# Related Articles

Collaborative double robust targeted maximum likelihood estimators represent a fundamental further advance over standard targeted maximum likelihood estimators of a pathwise differentiable parameter of a data generating distribution in a semiparametric model, introduced in van der Laan, Rubin (2006). The targeted maximum likelihood approach involves fluctuating an initial estimate of a relevant factor (Q) of the density of the observed data, in order to make a bias/variance tradeoff targeted towards the parameter of interest. The fluctuation involves estimation of a nuisance parameter portion of the likelihood, g. TMLE has been shown to be consistent and asymptotically normally distributed (CAN) under regularity conditions, when either one of these two factors of the likelihood of the data is correctly specified, and it is semiparametric efficient if both are correctly specified.

In this article we provide a template for applying collaborative targeted maximum likelihood estimation (C-TMLE) to the estimation of pathwise differentiable parameters in semi-parametric models. The procedure creates a sequence of candidate targeted maximum likelihood estimators based on an initial estimate for Q coupled with a succession of increasingly non-parametric estimates for g. In a departure from current state of the art nuisance parameter estimation, C-TMLE estimates of g are constructed based on a loss function for the targeted maximum likelihood estimator of the relevant factor Q that uses the nuisance parameter to carry out the fluctuation, instead of a loss function for the nuisance parameter itself. Likelihood-based cross-validation is used to select the best estimator among all candidate TMLE estimators of Q0 in this sequence. A penalized-likelihood loss function for Q is suggested when the parameter of interest is borderline-identifiable.

We present theoretical results for “collaborative double robustness,” demonstrating that the collaborative targeted maximum likelihood estimator is CAN even when Q and g are both mis-specified, providing that g solves a specified score equation implied by the difference between the Q and the true Q0. This marks an improvement over the current definition of double robustness in the estimating equation literature.

We also establish an asymptotic linearity theorem for the C-DR-TMLE of the target parameter, showing that the C-DR-TMLE is more adaptive to the truth, and, as a consequence, can even be super efficient if the first stage density estimator does an excellent job itself with respect to the target parameter.

This research provides a template for targeted efficient and robust loss-based learning of a particular target feature of the probability distribution of the data within large (infinite dimensional) semi-parametric models, while still providing statistical inference in terms of confidence intervals and p-values. This research also breaks with a taboo (e.g., in the propensity score literature in the field of causal inference) on using the relevant part of likelihood to fine-tune the fitting of the nuisance parameter/censoring mechanism/treatment mechanism.

doi:10.2202/1557-4679.1181

PMCID: PMC2898626
PMID: 20628637

asymptotic linearity; coarsening at random; causal effect; censored data; crossvalidation; collaborative double robust; double robust; efficient influence curve; estimating function; estimator selection; influence curve; G-computation; locally efficient; loss-function; marginal structural model; maximum likelihood estimation; model selection; pathwise derivative; semiparametric model; sieve; super efficiency; super-learning; targeted maximum likelihood estimation; targeted nuisance parameter estimator selection; variable importance

Objectives

To compare the performance of a targeted maximum likelihood estimator (TMLE) and a collaborative TMLE (CTMLE) to other estimators in a drug safety analysis, including a regression-based estimator, propensity score (PS)–based estimators, and an alternate doubly robust (DR) estimator in a real example and simulations.

Study Design and Setting

The real data set is a subset of observational data from Kaiser Permanente Northern California formatted for use in active drug safety surveillance. Both the real and simulated data sets include potential confounders, a treatment variable indicating use of one of two antidiabetic treatments and an outcome variable indicating occurrence of an acute myocardial infarction (AMI).

Results

In the real data example, there is no difference in AMI rates between treatments. In simulations, the double robustness property is demonstrated: DR estimators are consistent if either the initial outcome regression or PS estimator is consistent, whereas other estimators are inconsistent if the initial estimator is not consistent. In simulations with near-positivity violations, CTMLE performs well relative to other estimators by adaptively estimating the PS.

