Search tips
Search criteria

Results 1-25 (809099)

Clipboard (0)

Related Articles

1.  Targeted Maximum Likelihood Estimation for Dynamic and Static Longitudinal Marginal Structural Working Models 
Journal of causal inference  2014;2(2):147-185.
This paper describes a targeted maximum likelihood estimator (TMLE) for the parameters of longitudinal static and dynamic marginal structural models. We consider a longitudinal data structure consisting of baseline covariates, time-dependent intervention nodes, intermediate time-dependent covariates, and a possibly time-dependent outcome. The intervention nodes at each time point can include a binary treatment as well as a right-censoring indicator. Given a class of dynamic or static interventions, a marginal structural model is used to model the mean of the intervention-specific counterfactual outcome as a function of the intervention, time point, and possibly a subset of baseline covariates. Because the true shape of this function is rarely known, the marginal structural model is used as a working model. The causal quantity of interest is defined as the projection of the true function onto this working model. Iterated conditional expectation double robust estimators for marginal structural model parameters were previously proposed by Robins (2000, 2002) and Bang and Robins (2005). Here we build on this work and present a pooled TMLE for the parameters of marginal structural working models. We compare this pooled estimator to a stratified TMLE (Schnitzer et al. 2014) that is based on estimating the intervention-specific mean separately for each intervention of interest. The performance of the pooled TMLE is compared to the performance of the stratified TMLE and the performance of inverse probability weighted (IPW) estimators using simulations. Concepts are illustrated using an example in which the aim is to estimate the causal effect of delayed switch following immunological failure of first line antiretroviral therapy among HIV-infected patients. Data from the International Epidemiological Databases to Evaluate AIDS, Southern Africa are analyzed to investigate this question using both TML and IPW estimators. Our results demonstrate practical advantages of the pooled TMLE over an IPW estimator for working marginal structural models for survival, as well as cases in which the pooled TMLE is superior to its stratified counterpart.
PMCID: PMC4405134  PMID: 25909047
dynamic regime; semiparametric statistical model; targeted minimum loss based estimation; confounding; right censoring
2.  Collaborative Double Robust Targeted Maximum Likelihood Estimation* 
Collaborative double robust targeted maximum likelihood estimators represent a fundamental further advance over standard targeted maximum likelihood estimators of a pathwise differentiable parameter of a data generating distribution in a semiparametric model, introduced in van der Laan, Rubin (2006). The targeted maximum likelihood approach involves fluctuating an initial estimate of a relevant factor (Q) of the density of the observed data, in order to make a bias/variance tradeoff targeted towards the parameter of interest. The fluctuation involves estimation of a nuisance parameter portion of the likelihood, g. TMLE has been shown to be consistent and asymptotically normally distributed (CAN) under regularity conditions, when either one of these two factors of the likelihood of the data is correctly specified, and it is semiparametric efficient if both are correctly specified.
In this article we provide a template for applying collaborative targeted maximum likelihood estimation (C-TMLE) to the estimation of pathwise differentiable parameters in semi-parametric models. The procedure creates a sequence of candidate targeted maximum likelihood estimators based on an initial estimate for Q coupled with a succession of increasingly non-parametric estimates for g. In a departure from current state of the art nuisance parameter estimation, C-TMLE estimates of g are constructed based on a loss function for the targeted maximum likelihood estimator of the relevant factor Q that uses the nuisance parameter to carry out the fluctuation, instead of a loss function for the nuisance parameter itself. Likelihood-based cross-validation is used to select the best estimator among all candidate TMLE estimators of Q0 in this sequence. A penalized-likelihood loss function for Q is suggested when the parameter of interest is borderline-identifiable.
We present theoretical results for “collaborative double robustness,” demonstrating that the collaborative targeted maximum likelihood estimator is CAN even when Q and g are both mis-specified, providing that g solves a specified score equation implied by the difference between the Q and the true Q0. This marks an improvement over the current definition of double robustness in the estimating equation literature.
We also establish an asymptotic linearity theorem for the C-DR-TMLE of the target parameter, showing that the C-DR-TMLE is more adaptive to the truth, and, as a consequence, can even be super efficient if the first stage density estimator does an excellent job itself with respect to the target parameter.
This research provides a template for targeted efficient and robust loss-based learning of a particular target feature of the probability distribution of the data within large (infinite dimensional) semi-parametric models, while still providing statistical inference in terms of confidence intervals and p-values. This research also breaks with a taboo (e.g., in the propensity score literature in the field of causal inference) on using the relevant part of likelihood to fine-tune the fitting of the nuisance parameter/censoring mechanism/treatment mechanism.
