for PpcA is strongly dependent on the reduction potential of haem III. It is striking to note that one residue can fine tune the redox states that can be accessed by the trihaem cytochrome enough to alter the functional pathways.
PMCID: PMC3522473  PMID: 23030844
electron transfer; Geobacter; multihaem cytochrome; NMR site-directed mutagenesis; EXSY, exchange spectroscopy; Gs, Geobacter sulfurreducens; HSQC, heteronuclear single-quantum coherence; NOESY, nuclear Overhauser enhancement spectroscopy; rmsd, root mean square deviation; 2D, two-dimensional
3.  An Inner Membrane Cytochrome Required Only for Reduction of High Redox Potential Extracellular Electron Acceptors 
mBio  2014;5(6):e02034-14.
Dissimilatory metal-reducing bacteria, such as Geobacter sulfurreducens, transfer electrons beyond their outer membranes to Fe(III) and Mn(IV) oxides, heavy metals, and electrodes in electrochemical devices. In the environment, metal acceptors exist in multiple chelated and insoluble forms that span a range of redox potentials and offer different amounts of available energy. Despite this, metal-reducing bacteria have not been shown to alter their electron transfer strategies to take advantage of these energy differences. Disruption of imcH, encoding an inner membrane c-type cytochrome, eliminated the ability of G. sulfurreducens to reduce Fe(III) citrate, Fe(III)-EDTA, and insoluble Mn(IV) oxides, electron acceptors with potentials greater than 0.1 V versus the standard hydrogen electrode (SHE), but the imcH mutant retained the ability to reduce Fe(III) oxides with potentials of ≤−0.1 V versus SHE. The imcH mutant failed to grow on electrodes poised at +0.24 V versus SHE, but switching electrodes to −0.1 V versus SHE triggered exponential growth. At potentials of ≤−0.1 V versus SHE, both the wild type and the imcH mutant doubled 60% slower than at higher potentials. Electrodes poised even 100 mV higher (0.0 V versus SHE) could not trigger imcH mutant growth. These results demonstrate that G. sulfurreducens possesses multiple respiratory pathways, that some of these pathways are in operation only after exposure to low redox potentials, and that electron flow can be coupled to generation of different amounts of energy for growth. The redox potentials that trigger these behaviors mirror those of metal acceptors common in subsurface environments where Geobacter is found.
Insoluble metal oxides in the environment represent a common and vast reservoir of energy for respiratory microbes capable of transferring electrons across their insulating membranes to external acceptors, a process termed extracellular electron transfer. Despite the global biogeochemical importance of metal cycling and the ability of such organisms to produce electricity at electrodes, fundamental gaps in the understanding of extracellular electron transfer biochemistry exist. Here, we describe a conserved inner membrane redox protein in Geobacter sulfurreducens which is required only for electron transfer to high-potential compounds, and we show that G. sulfurreducens has the ability to utilize different electron transfer pathways in response to the amount of energy available in a metal or electrode distant from the cell.
PMCID: PMC4251993  PMID: 25425235
4.  c-Type Cytochromes in Pelobacter carbinolicus▿  
Applied and Environmental Microbiology  2006;72(11):6980-6985.
Previous studies failed to detect c-type cytochromes in Pelobacter species despite the fact that other close relatives in the Geobacteraceae, such as Geobacter and Desulfuromonas species, have abundant c-type cytochromes. Analysis of the recently completed genome sequence of Pelobacter carbinolicus revealed 14 open reading frames that could encode c-type cytochromes. Transcripts for all but one of these open reading frames were detected in acetoin-fermenting and/or Fe(III)-reducing cells. Three putative c-type cytochrome genes were expressed specifically during Fe(III) reduction, suggesting that the encoded proteins may participate in electron transfer to Fe(III). One of these proteins was a periplasmic triheme cytochrome with a high level of similarity to PpcA, which has a role in Fe(III) reduction in Geobacter sulfurreducens. Genes for heme biosynthesis and system II cytochrome c biogenesis were identified in the genome and shown to be expressed. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels of protein extracted from acetoin-fermenting P. carbinolicus cells contained three heme-staining bands which were confirmed by mass spectrometry to be among the 14 predicted c-type cytochromes. The number of cytochrome genes, the predicted amount of heme c per protein, and the ratio of heme-stained protein to total protein were much smaller in P. carbinolicus than in G. sulfurreducens. Furthermore, many of the c-type cytochromes that genetic studies have indicated are required for optimal Fe(III) reduction in G. sulfurreducens were not present in the P. carbinolicus genome. These results suggest that further evaluation of the functions of c-type cytochromes in the Geobacteraceae is warranted.
PMCID: PMC1636167  PMID: 16936056
5.  Aromatic Amino Acids Required for Pili Conductivity and Long-Range Extracellular Electron Transport in Geobacter sulfurreducens 
mBio  2013;4(2):e00105-13.
It has been proposed that Geobacter sulfurreducens requires conductive pili for long-range electron transport to Fe(III) oxides and for high-density current production in microbial fuel cells. In order to investigate this further, we constructed a strain of G. sulfurreducens, designated Aro-5, which produced pili with diminished conductivity. This was accomplished by modifying the amino acid sequence of PilA, the structural pilin protein. An alanine was substituted for each of the five aromatic amino acids in the carboxyl terminus of PilA, the region in which G. sulfurreducens PilA differs most significantly from the PilAs of microorganisms incapable of long-range extracellular electron transport. Strain Aro-5 produced pili that were properly decorated with the multiheme c-type cytochrome OmcS, which is essential for Fe(III) oxide reduction. However, pili preparations of the Aro-5 strain had greatly diminished conductivity and Aro-5 cultures were severely limited in their capacity to reduce Fe(III) compared to the control strain. Current production of the Aro-5 strain, with a graphite anode serving as the electron acceptor, was less than 10% of that of the control strain. The conductivity of the Aro-5 biofilms was 10-fold lower than the control strain’s. These results demonstrate that the pili of G. sulfurreducens must be conductive in order for the cells to be effective in extracellular long-range electron transport.