Conclusion

Each of the DR estimators was consistent, and TMLE and CTMLE had the smallest mean squared error in simulations.

doi:10.1016/j.jclinepi.2013.02.017

PMCID: PMC3818128
PMID: 23849159

Safety analysis; Targeted maximum likelihood estimation; Doubly robust; Causal inference; Collaborative targeted maximum likelihood estimation; Super learning

Targeted maximum likelihood estimation of a parameter of a data generating distribution, known to be an element of a semi-parametric model, involves constructing a parametric model through an initial density estimator with parameter ɛ representing an amount of fluctuation of the initial density estimator, where the score of this fluctuation model at ɛ = 0 equals the efficient influence curve/canonical gradient. The latter constraint can be satisfied by many parametric fluctuation models since it represents only a local constraint of its behavior at zero fluctuation. However, it is very important that the fluctuations stay within the semi-parametric model for the observed data distribution, even if the parameter can be defined on fluctuations that fall outside the assumed observed data model. In particular, in the context of sparse data, by which we mean situations where the Fisher information is low, a violation of this property can heavily affect the performance of the estimator. This paper presents a fluctuation approach that guarantees the fluctuated density estimator remains inside the bounds of the data model. We demonstrate this in the context of estimation of a causal effect of a binary treatment on a continuous outcome that is bounded. It results in a targeted maximum likelihood estimator that inherently respects known bounds, and consequently is more robust in sparse data situations than the targeted MLE using a naive fluctuation model.

When an estimation procedure incorporates weights, observations having large weights relative to the rest heavily influence the point estimate and inflate the variance. Truncating these weights is a common approach to reducing the variance, but it can also introduce bias into the estimate. We present an alternative targeted maximum likelihood estimation (TMLE) approach that dampens the effect of these heavily weighted observations. As a substitution estimator, TMLE respects the global constraints of the observed data model. For example, when outcomes are binary, a fluctuation of an initial density estimate on the logit scale constrains predicted probabilities to be between 0 and 1. This inherent enforcement of bounds has been extended to continuous outcomes. Simulation study results indicate that this approach is on a par with, and many times superior to, fluctuating on the linear scale, and in particular is more robust when there is sparsity in the data.

doi:10.2202/1557-4679.1260

PMCID: PMC3126669
PMID: 21731529

targeted maximum likelihood estimation; TMLE; causal effect

A concrete example of the collaborative double-robust targeted likelihood estimator (C-TMLE) introduced in a companion article in this issue is presented, and applied to the estimation of causal effects and variable importance parameters in genomic data. The focus is on non-parametric estimation in a point treatment data structure. Simulations illustrate the performance of C-TMLE relative to current competitors such as the augmented inverse probability of treatment weighted estimator that relies on an external non-collaborative estimator of the treatment mechanism, and inefficient estimation procedures including propensity score matching and standard inverse probability of treatment weighting. C-TMLE is also applied to the estimation of the covariate-adjusted marginal effect of individual HIV mutations on resistance to the anti-retroviral drug lopinavir. The influence curve of the C-TMLE is used to establish asymptotically valid statistical inference. The list of mutations found to have a statistically significant association with resistance is in excellent agreement with mutation scores provided by the Stanford HIVdb mutation scores database.

doi:10.2202/1557-4679.1182

PMCID: PMC3126668
PMID: 21731530

causal effect; cross-validation; collaborative double robust; double robust; efficient influence curve; penalized likelihood; penalization; estimator selection; locally efficient; maximum likelihood estimation; model selection; super efficiency; super learning; targeted maximum likelihood estimation; targeted nuisance parameter estimator selection; variable importance

Background

When a large number of candidate variables are present, a dimension reduction procedure is usually conducted to reduce the variable space before the subsequent analysis is carried out. The goal of dimension reduction is to find a list of candidate genes with a more operable length ideally including all the relevant genes. Leaving many uninformative genes in the analysis can lead to biased estimates and reduced power. Therefore, dimension reduction is often considered a necessary predecessor of the analysis because it can not only reduce the cost of handling numerous variables, but also has the potential to improve the performance of the downstream analysis algorithms.

Results

We propose a TMLE-VIM dimension reduction procedure based on the variable importance measurement (VIM) in the frame work of targeted maximum likelihood estimation (TMLE). TMLE is an extension of maximum likelihood estimation targeting the parameter of interest. TMLE-VIM is a two-stage procedure. The first stage resorts to a machine learning algorithm, and the second step improves the first stage estimation with respect to the parameter of interest.