PMCID: PMC2898626  PMID: 20628637
asymptotic linearity; coarsening at random; causal effect; censored data; crossvalidation; collaborative double robust; double robust; efficient influence curve; estimating function; estimator selection; influence curve; G-computation; locally efficient; loss-function; marginal structural model; maximum likelihood estimation; model selection; pathwise derivative; semiparametric model; sieve; super efficiency; super-learning; targeted maximum likelihood estimation; targeted nuisance parameter estimator selection; variable importance
3.  Targeted maximum likelihood estimation in safety analysis 
Journal of clinical epidemiology  2013;66(8 0):10.1016/j.jclinepi.2013.02.017.
To compare the performance of a targeted maximum likelihood estimator (TMLE) and a collaborative TMLE (CTMLE) to other estimators in a drug safety analysis, including a regression-based estimator, propensity score (PS)–based estimators, and an alternate doubly robust (DR) estimator in a real example and simulations.
Study Design and Setting
The real data set is a subset of observational data from Kaiser Permanente Northern California formatted for use in active drug safety surveillance. Both the real and simulated data sets include potential confounders, a treatment variable indicating use of one of two antidiabetic treatments and an outcome variable indicating occurrence of an acute myocardial infarction (AMI).
In the real data example, there is no difference in AMI rates between treatments. In simulations, the double robustness property is demonstrated: DR estimators are consistent if either the initial outcome regression or PS estimator is consistent, whereas other estimators are inconsistent if the initial estimator is not consistent. In simulations with near-positivity violations, CTMLE performs well relative to other estimators by adaptively estimating the PS.
Each of the DR estimators was consistent, and TMLE and CTMLE had the smallest mean squared error in simulations.
PMCID: PMC3818128  PMID: 23849159
Safety analysis; Targeted maximum likelihood estimation; Doubly robust; Causal inference; Collaborative targeted maximum likelihood estimation; Super learning
4.  Doubly Robust and Efficient Estimation of Marginal Structural Models for the Hazard Function 
In social and health sciences, many research questions involve understanding the causal effect of a longitudinal treatment on mortality (or time-to-event outcomes in general). Often, treatment status may change in response to past covariates that are risk factors for mortality, and in turn, treatment status may also affect such subsequent covariates. In these situations, Marginal Structural Models (MSMs), introduced by Robins (1997), are well-established and widely used tools to account for time-varying confounding. In particular, a MSM can be used to specify the intervention-specific counterfactual hazard function, i.e. the hazard for the outcome of a subject in an ideal experiment where he/she was assigned to follow a given intervention on their treatment variables. The parameters of this hazard MSM are traditionally estimated using the Inverse Probability Weighted estimation (IPTW, van der Laan and Petersen (2007), Robins et al. (2000b), Robins (1999), Robins et al. (2008)). This estimator is easy to implement and admits Wald-type confidence intervals. However, its consistency hinges on the correct specification of the treatment allocation probabilities, and the estimates are generally sensitive to large treatment weights (especially in the presence of strong confounding), which are difficult to stabilize for dynamic treatment regimes. In this paper, we present a pooled targeted maximum likelihood estimator (TMLE, van der Laan and Rubin (2006)) for MSM for the hazard function under longitudinal dynamic treatment regimes. The proposed estimator is semiparametric efficient and doubly robust, hence offers bias reduction and efficiency gain over the incumbent IPTW estimator. Moreover, the substitution principle rooted in the TMLE potentially mitigates the sensitivity to large treatment weights in IPTW. We compare the performance of the proposed estimator with the IPTW and a non-targeted substitution estimator in a simulation study.
PMCID: PMC4912008  PMID: 27227723
5.  Double robust and efficient estimation of a prognostic model for events in the presence of dependent censoring 
Biostatistics (Oxford, England)  2015;17(1):165-177.
In longitudinal data arising from observational or experimental studies, dependent subject drop-out is a common occurrence. If the goal is estimation of the parameters of a marginal complete-data model for the outcome, biased inference will result from fitting the model of interest with only uncensored subjects. For example, investigators are interested in estimating a prognostic model for clinical events in HIV-positive patients, under the counterfactual scenario in which everyone remained on ART (when in reality, only a subset had). Inverse probability of censoring weighting (IPCW) is a popular method that relies on correct estimation of the probability of censoring to produce consistent estimation, but is an inefficient estimator in its standard form. We introduce sequentially augmented regression (SAR), an adaptation of the Bang and Robins (2005. Doubly robust estimation in missing data and causal inference models. Biometrics 61, 962–972.) method to estimate a complete-data prediction model, adjusting for longitudinal missing at random censoring. In addition, we propose a closely related non-parametric approach using targeted maximum likelihood estimation (TMLE; van der Laan and Rubin, 2006. Targeted maximum likelihood learning. The International Journal of Biostatistics 2(1), Article 11). We compare IPCW, SAR, and TMLE (implemented parametrically and with Super Learner) through simulation and the above-mentioned case study.
