Search tips
Search criteria

Results 1-25 (506472)

Clipboard (0)

Related Articles

1.  Genetic Characterization of pepP, Which Encodes an Aminopeptidase P Whose Deficiency Does Not Affect Lactococcus lactis Growth in Milk, Unlike Deficiency of the X-Prolyl Dipeptidyl Aminopeptidase 
Applied and Environmental Microbiology  1998;64(11):4591-4595.
We sequenced the pepP gene of Lactococcus lactis, which encodes an aminopeptidase P (PepP), and demonstrated that the X-prolyl dipeptidyl aminopeptidase PepX plays a more important role than PepP in nitrogen nutrition. PepP shares homology with methionine aminopeptidases and could play a role in the maturation of nascent proteins.
PMCID: PMC106689  PMID: 9797327
2.  Transcriptional Pattern of Genes Coding for the Proteolytic System of Lactococcus lactis and Evidence for Coordinated Regulation of Key Enzymes by Peptide Supply 
Journal of Bacteriology  2001;183(12):3614-3622.
The transcription of 16 genes encoding 12 peptidases (pepC, pepN, pepX, pepP, pepA, pepF2, pepDA1, pepDA2, pepQ, pepT, pepM, and pepO1), PI and PIII proteinases (prtP1 and prtP3), and three transport systems (dtpT, dtpP, and opp-pepO1) of Lactococcus lactis MG1363 was analyzed in response to different environmental factors. Promoter fusions with luciferase reporter genes and/or mRNA analysis were used to study the effects of sugar sources, growth at 37°C, and peptide supply on the transcription of these genes. Only transcription of the pepP gene is modulated by the source of sugar. The presence of potential catabolite-responsive element (CRE) boxes in its promoter region suggests that expression of this gene is directly controlled by catabolic repression. Elevated temperature had no significant effect on the level of transcription of these genes. prtP1, prtP3, pepC, pepN, pepX, and the opp-pepO1 operon are the most highly expressed genes in chemically defined medium, and their expression is repressed 5- to 150-fold by addition of peptide sources such as Casitone in the medium. Moreover, the transcription of prtP1, prtP3, pepC, pepN, and the opp-pepO1 operon is repressed two- to eight-fold by the dipeptides leucylproline and prolylleucine. The transcription of pepDA2 might also be repressed by the peptide sources, but this effect is not observed on the regulation of dtpT, pepP, pepA, pepF2, pepDA1, pepQ, pepT, pepM, and the dtpP operon. The significance of these results with respect to the functions of different components of the proteolytic system in L. lactis are discussed.
PMCID: PMC95238  PMID: 11371525
3.  The proteolytic system of lactic acid bacteria revisited: a genomic comparison 
BMC Genomics  2010;11:36.
Lactic acid bacteria (LAB) are a group of gram-positive, lactic acid producing Firmicutes. They have been extensively used in food fermentations, including the production of various dairy products. The proteolytic system of LAB converts proteins to peptides and then to amino acids, which is essential for bacterial growth and also contributes significantly to flavor compounds as end-products. Recent developments in high-throughput genome sequencing and comparative genomics hybridization arrays provide us with opportunities to explore the diversity of the proteolytic system in various LAB strains.
We performed a genome-wide comparative genomics analysis of proteolytic system components, including cell-wall bound proteinase, peptide transporters and peptidases, in 22 sequenced LAB strains. The peptidase families PepP/PepQ/PepM, PepD and PepI/PepR/PepL are described as examples of our in silico approach to refine the distinction of subfamilies with different enzymatic activities. Comparison of protein 3D structures of proline peptidases PepI/PepR/PepL and esterase A allowed identification of a conserved core structure, which was then used to improve phylogenetic analysis and functional annotation within this protein superfamily.
The diversity of proteolytic system components in 39 Lactococcus lactis strains was explored using pangenome comparative genome hybridization analysis. Variations were observed in the proteinase PrtP and its maturation protein PrtM, in one of the Opp transport systems and in several peptidases between strains from different Lactococcus subspecies or from different origin.
The improved functional annotation of the proteolytic system components provides an excellent framework for future experimental validations of predicted enzymatic activities. The genome sequence data can be coupled to other "omics" data e.g. transcriptomics and metabolomics for prediction of proteolytic and flavor-forming potential of LAB strains. Such an integrated approach can be used to tune the strain selection process in food fermentations.