Conclusions

We demonstrate with simulations and data analyses that our approach not only enjoys the prediction power of machine learning algorithms, but also accounts for the correlation structures among variables and therefore produces better variable rankings. When utilized in dimension reduction, TMLE-VIM can help to obtain the shortest possible list with the most truly associated variables.

doi:10.1186/1471-2105-12-312

PMCID: PMC3166941
PMID: 21849016

The PROmotion of Breastfeeding Intervention Trial (PROBIT) cluster-randomized a program encouraging breastfeeding to new mothers in hospital centers. The original studies indicated that this intervention successfully increased duration of breastfeeding and lowered rates of gastrointestinal tract infections in newborns. Additional scientific and popular interest lies in determining the causal effect of longer breastfeeding on gastrointestinal infection. In this study, we estimate the expected infection count under various lengths of breastfeeding in order to estimate the effect of breastfeeding duration on infection. Due to the presence of baseline and time-dependent confounding, specialized “causal” estimation methods are required. We demonstrate the double-robust method of Targeted Maximum Likelihood Estimation (TMLE) in the context of this application and review some related methods and the adjustments required to account for clustering. We compare TMLE (implemented both parametrically and using a data-adaptive algorithm) to other causal methods for this example. In addition, we conduct a simulation study to determine (1) the effectiveness of controlling for clustering indicators when cluster-specific confounders are unmeasured and (2) the importance of using data-adaptive TMLE.

PMCID: PMC4259272
PMID: 25505499

Causal inference; G-computation; inverse probability weighting; marginal effects; missing data; pediatrics

Summary

Despite modern effective HIV treatment, hepatitis C virus (HCV) co-infection is associated with a high risk of progression to end-stage liver disease (ESLD) which has emerged as the primary cause of death in this population. Clinical interest lies in determining the impact of clearance of HCV on risk for ESLD. In this case study, we examine whether HCV clearance affects risk of ESLD using data from the multicenter Canadian Co-infection Cohort Study. Complications in this survival analysis arise from the time-dependent nature of the data, the presence of baseline confounders, loss to follow-up, and confounders that change over time, all of which can obscure the causal effect of interest. Additional challenges included non-censoring variable missingness and event sparsity.

In order to efficiently estimate the ESLD-free survival probabilities under a specific history of HCV clearance, we demonstrate the doubly-robust and semiparametric efficient method of Targeted Maximum Likelihood Estimation (TMLE). Marginal structural models (MSM) can be used to model the effect of viral clearance (expressed as a hazard ratio) on ESLD-free survival and we demonstrate a way to estimate the parameters of a logistic model for the hazard function with TMLE. We show the theoretical derivation of the efficient influence curves for the parameters of two different MSMs and how they can be used to produce variance approximations for parameter estimates. Finally, the data analysis evaluating the impact of HCV on ESLD was undertaken using multiple imputations to account for the non-monotone missing data.

doi:10.1111/biom.12105

PMCID: PMC3954273
PMID: 24571372

Double-robust; Inverse probability of treatment weighting; Kaplan-Meier; Longitudinal data; Marginal structural model; Survival analysis; Targeted maximum likelihood estimation

SUMMARY

Estimating the causal effect of an intervention on a population typically involves defining parameters in a nonparametric structural equation model (Pearl, 2000, Causality: Models, Reasoning, and Inference) in which the treatment or exposure is deterministically assigned in a static or dynamic way. We define a new causal parameter that takes into account the fact that intervention policies can result in stochastically assigned exposures. The statistical parameter that identifies the causal parameter of interest is established. Inverse probability of treatment weighting (IPTW), augmented IPTW (A-IPTW), and targeted maximum likelihood estimators (TMLE) are developed. A simulation study is performed to demonstrate the properties of these estimators, which include the double robustness of the A-IPTW and the TMLE. An application example using physical activity data is presented.

doi:10.1111/j.1541-0420.2011.01685.x

PMCID: PMC4117410
PMID: 21977966

Causal effect; Counterfactual outcome; Double robustness; Stochastic intervention; Targeted maximum likelihood estimation

SUMMARY

Covariate adjustment using linear models for continuous outcomes in randomized trials has been shown to increase efficiency and power over the unadjusted method in estimating the marginal effect of treatment. However, for binary outcomes, investigators generally rely on the unadjusted estimate as the literature indicates that covariate-adjusted estimates based on the logistic regression models are less efficient. The crucial step that has been missing when adjusting for covariates is that one must integrate/average the adjusted estimate over those covariates in order to obtain the marginal effect. We apply the method of targeted maximum likelihood estimation (tMLE) to obtain estimators for the marginal effect using covariate adjustment for binary outcomes. We show that the covariate adjustment in randomized trials using the logistic regression models can be mapped, by averaging over the covariate(s), to obtain a fully robust and efficient estimator of the marginal effect, which equals a targeted maximum likelihood estimator. This tMLE is obtained by simply adding a clever covariate to a fixed initial regression. We present simulation studies that demonstrate that this tMLE increases efficiency and power over the unadjusted method, particularly for smaller sample sizes, even when the regression model is mis-specified.