PMCID: PMC4679073  PMID: 26224070
Inverse probability of censoring weighting; Longitudinal; Marginal structural model; Prediction; Targeted maximum likelihood estimation; Targeted minimum loss-based estimation
6.  A Targeted Maximum Likelihood Estimator of a Causal Effect on a Bounded Continuous Outcome 
Targeted maximum likelihood estimation of a parameter of a data generating distribution, known to be an element of a semi-parametric model, involves constructing a parametric model through an initial density estimator with parameter ɛ representing an amount of fluctuation of the initial density estimator, where the score of this fluctuation model at ɛ = 0 equals the efficient influence curve/canonical gradient. The latter constraint can be satisfied by many parametric fluctuation models since it represents only a local constraint of its behavior at zero fluctuation. However, it is very important that the fluctuations stay within the semi-parametric model for the observed data distribution, even if the parameter can be defined on fluctuations that fall outside the assumed observed data model. In particular, in the context of sparse data, by which we mean situations where the Fisher information is low, a violation of this property can heavily affect the performance of the estimator. This paper presents a fluctuation approach that guarantees the fluctuated density estimator remains inside the bounds of the data model. We demonstrate this in the context of estimation of a causal effect of a binary treatment on a continuous outcome that is bounded. It results in a targeted maximum likelihood estimator that inherently respects known bounds, and consequently is more robust in sparse data situations than the targeted MLE using a naive fluctuation model.
When an estimation procedure incorporates weights, observations having large weights relative to the rest heavily influence the point estimate and inflate the variance. Truncating these weights is a common approach to reducing the variance, but it can also introduce bias into the estimate. We present an alternative targeted maximum likelihood estimation (TMLE) approach that dampens the effect of these heavily weighted observations. As a substitution estimator, TMLE respects the global constraints of the observed data model. For example, when outcomes are binary, a fluctuation of an initial density estimate on the logit scale constrains predicted probabilities to be between 0 and 1. This inherent enforcement of bounds has been extended to continuous outcomes. Simulation study results indicate that this approach is on a par with, and many times superior to, fluctuating on the linear scale, and in particular is more robust when there is sparsity in the data.
PMCID: PMC3126669  PMID: 21731529
targeted maximum likelihood estimation; TMLE; causal effect
7.  An Application of Collaborative Targeted Maximum Likelihood Estimation in Causal Inference and Genomics 
A concrete example of the collaborative double-robust targeted likelihood estimator (C-TMLE) introduced in a companion article in this issue is presented, and applied to the estimation of causal effects and variable importance parameters in genomic data. The focus is on non-parametric estimation in a point treatment data structure. Simulations illustrate the performance of C-TMLE relative to current competitors such as the augmented inverse probability of treatment weighted estimator that relies on an external non-collaborative estimator of the treatment mechanism, and inefficient estimation procedures including propensity score matching and standard inverse probability of treatment weighting. C-TMLE is also applied to the estimation of the covariate-adjusted marginal effect of individual HIV mutations on resistance to the anti-retroviral drug lopinavir. The influence curve of the C-TMLE is used to establish asymptotically valid statistical inference. The list of mutations found to have a statistically significant association with resistance is in excellent agreement with mutation scores provided by the Stanford HIVdb mutation scores database.
PMCID: PMC3126668  PMID: 21731530
causal effect; cross-validation; collaborative double robust; double robust; efficient influence curve; penalized likelihood; penalization; estimator selection; locally efficient; maximum likelihood estimation; model selection; super efficiency; super learning; targeted maximum likelihood estimation; targeted nuisance parameter estimator selection; variable importance
8.  Dimension reduction with gene expression data using targeted variable importance measurement 
BMC Bioinformatics  2011;12:312.
When a large number of candidate variables are present, a dimension reduction procedure is usually conducted to reduce the variable space before the subsequent analysis is carried out. The goal of dimension reduction is to find a list of candidate genes with a more operable length ideally including all the relevant genes. Leaving many uninformative genes in the analysis can lead to biased estimates and reduced power. Therefore, dimension reduction is often considered a necessary predecessor of the analysis because it can not only reduce the cost of handling numerous variables, but also has the potential to improve the performance of the downstream analysis algorithms.
We propose a TMLE-VIM dimension reduction procedure based on the variable importance measurement (VIM) in the frame work of targeted maximum likelihood estimation (TMLE). TMLE is an extension of maximum likelihood estimation targeting the parameter of interest. TMLE-VIM is a two-stage procedure. The first stage resorts to a machine learning algorithm, and the second step improves the first stage estimation with respect to the parameter of interest.
We demonstrate with simulations and data analyses that our approach not only enjoys the prediction power of machine learning algorithms, but also accounts for the correlation structures among variables and therefore produces better variable rankings. When utilized in dimension reduction, TMLE-VIM can help to obtain the shortest possible list with the most truly associated variables.
PMCID: PMC3166941  PMID: 21849016
The annals of applied statistics  2014;8(2):703-725.