PMCID: PMC2827410  PMID: 20078865
4.  Expression of Six Peptidases from Lactobacillus helveticus in Lactococcus lactis 
For development of novel starter strains with improved proteolytic properties, the ability of Lactococcus lactis to produce Lactobacillus helveticus aminopeptidase N (PepN), aminopeptidase C (PepC), X-prolyl dipeptidyl aminopeptidase (PepX), proline iminopeptidase (PepI), prolinase (PepR), and dipeptidase (PepD) was studied by introducing the genes encoding these enzymes into L. lactis MG1363 and its derivatives. According to Northern analyses and enzyme activity measurements, the L. helveticus aminopeptidase genes pepN, pepC, and pepX are expressed under the control of their own promoters in L. lactis. The highest expression level, using a low-copy-number vector, was obtained with the L. helveticus pepN gene, which resulted in a 25-fold increase in PepN activity compared to that of wild-type L. lactis. The L. helveticus pepI gene, residing as a third gene in an operon in its host, was expressed in L. lactis under the control of the L. helveticus pepX promoter. The genetic background of the L. lactis derivatives tested did not affect the expression level of any of the L. helveticus peptidases studied. However, the growth medium used affected both the recombinant peptidase profiles in transformant strains and the resident peptidase activities. The levels of expression of the L. helveticus pepD and pepR clones under the control of their own promoters were below the detection limit in L. lactis. However, substantial amounts of recombinant pepD and PepR activities were obtained in L. lactis when pepD and pepR were expressed under the control of the inducible lactococcal nisA promoter at an optimized nisin concentration.
PMCID: PMC92718  PMID: 11229915
5.  Identification and Characterization of Lactobacillus helveticus PepO2, an Endopeptidase with Post-Proline Specificity 
A post-proline endopeptidase (PepO2) was detected in cell extracts from a genomic library of Lactobacillus helveticus CNRZ32 by using the synthetic substrate N-acetyl-β-casein-(f203-209)-ρ-nitroanilide in a coupled reaction with aminopeptidase N. Isolates with activity for this substrate contained plasmids with visually indistinguishable restriction profiles. Nucleotide sequence analysis revealed a 1,947-bp open reading frame, designated pepO2, encoding a putative 71.4-kDa protein. Analysis of the predicted peptide sequence revealed that L. helveticus PepO2 contained the zinc-dependent metalloprotease motif HEXXH and exhibited levels of amino acid sequence similarity of 72, 61, 59, and 53% to L. helveticus PepO, Lactococcus lactis PepO2, L. lactis PepO, and Lactobacillus rhamnosus PepO, respectively. Northern hybridization results indicated that the transcript containing pepO2 was monocistronic. Despite the high degrees of amino acid similarity to PepO proteins from other lactic acid bacteria, the specificity of the L. helveticus PepO2 for post-proline bonds distinguishes it from other PepO-type endopeptidases characterized to date. The specificity for post-proline bonds also suggests that this enzyme may play a central role in the hydrolysis of casein-derived bitter peptides, such as β-casein(f193-209).
PMCID: PMC143593  PMID: 12571057
6.  Degradation of proline peptides in peptidase-deficient strains of Salmonella typhimurium. 
Journal of Bacteriology  1983;153(1):350-356.
A mutant strain of Salmonella typhimurium that lacks two proline-specific peptidases (peptidases P and Q) could not complete the degradation of proline peptides formed as intermediates in starvation-induced protein breakdown. The wild-type strain produced free proline as the product of degradation of proline-labeled proteins. The pepP pepQ mutant, however, produced a mixture of small proline peptides. In the absence of peptidase Q only, peptidase P could complete the degradation of most of the proline peptide intermediates formed. In the absence of peptidase P only, about 50% of the proline-labeled, acid-soluble products were proline peptides. These results are consistent with in vitro specificity data indicating that peptidase Q hydrolyzes X-Pro dipeptides only, whereas peptidase P attacks both X-Pro dipeptides and longer peptides with X-Pro at their N-termini. A mutant strain lacking four broad-specificity peptidases (peptidases N, A, B, and D), but containing peptidases P and Q, also produced proline peptides as products of protein breakdown. This observation suggests that broad-specificity peptidases are required to generate the X-Pro substrates of peptidases P and Q. A strain lacking six peptidases (N, A, B, D, P, and Q) was constructed and produced less free proline from protein breakdown than either the pepP pepQ strain or the pepN pepA pepB pepD strain. These observations suggest that the degradation of peptide intermediates involves the sequential removal of N-terminal amino acids and requires both broad-specificity aminopeptidases (peptidases N, A, and B) and the X-Pro-specific aminopeptidase, peptidase P.