Extracellular electron transfer by Geobacter species plays an important role in the biogeochemistry of soils and sediments and has a number of bioenergy applications. For example, microbial reduction of Fe(III) oxide is one of the most geochemically significant processes in anaerobic soils, aquatic sediments, and aquifers, and Geobacter organisms are often abundant in such environments. Geobacter sulfurreducens produces the highest current densities of any known pure culture, and close relatives are often the most abundant organisms colonizing anodes in microbial fuel cells that harvest electricity from wastewater or aquatic sediments. The finding that a strain of G. sulfurreducens that produces pili with low conductivity is limited in these extracellular electron transport functions provides further insight into these environmentally significant processes.
PMCID: PMC3604773  PMID: 23481602
6.  MacA is a Second Cytochrome c Peroxidase of Geobacter sulfurreducens 
Biochemistry  2012;51(13):2747-2756.
The metal-reducing δ-proteobacterium Geobacter sulfurreducens produces a large number of c-type cytochromes, many of which have been implicated in the transfer of electrons to insoluble metal oxides. Among these, the dihemic MacA was assigned a central role. Here we have produced G. sulfurreducens MacA by recombinant expression in Escherichia coli and have solved its three-dimensional structure in three different oxidation states. Sequence comparisons group MacA into the family of diheme cytochrome c peroxidases, and the protein indeed showed hydrogen peroxide reductase activity with ABTS2– as an electron donor. The observed KM was 38.5 ± 3.7 μM H2O2 and vmax was 0.78 ± 0.03 μmol H2O2·min–1·mg–1, resulting in a turnover number kcat = 0.46 · s–1. In contrast, no Fe(III) reductase activity was observed. MacA was found to display similar electrochemical properties to other bacterial diheme peroxidases, in additional to the ability to electrochemically mediate electron transfer to the soluble cytochrome PpcA. Differences in activity between CcpA and MacA can be rationalized with structural variations in one of the three loop regions, loop 2, that undergo conformational changes during reductive activation of the enzyme. This loop is adjacent to the active site heme and forms an open loop structure rather than a more rigid helix as in CcpA. For the activation of the protein the loop has to displace the distal ligand to the active site heme, H93, in loop 1. A H93G variant showed an unexpected formation of a helix in loop 2 and disorder in loop 1, while a M297H variant that altered the properties of the electron transfer heme abolished reductive activation.
PMCID: PMC3724352  PMID: 22417533
Bacterial cytochrome c peroxidases; Multiheme cytochromes; Mixed-valence state; Active-site loop; Conformational rearrangement; Protein crystallography
7.  A Periplasmic and Extracellular c-Type Cytochrome of Geobacter sulfurreducens Acts as a Ferric Iron Reductase and as an Electron Carrier to Other Acceptors or to Partner Bacteria 
Journal of Bacteriology  1998;180(14):3686-3691.
An extracellular electron carrier excreted into the growth medium by cells of Geobacter sulfurreducens was identified as a c-type cytochrome. The cytochrome was found to be distributed in about equal amounts in the membrane fraction, the periplasmic space, and the surrounding medium during all phases of growth with acetate plus fumarate. It was isolated from periplasmic preparations and purified to homogeneity by cation-exchange chromatography, gel filtration, and hydrophobic interaction chromatography. The electrophoretically homogeneous cytochrome had a molecular mass of 9.57 ± 0.02 kDa and exhibited in its reduced state absorption maxima at wavelengths of 552, 522, and 419 nm. The midpoint redox potential determined by redox titration was −0.167 V. With respect to molecular mass, redox properties, and molecular features, this cytochrome exhibited its highest similarity to the cytochromes c of Desulfovibrio salexigens and Desulfuromonas acetoxidans. The G. sulfurreducens cytochrome c reduced ferrihydrite (Fe(OH)3), Fe(III) nitrilotriacetic acid, Fe(III) citrate, and manganese dioxide at high rates. Elemental sulfur, anthraquinone disulfonate, and humic acids were reduced more slowly. G. sulfurreducens reduced the cytochrome with acetate as an electron donor and oxidized it with fumarate. Wolinella succinogenes was able to reduce externally provided cytochrome c of G. sulfurreducens with molecular hydrogen or formate as an electron donor and oxidized it with fumarate or nitrate as an electron acceptor. A coculture could be established in which G. sulfurreducens reduced the cytochrome with acetate, and the reduced cytochrome was reoxidized by W. succinogenes in the presence of nitrate. We conclude that this cytochrome can act as iron(III) reductase for electron transfer to insoluble iron hydroxides or to sulfur, manganese dioxide, or other oxidized compounds, and it can transfer electrons to partner bacteria.
PMCID: PMC107340  PMID: 9658015
8.  Evolution of electron transfer out of the cell: comparative genomics of six Geobacter genomes 
BMC Genomics  2010;11:40.
Geobacter species grow by transferring electrons out of the cell - either to Fe(III)-oxides or to man-made substances like energy-harvesting electrodes. Study of Geobacter sulfurreducens has shown that TCA cycle enzymes, inner-membrane respiratory enzymes, and periplasmic and outer-membrane cytochromes are required. Here we present comparative analysis of six Geobacter genomes, including species from the clade that predominates in the subsurface. Conservation of proteins across the genomes was determined to better understand the evolution of Geobacter species and to create a metabolic model applicable to subsurface environments.