The PROmotion of Breastfeeding Intervention Trial (PROBIT) cluster-randomized a program encouraging breastfeeding to new mothers in hospital centers. The original studies indicated that this intervention successfully increased duration of breastfeeding and lowered rates of gastrointestinal tract infections in newborns. Additional scientific and popular interest lies in determining the causal effect of longer breastfeeding on gastrointestinal infection. In this study, we estimate the expected infection count under various lengths of breastfeeding in order to estimate the effect of breastfeeding duration on infection. Due to the presence of baseline and time-dependent confounding, specialized “causal” estimation methods are required. We demonstrate the double-robust method of Targeted Maximum Likelihood Estimation (TMLE) in the context of this application and review some related methods and the adjustments required to account for clustering. We compare TMLE (implemented both parametrically and using a data-adaptive algorithm) to other causal methods for this example. In addition, we conduct a simulation study to determine (1) the effectiveness of controlling for clustering indicators when cluster-specific confounders are unmeasured and (2) the importance of using data-adaptive TMLE.
PMCID: PMC4259272  PMID: 25505499
Causal inference; G-computation; inverse probability weighting; marginal effects; missing data; pediatrics
10.  Modeling the impact of hepatitis C viral clearance on end-stage liver disease in an HIV co-infected cohort with Targeted Maximum Likelihood Estimation 
Biometrics  2013;70(1):144-152.
Despite modern effective HIV treatment, hepatitis C virus (HCV) co-infection is associated with a high risk of progression to end-stage liver disease (ESLD) which has emerged as the primary cause of death in this population. Clinical interest lies in determining the impact of clearance of HCV on risk for ESLD. In this case study, we examine whether HCV clearance affects risk of ESLD using data from the multicenter Canadian Co-infection Cohort Study. Complications in this survival analysis arise from the time-dependent nature of the data, the presence of baseline confounders, loss to follow-up, and confounders that change over time, all of which can obscure the causal effect of interest. Additional challenges included non-censoring variable missingness and event sparsity.
In order to efficiently estimate the ESLD-free survival probabilities under a specific history of HCV clearance, we demonstrate the doubly-robust and semiparametric efficient method of Targeted Maximum Likelihood Estimation (TMLE). Marginal structural models (MSM) can be used to model the effect of viral clearance (expressed as a hazard ratio) on ESLD-free survival and we demonstrate a way to estimate the parameters of a logistic model for the hazard function with TMLE. We show the theoretical derivation of the efficient influence curves for the parameters of two different MSMs and how they can be used to produce variance approximations for parameter estimates. Finally, the data analysis evaluating the impact of HCV on ESLD was undertaken using multiple imputations to account for the non-monotone missing data.
PMCID: PMC3954273  PMID: 24571372
Double-robust; Inverse probability of treatment weighting; Kaplan-Meier; Longitudinal data; Marginal structural model; Survival analysis; Targeted maximum likelihood estimation
11.  Population Intervention Causal Effects Based on Stochastic Interventions 
Biometrics  2011;68(2):541-549.
Estimating the causal effect of an intervention on a population typically involves defining parameters in a nonparametric structural equation model (Pearl, 2000, Causality: Models, Reasoning, and Inference) in which the treatment or exposure is deterministically assigned in a static or dynamic way. We define a new causal parameter that takes into account the fact that intervention policies can result in stochastically assigned exposures. The statistical parameter that identifies the causal parameter of interest is established. Inverse probability of treatment weighting (IPTW), augmented IPTW (A-IPTW), and targeted maximum likelihood estimators (TMLE) are developed. A simulation study is performed to demonstrate the properties of these estimators, which include the double robustness of the A-IPTW and the TMLE. An application example using physical activity data is presented.
PMCID: PMC4117410  PMID: 21977966
Causal effect; Counterfactual outcome; Double robustness; Stochastic intervention; Targeted maximum likelihood estimation
12.  One-Step Targeted Minimum Loss-based Estimation Based on Universal Least Favorable One-Dimensional Submodels 
Consider a study in which one observes n independent and identically distributed random variables whose probability distribution is known to be an element of a particular statistical model, and one is concerned with estimation of a particular real valued pathwise differentiable target parameter of this data probability distribution. The targeted maximum likelihood estimator (TMLE) is an asymptotically efficient substitution estimator obtained by constructing a so called least favorable parametric submodel through an initial estimator with score, at zero fluctuation of the initial estimator, that spans the efficient influence curve, and iteratively maximizing the corresponding parametric likelihood till no more updates occur, at which point the updated initial estimator solves the so called efficient influence curve equation. In this article we construct a one-dimensional universal least favorable submodel for which the TMLE only takes one step, and thereby requires minimal extra data fitting to achieve its goal of solving the efficient influence curve equation. We generalize these to universal least favorable submodels through the relevant part of the data distribution as required for targeted minimum loss-based estimation. Finally, remarkably, given a multidimensional target parameter, we develop a universal canonical one-dimensional submodel such that the one-step TMLE, only maximizing the log-likelihood over a univariate parameter, solves the multivariate efficient influence curve equation. This allows us to construct a one-step TMLE based on a one-dimensional parametric submodel through the initial estimator, that solves any multivariate desired set of estimating equations.
