PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1539860)

Clipboard (0)
None

Related Articles

1.  Loss of Akt1 or Akt2 delays mammary tumor onset and suppresses tumor growth rate in MTB-IGFIR transgenic mice 
BMC Cancer  2013;13:375.
Background
Akt is a serine/threonine kinase that mediates signaling downstream of tyrosine kinase receptors like the type I insulin-like growth factor receptor (IGF-IR). In fact, we have previously shown that mammary tumors induced by elevated expression of the IGF-IR are associated with hyperactivation of Akt. However, there are three mammalian isoforms of Akt (Akt1, Akt2 and Akt3) and these isoforms regulate distinct physiologic properties within cells. In this manuscript, the impact of disrupting Akt1 or Akt2 in mammary tumors induced by IGF-IR overexpression were examined to determine whether specific Akt isoforms regulate different aspects of mammary tumorigenesis.
Methods
Akt1 and Akt2 levels were stably ablated in mammary tumors of MTB-IGFIR transgenic mice by crossing MTB-IGFIR transgenic mice with either Akt1−/− or Akt2−/− mice. Tumor onset, growth rate, and metastasis were determined.
Results
Ablation of Akt1 or Akt2 significantly delayed tumor onset and tumor growth rate but did not significantly alter lung metastasis. Despite the absence of Akt1 or Akt2, mammary tumors that developed in the MTB-IGFIR mice maintained detectable levels of phosphorylated Akt. Disruption of Akt1 or Akt2 did not affect cell morphology or the expression of luminal or basal cytokeratins in mammary tumors.
Conclusions
Although loss of Akt1 or Akt2 significantly inhibited mammary tumor onset and growth rates the effects were less dramatic than anticipated. Despite the complete loss of Akt1 or Akt2, the level of total phosphorylated Akt remained largely unaffected in the mammary tumors suggesting that loss of one Akt isoform is compensated by enhanced activation of the remaining Akt isoforms. These findings indicate that therapeutic strategies targeting the activation of individual Akt isoforms will prove less effective than simultaneously inhibiting the activity of all three Akt isoforms for the treatment of breast cancer.
doi:10.1186/1471-2407-13-375
PMCID: PMC3750479  PMID: 23919516
2.  Akt1 sequentially phosphorylates p27kip1 within a conserved but non-canonical region 
Cell Division  2006;1:11.
Background
p27kip1 (p27) is a multifunctional protein implicated in regulation of cell cycling, signal transduction, and adhesion. Its activity is controlled in part by Phosphatylinositol-3-Kinase (PI3K)/Akt1 signaling, and disruption of this regulatory connection has been identified in human breast cancers. The serine/threonine protein kinase Akt1 directly phosphorylates p27, so identifying the modified residue(s) is essential for understanding how it regulates p27 function. Various amino acids have been suggested as potential targets, but recent attention has focused on threonine 157 (T157) because it is located in a putative Akt1 consensus site. However, T157 is not evolutionarily conserved between mouse and human. We therefore re-evaluated Akt1 phosphorylation of p27 using purified proteins and in cells.
Results
Here we show purified Akt1 phosphorylates human and mouse p27 equally well. Phospho-peptide mapping indicates Akt1 targets multiple sites conserved in both species, while phospho-amino acid analysis identifies the targeted residues as serine rather than threonine. P27 deletion mutants localized these sites to the N-terminus, which contains the major p27 phosphorylation site in cells (serine 10). P27 phosphorylated by Akt1 was detected by a phospho-S10 specific antibody, confirming this serine was targeted. Akt1 failed to phosphorylate p27S10A despite evidence of a second site from mapping experiments. This surprising result suggested S10 phosphorylation might be required for targeting the second site. We tested this idea by replacing S10 with threonine, which as expected led to the appearance of phospho-threonine. Phospho-serine was still present, however, confirming Akt1 sequentially targets multiple serines in this region. We took two approaches in an attempt to explain why different residues were previously implicated. A kinetic analysis revealed a putative Akt1 binding site in the C-terminus, which may explain why mutations in this region affect p27 phosphorylation. Furthermore, commercially available recombinant Akt1 preparations exhibit striking differences in substrate specificity and site selectivity. To confirm S10 is a relevant site, we first showed that full-length wild type Akt1 purified from mammalian cells phosphorylates both human and mouse p27 on S10. Finally, we found that in cultured cells under physiologically relevant conditions such as oxidative stress or growth factor deprivation, endogenous Akt1 causes p27 accumulation by phosphorylating S10.
Conclusion
Identifying where Akt1 phosphorylates p27 is essential for understanding its functional implications. We found that full-length wild type Akt1 – whether purified, transiently overexpressed in cells, or activated in response to cellular stress – phosphorylates p27 at S10, a noncanonical but evolutionarily conserved site known to regulate p27 activity and stability. Using recombinant Akt1 recapitulating this specificity, we showed modification of p27S10 also leads to phosphorylation of an adjacent serine. These results integrate PI3K/Akt1 signaling in response to stress with p27 regulation through its major phosphorylation site in cells, and thus identify new avenues for understanding p27 deregulation in human cancers.
doi:10.1186/1747-1028-1-11
PMCID: PMC1524731  PMID: 16780593
3.  Celecoxib analogues disrupt Akt signaling, which is commonly activated in primary breast tumours 
Breast Cancer Research  2005;7(5):R796-R807.
Introduction
Phosphorylated Akt (P-Akt) is an attractive molecular target because it contributes to the development of breast cancer and confers resistance to conventional therapies. Akt also serves as a signalling intermediate for receptors such as human epidermal growth factor receptor (HER)-2, which is overexpressed in 30% of breast cancers; therefore, inhibitors to this pathway are being sought. New celecoxib analogues reportedly inhibit P-Akt in prostate cancer cells. We therefore examined the potential of these compounds in the treatment of breast cancer. The analogues were characterized in MDA-MB-453 cells because they overexpress HER-2 and have very high levels of P-Akt.
Methods
To evaluate the effect of the celecoxib analogues, immunoblotting was used to identify changes in the phosphorylation of Akt and its downstream substrates glycogen synthase kinase (GSK) and 4E binding protein (4EBP-1). In vitro kinase assays were then used to assess the effect of the drugs on Akt activity. Cell death was evaluated by poly(ADP-ribose) polymerase cleavage, nucleosomal fragmentation and MTS assays. Finally, tumour tissue microarrays were screened for P-Akt and HER-2 expression.
Results
OSU-03012 and OSU-O3013 inhibited P-Akt and its downstream signalling through 4EBP-1 and GSK at concentrations well below that of celecoxib. Disruption of P-Akt was followed by induction of apoptosis and more than 90% cell death. We also noted that the cytotoxicity of the celecoxib analogues was not significantly affected by serum. In contrast, the presence of 5% serum protected cells from celecoxib induced death. Thus, the structural modification of the celecoxib analogues increased P-Akt inhibition and enhanced the bioavailability of the drugs in vitro. To assess how many patients may potentially benefit from such drugs we screened tumour tissue microarrays. P-Akt was highly activated in 58% (225/390) of cases, whereas it was only similarly expressed in 35% (9/26) of normal breast tissues. Furthermore, HER-2 positive tumours expressed high levels of P-Akt (P < 0.01), supporting in vitro signal transduction.