The results showed that enzymes for acetate transport and oxidation, and for proton transport across the inner membrane were well conserved. An NADH dehydrogenase, the ATP synthase, and several TCA cycle enzymes were among the best conserved in the genomes. However, most of the cytochromes required for Fe(III)-reduction were not, including many of the outer-membrane cytochromes. While conservation of cytochromes was poor, an abundance and diversity of cytochromes were found in every genome, with duplications apparent in several species.
These results indicate there is a common pathway for acetate oxidation and energy generation across the family and in the last common ancestor. They also suggest that while cytochromes are important for extracellular electron transport, the path of electrons across the periplasm and outer membrane is variable. This combination of abundant cytochromes with weak sequence conservation suggests they may not be specific terminal reductases, but rather may be important in their heme-bearing capacity, as sinks for electrons between the inner-membrane electron transport chain and the extracellular acceptor.
PMCID: PMC2825233  PMID: 20078895
9.  Growth of Geobacter sulfurreducens with Acetate in Syntrophic Cooperation with Hydrogen-Oxidizing Anaerobic Partners 
Pure cultures of Geobacter sulfurreducens and other Fe(III)-reducing bacteria accumulated hydrogen to partial pressures of 5 to 70 Pa with acetate, butyrate, benzoate, ethanol, lactate, or glucose as the electron donor if electron release to an acceptor was limiting. G. sulfurreducens coupled acetate oxidation with electron transfer to an anaerobic partner bacterium in the absence of ferric iron or other electron acceptors. Cocultures of G. sulfurreducens and Wolinella succinogenes with nitrate as the electron acceptor degraded acetate efficiently and grew with doubling times of 6 to 8 h. The hydrogen partial pressures in these acetate-degrading cocultures were considerably lower, in the range of 0.02 to 0.04 Pa. From these values and the concentrations of the other reactants, it was calculated that in this cooperation the free energy change available to G. sulfurreducens should be about −53 kJ per mol of acetate oxidized, assuming complete conversion of acetate to CO2 and H2. However, growth yields (18.5 g of dry mass per mol of acetate for the coculture, about 14 g for G. sulfurreducens) indicated considerably higher energy gains. These yield data, measurement of hydrogen production rates, and calculation of the diffusive hydrogen flux indicated that electron transfer in these cocultures may not proceed exclusively via interspecies hydrogen transfer but may also proceed through an alternative carrier system with higher redox potential, e.g., a c-type cytochrome that was found to be excreted by G. sulfurreducens into the culture fluid. Syntrophic acetate degradation was also possible with G. sulfurreducens and Desulfovibrio desulfuricans CSN but only with nitrate as electron acceptor. These cultures produced cell yields of 4.5 g of dry mass per mol of acetate, to which both partners contributed at about equal rates. These results demonstrate that some Fe(III)-reducing bacteria can oxidize organic compounds under Fe(III) limitation with the production of hydrogen, and they provide the first example of rapid acetate oxidation via interspecies electron transfer at moderate temperature.
PMCID: PMC106304  PMID: 9603840
10.  Characterization of Metabolism in the Fe(III)-Reducing Organism Geobacter sulfurreducens by Constraint-Based Modeling†  
Geobacter sulfurreducens is a well-studied representative of the Geobacteraceae, which play a critical role in organic matter oxidation coupled to Fe(III) reduction, bioremediation of groundwater contaminated with organics or metals, and electricity production from waste organic matter. In order to investigate G. sulfurreducens central metabolism and electron transport, a metabolic model which integrated genome-based predictions with available genetic and physiological data was developed via the constraint-based modeling approach. Evaluation of the rates of proton production and consumption in the extracellular and cytoplasmic compartments revealed that energy conservation with extracellular electron acceptors, such as Fe(III), was limited relative to that associated with intracellular acceptors. This limitation was attributed to lack of cytoplasmic proton consumption during reduction of extracellular electron acceptors. Model-based analysis of the metabolic cost of producing an extracellular electron shuttle to promote electron transfer to insoluble Fe(III) oxides demonstrated why Geobacter species, which do not produce shuttles, have an energetic advantage over shuttle-producing Fe(III) reducers in subsurface environments. In silico analysis also revealed that the metabolic network of G. sulfurreducens could synthesize amino acids more efficiently than that of Escherichia coli due to the presence of a pyruvate-ferredoxin oxidoreductase, which catalyzes synthesis of pyruvate from acetate and carbon dioxide in a single step. In silico phenotypic analysis of deletion mutants demonstrated the capability of the model to explore the flexibility of G. sulfurreducens central metabolism and correctly predict mutant phenotypes. These results demonstrate that iterative modeling coupled with experimentation can accelerate the understanding of the physiology of poorly studied but environmentally relevant organisms and may help optimize their practical applications.
PMCID: PMC1392927  PMID: 16461711
11.  A novel Geobacteraceae-specific outer membrane protein J (OmpJ) is essential for electron transport to Fe (III) and Mn (IV) oxides in Geobacter sulfurreducens 
BMC Microbiology  2005;5:41.
Metal reduction is thought to take place at or near the bacterial outer membrane and, thus, outer membrane proteins in the model dissimilatory metal-reducing organism Geobacter sulfurreducens are of interest to understand the mechanisms of Fe(III) reduction in the Geobacter species that are the predominant Fe(III) reducers in many environments. Previous studies have implicated periplasmic and outer membrane cytochromes in electron transfer to metals. Here we show that the most abundant outer membrane protein of G. sulfurreducens, OmpJ, is not a cytochrome yet it is required for metal respiration.