PMCID: PMC4912007  PMID: 27227728
Asymptotic linear estimator; canonical gradient; estimating equation; universal canonical submodel; efficient influence curve; infinite dimensional target parameter; influence curve; local least favorable submodel; universal least-favorable submodel; MLE; one-step estimator; pathwise differentiable parameter; super-learning; targeted maximum likelihood estimation; targeted minimum loss-based estimation (TMLE); universal score-specific submodel
13.  Covariate adjustment in randomized trials with binary outcomes: Targeted maximum likelihood estimation 
Statistics in medicine  2009;28(1):39-64.
Covariate adjustment using linear models for continuous outcomes in randomized trials has been shown to increase efficiency and power over the unadjusted method in estimating the marginal effect of treatment. However, for binary outcomes, investigators generally rely on the unadjusted estimate as the literature indicates that covariate-adjusted estimates based on the logistic regression models are less efficient. The crucial step that has been missing when adjusting for covariates is that one must integrate/average the adjusted estimate over those covariates in order to obtain the marginal effect. We apply the method of targeted maximum likelihood estimation (tMLE) to obtain estimators for the marginal effect using covariate adjustment for binary outcomes. We show that the covariate adjustment in randomized trials using the logistic regression models can be mapped, by averaging over the covariate(s), to obtain a fully robust and efficient estimator of the marginal effect, which equals a targeted maximum likelihood estimator. This tMLE is obtained by simply adding a clever covariate to a fixed initial regression. We present simulation studies that demonstrate that this tMLE increases efficiency and power over the unadjusted method, particularly for smaller sample sizes, even when the regression model is mis-specified.
PMCID: PMC2857590  PMID: 18985634
clinical trails; efficiency; covariate adjustment; variable selection
14.  Variable selection for confounder control, flexible modeling and Collaborative Targeted Minimum Loss-based Estimation in causal inference 
This paper investigates the appropriateness of the integration of flexible propensity score modeling (nonparametric or machine learning approaches) in semiparametric models for the estimation of a causal quantity, such as the mean outcome under treatment. We begin with an overview of some of the issues involved in knowledge-based and statistical variable selection in causal inference and the potential pitfalls of automated selection based on the fit of the propensity score. Using a simple example, we directly show the consequences of adjusting for pure causes of the exposure when using inverse probability of treatment weighting (IPTW). Such variables are likely to be selected when using a naive approach to model selection for the propensity score. We describe how the method of Collaborative Targeted minimum loss-based estimation (C-TMLE; van der Laan and Gruber, 2010) capitalizes on the collaborative double robustness property of semiparametric efficient estimators to select covariates for the propensity score based on the error in the conditional outcome model. Finally, we compare several approaches to automated variable selection in low-and high-dimensional settings through a simulation study. From this simulation study, we conclude that using IPTW with flexible prediction for the propensity score can result in inferior estimation, while Targeted minimum loss-based estimation and C-TMLE may benefit from flexible prediction and remain robust to the presence of variables that are highly correlated with treatment. However, in our study, standard influence function-based methods for the variance underestimated the standard errors, resulting in poor coverage under certain data-generating scenarios.
PMCID: PMC4733443  PMID: 26226129
C-TMLE; IPTW; variable reduction
15.  Causal Inference for a Population of Causally Connected Units 
Journal of causal inference  2014;2(1):13-74.
Suppose that we observe a population of causally connected units. On each unit at each time-point on a grid we observe a set of other units the unit is potentially connected with, and a unit-specific longitudinal data structure consisting of baseline and time-dependent covariates, a time-dependent treatment, and a final outcome of interest. The target quantity of interest is defined as the mean outcome for this group of units if the exposures of the units would be probabilistically assigned according to a known specified mechanism, where the latter is called a stochastic intervention. Causal effects of interest are defined as contrasts of the mean of the unit-specific outcomes under different stochastic interventions one wishes to evaluate. This covers a large range of estimation problems from independent units, independent clusters of units, and a single cluster of units in which each unit has a limited number of connections to other units. The allowed dependence includes treatment allocation in response to data on multiple units and so called causal interference as special cases. We present a few motivating classes of examples, propose a structural causal model, define the desired causal quantities, address the identification of these quantities from the observed data, and define maximum likelihood based estimators based on cross-validation. In particular, we present maximum likelihood based super-learning for this network data. Nonetheless, such smoothed/regularized maximum likelihood estimators are not targeted and will thereby be overly bias w.r.t. the target parameter, and, as a consequence, generally not result in asymptotically normally distributed estimators of the statistical target parameter.