PMCID: PMC217378  PMID: 6336737
7.  Isolation and Characterization of Proline Peptidase Mutants of Salmonella typhimurium 
Journal of Bacteriology  1974;120(1):364-371.
The proline requirement of Salmonella typhimurium strain proB25 can be satisfied by either of the peptides Leu-Pro or Gly-Pro-Ala. A mutant derivative of strain proB25 isolated by penicillin selection in medium containing Leu-Pro as proline source fails to use either Leu-Pro or Gly-Pro-Ala as a source of proline. This strain is a double mutant that lacks two aminoacyl-proline-specific peptidases. One of these enzymes (peptidase Q) catalyzes the rapid hydrolysis of Leu-Pro but does not hydrolyze Gly-Pro-Ala or poly-l-proline. Mutations at a site (pepQ) near metE lead to loss of this activity. The other peptidase (peptidase P) catalyzes the hydrolysis of Gly-Pro-Ala and poly-l-proline but is only weakly active with Leu-Pro as substrate. This enzyme is similar to aminopeptidase P previously described in Escherichia coli (16). Mutations at a locus (pepP) near serA lead to loss of this enzyme.
PMCID: PMC245771  PMID: 4607625
8.  Characterization of a thiol-dependent endopeptidase from Lactobacillus helveticus CNRZ32. 
Journal of Bacteriology  1997;179(8):2529-2533.
An endopeptidase gene (pepE) was isolated from a previously constructed genomic library of Lactobacillus helveticus CNRZ32. The pepE gene consisted of a 1,314-bp open reading frame encoding a putative peptide of 52.1 kDa. Significant identity was found between the deduced amino acid sequence of pepE and the sequences for aminopeptidase C from Lactobacillus delbrueckii subsp. lactis DSM7290, L. helveticus CNRZ32, Streptococcus thermophilus CNRZ302, and Lactococcus lactis subsp. cremoris AM2. A recombinant PepE fusion protein containing an N-terminal six-histidine tag was constructed and purified to electrophoretic homogeneity. Characterization of PepE revealed that it was a thiol-dependent protease having a monomeric mass of 50 kDa, with optimum temperature, NaCl concentration, and pH for activity at 32 to 37 degrees C, 0.5%, and 4.5, respectively. PepE had significant activity under conditions which simulate those of ripening cheese (10 degrees C, 4% NaCl, pH 5.1). PepE hydrolyzed internal peptide bonds in Met-enkephalin and bradykinin; however, hydrolysis of alpha-, beta-, and kappa-caseins was not detected.
PMCID: PMC179000  PMID: 9098049
9.  Expression of human cationic trypsinogen with an authentic N terminus using intein-mediated splicing in aminopeptidase P (pepP) deficient Escherichia coli 
High-level expression of human trypsinogens as inclusion bodies in Escherichia coli requires deletion of the secretory signal sequence and placement of an initiator methionine at the N terminus. Trypsinogen preparations obtained this way contain a mixture of abnormal N termini, as a result of processing by cytoplasmic aminopeptidases. Here we describe an expression system that produces recombinant human cationic trypsinogen with a native, intact N terminus, using intein-mediated protein splicing and an aminopeptidase P (pepP) deficient Escherichia coli strain. As a first application of this system, the effect of the pancreatitis-associated mutation A16V on the autoactivation of human cationic trypsinogen was characterized. The use of the novel pepP knock-out Escherichia coli strain should be generally applicable to the expression of recombinant proteins, which undergo unwanted N-terminal trimming by aminopeptidase P.
PMCID: PMC1604731  PMID: 16542853
10.  Cloning and DNA sequence analysis of an X-prolyl dipeptidyl aminopeptidase gene from Lactococcus lactis subsp. lactis NCDO 763. 