doi:10.1002/sim.3445

PMCID: PMC2857590
PMID: 18985634

clinical trails; efficiency; covariate adjustment; variable selection

We consider two-stage sampling designs, including so-called nested case control studies, where one takes a random sample from a target population and completes measurements on each subject in the first stage. The second stage involves drawing a subsample from the original sample, collecting additional data on the subsample. This data structure can be viewed as a missing data structure on the full-data structure collected in the second-stage of the study. Methods for analyzing two-stage designs include parametric maximum likelihood estimation and estimating equation methodology. We propose an inverse probability of censoring weighted targeted maximum likelihood estimator (IPCW-TMLE) in two-stage sampling designs and present simulation studies featuring this estimator.

doi:10.2202/1557-4679.1217

PMCID: PMC3083136
PMID: 21556285

two-stage designs; targeted maximum likelihood estimators; nested case control studies; double robust estimation

The Cox proportional hazards model or its discrete time analogue, the logistic failure time model, posit highly restrictive parametric models and attempt to estimate parameters which are specific to the model proposed. These methods are typically implemented when assessing effect modification in survival analyses despite their flaws. The targeted maximum likelihood estimation (TMLE) methodology is more robust than the methods typically implemented and allows practitioners to estimate parameters that directly answer the question of interest. TMLE will be used in this paper to estimate two newly proposed parameters of interest that quantify effect modification in the time to event setting. These methods are then applied to the Tshepo study to assess if either gender or baseline CD4 level modify the effect of two cART therapies of interest, efavirenz (EFV) and nevirapine (NVP), on the progression of HIV. The results show that women tend to have more favorable outcomes using EFV while males tend to have more favorable outcomes with NVP. Furthermore, EFV tends to be favorable compared to NVP for individuals at high CD4 levels.

doi:10.2202/1557-4679.1307

PMCID: PMC3083138
PMID: 21556287

causal effect; semi-parametric; censored longitudinal data; double robust; efficient influence curve; influence curve; G-computation; Targeted Maximum Likelihood Estimation; Cox-proportional hazards; survival analysis

Summary

Most randomized efficacy trials of interventions to prevent HIV or other infectious diseases have assessed intervention efficacy by a method that either does not incorporate baseline covariates, or that incorporates them in a non-robust or inefficient way. Yet, it has long been known that randomized treatment effects can be assessed with greater efficiency by incorporating baseline covariates that predict the response variable. Tsiatis et al. (2007) and Zhang et al. (2008) advocated a semiparametric efficient approach, based on the theory of Robins et al. (1994), for consistently estimating randomized treatment effects that optimally incorporates predictive baseline covariates, without any parametric assumptions. They stressed the objectivity of the approach, which is achieved by separating the modeling of baseline predictors from the estimation of the treatment effect. While their work adequately justifies implementation of the method for large Phase 3 trials (because its optimality is in terms of asymptotic properties), its performance for intermediate-sized screening Phase 2b efficacy trials, which are increasing in frequency, is unknown. Furthermore, the past work did not consider a right-censored time-to-event endpoint, which is the usual primary endpoint for a prevention trial. For Phase 2b HIV vaccine efficacy trials, we study finite-sample performance of Zhang et al.'s (2008) method for a dichotomous endpoint, and develop and study an adaptation of this method to a discrete right-censored time-to-event endpoint. We show that, given the predictive capacity of baseline covariates collected in real HIV prevention trials, the methods achieve 5-15% gains in efficiency compared to methods in current use. We apply the methods to the first HIV vaccine efficacy trial. This work supports implementation of the discrete failure time method for prevention trials.

doi:10.2202/1948-4690.1002

PMCID: PMC2997740
PMID: 21152074

Auxiliary; Covariate Adjustment; Intermediate-sized Phase 2b Efficacy Trial; Semiparametric Efficiency

Summary

The natural direct effect (NDE), or the effect of an exposure on an outcome if an
intermediate variable was set to the level it would have been in the absence of the exposure, is
often of interest to investigators. In general, the statistical parameter associated with the NDE is
difficult to estimate in the non-parametric model, particularly when the intermediate variable is
continuous or high dimensional. In this paper we introduce a new causal parameter called the natural
direct effect among the untreated, discus identifiability assumptions, propose a sensitivity
analysis for some of the assumptions, and show that this new parameter is equivalent to the NDE in a
randomized controlled trial. We also present a targeted minimum loss estimator (TMLE), a locally
efficient, double robust substitution estimator for the statistical parameter associated with this
causal parameter. The TMLE can be applied to problems with continuous and high dimensional
intermediate variables, and can be used to estimate the NDE in a randomized controlled trial with
such data. Additionally, we define and discuss the estimation of three related causal parameters:
the natural direct effect among the treated, the indirect effect among the untreated and the
indirect effect among the treated.