To formally develop estimation theory, we focus on the simpler case in which the longitudinal data structure is a point-treatment data structure. We formulate a novel targeted maximum likelihood estimator of this estimand and show that the double robustness of the efficient influence curve implies that the bias of the targeted minimum loss-based estimation (TMLE) will be a second-order term involving squared differences of two nuisance parameters. In particular, the TMLE will be consistent if either one of these nuisance parameters is consistently estimated. Due to the causal dependencies between units, the data set may correspond with the realization of a single experiment, so that establishing a (e.g. normal) limit distribution for the targeted maximum likelihood estimators, and corresponding statistical inference, is a challenging topic. We prove two formal theorems establishing the asymptotic normality using advances in weak-convergence theory. We conclude with a discussion and refer to an accompanying technical report for extensions to general longitudinal data structures.
PMCID: PMC4500386  PMID: 26180755
networks; causal inference; targeted maximum likelihood estimation; stochastic intervention; efficient influence curve
16.  A Targeted Maximum Likelihood Estimator for Two-Stage Designs 
We consider two-stage sampling designs, including so-called nested case control studies, where one takes a random sample from a target population and completes measurements on each subject in the first stage. The second stage involves drawing a subsample from the original sample, collecting additional data on the subsample. This data structure can be viewed as a missing data structure on the full-data structure collected in the second-stage of the study. Methods for analyzing two-stage designs include parametric maximum likelihood estimation and estimating equation methodology. We propose an inverse probability of censoring weighted targeted maximum likelihood estimator (IPCW-TMLE) in two-stage sampling designs and present simulation studies featuring this estimator.
PMCID: PMC3083136  PMID: 21556285
two-stage designs; targeted maximum likelihood estimators; nested case control studies; double robust estimation
17.  Balancing Score Adjusted Targeted Minimum Loss-based Estimation 
Journal of causal inference  2015;3(2):139-155.
Adjusting for a balancing score is sufficient for bias reduction when estimating causal effects including the average treatment effect and effect among the treated. Estimators that adjust for the propensity score in a nonparametric way, such as matching on an estimate of the propensity score, can be consistent when the estimated propensity score is not consistent for the true propensity score but converges to some other balancing score. We call this property the balancing score property, and discuss a class of estimators that have this property. We introduce a targeted minimum loss-based estimator (TMLE) for a treatment-specific mean with the balancing score property that is additionally locally efficient and doubly robust. We investigate the new estimator’s performance relative to other estimators, including another TMLE, a propensity score matching estimator, an inverse probability of treatment weighted estimator, and a regression-based estimator in simulation studies.
PMCID: PMC4637178  PMID: 26561539
balancing score; propensity score; causal inference; matching; TMLE
18.  Targeted Maximum Likelihood Estimation of Effect Modification Parameters in Survival Analysis 
The Cox proportional hazards model or its discrete time analogue, the logistic failure time model, posit highly restrictive parametric models and attempt to estimate parameters which are specific to the model proposed. These methods are typically implemented when assessing effect modification in survival analyses despite their flaws. The targeted maximum likelihood estimation (TMLE) methodology is more robust than the methods typically implemented and allows practitioners to estimate parameters that directly answer the question of interest. TMLE will be used in this paper to estimate two newly proposed parameters of interest that quantify effect modification in the time to event setting. These methods are then applied to the Tshepo study to assess if either gender or baseline CD4 level modify the effect of two cART therapies of interest, efavirenz (EFV) and nevirapine (NVP), on the progression of HIV. The results show that women tend to have more favorable outcomes using EFV while males tend to have more favorable outcomes with NVP. Furthermore, EFV tends to be favorable compared to NVP for individuals at high CD4 levels.
PMCID: PMC3083138  PMID: 21556287
causal effect; semi-parametric; censored longitudinal data; double robust; efficient influence curve; influence curve; G-computation; Targeted Maximum Likelihood Estimation; Cox-proportional hazards; survival analysis
19.  Likelihood approaches for proportional likelihood ratio model with right-censored data 
Statistics in medicine  2014;33(14):2467-2479.
Regression methods for survival data with right censoring have been extensively studied under semiparametric transformation models [1] such as the Cox regression model [2] and the proportional odds model [3]. However, their practical application could be limited due to possible violation of model assumption or lack of ready interpretation for the regression coefficients in some cases. As an alternative, in this paper, the proportional likelihood ratio model introduced by Luo and Tsai [4] is extended to flexibly model the relationship between survival outcome and covariates. This model has a natural connection with many important semiparametric models such as generalized linear model and density ratio model, and is closely related to biased sampling problems. Compared with the semiparametric transformation model, the proportional likelihood ratio model is appealing and practical in many ways because of its model flexibility and quite direct clinical interpretation. We present two likelihood approaches for the estimation and inference on the target regression parameters under independent and dependent censoring assumptions. Based on a conditional likelihood approach using uncensored failure times, a numerically simple estimation procedure is developed by maximizing a pairwise pseudo-likelihood [5]. We also develop a full likelihood approach and the most efficient maximum likelihood estimator is obtained by a profile likelihood. Simulation studies are conducted to assess the finite-sample properties of the proposed estimators and compare the efficiency of the two likelihood approaches. An application to survival data for bone marrow transplantation patients of acute leukemia is provided to illustrate the proposed method and other approaches for handling non-proportionality. The relative merits of these methods are discussed in concluding remarks.