Conclusion
We determined that Celecoxib analogues are potent inhibitors of P-Akt signalling and kill breast cancer cells that overexpress HER-2. We also defined an association between HER-2 and P-Akt in primary breast tissues, suggesting that these inhibitors may benefit patients in need of new treatment options.
doi:10.1186/bcr1294
PMCID: PMC1242152  PMID: 16168126
4.  Extracellular Matrix Enhances Heregulin-Dependent BRCA1 Phosphorylation and Suppresses BRCA1 Expression through Its C Terminus 
Molecular and Cellular Biology  2003;23(2):579-593.
Germ line mutations in the breast cancer susceptibility gene BRCA1 account for the increased risk of early onset of familial breast cancer, whereas overexpression of the ErbB family of receptor tyrosine kinases has been linked to the development of nonfamilial or sporadic breast cancer. To analyze whether there is a link between these two regulatory molecules, we studied the effects of ErbB-2 activation by heregulin (HRG) on BRCA1 function. It was previously demonstrated that HRG induced the phosphorylation of BRCA1, which was mediated by the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Since altered interaction between cells and the surrounding extracellular matrix (ECM) is a common feature in a variety of tumors and since ECM modulates intracellular signaling, we hypothesized that ECM may affect the expression and HRG-dependent phosphorylation of BRCA1. Following stimulation by HRG, a strong increase in [3H]thymidine incorporation was observed in human T47D breast cancer cells seeded on plastic (PL). When T47D cells were seeded on laminin (LAM) or Matrigel, HRG induced a significantly higher proliferation than it did in cells seeded on PL. T47D cells seeded on poly-l-lysine had an abrogated mitogenic response, indicating the involvement of integrins in this process. HRG treatment induced a transient phosphorylation of BRCA1 that was enhanced in T47D cells grown on LAM. LAM-enhanced BRCA1 phosphorylation was mediated through α6 integrin upon HRG stimulation. Accordingly, T47D cells grown on LAM had the greatest increase in ErbB-2 activation, PI3K activity, and phosphorylation of Akt. A similar pattern of BRCA1 mRNA expression was observed when T47D cells were seeded on PL, LAM, or COL4. There was a significant decrease in the steady state of the BRCA1 mRNA level on both the LAM and COL4 matrices compared to that for cells seeded on PL. In addition, HRG stimulation caused a significant decrease in BRCA1 mRNA expression that was dependent on protein synthesis. Pretreatment with both the calpain inhibitor ALLN (N-acetyl-Leu-Leu-norleucinal) and the proteosome inhibitor lactacystin inhibited the HRG-induced down-regulation of BRCA1 mRNA expression. Likewise, there was a strong decrease in the protein level of BRCA1 in T47D cells 4 h after treatment with HRG compared to its level in control nontreated T47D cells. Pretreatment with the proteosome inhibitors ALLN, lactacystin, and PSI [N-benzyloxycarbonyl-Ile-Glu-(O-t-butyl)-Ala-leucinal] inhibited also the HRG-induced down-regulation of BRCA1 protein in breast cancer cells. Interestingly, BRCA1 mRNA expression in HCC-1937 breast cancer cells, which express C-terminally truncated BRCA1, was not affected by either LAM or CL4. No phosphorylation of BRCA1 from HCC-1937 cells was observed in response to HRG. While Cdk4 phosphorylated wild-type BRCA1 in response to HRG in T47D cells, Cdk4 failed to phosphorylate the truncated form of BRCA1 in HCC-1937 cells. Furthermore, overexpression of wild-type BRCA1 in HCC-1937 cells resulted in the phosphorylation of BRCA1 and decreased BRCA1 expression upon HRG stimulation while overexpression of truncated BRCA1 in T47D cells resulted in a lack of BRCA1 phosphorylation and restoration of BRCA1 expression. These findings suggest that ECM enhances HRG-dependent BRCA1 phosphorylation and that ECM and HRG down-regulate BRCA1 expression in breast cancer cells. Furthermore, ECM suppresses BRCA1 expression through the C terminus of BRCA1.
doi:10.1128/MCB.23.2.579-593.2003
PMCID: PMC151527  PMID: 12509456
5.  Protein Phosphatase 2A Negatively Regulates Insulin's Metabolic Signaling Pathway by Inhibiting Akt (Protein Kinase B) Activity in 3T3-L1 Adipocytes 
Molecular and Cellular Biology  2004;24(19):8778-8789.
Protein phosphatase 2A (PP2A) is a multimeric serine/threonine phosphatase which has multiple functions, including inhibition of the mitogen-activated protein (MAP) kinase pathway. Simian virus 40 small t antigen specifically inhibits PP2A function by binding to the PP2A regulatory subunit, interfering with the ability of PP2A to associate with its cellular substrates. We have reported that the expression of small t antigen inhibits PP2A association with Shc, leading to augmentation of insulin and epidermal growth factor-induced Shc phosphorylation with enhanced activation of the Ras/MAP kinase pathway. However, the potential involvement of PP2A in insulin's metabolic signaling pathway is presently unknown. To assess this, we overexpressed small t antigen in 3T3-L1 adipocytes by adenovirus-mediated gene transfer and found that the phosphorylation of Akt and its downstream target, glycogen synthase kinase 3β, were enhanced both in the absence and in the presence of insulin. Furthermore, protein kinase C λ (PKC λ) activity was also augmented in small-t-antigen-expressing 3T3-L1 adipocytes. Consistent with this result, both basal and insulin-stimulated glucose uptake were enhanced in these cells. In support of this result, when inhibitory anti-PP2A antibody was microinjected into 3T3-L1 adipocytes, we found a twofold increase in GLUT4 translocation in the absence of insulin. The small-t-antigen-induced increase in Akt and PKC λ activities was not inhibited by wortmannin, while the ability of small t antigen to enhance glucose transport was inhibited by dominant negative Akt (DN-Akt) expression and Akt small interfering RNA (siRNA) but not by DN-PKC λ expression or PKC λ siRNA. We conclude that PP2A is a negative regulator of insulin's metabolic signaling pathway by promoting dephosphorylation and inactivation of Akt and PKC λ and that most of the effects of PP2A to inhibit glucose transport are mediated through Akt.
doi:10.1128/MCB.24.19.8778-8789.2004
PMCID: PMC516764  PMID: 15367694
6.  Impact of oncogenic K-RAS on YB-1 phosphorylation induced by ionizing radiation 
Introduction
Expression of Y-box binding protein-1 (YB-1) is associated with tumor progression and drug resistance. Phosphorylation of YB-1 at serine residue 102 (S102) in response to growth factors is required for its transcriptional activity and is thought to be regulated by cytoplasmic signaling phosphatidylinositol 3-kinase (PI3K)/Akt and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathways. These pathways can be activated by growth factors and by exposure to ionizing radiation (IR). So far, however, no studies have been conducted on IR-induced YB-1 phosphorylation.
Methods
IR-induced YB-1 phosphorylation in K-RAS wild-type (K-RASwt) and K-RAS-mutated (K-RASmt) breast cancer cell lines was investigated. Using pharmacological inhibitors, small interfering RNA (siRNA) and plasmid-based overexpression approaches, we analyzed pathways involved in YB-1 phosphorylation by IR. Using γ-H2AX foci and standard colony formation assays, we investigated the function of YB-1 in repair of IR-induced DNA double-stranded breaks (DNA-DSB) and postirradiation survival was investigated.