Lactococcus lactis subsp. lactis NCDO 763 (also designated ML3) possesses an X-prolyl dipeptidyl aminopeptidase (X-PDAP; EC X-PDAP mutants were selected by an enzymatic plate assay on the basis of their inability to hydrolyze an L-phenylalanyl-L-proline-beta-naphthylamide substrate. A DNA bank from L. lactis subsp. lactis NCDO 763 was constructed in one of these X-PDAP mutants, and one clone in which the original X-PDAP phenotype was restored was detected by the enzymatic plate assay. The X-PDAP gene, designated pepXP, was further subcloned and sequenced. It codes for a protein containing 763 residues. Comparison of the amino-terminal sequence of the X-PDAP enzyme with the amino acid sequence deduced from the pepXP gene indicated that the enzyme is not subjected to posttranslational modification or exported via processing of a signal peptide. The pepXP gene from L. lactis subsp. lactis NCDO 763 in more than 99% homologous to the pepXP gene from L. lactis subsp. cremoris P8-2-47 described elsewhere (B. Mayo, J. Kok, K. Venema, W. Bockelmann, M. Teuber, H. Reinke, and G. Venema, Appl. Environ. Microbiol. 57:38-44, 1991) and is also conserved in other lactococcal strains.
PMCID: PMC182662  PMID: 1674656
11.  Characterization of the Recombinant Exopeptidases PepX and PepN from Lactobacillus helveticus ATCC 12046 Important for Food Protein Hydrolysis 
PLoS ONE  2013;8(7):e70055.
The proline-specific X-prolyl dipeptidyl aminopeptidase (PepX; EC and the general aminopeptidase N (PepN; EC from Lactobacillus helveticus ATCC 12046 were produced recombinantly in E. coli BL21(DE3) via bioreactor cultivation. The maximum enzymatic activity obtained for PepX was 800 µkatH-Ala-Pro-pNA L−1, which is approx. 195-fold higher than values published previously. To the best of our knowledge, PepN was expressed in E. coli at high levels for the first time. The PepN activity reached 1,000 µkatH-Ala-pNA L−1. After an automated chromatographic purification, both peptidases were biochemically and kinetically characterized in detail. Substrate inhibition of PepN and product inhibition of both PepX and PepN were discovered for the first time. An apo-enzyme of the Zn2+-dependent PepN was generated, which could be reactivated by several metal ions in the order of Co2+>Zn2+>Mn2+>Ca2+>Mg2+. PepX and PepN exhibited a clear synergistic effect in casein hydrolysis studies. Here, the relative degree of hydrolysis (rDH) was increased by approx. 132%. Due to the remarkable temperature stability at 50°C and the complementary substrate specificities of both peptidases, a future application in food protein hydrolysis might be possible.
PMCID: PMC3716637  PMID: 23894590
12.  Effect of X-Prolyl Dipeptidyl Aminopeptidase Deficiency on Lactococcus lactis 
The genetic determinant (pepXP) of an X-prolyl dipeptidyl aminopeptidase (PepXP) has recently been cloned and sequenced from both Lactococcus lactis subsp. cremoris (B. Mayo, J. Kok, K. Venema, W. Bockelmann, M. Teuber, H. Reinke, and G. Venema, Appl. Environ. Microbiol. 57:38-44, 1991) and L. lactis subsp. lactis (M. Nardi, M.-C. Chopin, A. Chopin, M.-M. Cals, and J.-C. Gripon, Appl. Environ. Microbiol. 57:45-50, 1991). To examine the possible role of the enzyme in the breakdown of caseins required for lactococci to grow in milk, integration vectors have been constructed and used to specifically inactivate the pepXP gene. After inactivation of the gene in L. lactis subsp. lactis MG1363, which is Lac- and Prt-, the Lac+ Prt+ determinants were transferred by conjugation by using L. lactis subsp. lactis 712 as the donor. Since growth of the transconjugants relative to the PepXP+ strains was not retarded in milk, it was concluded that PepXP is not essential for growth in that medium. It was also demonstrated that the open reading frame ORF1, upstream of pepXP, was not required for PepXP activity in L. lactis. A marked difference between metenkephalin degradation patterns was observed after incubation of this pentapeptide with cell extracts obtained from wild-type lactococci and pepXP mutants. Therefore, altered expression of the pepXP-encoded general dipeptidyl aminopeptidase activity may change the peptide composition of fermented milk products.
PMCID: PMC182234  PMID: 16348982
13.  Characterization and overexpression of the Lactococcus lactis pepN gene and localization of its product, aminopeptidase N. 