doi:10.1111/biom.12022

PMCID: PMC3692606
PMID: 23607645

Causal inference; direct effect; indirect effect; mediation analysis; semiparametric models; targeted minimum loss estimation

Theory on semiparametric efficient estimation in missing data problems has been systematically developed by Robins and his coauthors. Except in relatively simple problems, semiparametric efficient scores cannot be expressed in closed forms. Instead, the efficient scores are often expressed as solutions to integral equations. Neumann series was proposed in the form of successive approximation to the efficient scores in those situations. Statistical properties of the estimator based on the Neumann series approximation are difficult to obtain and as a result, have not been clearly studied. In this paper, we reformulate the successive approximation in a simple iterative form and study the statistical properties of the estimator based on the reformulation. We show that a doubly-robust locally-efficient estimator can be obtained following the algorithm in robustifying the likelihood score. The results can be applied to, among others, the parametric regression, the marginal regression, and the Cox regression when data are subject to missing values and the missing data are missing at random. A simulation study is conducted to evaluate the performance of the approach and a real data example is analyzed to demonstrate the use of the approach.

doi:10.1111/j.1467-9469.2009.00646.x

PMCID: PMC2811346
PMID: 20161609

auxiliary covariates; information operator; non-monotone missing pattern; weighted estimating equations

Background

Bayesian phylogenetic inference holds promise as an alternative to maximum likelihood, particularly for large molecular-sequence data sets. We have investigated the performance of Bayesian inference with empirical and simulated protein-sequence data under conditions of relative branch-length differences and model violation.

Results

With empirical protein-sequence data, Bayesian posterior probabilities provide more-generous estimates of subtree reliability than does the nonparametric bootstrap combined with maximum likelihood inference, reaching 100% posterior probability at bootstrap proportions around 80%. With simulated 7-taxon protein-sequence datasets, Bayesian posterior probabilities are somewhat more generous than bootstrap proportions, but do not saturate. Compared with likelihood, Bayesian phylogenetic inference can be as or more robust to relative branch-length differences for datasets of this size, particularly when among-sites rate variation is modeled using a gamma distribution. When the (known) correct model was used to infer trees, Bayesian inference recovered the (known) correct tree in 100% of instances in which one or two branches were up to 20-fold longer than the others. At ratios more extreme than 20-fold, topological accuracy of reconstruction degraded only slowly when only one branch was of relatively greater length, but more rapidly when there were two such branches. Under an incorrect model of sequence change, inaccurate trees were sometimes observed at less extreme branch-length ratios, and (particularly for trees with single long branches) such trees tended to be more inaccurate. The effect of model violation on accuracy of reconstruction for trees with two long branches was more variable, but gamma-corrected Bayesian inference nonetheless yielded more-accurate trees than did either maximum likelihood or uncorrected Bayesian inference across the range of conditions we examined. Assuming an exponential Bayesian prior on branch lengths did not improve, and under certain extreme conditions significantly diminished, performance. The two topology-comparison metrics we employed, edit distance and Robinson-Foulds symmetric distance, yielded different but highly complementary measures of performance.

Conclusions

Our results demonstrate that Bayesian inference can be relatively robust against biologically reasonable levels of relative branch-length differences and model violation, and thus may provide a promising alternative to maximum likelihood for inference of phylogenetic trees from protein-sequence data.

doi:10.1186/1471-2148-5-8

PMCID: PMC549035
PMID: 15676079

Abstract

The Tshepo study was the first clinical trial to evaluate outcomes of adults receiving nevirapine (NVP)-based versus efavirenz (EFV)-based combination antiretroviral therapy (cART) in Botswana. This was a 3 year study (n=650) comparing the efficacy and tolerability of various first-line cART regimens, stratified by baseline CD4+: <200 (low) vs. 201-350 (high). Using targeted maximum likelihood estimation (TMLE), we retrospectively evaluated the causal effect of assigned NNRTI on time to virologic failure or death [intent-to-treat (ITT)] and time to minimum of virologic failure, death, or treatment modifying toxicity [time to loss of virological response (TLOVR)] by sex and baseline CD4+. Sex did significantly modify the effect of EFV versus NVP for both the ITT and TLOVR outcomes with risk differences in the probability of survival of males versus the females of approximately 6% (p=0.015) and 12% (p=0.001), respectively. Baseline CD4+ also modified the effect of EFV versus NVP for the TLOVR outcome, with a mean difference in survival probability of approximately 12% (p=0.023) in the high versus low CD4+ cell count group. TMLE appears to be an efficient technique that allows for the clinically meaningful delineation and interpretation of the causal effect of NNRTI treatment and effect modification by sex and baseline CD4+ cell count strata in this study. EFV-treated women and NVP-treated men had more favorable cART outcomes. In addition, adults initiating EFV-based cART at higher baseline CD4+ cell count values had more favorable outcomes compared to those initiating NVP-based cART.