Results
The average level of phosphorylation of YB-1 in the breast cancer cell lines SKBr3, MCF-7, HBL100 and MDA-MB-231 was significantly higher than that in normal cells. Exposure to IR and stimulation with erbB1 ligands resulted in phosphorylation of YB-1 in K-RASwt SKBr3, MCF-7 and HBL100 cells, which was shown to be K-Ras-independent. In contrast, lack of YB-1 phosphorylation after stimulation with either IR or erbB1 ligands was observed in K-RASmt MDA-MB-231 cells. Similarly to MDA-MB-231 cells, YB-1 became constitutively phosphorylated in K-RASwt cells following the overexpression of mutated K-RAS, and its phosphorylation was not further enhanced by IR. Phosphorylation of YB-1 as a result of irradiation or K-RAS mutation was dependent on erbB1 and its downstream pathways, PI3K and MAPK/ERK. In K-RASmt cells K-RAS siRNA as well as YB-1 siRNA blocked repair of DNA-DSB. Likewise, YB-1 siRNA increased radiation sensitivity.
Conclusions
IR induces YB-1 phosphorylation. YB-1 phosphorylation induced by oncogenic K-Ras or IR enhances repair of DNA-DSB and postirradiation survival via erbB1 downstream PI3K/Akt and MAPK/ERK signaling pathways.
doi:10.1186/bcr2845
PMCID: PMC3219189  PMID: 21392397
7.  Preferential Effect of Akt2-Dependent Signaling on the Cellular Viability of Ovarian Cancer Cells in Response to EGF 
Journal of Cancer  2014;5(8):670-678.
Objective: Overexpression of the epidermal growth factor receptor (EGFR) is associated with the malignant phenotype in many cancers including ovarian cancer, which leads to increased cell proliferation and survival. In spite of emerging EGFR inhibitors as a potentially useful agent, they are largely ineffective in patients with advanced or recurrent ovarian cancers. Since Akt as a key downstream factor of EGFR is highly activated in some high grade serous ovarian tumors, the augmented Akt activation may attribute to irregular EGFR-mediated signaling observed in ovarian cancer. Here we investigated the differential effect of Akt on the EGF-induced cell viability in a panel of ovarian cancer cell lines.
Methods: Cellular viability assay and western blot analysis were used to measure cell viability and expression levels of proteins, respectively. Knockdown of Akt was achieved with siRNA and stable transfection of expression vectors was performed.
Results: Cellular viability increased in OVCAR-3 ovarian cancer cells exposed to EGF, but little to no difference was observed in the 5 other ovarian cancer cells including SKOV-3 cells despite of the expression of EGFR. In OVCAR-3 cells, EGF activated Erk and Akt, but an Erk inhibitor had no impact on cellular viability. On the other hand, the EGFR and PI3K inhibitors decreased EGF-induced cellular viability, indicating the involvement of Akt signaling. Although EGF activated Erk in SKOV-3 cells, the Akt activation was very weak as compared to OVCAR-3 cells. Furthermore, we observed a different expression of Akt isoforms: Akt1 was constitutively expressed in all tested ovarian cancer cells, while Akt3 was little expressed. Interestingly, Akt2 was highly expressed in OVCAR-3 cells. Knockdown of Akt2 blocked EGF-induced OVCAR-3 cell viability whereas knockdown for Akt1 and Erk1/2 had no significant effect. Stable transfection of Akt2 into SKOV-3 cells phosphorylated more Akt and enhanced cell viability in response to EGF.
Conclusions: Akt2-dependent signaling appears to play an important role in EGFR-mediated cellular viability in ovarian cancer and targeting specific Akt isoform may provide a potential therapeutic approach for EGFR-expressing ovarian cancers.
doi:10.7150/jca.9688
PMCID: PMC4174511  PMID: 25258648
EGFR; Akt; Erk; cell viability; ovarian cancer.
8.  Differential responses to doxorubicin-induced phosphorylation and activation of Akt in human breast cancer cells 
Breast Cancer Research  2005;7(5):R589-R597.
Introduction
We have shown previously that overexpression of constitutively active Akt or activation of Akt caused by constitutively active Ras or human epidermal growth factor receptor-2 (HER2) confers on breast cancer cells resistance to chemotherapy or radiotherapy. As an expanded study we here report differential responses in terms of phosphorylation and activation of Akt as a result of treatment with doxorubicin in a panel of breast cancer cell lines.
Methods
The levels of Akt phosphorylation and activity were measured by Western blot analysis with an anti-Ser473-phosphorylated Akt antibody and by in vitro Akt kinase assay using glycogen synthase kinase-3 as a substrate.
Results
Within 24 hours after exposure to doxorubicin, MCF7, MDA468 and T47D cells showed a drug-dose-dependent increase in the levels of phosphorylated Akt; in contrast, SKBR3 and MDA231 cells showed a decrease in the levels of phosphorylated Akt, and minimal or no changes were detected in MDA361, MDA157 and BT474 cells. The doxorubicin-induced Akt phosphorylation was correlated with increased kinase activity and was dependent on phosphoinositide 3-kinase (PI3-K). An increased baseline level of Akt was also found in MCF7 cells treated with ionizing radiation. The cellular responses to doxorubicin-induced Akt phosphorylation were potentiated after the expression of Akt upstream activators including HER2, HER3 and focal adhesion kinase.
Conclusion
Taken together with our recent published results showing that constitutive Akt mediates resistance to chemotherapy or radiotherapy, our present data suggest that the doxorubicin-induced phosphorylation and activation of Akt might reflect a cellular defensive mechanism of cancer cells to overcome doxorubicin-induced cytotoxic effects, which further supports the current efforts of targeting PI3-K/Akt for enhancing the therapeutic responses of breast cancer cells to chemotherapy and radiotherapy.
doi:10.1186/bcr1259
PMCID: PMC1242125  PMID: 16168102
9.  Increased expression of CYP4Z1 promotes tumor angiogenesis and growth in human breast cancer 
Cytochrome P450 (CYP) 4Z1, a novel CYP4 family member, is over-expressed in human mammary carcinoma and associated with high-grade tumors and poor prognosis. However, the precise role of CYP4Z1 in tumor progression is unknown. Here, we demonstrate that CYP4Z1 overexpression promotes tumor angiogenesis and growth in breast cancer. Stable expression of CYP4Z1 in T47D and BT-474 human breast cancer cells significantly increased mRNA expression and production of vascular endothelial growth factor (VEGF)-A, and decreased mRNA levels and secretion of tissue inhibitor of metalloproteinase-2 (TIMP-2), without affecting cell proliferation and anchorage-independent cell growth in vitro. Notably, the conditioned medium from CYP4Z1-expressing cells enhanced proliferation, migration and tube formation of human umbilical vein endothelial cells, and promoted angiogenesis in the zebrafish embryo and chorioallantoic membrane of the chick embryo. In addition, there were lower levels of myristic acid and lauric acid, and higher contents of 20-hydroxyeicosatetraenoic acid (20-HETE) in CYP4Z1-expressing T47D cells compared with vector control. CYP4Z1 overexpression significantly increased tumor weight and microvessel density by 2.6-fold and 1.9-fold in human tumor xenograft models, respectively. Moreover, CYP4Z1 transfection increased the phosphorylation of ERK1/2 and PI3K/Akt, while PI3K or ERK inhibitors and siRNA silencing reversed CYP4Z1-mediated changes in VEGF-A and TIMP-2 expression. Conversely, HET0016, an inhibitor of the CYP4 family, potently inhibited the tumor-induced angiogenesis with associated changes in the intracellular levels of myristic acid, lauric acid and 20-HETE. Collectively, these data suggest that increased CYP4Z1 expression promotes tumor angiogenesis and growth in breast cancer partly via PI3K/Akt and ERK1/2 activation.
doi:10.1016/j.taap.2012.07.019
PMCID: PMC3439529  PMID: 22841774
Cytochrome P450; Angiogenesis; VEGF-A; TIMP-2; Breast cancer
10.  Regulation of Mammary Stem/Progenitor Cells by PTEN/Akt/β-Catenin Signaling 
PLoS Biology  2009;7(6):e1000121.