The chromosomal pepN gene encoding lysyl-aminopeptidase activity in Lactococcus lactis has been identified in a lambda EMBL3 library in Escherichia coli by using an immunological screening with antiserum against a purified aminopeptidase fraction. The pepN gene was localized and subcloned in E. coli on the basis of its expression and hybridization to a mixed-oligonucleotide probe for the previously determine N-terminal amino acid sequence of lysyl-aminopeptidase (P. S. T. Tan and W. N. Konings, Appl. Environ. Microbiol. 56:526-532, 1990). The L. lactis pepN gene appeared to complement an E. coli strain carrying a mutation in its pepN gene. High-level expression of the pepN gene in E. coli was obtained by using the T7 system. The overproduction of the 95-kDa aminopeptidase N could be visualized on sodium dodecyl sulfate-polyacrylamide gels and immunoblots. Cloning of the pepN gene on a multicopy plasmid in L. lactis resulted in a 20-fold increase in lysyl-aminopeptidase activity that corresponded to several percent of total protein. Nucleotide sequence analysis of the 5' region of the pepN gene allowed a comparison between the deduced and determined amino-terminal primary sequences of aminopeptidase N. The results show that the amino terminus of PepN is not processed and does not possess the characteristics of consensus signal sequences, indicating that aminopeptidase N is probably an intracellular protein. The intracellular location of aminopeptidase N in L. lactis was confirmed by immunogold labeling of lactococcal cells.
PMCID: PMC183619  PMID: 1685079
14.  Introduction of Peptidase Genes from Lactobacillus delbrueckii subsp. lactis into Lactococcus lactis and Controlled Expression 
Applied and Environmental Microbiology  1999;65(11):4729-4733.
Peptidases PepI, PepL, PepW, and PepG from Lactobacillus delbrueckii subsp. lactis, which have no counterparts in Lactococcus lactis, and peptidase PepQ were examined to determine their potential to confer new peptidolytic properties to lactococci. Controllable expression of the corresponding genes (pep genes) was achieved by constructing translational fusions with the promoter of the nisA gene (PnisA). A suitable host strain, UKLc10, was constructed by chromosomal integration of the genes encoding the NisRK two-component system into the fivefold peptidase-deficient mutant IM16 of L. lactis. Recombinants of this strain were used to analyze growth, peptidase activities, peptide utilization, and intracellular protein cleavage products. After nisin induction of PnisA::pep fusions, all of the peptidases were visible as distinct bands in protein gels. Despite the fact that identical transcription and translation signals were used to express the pep genes, the relative amounts of individual peptidases varied considerably. All of the peptidases exhibited activities in extracts of recombinant UKLc10 clones, but only PepL and PepG allowed the clones to utilize specific peptide substrates as sources of essential amino acids. In milk medium, induction of pepG and induction of pepW resulted in growth acceleration. The activities of all five peptidases during growth in milk medium were revealed by high-performance liquid chromatography analyses of intracellular amino acid and peptide pools.
PMCID: PMC91636  PMID: 10543778
15.  Identification of Endopeptidase Genes from the Genomic Sequence of Lactobacillus helveticus CNRZ32 and the Role of These Genes in Hydrolysis of Model Bitter Peptides 
Genes encoding three putative endopeptidases were identified from a draft-quality genome sequence of Lactobacillus helveticus CNRZ32 and designated pepO3, pepF, and pepE2. The ability of cell extracts from Escherichia coli DH5α derivatives expressing CNRZ32 endopeptidases PepE, PepE2, PepF, PepO, PepO2, and PepO3 to hydrolyze the model bitter peptides, β-casein (β-CN) (f193-209) and αS1-casein (αS1-CN) (f1-9), under cheese-ripening conditions (pH 5.1, 4% NaCl, and 10°C) was examined. CNRZ32 PepO3 was determined to be a functional paralog of PepO2 and hydrolyzed both peptides, while PepE and PepF had unique specificities towards αS1-CN (f1-9) and β-CN (f193-209), respectively. CNRZ32 PepE2 and PepO did not hydrolyze either peptide under these conditions. To demonstrate the utility of these peptidases in cheese, PepE, PepO2, and PepO3 were expressed in Lactococcus lactis, a common cheese starter, using a high-copy vector pTRKH2 and under the control of the pepO3 promoter. Cell extracts of L. lactis derivatives expressing these peptidases were used to hydrolyze β-CN (f193-209) and αS1-CN (f1-9) under cheese-ripening conditions in single-peptide reactions, in a defined peptide mix, and in Cheddar cheese serum. Peptides αS1-CN (f1-9), αS1-CN (f1-13), and αS1-CN (f1-16) were identified from Cheddar cheese serum and included in the defined peptide mix. Our results demonstrate that in all systems examined, PepO2 and PepO3 had the highest activity with β-CN (f193-209) and αS1-CN (f1-9). Cheese-derived peptides were observed to affect the activity of some of the enzymes examined, underscoring the importance of incorporating such peptides in model systems. These data indicate that L. helveticus CNRZ32 endopeptidases PepO2 and PepO3 are likely to play a key role in this strain's ability to reduce bitterness in cheese.