doi:10.1089/aid.2011.0349

PMCID: PMC3423643
PMID: 22309114

Summary

In this article, we study the estimation of mean response and regression coefficient in semiparametric regression problems when response variable is subject to nonrandom missingness. When the missingness is independent of the response conditional on high-dimensional auxiliary information, the parametric approach may misspecify the relationship between covariates and response while the nonparametric approach is infeasible because of the curse of dimensionality. To overcome this, we study a model-based approach to condense the auxiliary information and estimate the parameters of interest nonparametrically on the condensed covariate space. Our estimators possess the double robustness property, i.e., they are consistent whenever the model for the response given auxiliary covariates or the model for the missingness given auxiliary covariate is correct. We conduct a number of simulations to compare the numerical performance between our estimators and other existing estimators in the current missing data literature, including the propensity score approach and the inverse probability weighted estimating equation. A set of real data is used to illustrate our approach.

doi:10.1111/j.1541-0420.2009.01231.x

PMCID: PMC3148802
PMID: 19432773

Auxiliary covariate; High-dimensional data; Kernel estimation; Missing at random; Semiparametric regression

In longitudinal and repeated measures data analysis, often the goal is to determine the effect of a treatment or aspect on a particular outcome (e.g., disease progression). We consider a semiparametric repeated measures regression model, where the parametric component models effect of the variable of interest and any modification by other covariates. The expectation of this parametric component over the other covariates is a measure of variable importance. Here, we present a targeted maximum likelihood estimator of the finite dimensional regression parameter, which is easily estimated using standard software for generalized estimating equations.

The targeted maximum likelihood method provides double robust and locally efficient estimates of the variable importance parameters and inference based on the influence curve. We demonstrate these properties through simulation under correct and incorrect model specification, and apply our method in practice to estimating the activity of transcription factor (TF) over cell cycle in yeast. We specifically target the importance of SWI4, SWI6, MBP1, MCM1, ACE2, FKH2, NDD1, and SWI5.

The semiparametric model allows us to determine the importance of a TF at specific time points by specifying time indicators as potential effect modifiers of the TF. Our results are promising, showing significant importance trends during the expected time periods. This methodology can also be used as a variable importance analysis tool to assess the effect of a large number of variables such as gene expressions or single nucleotide polymorphisms.

doi:10.2202/1544-6115.1553

PMCID: PMC3122882
PMID: 21291412

targeted maximum likelihood; semiparametric; repeated measures; longitudinal; transcription factors

SUMMARY

Length-biased sampling has been well recognized in economics, industrial reliability, etiology applications, epidemiological, genetic and cancer screening studies. Length-biased right-censored data have a unique data structure different from traditional survival data. The nonparametric and semiparametric estimations and inference methods for traditional survival data are not directly applicable for length-biased right-censored data. We propose new expectation-maximization algorithms for estimations based on full likelihoods involving infinite dimensional parameters under three settings for length-biased data: estimating nonparametric distribution function, estimating nonparametric hazard function under an increasing failure rate constraint, and jointly estimating baseline hazards function and the covariate coefficients under the Cox proportional hazards model. Extensive empirical simulation studies show that the maximum likelihood estimators perform well with moderate sample sizes and lead to more efficient estimators compared to the estimating equation approaches. The proposed estimates are also more robust to various right-censoring mechanisms. We prove the strong consistency properties of the estimators, and establish the asymptotic normality of the semi-parametric maximum likelihood estimators under the Cox model using modern empirical processes theory. We apply the proposed methods to a prevalent cohort medical study. Supplemental materials are available online.

doi:10.1198/jasa.2011.tm10156

PMCID: PMC3273908
PMID: 22323840

Cox regression model; EM algorithm; Increasing failure rate; Non-parametric likelihood; Profile likelihood; Right-censored data