The PTEN/Akt/β-catenin pathway is important for maintaining stem or progenitor cells in normal and cancerous breast tissue and may be a promising target for effective, long-lasting cancer treatment.
Recent evidence suggests that many malignancies, including breast cancer, are driven by a cellular subcomponent that displays stem cell-like properties. The protein phosphatase and tensin homolog (PTEN) is inactivated in a wide range of human cancers, an alteration that is associated with a poor prognosis. Because PTEN has been reported to play a role in the maintenance of embryonic and tissue-specific stem cells, we investigated the role of the PTEN/Akt pathway in the regulation of normal and malignant mammary stem/progenitor cell populations. We demonstrate that activation of this pathway, via PTEN knockdown, enriches for normal and malignant human mammary stem/progenitor cells in vitro and in vivo. Knockdown of PTEN in normal human mammary epithelial cells enriches for the stem/progenitor cell compartment, generating atypical hyperplastic lesions in humanized NOD/SCID mice. Akt-driven stem/progenitor cell enrichment is mediated by activation of the Wnt/β-catenin pathway through the phosphorylation of GSK3-β. In contrast to chemotherapy, the Akt inhibitor perifosine is able to target the tumorigenic cell population in breast tumor xenografts. These studies demonstrate an important role for the PTEN/PI3-K/Akt/β-catenin pathway in the regulation of normal and malignant stem/progenitor cell populations and suggest that agents that inhibit this pathway are able to effectively target tumorigenic breast cancer cells.
Author Summary
Healthy adult tissues are maintained through the regulated proliferation of a subset of cells known as tissue stem and progenitor cells. Many cancers, including breast cancer, also are thought to arise from and be maintained by a small population of cells that display stem cell-like properties. These so-called “cancer stem cells” may also contribute to tumor spread (metastasis), resistance to treatment, and disease relapse. Effective, long-lasting cancer treatments likely will need to target and eliminate these cancer stem cells specifically. Regulatory pathways responsible for maintaining cancer stem cells therefore may be promising targets for treatment. Breast cancers in humans frequently display abnormalities in the PTEN/PI3K/Akt pathway. We demonstrate using cell culture and a mouse model of breast cancer that stem or progenitor cells in both normal breast tissue and breast tumors are dependent for their continued growth on this pathway and on the Wnt/β-catenin pathway. We further show that the drug perifosine, which inhibits the kinase Akt, is able specifically to reduce the population of breast cancer stem or progenitor cells growing in mice. Our findings support the idea that drugs that selectively target breast cancer stem cells through the PTEN/PI3K/Akt pathway may reduce tumor growth and metastasis and result in improved patient outcomes.
doi:10.1371/journal.pbio.1000121
PMCID: PMC2683567  PMID: 19492080
11.  Diverse involvement of isoforms and gene aberrations of Akt in human lung carcinomas 
Cancer Science  2015;106(6):772-781.
Emerging evidence confirms a central role of Akt in cancer. To evaluate the relative contribution of deregulated Akt and their clinicopathological significance in lung carcinomas, overexpression, activation of Akt and AKT gene increases were investigated. Immunohistochemical staining for 108 cases revealed overexpression of total Akt, Akt1, Akt2 and Akt3 in 61.1, 47.2, 40.7 and 23.1%, respectively, and phosphorylated Akt in 42.6% of cases. Expression of total Akt, Akt2 and Akt3 were frequently observed in small cell carcinoma, but phosphorylated Akt and Akt1 were more frequently observed in squamous cell carcinoma. FISH analysis to evaluate gene increases of AKT1-3 revealed amplification of AKT1 in 4.2% and AKT1 increase by polysomy of chromosome 14 in 27.3% of cases. For AKT2, amplification was observed in 3.2% and polysomy of chromosome 19 in 26.3% of cases. AKT3 increase was observed in 40.0% of cases only by polysomy of chromosome 1. Although “FISH-positive” AKT1 and AKT2 gene increases (amplification/high-level polysomy) were found exclusively in the cases overexpressing total Akt, Akt1 or Akt2, respectively, AKT3 increase was irrelevant of Akt3 expression. Statistically, expressions of Akt2, p-Akt and cytoplasmic-p-Akt were correlated with lymph node metastasis (P = 0.0479, P = 0.0371 and P = 0.0310, respectively). Although AKT1 and AKT2 gene increase showed positive correlation with, or trend towards a positive correlation with tumor size (P = 0.0430, P = 0.0590, respectively), AKT3 did not. In conclusion, Akt isoforms are differentially involved in the pathological phenotype of lung carcinoma in a diverse manner. Because abnormality of Akt1/AKT1 and Akt2/AKT2 correlated with clinicopathological profiles, Akt1/2-specific targeting may open a novel therapeutic window for the group showing Akt deregulation.
doi:10.1111/cas.12669
PMCID: PMC4471790  PMID: 25855050
Akt; gene amplification; isoforms; lung carcinoma; lymph node metastasis
12.  Calmodulin modulates Akt activity in human breast cancer cell lines 
Growth factor-induced activation of Akt occursin the majority of human breast cancer cell lines resulting in a variety of cellular outcomes, including suppression of apoptosis and enhanced survival. We demonstrate that epidermal growth factor (EGF)-initiated activation of Akt is mediated by the ubiquitous calcium sensing molecule, calmodulin, in the majority of human breast cancer cell lines. Specifically, in estrogen receptor (ER)-negative, but not ER-positive, breast cancer cells, Akt activation is abolished by treatment with the calmodulin antagonist, W-7. Suppression of calmodulin expression by siRNAs against all three calmodulin genes in c-Myc-overexpressing mouse mammary carcinoma cells results in significant inhibition of EGF-induced Akt activation. Additionally, transient expression of constitutively active Akt (Myr-Akt) can overcome W-7-mediated suppression of Akt activation. These results confirm the involvement of calmodulin in the Akt pathway. The calmodulin independence of EGF-initiated Akt signaling in some cells was not explained by calmodulin expression level. Additionally, it was not explained by ER status or activation, since removal of estrogen and ablation of the ER did not convert the ERpositive, W-7 insensitive, MCF-7 cell line to calmodulin dependent signaling. However, forced overexpression of either epidermal growth factor receptor (EGFR) or ErbB2 did partially restore calmodulin dependent EGF-stimulated Akt activation. This is consistent with observation that W-7 sensitive cells tend to be estrogen independent and express high levels of EGFR family members. In an attempt to address how calmodulin is regulating Akt activity, we looked at localization of fluorescently tagged Akt and calmodulin in MCF-7 and SK-BR-3 cells. We found that both Akt and calmodulin translocate to the membrane after EGFstimulation, and this translocation to the same sub-cellular compartment is inhibited by the calmodulin inhibitor W-7. Thus, calmodulin may be regulating Akt activity by modulating its sub-cellular location and is a novel target in the poor prognosis, ER-negative subset of breast cancers.
doi:10.1007/s10549-008-0097-z
PMCID: PMC3736740  PMID: 18587642
Akt; Calmodulin; Estrogen receptor; EGFR; ErbB2
13.  Profilin-1 over-expression upregulates PTEN and suppresses AKT activation in breast cancer cells 
Journal of cellular physiology  2009;218(2):436-443.