PMCID: PMC1151816  PMID: 15932998
16.  Duplication of the pepF gene and shuffling of DNA fragments on the lactose plasmid of Lactococcus lactis. 
Journal of Bacteriology  1997;179(13):4164-4171.
The gene corresponding to the lactococcal oligopeptidase PepF1 (formerly PepF [V. Monnet, M. Nardi, A. Chopin, M.-C. Chopin, and J.-C. Gripon, J. Biol. Chem. 269:32070-32076, 1994]) is located on the lactose-proteinase plasmid of Lactococcus lactis subsp. cremoris NCDO763. Use of the pepF1 gene as a probe with different strains showed that pepF1 is present on the chromosome of Lactococcus lactis subsp. lactis IL1403, whereas there is a second, homologous gene, pepF2, on the chromosome of strain NCDO763. From hybridization, PCR amplification, and sequencing experiments, we deduced that (i) pepF1 and pepF2 exhibit 80% identity and encode two proteins which are 84% identical and (ii) pepF2 is included in an operon composed of three open reading frames and is transcribed from two promoters. The protein, encoded by the gene located downstream of pepF2, shows significant homology with methyltransferases. Analysis of the sequences flanking pepF1 and pepF2 indicates that only a part of the pepF2 operon is present on the plasmid of strain NCDO763, while the operon is intact on the chromosome of strain IL1403. Traces of several recombination events are visible on the lactose-proteinase plasmid. This suggests that the duplication of pepF occurred by recombination from the chromosome of an L. lactis subsp. lactis strain followed by gene transfer. We discuss the possible functions of PepF and the role of its amplification.
PMCID: PMC179235  PMID: 9209029
17.  Peptidase Mutants of Salmonella typhimurium 
Journal of Bacteriology  1974;120(1):355-363.
Six peptidase activities have been distinguished electrophoretically in cell extracts of Salmonella typhimurium with the aid of a histochemical stain. The activities can also be partially separated by chromatography on diethylaminoethyl-cellulose. These peptidases show overlapping substrate specificities. Mutants (pepN) of the parent strain leu-485 lacking one of these enzymes (peptidase N) were obtained by screening for colonies that do not hydrolyze the chromogenic substrate l-alanyl-β-naphthylamide. The absence of this broad-specificity peptidase in leu-485 pepN− mutants allowed the selection of mutants unable to use l-leucyl-l-alaninamide as a leucine source. These mutants (leu-485 pepN−pepA−) lack a broad-specificity peptidase (peptidase A) similar to aminopeptidase I previously described in Escherichia coli. Mutants (pepD) lacking a dipeptidase (peptidase D) have been isolated from a leu-485 pepN−pepA− parent by penicillin selection for mutants unable to use l-leucyl-l-glycine as a leucine source. Mutants (pepB) lacking a fourth peptidase (peptidase B) have been isolated from a leu-485 pepN−pepA−pepD− strain by penicillin selection for failure to utilize l-leucyl-l-leucine as a source of leucine. Single recombinants were obtained by transduction for each of the peptidases missing in a leu-485 pepN−pepA−pepD−pepB− strain. The growth response of these recombinants to leucine peptides shows that all of these peptidases can function in the catabolism of peptides and that they display overlapping substrate specificities in vivo.
PMCID: PMC245770  PMID: 4608310
18.  A Differential Fluorescence-Based Genetic Screen Identifies Listeria monocytogenes Determinants Required for Intracellular Replication 
Journal of Bacteriology  2013;195(15):3331-3340.
Listeria monocytogenes is a Gram-positive, facultative intracellular pathogen capable of causing severe invasive disease with high mortality rates in humans. While previous studies have largely elucidated the bacterial and host cell mechanisms necessary for invasion, vacuolar escape, and subsequent cell-to-cell spread, the L. monocytogenes factors required for rapid replication within the restrictive environment of the host cell cytosol are poorly understood. In this report, we describe a differential fluorescence-based genetic screen utilizing fluorescence-activated cell sorting (FACS) and high-throughput microscopy to identify L. monocytogenes mutants defective in optimal intracellular replication. Bacteria harboring deletions within the identified gene menD or pepP were defective for growth in primary murine macrophages and plaque formation in monolayers of L2 fibroblasts, thus validating the ability of the screening method to identify intracellular replication-defective mutants. Genetic complementation of the menD and pepP deletion strains rescued the in vitro intracellular infection defects. Furthermore, the menD deletion strain displayed a general extracellular replication defect that could be complemented by growth under anaerobic conditions, while the intracellular growth defect of this strain could be complemented by the addition of exogenous menaquinone. As prior studies have indicated the importance of aerobic metabolism for L. monocytogenes infection, these findings provide further evidence for the importance of menaquinone and aerobic metabolism for L. monocytogenes pathogenesis. Lastly, both the menD and pepP deletion strains were attenuated during in vivo infection of mice. These findings demonstrate that the differential fluorescence-based screening approach provides a powerful tool for the identification of intracellular replication determinants in multiple bacterial systems.