When outer membrane proteins of G. sulfurreducens were separated via SDS-PAGE, one protein, designated OmpJ (outer membrane protein J), was particularly abundant. The encoding gene, which was identified from mass spectrometry analysis of peptide fragments, is present in other Geobacteraceae, but not in organisms outside this family. The predicted localization and structure of the OmpJ protein suggested that it was a porin. Deletion of the ompJ gene in G. sulfurreducens produced a strain that grew as well as the wild-type strain with fumarate as the electron acceptor but could not grow with metals, such as soluble or insoluble Fe (III) and insoluble Mn (IV) oxide, as the electron acceptor. The heme c content in the mutant strain was ca. 50% of the wild-type and there was a widespread loss of multiple cytochromes from soluble and membrane fractions. Transmission electron microscopy analyses of mutant cells revealed an unusually enlarged periplasm, which is likely to trigger extracytoplasmic stress response mechanisms leading to the degradation of periplasmic and/or outer membrane proteins, such as cytochromes, required for metal reduction. Thus, the loss of the capacity for extracellular electron transport in the mutant could be due to the missing c-type cytochromes, or some more direct, but as yet unknown, role of OmpJ in metal reduction.
OmpJ is a putative porin found in the outer membrane of the model metal reducer G. sulfurreducens that is required for respiration of extracellular electron acceptors such as soluble and insoluble metals. The effect of OmpJ in extracellular electron transfer is indirect, as OmpJ is required to keep the integrity of the periplasmic space necessary for proper folding and functioning of periplasmic and outer membrane electron transport components. The exclusive presence of ompJ in members of the Geobacteraceae family as well as its role in metal reduction suggest that the ompJ sequence may be useful in tracking the growth or activity of Geobacteraceae in sedimentary environments.
PMCID: PMC1186022  PMID: 16000176
12.  Genome-wide analysis of the RpoN regulon in Geobacter sulfurreducens 
BMC Genomics  2009;10:331.
The role of the RNA polymerase sigma factor RpoN in regulation of gene expression in Geobacter sulfurreducens was investigated to better understand transcriptional regulatory networks as part of an effort to develop regulatory modules for genome-scale in silico models, which can predict the physiological responses of Geobacter species during groundwater bioremediation or electricity production.
An rpoN deletion mutant could not be obtained under all conditions tested. In order to investigate the regulon of the G. sulfurreducens RpoN, an RpoN over-expression strain was made in which an extra copy of the rpoN gene was under the control of a taclac promoter. Combining both the microarray transcriptome analysis and the computational prediction revealed that the G. sulfurreducens RpoN controls genes involved in a wide range of cellular functions. Most importantly, RpoN controls the expression of the dcuB gene encoding the fumarate/succinate exchanger, which is essential for cell growth with fumarate as the terminal electron acceptor in G. sulfurreducens. RpoN also controls genes, which encode enzymes for both pathways of ammonia assimilation that is predicted to be essential under all growth conditions in G. sulfurreducens. Other genes that were identified as part of the RpoN regulon using either the computational prediction or the microarray transcriptome analysis included genes involved in flagella biosynthesis, pili biosynthesis and genes involved in central metabolism enzymes and cytochromes involved in extracellular electron transfer to Fe(III), which are known to be important for growth in subsurface environment or electricity production in microbial fuel cells. The consensus sequence for the predicted RpoN-regulated promoter elements is TTGGCACGGTTTTTGCT.
The G. sulfurreducens RpoN is an essential sigma factor and a global regulator involved in a complex transcriptional network controlling a variety of cellular processes.
PMCID: PMC2725144  PMID: 19624843
13.  Outer Cell Surface Components Essential for Fe(III) Oxide Reduction by Geobacter metallireducens 
Geobacter species are important Fe(III) reducers in a diversity of soils and sediments. Mechanisms for Fe(III) oxide reduction have been studied in detail in Geobacter sulfurreducens, but a number of the most thoroughly studied outer surface components of G. sulfurreducens, particularly c-type cytochromes, are not well conserved among Geobacter species. In order to identify cellular components potentially important for Fe(III) oxide reduction in Geobacter metallireducens, gene transcript abundance was compared in cells grown on Fe(III) oxide or soluble Fe(III) citrate with whole-genome microarrays. Outer-surface cytochromes were also identified. Deletion of genes for c-type cytochromes that had higher transcript abundance during growth on Fe(III) oxides and/or were detected in the outer-surface protein fraction identified six c-type cytochrome genes, that when deleted removed the capacity for Fe(III) oxide reduction. Several of the c-type cytochromes which were essential for Fe(III) oxide reduction in G. metallireducens have homologs in G. sulfurreducens that are not important for Fe(III) oxide reduction. Other genes essential for Fe(III) oxide reduction included a gene predicted to encode an NHL (Ncl-1–HT2A–Lin-41) repeat-containing protein and a gene potentially involved in pili glycosylation. Genes associated with flagellum-based motility, chemotaxis, and pili had higher transcript abundance during growth on Fe(III) oxide, consistent with the previously proposed importance of these components in Fe(III) oxide reduction. These results demonstrate that there are similarities in extracellular electron transfer between G. metallireducens and G. sulfurreducens but the outer-surface c-type cytochromes involved in Fe(III) oxide reduction are different.
PMCID: PMC3568551  PMID: 23183974
14.  Purification and Characterization of OmcZ, an Outer-Surface, Octaheme c-Type Cytochrome Essential for Optimal Current Production by Geobacter sulfurreducens▿ †  
Applied and Environmental Microbiology  2010;76(12):3999-4007.