PMCID: PMC4527348  PMID: 24500821
conditional likelihood; pairwise pseudo-likelihood; profile likelihood; proportional likelihood ratio model; right-censored data
20.  Identification and efficient estimation of the natural direct effect among the untreated 
Biometrics  2013;69(2):310-317.
The natural direct effect (NDE), or the effect of an exposure on an outcome if an intermediate variable was set to the level it would have been in the absence of the exposure, is often of interest to investigators. In general, the statistical parameter associated with the NDE is difficult to estimate in the non-parametric model, particularly when the intermediate variable is continuous or high dimensional. In this paper we introduce a new causal parameter called the natural direct effect among the untreated, discus identifiability assumptions, propose a sensitivity analysis for some of the assumptions, and show that this new parameter is equivalent to the NDE in a randomized controlled trial. We also present a targeted minimum loss estimator (TMLE), a locally efficient, double robust substitution estimator for the statistical parameter associated with this causal parameter. The TMLE can be applied to problems with continuous and high dimensional intermediate variables, and can be used to estimate the NDE in a randomized controlled trial with such data. Additionally, we define and discuss the estimation of three related causal parameters: the natural direct effect among the treated, the indirect effect among the untreated and the indirect effect among the treated.
PMCID: PMC3692606  PMID: 23607645
Causal inference; direct effect; indirect effect; mediation analysis; semiparametric models; targeted minimum loss estimation
21.  Increasing the Efficiency of Prevention Trials by Incorporating Baseline Covariates 
Most randomized efficacy trials of interventions to prevent HIV or other infectious diseases have assessed intervention efficacy by a method that either does not incorporate baseline covariates, or that incorporates them in a non-robust or inefficient way. Yet, it has long been known that randomized treatment effects can be assessed with greater efficiency by incorporating baseline covariates that predict the response variable. Tsiatis et al. (2007) and Zhang et al. (2008) advocated a semiparametric efficient approach, based on the theory of Robins et al. (1994), for consistently estimating randomized treatment effects that optimally incorporates predictive baseline covariates, without any parametric assumptions. They stressed the objectivity of the approach, which is achieved by separating the modeling of baseline predictors from the estimation of the treatment effect. While their work adequately justifies implementation of the method for large Phase 3 trials (because its optimality is in terms of asymptotic properties), its performance for intermediate-sized screening Phase 2b efficacy trials, which are increasing in frequency, is unknown. Furthermore, the past work did not consider a right-censored time-to-event endpoint, which is the usual primary endpoint for a prevention trial. For Phase 2b HIV vaccine efficacy trials, we study finite-sample performance of Zhang et al.'s (2008) method for a dichotomous endpoint, and develop and study an adaptation of this method to a discrete right-censored time-to-event endpoint. We show that, given the predictive capacity of baseline covariates collected in real HIV prevention trials, the methods achieve 5-15% gains in efficiency compared to methods in current use. We apply the methods to the first HIV vaccine efficacy trial. This work supports implementation of the discrete failure time method for prevention trials.
PMCID: PMC2997740  PMID: 21152074
Auxiliary; Covariate Adjustment; Intermediate-sized Phase 2b Efficacy Trial; Semiparametric Efficiency
22.  Estimation and inference based on Neumann series approximation to locally efficient score in missing data problems 
Theory on semiparametric efficient estimation in missing data problems has been systematically developed by Robins and his coauthors. Except in relatively simple problems, semiparametric efficient scores cannot be expressed in closed forms. Instead, the efficient scores are often expressed as solutions to integral equations. Neumann series was proposed in the form of successive approximation to the efficient scores in those situations. Statistical properties of the estimator based on the Neumann series approximation are difficult to obtain and as a result, have not been clearly studied. In this paper, we reformulate the successive approximation in a simple iterative form and study the statistical properties of the estimator based on the reformulation. We show that a doubly-robust locally-efficient estimator can be obtained following the algorithm in robustifying the likelihood score. The results can be applied to, among others, the parametric regression, the marginal regression, and the Cox regression when data are subject to missing values and the missing data are missing at random. A simulation study is conducted to evaluate the performance of the approach and a real data example is analyzed to demonstrate the use of the approach.
PMCID: PMC2811346  PMID: 20161609
auxiliary covariates; information operator; non-monotone missing pattern; weighted estimating equations
23.  Efficient and robust method for comparing the immunogenicity of candidate vaccines in randomized clinical trials 
Vaccine  2008;27(3):396-401.