PMCID: PMC3719552  PMID: 23687268
19.  X-Prolyl Dipeptidyl Aminopeptidase Gene (pepX) Is Part of the glnRA Operon in Lactobacillus rhamnosus 
Journal of Bacteriology  2000;182(1):146-154.
A peptidase gene expressing X-prolyl dipeptidyl aminopeptidase (PepX) activity was cloned from Lactobacillus rhamnosus 1/6 by using the chromogenic substrate l-glycyl-l-prolyl-β-naphthylamide for screening of a genomic library in Escherichia coli. The nucleotide sequence of a 3.5-kb HindIII fragment expressing the peptidase activity revealed one complete open reading frame (ORF) of 2,391 nucleotides. The 797-amino-acid protein encoded by this ORF was shown to be 40, 39, and 36% identical with PepXs from Lactobacillus helveticus, Lactobacillus delbrueckii, and Lactococcus lactis, respectively. By Northern analysis with a pepX-specific probe, transcripts of 4.5 and 7.0 kb were detected, indicating that pepX is part of a polycistronic operon in L. rhamnosus. Cloning and sequencing of the upstream region of pepX revealed the presence of two ORFs of 360 and 1,338 bp that were shown to be able to encode proteins with high homology to GlnR and GlnA proteins, respectively. By multiple primer extension analyses, the only functional promoter in the pepX region was located 25 nucleotides upstream of glnR. Northern analysis with glnA- and pepX-specific probes indicated that transcription from glnR promoter results in a 2.0-kb dicistronic glnR-glnA transcript and also in a longer read-through polycistronic transcript of 7.0 kb that was detected with both probes in samples from cells in exponential growth phase. The glnA gene was disrupted by a single-crossover recombinant event using a nonreplicative plasmid carrying an internal part of glnA. In the disruption mutant, glnRA-specific transcription was derepressed 10-fold compared to the wild type, but the 7.0-kb transcript was no longer detectable with either the glnA- or pepX-specific probe, demonstrating that pepX is indeed part of glnRA operon in L. rhamnosus. Reverse transcription-PCR analysis further supported this operon structure. An extended stem-loop structure was identified immediately upstream of pepX in the glnA-pepX intergenic region, a sequence that showed homology to a 23S-5S intergenic spacer and to several other L. rhamnosus-related entries in data banks.
PMCID: PMC94251  PMID: 10613874
20.  Enzymatic Ability of Bifidobacterium animalis subsp. lactis To Hydrolyze Milk Proteins: Identification and Characterization of Endopeptidase O 
Applied and Environmental Microbiology  2005;71(12):8460-8465.
The proteolytic system of Bifidobacterium animalis subsp. lactis was analyzed, and an intracellular endopeptidase (PepO) was identified and characterized. This work reports the first complete cloning, purification, and characterization of a proteolytic enzyme in Bifidobacterium spp. Aminopeptidase activities (general aminopeptidases, proline iminopeptidase, X-prolyl dipeptidylaminopeptidase) found in cell extracts of B. animalis subsp. lactis were higher for cells that had been grown in a milk-based medium than for those grown in MRS. A high specific proline iminopeptidase activity was observed in B. animalis subsp. lactis. Whole cells and cell wall-bound protein fractions showed no caseinolytic activity; however, the combined action of intracellular proteolytic enzymes could hydrolyze casein fractions rapidly. The endopeptidase activity of B. animalis subsp. lactis was examined in more detail, and the gene encoding an endopeptidase O in B. animalis subsp. lactis was cloned and overexpressed in Escherichia coli. The deduced amino acid sequence for B. animalis subsp. lactis PepO indicated that it is a member of the M13 peptidase family of zinc metallopeptidases and displays 67.4% sequence homology with the predicted PepO protein from Bifidobacterium longum. The recombinant enzyme was shown to be a 74-kDa monomer. Activity of B. animalis subsp. lactis PepO was found with oligopeptide substrates of at least 5 amino acid residues, such as met-enkephalin, and with larger substrates, such as the 23-amino-acid peptide αs1-casein(f1-23). The predominant peptide bond cleaved by B. animalis subsp. lactis PepO was on the N-terminal side of phenylalanine residues. The enzyme also showed a post-proline secondary cleavage site.