Previous studies have demonstrated that Geobacter sulfurreducens requires the c-type cytochrome OmcZ, which is present in large (OmcZL; 50-kDa) and small (OmcZS; 30-kDa) forms, for optimal current production in microbial fuel cells. This protein was further characterized to aid in understanding its role in current production. Subcellular-localization studies suggested that OmcZS was the predominant extracellular form of OmcZ. N- and C-terminal amino acid sequence analysis of purified OmcZS and molecular weight measurements indicated that OmcZS is a cleaved product of OmcZL retaining all 8 hemes, including 1 heme with the unusual c-type heme-binding motif CX14CH. The purified OmcZS was remarkably thermally stable (thermal-denaturing temperature, 94.2°C). Redox titration analysis revealed that the midpoint reduction potential of OmcZS is approximately −220 mV (versus the standard hydrogen electrode [SHE]) with nonequivalent heme groups that cover a large reduction potential range (−420 to −60 mV). OmcZS transferred electrons in vitro to a diversity of potential extracellular electron acceptors, such as Fe(III) citrate, U(VI), Cr(VI), Au(III), Mn(IV) oxide, and the humic substance analogue anthraquinone-2,6-disulfonate, but not Fe(III) oxide. The biochemical properties and extracellular localization of OmcZ suggest that it is well suited for promoting electron transfer in current-producing biofilms of G. sulfurreducens.
PMCID: PMC2893489  PMID: 20400562
15.  Molecular Dissection of Bacterial Nanowires 
mBio  2013;4(3):e00270-13.
The discovery of bacterial conductive structures, termed nanowires, has intrigued scientists for almost a decade. Nanowires enable bacteria to transfer electrons over micrometer distances to extracellular electron acceptors such as insoluble metal oxides or electrodes. Nanowires are pilus based and in Geobacter sulfurreducens are composed of the type IV pilin subunit PilA. Multiheme c-type cytochromes have been shown to attach to nanowire pili. Two hypotheses have been proposed for electron conduction in nanowires. The first (termed the metal-like conductivity or MLC hypothesis) claims that the pilus itself has the electron-conductive properties and the attached cytochromes mediate transfer to the final electron acceptor, whereas the second hypothesis (termed the superexchange conductivity or SEC hypothesis) suggests that electrons are “hopping” between heme groups in cytochromes closely aligned with the pilus as a scaffold. In their recent article in mBio, Vargas et al. [M. Vargas, N. S. Malvankar, P.-L. Tremblay, C. Leang, J. A. Smith, P. Patel, O. Snoeyenbos-West, K. P. Nevin, and D. R. Lovley, mBio 4(2):e00210-13, 2013] address this ambiguity through an analysis of strain Aro-5, a G. sulfurreducens PilA mutant lacking aromatic residues in the nonconserved portion of PilA. These residues were suspected of involvement in electron transport according to the MLC hypothesis. The G. sulfurreducens mutant had reduced conductive properties, lending important support to the MLC hypothesis. The data also highlight the need for further and more conclusive evidence for one or the other hypothesis.
PMCID: PMC3663193  PMID: 23653449
16.  Phenol Degradation in the Strictly Anaerobic Iron-Reducing Bacterium Geobacter metallireducens GS-15▿ †  
Applied and Environmental Microbiology  2009;75(12):3912-3919.
Information on anaerobic phenol metabolism by physiological groups of bacteria other than nitrate reducers is scarce. We investigated phenol degradation in the strictly anaerobic iron-reducing deltaproteobacterium Geobacter metallireducens GS-15 using metabolite, transcriptome, proteome, and enzyme analyses. The results showed that the initial steps of phenol degradation are accomplished by phenylphosphate synthase (encoded by pps genes) and phenylphosphate carboxylase (encoded by ppc genes) as known from Thauera aromatica, but they also revealed some distinct differences. The pps-ppc gene cluster identified in the genome is functional, as shown by transcription analysis. In contrast to T. aromatica, transcription of the pps- and ppc-like genes was induced not only during growth on phenol, but also during growth on benzoate. In contrast, proteins were detected only during growth on phenol, suggesting the existence of a posttranscriptional regulation mechanism for these initial steps. Phenylphosphate synthase and phenylphosphate carboxylase activities were detected in cell extracts. The carboxylase does not catalyze an isotope exchange reaction between 14CO2 and 4-hydroxybenzoate, which is characteristic of the T. aromatica enzyme. Whereas the enzyme of T. aromatica is encoded by ppcABCD, the pps-ppc gene cluster of G. metallireducens contains only a ppcB homologue. Nearby, but oriented in the opposite direction, is a ppcD homologue that is transcribed during growth on phenol. Genome analysis did not reveal obvious homologues of ppcA and ppcC, leaving open the question of whether these genes are dispensable for phenylphosphate carboxylase activity in G. metallireducens or are quite different from the Thauera counterparts and located elsewhere in the genome.
PMCID: PMC2698347  PMID: 19376902
17.  Abundance of the Multiheme c-Type Cytochrome OmcB Increases in Outer Biofilm Layers of Electrode-Grown Geobacter sulfurreducens 
PLoS ONE  2014;9(8):e104336.
When Geobacter sulfurreducens utilizes an electrode as its electron acceptor, cells embed themselves in a conductive biofilm tens of microns thick. While environmental conditions such as pH or redox potential have been shown to change close to the electrode, less is known about the response of G. sulfurreducens to growth in this biofilm environment. To investigate whether respiratory protein abundance varies with distance from the electrode, antibodies against an outer membrane multiheme cytochrome (OmcB) and cytoplasmic acetate kinase (AckA) were used to determine protein localization in slices spanning ∼25 µm-thick G. sulfurreducens biofilms growing on polished electrodes poised at +0.24 V (vs. Standard Hydrogen Electrode). Slices were immunogold labeled post-fixing, imaged via transmission electron microscopy, and digitally reassembled to create continuous images allowing subcellular location and abundance per cell to be quantified across an entire biofilm. OmcB was predominantly localized on cell membranes, and 3.6-fold more OmcB was detected on cells 10–20 µm distant from the electrode surface compared to inner layers (0–10 µm). In contrast, acetate kinase remained constant throughout the biofilm, and was always associated with the cell interior. This method for detecting proteins in intact conductive biofilms supports a model where the utilization of redox proteins changes with depth.