Profilin-1 (Pfn1), a ubiquitously expressed actin-binding protein, has been regarded as a tumor-suppressor molecule for breast cancer. Since AKT signaling impacts cell survival and proliferation, in this study we investigated whether AKT activation in breast cancer cells is sensitive to perturbation of Pfn1 expression. We found that even a moderate overexpression of Pfn1 leads to a significant reduction in phosphorylation of AKT in MDA-MB-231 breast cancer cells. We further demonstrated that Pfn1 over-expression in MDA-MB-231 cells is associated with a significant reduction in the level of the phosphoinositide regulator of AKT, PIP3, and impaired membrane translocation of AKT that is required for AKT activation, in response to EGF stimulation. Interestingly, Pfn1-overexpressing cells showed post-transcriptional upregulation of PTEN. Furthermore, when PTEN expression was silenced, AKT phosphorylation was rescued, suggesting PTEN upregulation is responsible for Pfn1-dependent attenuation of AKT activation in MDA-MB-231 cells. Pfn1 overexpression induced PTEN upregulation and reduced AKT activation were also reproducible features of BT474 breast cancer cells. These findings may provide mechanistic insights underlying at least some of the tumor-suppressive properties of Pfn1.
doi:10.1002/jcp.21618
PMCID: PMC2874249  PMID: 18937284
Profilin-1; breast cancer; PIP3; AKT; PTEN; MDA-MB-231; BT-474
14.  Phosphorylation of transglutaminase 2 (TG2) at serine-216 has a role in TG2 mediated activation of nuclear factor-kappa B and in the downregulation of PTEN 
BMC Cancer  2012;12:277.
Background
Transglutaminase 2 (TG2) and its phosphorylation have been consistently found to be upregulated in a number of cancer cell types. At the molecular level, TG2 has been associated with the activation of nuclear factor-kappa B (NF-κB), protein kinase B (PKB/Akt) and in the downregulation of phosphatase and tensin homologue deleted on chromosome 10 (PTEN). However, the underlying mechanism involved is not known. We have reported that protein kinase A (PKA) induced phosphorylation of TG2 at serine-216 (Ser216) regulates TG2 function and facilitates protein-protein interaction. However, the role of TG2 phosphorylation in the modulation of NF-κB, Akt and PTEN is not explored.
Methods
In this study we have investigated the effect of TG2 phosphorylation on NF-κB, Akt and PTEN using embryonic fibroblasts derived from TG2 null mice (MEFtg2-/-) overexpressing native TG2 or mutant-TG2 (m-TG2) lacking Ser216 phosphorylation site with and without dibutyryl cyclic-AMP (db-cAMP) stimulation. Functional consequences on cell cycle and cell motility were determined by fluorescence activated cell sorting (FACS) analysis and cell migration assay respectively.
Results
PKA activation in TG2 overexpressing MEFtg2-/- cells resulted in an increased activation of NF-κB and Akt phosphorylation in comparison to empty vector transfected control cells as determined by the reporter-gene assay and immunoblot analysis respectively. These effects were not observed in MEFtg2-/- cells overexpressing m-TG2. Similarly, a significant downregulation of PTEN at both, the mRNA and protein levels were found in cells overexpressing TG2 in comparison to empty vector control and m-TG2 transfected cells. Furthermore, Akt activation correlated with the simultaneous activation of NF-κB and a decrease in PTEN suggesting that the facilitatory effect of TG2 on Akt activation occurs in a PTEN-dependent manner. Similar results were found with MCF-7 and T-47D breast cancer cells overexpressing TG2 and m-TG2 further supporting the role of TG2 phosphorylation in NF-κB activation and in the downregulation of PTEN.
Conclusions
Collectively, these data suggest that phosphorylation of TG2 at Ser216 plays a role in TG2 mediated activation of NF-κB, Akt and in the downregulation of PTEN. Blocking TG2 phosphorylation may provide a novel strategy to attenuate NF-κB activation and downregulation of PTEN in TG2 overexpressing cancers.
doi:10.1186/1471-2407-12-277
PMCID: PMC3492171  PMID: 22759359
Protein kinase A; Mice embryonic fibroblast; Protein kinase B; Reporter-gene assay; FACS analysis; Real-time PCR
15.  Elongation Factor 1 alpha interacts with phospho-Akt in breast cancer cells and regulates their proliferation, survival and motility 
Molecular Cancer  2009;8:58.
Background
Akt/PKB is a serine/threonine kinase that has attracted much attention because of its central role in regulating cell proliferation, survival, motility and angiogenesis. Activation of Akt in breast cancer portends aggressive tumour behaviour, resistance to hormone-, chemo-, and radiotherapy-induced apoptosis and it is correlated with decreased overall survival. Recent studies have identified novel tumor-specific substrates of Akt that may provide new diagnostic and prognostic markers and serve as therapeutic targets. This study was undertaken to identify pAkt-interacting proteins and to assess their biological roles in breast cancer cells.
Results
We confirmed that one of the pAkt interacting proteins is the Elongation Factor EF1α. EF1α contains a putative Akt phosphorylation site, but is not phosphorylated by pAkt1 or pAkt2, suggesting that it may function as a modulator of pAkt activity. Indeed, downregulation of EF1α expression by siRNAs led to markedly decreased expression of pAkt1 and to less extent of pAkt2 and was associated with reduced proliferation, survival and invasion of HCC1937 cells. Proliferation and survival was further reduced by combining EF1α siRNAs with specific pAkt inhibitors whereas EF1α downregulation slightly attenuated the decreased invasion induced by Akt inhibitors.
Conclusion
We show here that EF1α is a pAkt-interacting protein which regulates pAkt levels. Since EF1α is often overexpressed in breast cancer, the consequences of EF1α increased levels for proliferation, survival and invasion will likely depend on the relative concentration of Akt1 and Akt2.
doi:10.1186/1476-4598-8-58
PMCID: PMC2727493  PMID: 19646290
16.  Akt kinases in breast cancer and the results of adjuvant therapy 
Breast Cancer Research  2003;5(2):R37-R44.
Background
The serine/threonine kinase Akt, or protein kinase B, has recently been a focus of interest because of its activity to inhibit apoptosis. It mediates cell survival by acting as a transducer of signals from growth factor receptors that activate phosphatidylinositol 3-kinase.
Methods
We analysed the expression of the isoforms Akt1 and Akt2 as well as phosphorylated Akt (pAkt) by immunohistochemistry in frozen tumour samples from 280 postmenopausal patients who participated in a randomised trial comparing cyclophosphamide–methotrexate–5-fluorouracil chemotherapy and postoperative radiotherapy. The patients were simultaneously randomised to tamoxifen or to no endocrine treatment.