In this paper, we are concerned with how to select significant variables in semiparametric modeling. Variable selection for semiparametric regression models consists of two components: model selection for nonparametric components and select significant variables for parametric portion. Thus, it is much more challenging than that for parametric models such as linear models and generalized linear models because traditional variable selection procedures including stepwise regression and the best subset selection require model selection to nonparametric components for each submodel. This leads to very heavy computational burden. In this paper, we propose a class of variable selection procedures for semiparametric regression models using nonconcave penalized likelihood. The newly proposed procedures are distinguished from the traditional ones in that they delete insignificant variables and estimate the coefficients of significant variables simultaneously. This allows us to establish the sampling properties of the resulting estimate. We first establish the rate of convergence of the resulting estimate. With proper choices of penalty functions and regularization parameters, we then establish the asymptotic normality of the resulting estimate, and further demonstrate that the proposed procedures perform as well as an oracle procedure. Semiparametric generalized likelihood ratio test is proposed to select significant variables in the nonparametric component. We investigate the asymptotic behavior of the proposed test and demonstrate its limiting null distribution follows a chi-squared distribution, which is independent of the nuisance parameters. Extensive Monte Carlo simulation studies are conducted to examine the finite sample performance of the proposed variable selection procedures.

doi:10.1214/009053607000000604

PMCID: PMC2605629
PMID: 19122808

Nonconcave penalized likelihood; SCAD; efficient score; local linear regression; partially linear model; varying coefficient models

Estimation of longitudinal data covariance structure poses significant challenges because the data are usually collected at irregular time points. A viable semiparametric model for covariance matrices was proposed in Fan, Huang and Li (2007) that allows one to estimate the variance function nonparametrically and to estimate the correlation function parametrically via aggregating information from irregular and sparse data points within each subject. However, the asymptotic properties of their quasi-maximum likelihood estimator (QMLE) of parameters in the covariance model are largely unknown. In the current work, we address this problem in the context of more general models for the conditional mean function including parametric, nonparametric, or semi-parametric. We also consider the possibility of rough mean regression function and introduce the difference-based method to reduce biases in the context of varying-coefficient partially linear mean regression models. This provides a more robust estimator of the covariance function under a wider range of situations. Under some technical conditions, consistency and asymptotic normality are obtained for the QMLE of the parameters in the correlation function. Simulation studies and a real data example are used to illustrate the proposed approach.

doi:10.1198/016214508000000742

PMCID: PMC2631936
PMID: 19180247

Correlation structure; difference-based estimation; quasi-maximum likelihood; varying-coefficient partially linear model

Given causal graph assumptions, intervention-specific counterfactual distributions of the data can be defined by the so called G-computation formula, which is obtained by carrying out these interventions on the likelihood of the data factorized according to the causal graph. The obtained G-computation formula represents the counterfactual distribution the data would have had if this intervention would have been enforced on the system generating the data. A causal effect of interest can now be defined as some difference between these counterfactual distributions indexed by different interventions. For example, the interventions can represent static treatment regimens or individualized treatment rules that assign treatment in response to time-dependent covariates, and the causal effects could be defined in terms of features of the mean of the treatment-regimen specific counterfactual outcome of interest as a function of the corresponding treatment regimens. Such features could be defined nonparametrically in terms of so called (nonparametric) marginal structural models for static or individualized treatment rules, whose parameters can be thought of as (smooth) summary measures of differences between the treatment regimen specific counterfactual distributions.

In this article, we develop a particular targeted maximum likelihood estimator of causal effects of multiple time point interventions. This involves the use of loss-based super-learning to obtain an initial estimate of the unknown factors of the G-computation formula, and subsequently, applying a target-parameter specific optimal fluctuation function (least favorable parametric submodel) to each estimated factor, estimating the fluctuation parameter(s) with maximum likelihood estimation, and iterating this updating step of the initial factor till convergence. This iterative targeted maximum likelihood updating step makes the resulting estimator of the causal effect double robust in the sense that it is consistent if either the initial estimator is consistent, or the estimator of the optimal fluctuation function is consistent. The optimal fluctuation function is correctly specified if the conditional distributions of the nodes in the causal graph one intervenes upon are correctly specified. The latter conditional distributions often comprise the so called treatment and censoring mechanism. Selection among different targeted maximum likelihood estimators (e.g., indexed by different initial estimators) can be based on loss-based cross-validation such as likelihood based cross-validation or cross-validation based on another appropriate loss function for the distribution of the data. Some specific loss functions are mentioned in this article.