PMCID: PMC4121341  PMID: 25090411
18.  Outer Membrane c-Type Cytochromes Required for Fe(III) and Mn(IV) Oxide Reduction in Geobacter sulfurreducens 
Applied and Environmental Microbiology  2005;71(12):8634-8641.
The potential role of outer membrane proteins in electron transfer to insoluble Fe(III) oxides by Geobacter sulfurreducens was investigated because this organism is closely related to the Fe(III) oxide-reducing organisms that are predominant in many Fe(III)-reducing environments. Two of the most abundant proteins that were easily sheared from the outer surfaces of intact cells were c-type cytochromes. One, designated OmcS, has a molecular mass of ca. 50 kDa and is predicted to be an outer membrane hexaheme c-type cytochrome. Transcripts for omcS could be detected during growth on Fe(III) oxide, but not on soluble Fe(III) citrate. The omcS mRNA consisted primarily of a monocistronic transcript, and to a lesser extent, a longer transcript that also contained the downstream gene omcT, which is predicted to encode a second hexaheme outer membrane cytochrome with 62.6% amino acid sequence identity to OmcS. The other abundant c-type cytochrome sheared from the outer surface of G. sulfurreducens, designated OmcE, has a molecular mass of ca. 30 kDa and is predicted to be an outer membrane tetraheme c-type cytochrome. When either omcS or omcE was deleted, G. sulfurreducens could no longer reduce Fe(III) oxide but could still reduce soluble electron acceptors, including Fe(III) citrate. The mutants could reduce Fe(III) in Fe(III) oxide medium only if the Fe(III) chelator, nitrilotriacetic acid, or the electron shuttle, anthraquinone 2,6-disulfonate, was added. Expressing omcS or omcE in trans restored the capacity for Fe(III) oxide reduction. OmcT was not detected among the sheared proteins, and genetic studies indicated that G. sulfurreducens could not reduce Fe(III) oxide when omcT was expressed but OmcS was absent. In contrast, Fe(III) oxide was reduced when omcS was expressed in the absence of OmcT. These results suggest that OmcS and OmcE are involved in electron transfer to Fe(III) oxides in G. sulfurreducens. They also emphasize the importance of evaluating mechanisms for Fe(III) reduction with environmentally relevant Fe(III) oxide, rather than the more commonly utilized Fe(III) citrate, because additional electron transfer components are required for Fe(III) oxide reduction that are not required for Fe(III) citrate reduction.
PMCID: PMC1317342  PMID: 16332857
19.  Iron-Oxide Minerals Affect Extracellular Electron-Transfer Paths of Geobacter spp 
Microbes and Environments  2013;28(1):141-148.
Some bacteria utilize (semi)conductive iron-oxide minerals as conduits for extracellular electron transfer (EET) to distant, insoluble electron acceptors. A previous study demonstrated that microbe/mineral conductive networks are constructed in soil ecosystems, in which Geobacter spp. share dominant populations. In order to examine how (semi)conductive iron-oxide minerals affect EET paths of Geobacter spp., the present study grew five representative Geobacter strains on electrodes as the sole electron acceptors in the absence or presence of (semi)conductive iron oxides. It was found that iron-oxide minerals enhanced current generation by three Geobacter strains, while no effect was observed in another strain. Geobacter sulfurreducens was the only strain that generated substantial amounts of currents both in the presence and absence of the iron oxides. Microscopic, electrochemical and transcriptomic analyses of G. sulfurreducens disclosed that this strain constructed two distinct types of EET path; in the absence of iron-oxide minerals, bacterial biofilms rich in extracellular polymeric substances were constructed, while composite networks made of mineral particles and microbial cells (without polymeric substances) were developed in the presence of iron oxides. It was also found that uncharacterized c-type cytochromes were up-regulated in the presence of iron oxides that were different from those found in conductive biofilms. These results suggest the possibility that natural (semi)conductive minerals confer energetic and ecological advantages on Geobacter, facilitating their growth and survival in the natural environment.
PMCID: PMC4070692  PMID: 23363619
extracellular electron transfer; energy metabolism; microbial fuel cell; Geobacter; iron oxide
20.  Genomic analyses of bacterial porin-cytochrome gene clusters 
The porin-cytochrome (Pcc) protein complex is responsible for trans-outer membrane electron transfer during extracellular reduction of Fe(III) by the dissimilatory metal-reducing bacterium Geobacter sulfurreducens PCA. The identified and characterized Pcc complex of G. sulfurreducens PCA consists of a porin-like outer-membrane protein, a periplasmic 8-heme c-type cytochrome (c-Cyt) and an outer-membrane 12-heme c-Cyt, and the genes encoding the Pcc proteins are clustered in the same regions of genome (i.e., the pcc gene clusters) of G. sulfurreducens PCA. A survey of additionally microbial genomes has identified the pcc gene clusters in all sequenced Geobacter spp. and other bacteria from six different phyla, including Anaeromyxobacter dehalogenans 2CP-1, A. dehalogenans 2CP-C, Anaeromyxobacter sp. K, Candidatus Kuenenia stuttgartiensis, Denitrovibrio acetiphilus DSM 12809, Desulfurispirillum indicum S5, Desulfurivibrio alkaliphilus AHT2, Desulfurobacterium thermolithotrophum DSM 11699, Desulfuromonas acetoxidans DSM 684, Ignavibacterium album JCM 16511, and Thermovibrio ammonificans HB-1. The numbers of genes in the pcc gene clusters vary, ranging from two to nine. Similar to the metal-reducing (Mtr) gene clusters of other Fe(III)-reducing bacteria, such as Shewanella spp., additional genes that encode putative c-Cyts with predicted cellular localizations at the cytoplasmic membrane, periplasm and outer membrane often associate with the pcc gene clusters. This suggests that the Pcc-associated c-Cyts may be part of the pathways for extracellular electron transfer reactions. The presence of pcc gene clusters in the microorganisms that do not reduce solid-phase Fe(III) and Mn(IV) oxides, such as D. alkaliphilus AHT2 and I. album JCM 16511, also suggests that some of the pcc gene clusters may be involved in extracellular electron transfer reactions with the substrates other than Fe(III) and Mn(IV) oxides.