Results
Marked staining was found in 24% of the tumours for Akt1, but in only 4% for Akt2. A low frequency of Akt2-positive cells (1–10%) was observed in another 26% of the tumours. pAkt was significantly associated with both Akt1 and Akt2 expression. Overexpression of erbB2 correlated significantly with pAkt (P = 0.0028). The benefit from tamoxifen was analysed in oestrogen receptor (ER)-positive patients. Patients with a negative status of Akt (no overexpression of Akt1, Akt2 or pAkt) showed significant benefit from tamoxifen. The relative rate of distant recurrence, with versus without tamoxifen, was 0.44 (95% confidence interval [CI], 0.25–0.79) for ER+/Akt1- patients, while it was 0.72 (95% CI, 0.34–1.53) for ER+/Akt1+ patients. The difference in rate ratio did not reach statistical significance. The rate of locoregional recurrence was significantly decreased with radiotherapy versus chemotherapy for Akt-negative patients (rate ratio, 0.23; 95% CI, 0.08–0.67; P = 0.0074), while no benefit was evident for the Akt-positive subgroup (rate ratio, 0.77; 95% CI, 0.31–1.9; P = 0.58). The interaction between Akt and the efficacy of radiotherapy was significant in multivariate analysis (P = 0.042).
Conclusion
Activation of the Akt pathway is correlated with erbB2 overexpression in breast cancer. The results suggest that Akt may predict the local control benefit from radiotherapy.
PMCID: PMC154147  PMID: 12631397
erbB2; HER-2/neu; protein kinase B; radiotherapy; tamoxifen; treatment outcome
17.  Autocrine IGF-I/insulin receptor axis compensates for inhibition of AKT in ER-positive breast cancer cells with resistance to estrogen deprivation 
Introduction
Estrogen receptor α-positive (ER+) breast cancers adapt to hormone deprivation and acquire resistance to antiestrogen therapies. Upon acquisition of hormone independence, ER+ breast cancer cells increase their dependence on the phosphatidylinositol-3 kinase (PI3K)/AKT pathway. We examined the effects of AKT inhibition and its compensatory upregulation of insulin-like growth factor (IGF)-I/InsR signaling in ER+ breast cancer cells with acquired resistance to estrogen deprivation.
Methods
Inhibition of AKT using the catalytic inhibitor AZD5363 was examined in four ER+ breast cancer cell lines resistant to long-term estrogen deprivation (LTED) by western blotting and proliferation assays. Feedback upregulation and activation of receptor tyrosine kinases (RTKs) was examined by western blotting, real-time qPCR, ELISAs, membrane localization of AKT PH-GFP by immunofluorescence and phospho-RTK arrays. For studies in vivo, athymic mice with MCF-7 xenografts were treated with AZD5363 and fulvestrant with either the ATP-competitive IGF-IR/InsR inhibitor AZD9362 or the fibroblast growth factor receptor (FGFR) inhibitor AZD4547.
Results
Treatment with AZD5363 reduced phosphorylation of the AKT/mTOR substrates PRAS40, GSK3α/β and S6K while inducing hyperphosphorylation of AKT at T308 and S473. Inhibition of AKT with AZD5363 suppressed growth of three of four ER+ LTED lines and prevented emergence of hormone-independent MCF-7, ZR75-1 and MDA-361 cells. AZD5363 suppressed growth of MCF-7 xenografts in ovariectomized mice and a patient-derived luminal B xenograft unresponsive to tamoxifen or fulvestrant. Combined treatment with AZD5363 and fulvestrant suppressed MCF-7 xenograft growth better than either drug alone. Inhibition of AKT with AZD5363 resulted in upregulation and activation of RTKs, including IGF-IR and InsR, upregulation of FoxO3a and ERα mRNAs as well as FoxO- and ER-dependent transcription of IGF-I and IGF-II ligands. Inhibition of IGF-IR/InsR or PI3K abrogated AKT PH-GFP membrane localization and T308 P-AKT following treatment with AZD5363. Treatment with IGFBP-3 blocked AZD5363-induced P-IGF-IR/InsR and T308 P-AKT, suggesting that receptor phosphorylation was dependent on increased autocrine ligands. Finally, treatment with the dual IGF-IR/InsR inhibitor AZD9362 enhanced the anti-tumor effect of AZD5363 in MCF-7/LTED cells and MCF-7 xenografts in ovariectomized mice devoid of estrogen supplementation.
Conclusions
These data suggest combinations of AKT and IGF-IR/InsR inhibitors would be an effective treatment strategy against hormone-independent ER+ breast cancer.
doi:10.1186/bcr3449
PMCID: PMC3979036  PMID: 23844554
AKT; ER+ breast cancer; endocrine resistance; IGF-IR; InsR
18.  The Phosphatase PHLPP1 Regulates Akt2, Promotes Pancreatic Cancer Cell Death, and Inhibits Tumor Formation 
Gastroenterology  2011;142(2):377-87.e1-5.
BACKGROUND & AIMS
The kinase Akt mediates resistance of pancreatic cancer (PaCa) cells to death and is constitutively active (phosphorylated) in cancer cells. Whereas the kinases that activate Akt are well characterized, less is known about phosphatases that dephosporylate and thereby inactivate it. We investigated regulation of Akt activity and cell death by the phosphatases PHLPP1 and PHLPP2 in PaCa cells, mouse models of PaCa, and human pancreatic ductal adenocarcinoma (PDAC).
METHODS
We measured the effects of PHLPP overexpression or knockdown with small interfering RNAs on Akt activation and cell death. We examined regulation of PHLPPs by growth factors and reactive oxygen species, as well as associations between PHLPPs and tumorigenesis.
RESULTS
PHLPP overexpression inactivated Akt, whereas PHLPP knockdown increased phosphorylation of Akt in PaCa cells. Levels of PHLPPs were greatly reduced in human PDAC and in mouse genetic and xenograft models of PaCa. PHLPP activities in PaCa cells were down-regulated by growth factors and Nox4 reduced nicotinamide adenine dinucleotide phosphate oxidase. PHLPP1 selectively dephosphorylated Akt2, whereas PHLPP2 selectively dephosphorylated Akt1. Akt2, but not Akt1, was up-regulated in PDAC, and Akt2 levels correlated with mortality. Consistent with these results, high levels of PHLPP1, which dephosphorylates Akt2 (but not PHLPP2, which dephosphorylates Akt1), correlated with longer survival times of patients with PDAC. In mice, xenograft tumors derived from PaCa cells that overexpress PHLPP1 (but not PHLPP2) had inactivated Akt, greater extent of apoptosis, and smaller size.
CONCLUSIONS
PHLPP1 has tumor suppressive activity and might represent a therapeutic or diagnostic tool for PDAC.
doi:10.1053/j.gastro.2011.10.026
PMCID: PMC4545256  PMID: 22044669
ROS; NADPH Oxidase; Apoptosis; Tumor Progression
19.  Human oncoprotein MDM2 activates the Akt signaling pathway through an interaction with the repressor element-1 silencing transcription factor conferring a survival advantage to cancer cells 
Cell Death and Differentiation  2012;20(4):558-566.