In randomized clinical trials designed to compare the magnitude of vaccine-induced immune responses between vaccination regimens, the statistical method used for the analysis typically does not account for baseline participant characteristics. This article shows that incorporating baseline variables predictive of the immunogenicity study endpoint can provide large gains in precision and power for estimation and testing of the group mean difference (requiring fewer subjects for the same scientific output) compared to conventional methods, and recommends the “semiparametric efficient” method described in Tsiatis et al. [Tsiatis AA, Davidian M, Zhang M, Lu X. Covariate adjustment for two-sample treatment comparisons in randomized clinical trials: a principled yet flexible approach. Stat Med 2007. doi:10.1002/sim.3113] for practical use. As such, vaccine clinical trial programs can be improved (1) by investigating baseline predictors (e.g., readouts from laboratory assays) of vaccine-induced immune responses, and (2) by implementing the proposed semiparametric efficient method in trials where baseline predictors are available.
PMCID: PMC2653280  PMID: 19022314
Immune responses; Statistical analysis; Vaccine trial
24.  Bayesian and maximum likelihood phylogenetic analyses of protein sequence data under relative branch-length differences and model violation 
Bayesian phylogenetic inference holds promise as an alternative to maximum likelihood, particularly for large molecular-sequence data sets. We have investigated the performance of Bayesian inference with empirical and simulated protein-sequence data under conditions of relative branch-length differences and model violation.
With empirical protein-sequence data, Bayesian posterior probabilities provide more-generous estimates of subtree reliability than does the nonparametric bootstrap combined with maximum likelihood inference, reaching 100% posterior probability at bootstrap proportions around 80%. With simulated 7-taxon protein-sequence datasets, Bayesian posterior probabilities are somewhat more generous than bootstrap proportions, but do not saturate. Compared with likelihood, Bayesian phylogenetic inference can be as or more robust to relative branch-length differences for datasets of this size, particularly when among-sites rate variation is modeled using a gamma distribution. When the (known) correct model was used to infer trees, Bayesian inference recovered the (known) correct tree in 100% of instances in which one or two branches were up to 20-fold longer than the others. At ratios more extreme than 20-fold, topological accuracy of reconstruction degraded only slowly when only one branch was of relatively greater length, but more rapidly when there were two such branches. Under an incorrect model of sequence change, inaccurate trees were sometimes observed at less extreme branch-length ratios, and (particularly for trees with single long branches) such trees tended to be more inaccurate. The effect of model violation on accuracy of reconstruction for trees with two long branches was more variable, but gamma-corrected Bayesian inference nonetheless yielded more-accurate trees than did either maximum likelihood or uncorrected Bayesian inference across the range of conditions we examined. Assuming an exponential Bayesian prior on branch lengths did not improve, and under certain extreme conditions significantly diminished, performance. The two topology-comparison metrics we employed, edit distance and Robinson-Foulds symmetric distance, yielded different but highly complementary measures of performance.
Our results demonstrate that Bayesian inference can be relatively robust against biologically reasonable levels of relative branch-length differences and model violation, and thus may provide a promising alternative to maximum likelihood for inference of phylogenetic trees from protein-sequence data.
PMCID: PMC549035  PMID: 15676079
25.  Effect Modification by Sex and Baseline CD4+ Cell Count Among Adults Receiving Combination Antiretroviral Therapy in Botswana: Results from a Clinical Trial 
The Tshepo study was the first clinical trial to evaluate outcomes of adults receiving nevirapine (NVP)-based versus efavirenz (EFV)-based combination antiretroviral therapy (cART) in Botswana. This was a 3 year study (n=650) comparing the efficacy and tolerability of various first-line cART regimens, stratified by baseline CD4+: <200 (low) vs. 201-350 (high). Using targeted maximum likelihood estimation (TMLE), we retrospectively evaluated the causal effect of assigned NNRTI on time to virologic failure or death [intent-to-treat (ITT)] and time to minimum of virologic failure, death, or treatment modifying toxicity [time to loss of virological response (TLOVR)] by sex and baseline CD4+. Sex did significantly modify the effect of EFV versus NVP for both the ITT and TLOVR outcomes with risk differences in the probability of survival of males versus the females of approximately 6% (p=0.015) and 12% (p=0.001), respectively. Baseline CD4+ also modified the effect of EFV versus NVP for the TLOVR outcome, with a mean difference in survival probability of approximately 12% (p=0.023) in the high versus low CD4+ cell count group. TMLE appears to be an efficient technique that allows for the clinically meaningful delineation and interpretation of the causal effect of NNRTI treatment and effect modification by sex and baseline CD4+ cell count strata in this study. EFV-treated women and NVP-treated men had more favorable cART outcomes. In addition, adults initiating EFV-based cART at higher baseline CD4+ cell count values had more favorable outcomes compared to those initiating NVP-based cART.
PMCID: PMC3423643  PMID: 22309114

Results 1-25 (809099)