PMCID: PMC4245776  PMID: 25505896
extracellular electron transfer; outer membrane; c-type cytochromes with multiple hemes; porin-cytochrome protein complex; metal reduction
21.  DNA Microarray and Proteomic Analyses of the RpoS Regulon in Geobacter sulfurreducens†  
Journal of Bacteriology  2006;188(8):2792-2800.
The regulon of the sigma factor RpoS was defined in Geobacter sulfurreducens by using a combination of DNA microarray expression profiles and proteomics. An rpoS mutant was examined under steady-state conditions with acetate as an electron donor and fumarate as an electron acceptor and with additional transcriptional profiling using Fe(III) as an electron acceptor. Expression analysis revealed that RpoS acts as both a positive and negative regulator. Many of the RpoS-dependent genes determined play roles in energy metabolism, including the tricarboxylic acid cycle, signal transduction, transport, protein synthesis and degradation, and amino acid metabolism and transport. As expected, RpoS activated genes involved in oxidative stress resistance and adaptation to nutrient limitation. Transcription of the cytochrome c oxidase operon, necessary for G. sulfurreducens growth using oxygen as an electron acceptor, and expression of at least 13 c-type cytochromes, including one previously shown to participate in Fe(III) reduction (MacA), were RpoS dependent. Analysis of a subset of the rpoS mutant proteome indicated that 15 major protein species showed reproducible differences in abundance relative to those of the wild-type strain. Protein identification using mass spectrometry indicated that the expression of seven of these proteins correlated with the microarray data. Collectively, these results indicate that RpoS exerts global effects on G. sulfurreducens physiology and that RpoS is vital to G. sulfurreducens survival under conditions typically encountered in its native subsurface environments.
PMCID: PMC1446979  PMID: 16585740
22.  Measurement of cytochrome oxidase and mitochondrial energetics by near-infrared spectroscopy. 
Cytochrome oxidase is the terminal electron acceptor of the mitochondrial respiratory chain. It is responsible for the vast majority of oxygen consumption in the body and essential for the efficient generation of cellular ATP. The enzyme contains four redox active metal centres; one of these, the binuclear CuA centre, has a strong absorbance in the near-infrared that enables it to be detectable in vivo by near-infrared spectroscopy. However, the fact that the concentration of this centre is less than 10% of that of haemoglobin means that its detection is not a trivial matter. Unlike the case with deoxyhaemoglobin and oxyhaemoglobin, concentration changes of the total cytochrome oxidase protein occur very slowly (over days) and are therefore not easily detectable by near-infrared spectroscopy. However, the copper centre rapidly accepts and donates an electron, and can thus change its redox state quickly; this redox change is detectable by near-infrared spectroscopy. Many factors can affect the CuA redox state in vivo (Cooper et al. 1994), but most significant is likely to be the molecular oxygen concentration (at low oxygen tensions, electrons build up on CuA as reduction of oxygen by the enzyme starts to limit the steady-state rate of electron transfer). The factors underlying haemoglobin oxygenation, deoxygenation and blood volume changes are, in general, well understood by the clinicians and physiologists who perform near-infrared spectroscopy measurements. In contrast, the factors that control the steady-state redox level of CuA in cytochrome oxidase are still a matter of active debate, even amongst biochemists studying the isolated enzyme and mitochondria. Coupled with the difficulties of accurate in vivo measurements it is perhaps not surprising that the field of cytochrome oxidase near-infrared spectroscopy has a somewhat chequered past. Too often papers have been written with insufficient information to enable the measurements to be repeated and few attempts have been made to test the algorithms in vivo. In recent years a number of research groups and commercial spectrometer manufacturers have made a concerted attempt to not only say how they are attempting to measure cytochrome oxidase by near-infrared spectroscopy but also to demonstrate that they are really doing so. We applaud these attempts, which in general fall into three areas: first, modelling of data can be performed to determine what problems are likely to derail cytochrome oxidase detection algorithms (Matcher et al. 1995); secondly haemoglobin concentration changes can be made by haemodilution (using saline or artificial blood substitutes) in animals (Tamura 1993) or patients (Skov & Greisen 1994); and thirdly, the cytochrome oxidase redox state can be fixed by the use of mitochondrial inhibitors and then attempts make to cause spurious cytochrome changes by dramatically varying haemoglobin oxygenation, haemoglobin concentration and light scattering (Cooper et al. 1997). We have previously written reviews covering the difficulties of measuring the cytochrome near-infrared spectroscopy signal in vivo (Cooper et al. 1997) and the factors affecting the oxidation state of cytochrome oxidase CuA (Cooper et al. 1994). In this article we would like to strike a somewhat more optimistic note--we will stress the usefulness this measurement may have in the clinical environment, as well as describing conditions under which we can have confidence that we are measuring real changes in the CuA redox state.