The current paradigm states that the Akt signaling pathway phosphorylates the human oncoprotein mouse double minute 2 (MDM2), leading to its nuclear translocation and degradation of the tumor suppressor p53. Here we report a novel Akt signaling pathway elicited by MDM2. Upregulation of endogenous MDM2 promotes, whereas its downregulation diminishes, Akt phosphorylation irrespective of p53 status. MDM2 requires phosphatidylinositol (PI)3-kinase activity for enhancing Akt phosphorylation and upregulates this activity by repressing transcription of the regulatory subunit p85 of PI3-kinase. MDM2 interacts with the repressor element-1 silencing transcription factor (REST), a tumor suppressor that functions by downregulating PI3-kinase activity and Akt phosphorylation, prevents localization of REST on the p85 promoter and represses p85 expression. The deletion mutant of MDM2 capable of upregulating Akt phosphorylation represses p85 expression and interferes with localization of REST on the p85 promoter, whereas the deletion mutant of MDM2 that does not increase Akt phosphorylation cannot perform these functions. Silencing of REST abrogates the ability of MDM2 to upregulate Akt phosphorylation and downregulate p85 expression, implicating the ability of MDM2 to interact with REST in its ability to inhibit p85 expression and activate Akt phosphorylation. Inhibition of MDM2-mediated Akt phosphorylation with an Akt-phosphorylation-specific inhibitor abrogates its ability to improve cell survival. Consistently, the Akt phosphorylation function of MDM2 was required for its ability to improve cell survival after treatment with a chemotherapeutic drug. Our report not only unravels a novel signaling pathway that contributes to cell survival but also implicates a p53-independent transcription regulatory function of MDM2 in Akt signaling.
doi:10.1038/cdd.2012.153
PMCID: PMC3595481  PMID: 23238568
MDM2; Akt phosphorylation; Akt signaling; REST; p85
20.  3-Phosphoinositide-Dependent Kinase 1 Controls Breast Tumor Growth in a Kinase-Dependent but Akt-Independent Manner12 
Neoplasia (New York, N.Y.)  2012;14(8):719-731.
3-Phosphoinositide-dependent protein kinase 1 (PDK1) is the pivotal element of the phosphatidylinositol 3 kinase (PI3K) signaling pathway because it phosphorylates Akt/PKB through interactions with phosphatidylinositol 3,4,5 phosphate. Recent data indicate that PDK1 is overexpressed in many breast carcinomas and that alterations of PDK1 are critical in the context of oncogenic PI3K activation. However, the role of PDK1 in tumor progression is still controversial. Here, we show that PDK1 is required for anchorage-independent and xenograft growth of breast cancer cells harboring either PI3KCA or KRAS mutations. In fact, PDK1 silencing leads to increased anoikis, reduced soft agar growth, and pronounced apoptosis inside tumors. Interestingly, these phenotypes are reverted by PDK1 wild-type but not kinase-dead mutant, suggesting a relevant role of PDK1 kinase activity, even if PDK1 is not relevant for Akt activation here. Indeed, the expression of constitutively active forms of Akt in PDK1 knockdown cells is unable to rescue the anchorage-independent growth. In addition, Akt down-regulation and pharmacological inhibition do not inhibit the effects of PDK1 overexpression. In summary, these results suggest that PDK1 may contribute to breast cancer, even in the absence of PI3K oncogenic mutations and through both Akt-dependent and Akt-independent mechanisms.
PMCID: PMC3431179  PMID: 22952425
21.  PI3K inhibition results in enhanced HER signaling and acquired ERK dependency in HER2-overexpressing breast cancer 
Oncogene  2011;30(22):2547-2557.
There is a strong rationale to therapeutically target the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway in breast cancer since it is highly deregulated in this disease and it also mediates resistance to anti-HER2 therapies. However, initial studies with rapalogs, allosteric inhibitors of mTORC1, have resulted in limited clinical efficacy probably due to the release of a negative regulatory feedback loop that triggers AKT and ERK signaling. Since activation of AKT occurs via PI3K, we decided to explore whether PI3K inhibitors prevent the activation of these compensatory pathways. Using HER2-overexpressing breast cancer cells as a model, we observed that PI3K inhibitors abolished AKT activation. However, PI3K inhibition resulted in a compensatory activation of the ERK signaling pathway. This enhanced ERK signaling occurred as a result of activation of HER family receptors as evidenced by induction of HER receptors dimerization and phosphorylation, increased expression of HER3 and binding of adaptor molecules to HER2 and HER3. The activation of ERK was prevented with either MEK inhibitors or anti-HER2 monoclonal antibodies and tyrosine kinase inhibitors. Combined administration of PI3K inhibitors with either HER2 or MEK inhibitors resulted in decreased proliferation, enhanced cell death and superior anti-tumor activity compared with single agent PI3K inhibitors. Our findings indicate that PI3K inhibition in HER2-overexpressing breast cancer activates a new compensatory pathway that results in ERK dependency. Combined anti-MEK or anti-HER2 therapy with PI3K inhibitors may be required in order to achieve optimal efficacy in HER2-overexpressing breast cancer. This approach warrants clinical evaluation.
doi:10.1038/onc.2010.626
PMCID: PMC3107390  PMID: 21278786
PI3K/mTOR; HER2; feedback; ERK; BEZ235
22.  Gemcitabine resistance in breast cancer cells regulated by PI3K/AKT-mediated cellular proliferation exerts negative feedback via the MEK/MAPK and mTOR pathways 
OncoTargets and therapy  2014;7:1033-1042.
Chemoresistance is a major cause of cancer treatment failure and leads to a reduction in the survival rate of cancer patients. Phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) and mitogen-activated protein kinase (MAPK) pathways are aberrantly activated in many malignant tumors, including breast cancer, which may indicate an association with breast cancer chemoresistance. In this study, we generated a chemoresistant human breast cancer cell line, MDA-MB-231/gemcitabine (simplified hereafter as “231/Gem”), from MDA-MB-231 human breast cancer cells. Flow cytometry studies revealed that with the same treatment concentration of gemcitabine, 231/Gem cells displayed more robust resistance to gemcitabine, which was reflected by fewer apoptotic cells and enhanced percentage of S-phase cells. Through the use of inverted microscopy, Cell Counting Kit-8, and Transwell assays, we found that compared with parental 231 cells, 231/Gem cells displayed more morphologic projections, enhanced cell proliferative ability, and improved cell migration and invasion. Mechanistic studies revealed that the PI3K/AKT/mTOR and mitogen-activated protein kinase kinase (MEK)/MAPK signaling pathways were activated through elevated expression of phosphorylated (p)-extracellular signal-regulated kinase (ERK), p-AKT, mTOR, p-mTOR, p-P70S6K, and reduced expression of p-P38 and LC3-II (the marker of autophagy) in 231/Gem in comparison to control cells. However, there was no change in the expression of Cyclin D1 and p-adenosine monophosphate-activated protein kinase (AMPK). In culture, inhibitors of PI3K/AKT and mTOR, but not of MEK/MAPK, could reverse the enhanced proliferative ability of 231/Gem cells. Western blot analysis showed that treatment with a PI3K/AKT inhibitor decreased the expression levels of p-AKT, p-MEK, p-mTOR, and p-P70S6K; however, treatments with either MEK/MAPK or mTOR inhibitor significantly increased p-AKT expression. Thus, our data suggest that gemcitabine resistance in breast cancer cells is mainly mediated by activation of the PI3K/AKT signaling pathway. This occurs through elevated expression of p-AKT protein to promote cell proliferation and is negatively regulated by the MEK/MAPK and mTOR pathways.
doi:10.2147/OTT.S63145
PMCID: PMC4063800  PMID: 24966685
chemoresistance; gemcitabine; breast cancer
23.  Physical Association of PDK1 with AKT1 Is Sufficient for Pathway Activation Independent of Membrane Localization and Phosphatidylinositol 3 Kinase 
PLoS ONE  2010;5(3):e9910.