Subsequently, a variety of interesting observations about this targeted maximum likelihood estimation procedure are made. This article provides the basis for the subsequent companion Part II-article in which concrete demonstrations for the implementation of the targeted MLE in complex causal effect estimation problems are provided.

doi:10.2202/1557-4679.1211

PMCID: PMC3126670
PMID: 20737021

causal effect; causal graph; censored data; cross-validation; collaborative double robust; double robust; dynamic treatment regimens; efficient influence curve; estimating function; estimator selection; locally efficient; loss function; marginal structural models for dynamic treatments; maximum likelihood estimation; model selection; pathwise derivative; randomized controlled trials; sieve; super-learning; targeted maximum likelihood estimation

Most statistical methods for microarray data analysis consider one gene at a time, and they may miss subtle changes at the single gene level. This limitation may be overcome by considering a set of genes simultaneously where the gene sets are derived from prior biological knowledge. We call a pathway as a predefined set of genes that serve a particular cellular or physiological function. Limited work has been done in the regression settings to study the effects of clinical covariates and expression levels of genes in a pathway on a continuous clinical outcome. A semiparametric regression approach for identifying pathways related to a continuous outcome was proposed by Liu et al. (2007), who demonstrated the connection between a least squares kernel machine for nonparametric pathway effect and a restricted maximum likelihood (REML) for variance components. However, the asymptotic properties on a semiparametric regression for identifying pathway have never been studied. In this paper, we study the asymptotic properties of the parameter estimates on semiparametric regression and compare Liu et al.’s REML with our REML obtained from a profile likelihood. We prove that both approaches provide consistent estimators, have
n convergence rate under regularity conditions, and have either an asymptotically normal distribution or a mixture of normal distributions. However, the estimators based on our REML obtained from a profile likelihood have a theoretically smaller mean squared error than those of Liu et al.’s REML. Simulation study supports this theoretical result. A profile restricted likelihood ratio test is also provided for the non-standard testing problem. We apply our approach to a type II diabetes data set (Mootha et al., 2003).

PMCID: PMC3763850
PMID: 24014933

Gaussian random process; Kernel machine; Mixed model; Pathway analysis; Profile likelihood; Restricted maximum likelihood

Among the criteria to evaluate the performance of a phylogenetic method, robustness to model violation is of particular practical importance as complete a priori knowledge of evolutionary processes is typically unavailable. For studies of robustness in phylogenetic inference, a utility to add well-defined model violations to the simulated data would be helpful. We therefore introduce ImOSM, a tool to imbed intermittent evolution as model violation into an alignment. Intermittent evolution refers to extra substitutions occurring randomly on branches of a tree, thus changing alignment site patterns. This means that the extra substitutions are placed on the tree after the typical process of sequence evolution is completed. We then study the robustness of widely used phylogenetic methods: maximum likelihood (ML), maximum parsimony (MP), and a distance-based method (BIONJ) to various scenarios of model violation. Violation of rates across sites (RaS) heterogeneity and simultaneous violation of RaS and the transition/transversion ratio on two nonadjacent external branches hinder all the methods recovery of the true topology for a four-taxon tree. For an eight-taxon balanced tree, the violations cause each of the three methods to infer a different topology. Both ML and MP fail, whereas BIONJ, which calculates the distances based on the ML estimated parameters, reconstructs the true tree. Finally, we report that a test of model homogeneity and goodness of fit tests have enough power to detect such model violations. The outcome of the tests can help to actually gain confidence in the inferred trees. Therefore, we recommend using these tests in practical phylogenetic analyses.

doi:10.1093/molbev/msr220

PMCID: PMC3258038
PMID: 21940641

sequence evolution; model violation; heterotachy; maximum likelihood; maximum parsimony; neighbor joining

SUMMARY

We consider a class of semiparametric normal transformation models for right censored bivariate failure times. Nonparametric hazard rate models are transformed to a standard normal model and a joint normal distribution is assumed for the bivariate vector of transformed variates. A semiparametric maximum likelihood estimation procedure is developed for estimating the marginal survival distribution and the pairwise correlation parameters. This produces an efficient estimator of the correlation parameter of the semiparametric normal transformation model, which characterizes the bivariate dependence of bivariate survival outcomes. In addition, a simple positive-mass-redistribution algorithm can be used to implement the estimation procedures. Since the likelihood function involves infinite-dimensional parameters, the empirical process theory is utilized to study the asymptotic properties of the proposed estimators, which are shown to be consistent, asymptotically normal and semiparametric efficient. A simple estimator for the variance of the estimates is also derived. The finite sample performance is evaluated via extensive simulations.

doi:10.1093/biomet/asn049

PMCID: PMC2600666
PMID: 19079778

Asymptotic normality; Bivariate failure time; Consistency; Semiparametric efficiency; Semiparametric maximum likelihood estimate; Semiparametric normal transformation