PMCID: PMC1691958  PMID: 9232854
23.  Anode Biofilm Transcriptomics Reveals Outer Surface Components Essential for High Density Current Production in Geobacter sulfurreducens Fuel Cells 
PLoS ONE  2009;4(5):e5628.
The mechanisms by which Geobacter sulfurreducens transfers electrons through relatively thick (>50 µm) biofilms to electrodes acting as a sole electron acceptor were investigated. Biofilms of Geobacter sulfurreducens were grown either in flow-through systems with graphite anodes as the electron acceptor or on the same graphite surface, but with fumarate as the sole electron acceptor. Fumarate-grown biofilms were not immediately capable of significant current production, suggesting substantial physiological differences from current-producing biofilms. Microarray analysis revealed 13 genes in current-harvesting biofilms that had significantly higher transcript levels. The greatest increases were for pilA, the gene immediately downstream of pilA, and the genes for two outer c-type membrane cytochromes, OmcB and OmcZ. Down-regulated genes included the genes for the outer-membrane c-type cytochromes, OmcS and OmcT. Results of quantitative RT-PCR of gene transcript levels during biofilm growth were consistent with microarray results. OmcZ and the outer-surface c-type cytochrome, OmcE, were more abundant and OmcS was less abundant in current-harvesting cells. Strains in which pilA, the gene immediately downstream from pilA, omcB, omcS, omcE, or omcZ was deleted demonstrated that only deletion of pilA or omcZ severely inhibited current production and biofilm formation in current-harvesting mode. In contrast, these gene deletions had no impact on biofilm formation on graphite surfaces when fumarate served as the electron acceptor. These results suggest that biofilms grown harvesting current are specifically poised for electron transfer to electrodes and that, in addition to pili, OmcZ is a key component in electron transfer through differentiated G. sulfurreducens biofilms to electrodes.
PMCID: PMC2680965  PMID: 19461962
24.  Going Wireless: Fe(III) Oxide Reduction without Pili by Geobacter sulfurreducens Strain JS-1 
Applied and Environmental Microbiology  2014;80(14):4331-4340.
Previous studies have suggested that the conductive pili of Geobacter sulfurreducens are essential for extracellular electron transfer to Fe(III) oxides and for optimal long-range electron transport through current-producing biofilms. The KN400 strain of G. sulfurreducens reduces poorly crystalline Fe(III) oxide more rapidly than the more extensively studied DL-1 strain. Deletion of the gene encoding PilA, the structural pilin protein, in strain KN400 inhibited Fe(III) oxide reduction. However, low rates of Fe(III) reduction were detected after extended incubation (>30 days) in the presence of Fe(III) oxide. After seven consecutive transfers, the PilA-deficient strain adapted to reduce Fe(III) oxide as fast as the wild type. Microarray, whole-genome resequencing, proteomic, and gene deletion studies indicated that this adaptation was associated with the production of larger amounts of the c-type cytochrome PgcA, which was released into the culture medium. It is proposed that the extracellular cytochrome acts as an electron shuttle, promoting electron transfer from the outer cell surface to Fe(III) oxides. The adapted PilA-deficient strain competed well with the wild-type strain when both were grown together on Fe(III) oxide. However, when 50% of the culture medium was replaced with fresh medium every 3 days, the wild-type strain outcompeted the adapted strain. A possible explanation for this is that the necessity to produce additional PgcA, to replace the PgcA being continually removed, put the adapted strain at a competitive disadvantage, similar to the apparent selection against electron shuttle-producing Fe(III) reducers in many anaerobic soils and sediments. Despite increased extracellular cytochrome production, the adapted PilA-deficient strain produced low levels of current, consistent with the concept that long-range electron transport through G. sulfurreducens biofilms is more effective via pili.
PMCID: PMC4068678  PMID: 24814783
25.  The Phosphoenolpyruvate Carboxylase from Methanothermobacter thermautotrophicus Has a Novel Structure 
Journal of Bacteriology  2004;186(15):5129-5137.
In Methanothermobacter thermautotrophicus, oxaloacetate synthesis is a major and essential CO2-fixation reaction. This methanogenic archaeon possesses two oxaloacetate-synthesizing enzymes, pyruvate carboxylase and phosphoenolpyruvate carboxylase. The phosphoenolpyruvate carboxylase from this organism was purified to homogeneity. The subunit size of this homotetrameric protein was 55 kDa, which is about half that of all known bacterial and eukaryotic phosphoenolpyruvate carboxylases (PPCs). The NH2-terminal sequence identified this enzyme as the product of MTH943, an open reading frame with no assigned function in the genome sequence. A BLAST search did not show an obvious sequence similarity between MTH943 and known PPCs, which are generally well conserved. This is the first report of a new type of phosphoenolpyruvate carboxylase that we call PpcA (“A” for “archaeal”). Homologs to PpcA were present in most archaeal genomic sequences, but only in three bacterial (Clostridium perfringens, Oenococcus oeni, and Leuconostoc mesenteroides) and no eukaryotic genomes. PpcA was the only recognizable oxaloacetate-producing enzyme in Methanopyrus kandleri, a hydrothermal vent organism. Each PpcA-containing organism lacked a PPC homolog. The activity of M. thermautotrophicus PpcA was not influenced by acetyl coenzyme A and was about 50 times less sensitive to aspartate than the Escherichia coli PPC. The catalytic core (including His138, Arg587, and Gly883) of the E. coli PPC was partly conserved in PpcA, but three of four aspartate-binding residues (Lys773, Arg832, and Asn881) were not. PPCs probably evolved from PpcA through a process that added allosteric sites to the enzyme. The reverse is also equally possible.
PMCID: PMC451628  PMID: 15262949

Results 1-25 (666511)