Frequent activation of the AKT serine-threonine kinase in cancer confers resistance to therapy. AKT is activated by a multi-step process involving phosphatidylinositide (PtdIns) phosphate-mediated recruitment of AKT and its upstream kinases, including 3-Phosphoinositide-dependent kinase 1 (PDK1), to the inner surface of the cell membrane. PDK1 in the appropriate context phosphorylates AKT at threonine 308 (T308) to activate AKT. Whether PtdIns(3,4,5)Ps (PtdInsP3) binding and AKT membrane translocation mediate functions other than formation of a functional PDK1::AKT complex have not been fully elucidated. We fused complementary fragments of intensely fluorescent protein (IFP) to AKT1 and PDK1 to induce a stable complex to study the prerequisites of AKT1 phosphorylation and function. In the stabilized PDK1-IFPC::IFPN-AKT1 complex, AKT1 T308 phosphorylation was independent of PtdIns, as demonstrated by treatment with Phosphatidylinositol 3 Kinase (PI3K) inhibitors. Further when interaction with PtdIns and the cell membrane was prevented by creating PH-domain mutants of AKT1 (R25A) and PDK1 (R474A), AKT1 phosphorylation on T308 was maintained in the PDK1-IFPC::IFPN-AKT1 complex. The PDK1-IFPC::IFPN-AKT1 complex was sufficient for phosphorylation of known AKT substrates, and conferred resistance to inhibitors of PI3K (LY294002, PI103, GDC0941 and TGX286) but not inhibitors of the downstream TORC1 complex (rapamycin). Thus the locus of action of targeted therapeutics can be elucidated by the constitutively active AKT1 complex. Our data indicate that PtdIns and membrane localization are not required for AKT phosphorylation and activation, but rather serve to induce a functional physical interaction between PDK1 and AKT. The PDK1-IFPC::IFPN-AKT1 complex provides a cell-based platform to examine specificity of drugs targeting PI3K pathway components.
doi:10.1371/journal.pone.0009910
PMCID: PMC2845649  PMID: 20361045
24.  14-3-3γ Regulates Lipopolysaccharide-Induced Inflammatory Responses and Lactation in Dairy Cow Mammary Epithelial Cells by Inhibiting NF-κB and MAPKs and Up-Regulating mTOR Signaling 
As a protective factor for lipopolysaccharide (LPS)-induced injury, 14-3-3γ has been the subject of recent research. Nevertheless, whether 14-3-3γ can regulate lactation in dairy cow mammary epithelial cells (DCMECs) induced by LPS remains unknown. Here, the anti-inflammatory effect and lactation regulating ability of 14-3-3γ in LPS-induced DCMECs are investigated for the first time, and the molecular mechanisms responsible for their effects are explored. The results of qRT-PCR showed that 14-3-3γ overexpression significantly inhibited the mRNA expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β) and inducible nitric oxide synthase (iNOS). Enzyme-linked immunosorbent assay (ELISA) analysis revealed that 14-3-3γ overexpression also suppressed the production of TNF-α and IL-6 in cell culture supernatants. Meanwhile, CASY-TT Analyser System showed that 14-3-3γ overexpression clearly increased the viability and proliferation of cells. The results of kit methods and western blot analysis showed that 14-3-3γ overexpression promoted the secretion of triglycerides and lactose and the synthesis of β-casein. Furthermore, the expression of genes relevant to nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPKs) and lactation-associated proteins were assessed by western blot, and the results suggested that 14-3-3γ overexpression inactivated the NF-κB and MAPK signaling pathways by down-regulating extracellular signal regulated protein kinase (ERK), p38 mitogen-activated protein kinase (p38MAPK) and inhibitor of NF-κB (IκB) phosphorylation levels, as well as by inhibiting NF-κB translocation. Meanwhile, 14-3-3γ overexpression enhanced the expression levels of β-casein, mammalian target of rapamycin (mTOR), ribosomal protein S6 kinase 1 (S6K1), serine/threonine protein kinase Akt 1 (AKT1), sterol regulatory element binding protein 1 (SREBP1) and peroxisome proliferator-activated receptor gamma (PPARγ). These results suggest that 14-3-3γ was able to attenuate the LPS-induced inflammatory responses and promote proliferation and lactation in LPS-induced DCMECs by inhibiting the activation of the NF-κB and MAPK signaling pathways and up-regulating mTOR signaling pathways to protect against LPS-induced injury.
doi:10.3390/ijms160716622
PMCID: PMC4519969  PMID: 26204835
14-3-3γ; inflammatory responses; dairy cow mammary epithelial cells; NF-κB; MAPKs; mTOR signaling pathway
25.  Akt phosphorylates and activates HSF-1 independent of heat shock, leading to Slug overexpression and epithelial-mesenchymal transition (EMT) of HER2-overexpressing breast cancer cells 
Oncogene  2014;34(5):546-557.
Epithelial-mesenchymal transition (EMT) is an essential step for tumor progression, although the mechanisms driving EMT are still not fully understood. In an effort to investigate these mechanisms, we observed that heregulin-mediated activation of HER2, or HER2 overexpression, resulted in EMT, which is accompanied with increased expression of a known EMT regulator Slug, but not TWIST or Snail. We then investigated how HER2 induced Slug expression and found, for the first time, that there are four consensus HSF Sequence-binding Elements (HSEs), the binding sites for heat shock factor-1 (HSF-1), located in the Slug promoter. HSF-1 bound to and transactivated the Slug promoter independent of heat shock, leading to Slug expression in breast cancer cells. Mutation of the putative HSEs ablated Slug transcriptional activation induced by heregulin or HSF-1 overexpression. Knockdown of HSF-1 expression by siRNA reduced Slug expression and heregulin-induced EMT. The positive association between HSF-1 and Slug was confirmed by immunohistochemical staining of a cohort of 100 invasive breast carcinoma specimens. While investigating how HER2 activated HSF-1 independent of heat shock, we observed that HER2 activation resulted in concurrent phosphorylation of Akt and HSF-1. We then observed, also for the first time, that Akt directly interacted with HSF-1 and phosphorylated HSF-1 at S326. Inhibition of Akt using siRNA, dominant-negative Akt mutant, or small molecule inhibitors prevented heregulin-induced HSF-1 activation and Slug expression. Conversely, constitutively active Akt induced HSF-1 phosphorylation and Slug expression. HSF-1 knockdown reduced the ability of Akt to induce Slug expression, indicating an essential that HSF-1 plays in Akt-induced Slug upregulation. Together, our study uncovered the existence of a novel Akt-HSF-1 signaling axis that leads to Slug upregulation and EMT, and potentially contributes to progression of HER2-positive breast cancer.
doi:10.1038/onc.2013.582
PMCID: PMC4112182  PMID: 24469056
Slug; EMT; Akt; HSF-1; HER2; gene regulation; phosphorylation; cancer

Results 1-25 (1539860)