PMCID: PMC1317388  PMID: 16332835
21.  Purification and Molecular Characterization of a Tripeptidase (PepT) from Lactobacillus helveticus 
A tripeptidase (PepT) from a thermophilic dairy starter strain of Lactobacillus helveticus was purified by four chromatographic steps. PepT appeared to be a trimeric metallopeptidase with a molecular mass of 150 kDa. PepT exhibited maximum activity against hydrophobic tripeptides, with the highest activity for Met-Gly-Gly (Km, 2.6 mM; Vmax, 80.2 μmol · min−1 · μg−1). Some of the hydrophobic dipeptides were slowly hydrolyzed, distinguishing the Lactobacillus PepT from its counterpart in mesophilic Lactococcus lactis. No activity against tetrapeptides or amino acid p-nitroanilide derivatives was observed. The pepT gene and its flanking regions were isolated by PCR and sequenced by cyclic sequencing. The sequence analyses revealed open reading frames (ORFs) 816 bp (ORF1) and 1,239 bp (ORF2) long. ORF2 encoded a 47-kDa PepT protein which exhibited 53% identity with the PepT from L. lactis. The mRNA analyses indicated that pepT conforms a novel operon structure with an ORF1 located upstream. Several putative −35/−10 regions preceded the operon, but only one transcription start site located downstream of the first putative −10 region was identified. An inverted repeat structure with ΔG of −64.8 kJ/mol was found downstream of the PepT-encoding region.
PMCID: PMC91898  PMID: 10653753
22.  Expression of Recombinant Proteins with Uniform N-Termini 
Heterologously expressed proteins in Escherichia coli may undergo unwanted N-terminal processing by methionine and proline aminopeptidases. To overcome this problem, we present a system where the gene of interest is cloned as a fusion to a self-splicing mini-intein. Furthermore, this fusion construct is expressed in an engineered Escherichia coli strain from which the pepP gene coding for aminopeptidase P has been deleted. We describe a protocol using human cationic trypsinogen as an example to demonstrate that recombinant proteins produced in this expression system contain homogeneous, unprocessed N-termini.
PMCID: PMC3107599  PMID: 21125386
Escherichia coli; intein; human cationic trypsinogen; in vitro refolding; ecotin affinity chromatography; aminopeptidase P
23.  Involvement of Phosphoenolpyruvate in Lactose Utilization by Group N Streptococci1 
Journal of Bacteriology  1969;99(2):603-610.
The effect of sodium fluoride on lactose metabolism and o-nitrophenyl-β-d-galactopyranoside (ONPG) hydrolysis by Streptococcus lactis strains 7962 and C2F suggested that different mechanisms of lactose utilization existed in the two strains. Sodium fluoride prevented lactose utilization and ONPG hydrolysis by whole cells of S. lactis C2F but had no effect on S. lactis 7962. Although hydrolysis of ONPG by toluene-treated cells of S. lactis 7962 occurred without addition of phospho-enolpyruvate (PEP), toluene-treated cells of S. lactis C2F required the presence of this cofactor. Concentrated cell extracts of S. lactis C2F hydrolyzed ONPG; this hydrolysis was inhibited by NaF, but the addition of PEP, in the presence of NaF, restored maximal activity. Addition of acetyl-phosphate, carbamyl-phosphate, adenosine-5′-triphosphate, guanosine-5′-triphosphate, or uridine-5′-triphosphate did not stimulate activity. The presence of cofactors did not stimulate and NaF did not inhibit the hydrolysis in extracts of S. lactis 7962. To confirm the operation of two mechanisms, S. lactis 7962 was shown to hydrolyze lactose to glucose and galactose, whereas S. lactis C2F was unable to split the disaccharide. In addition, whole cells of S. lactis C2F rapidly accumulated a phosphorylated derivative of thiomethyl-β-d-galactoside (TMG) which behaved chromatographically and electrophoretically like TMG-PO4. Unexpectedly, S. lactis 7962 also accumulated a TMG derivative, although the rate was extremely low. These data indicate that different mechanisms of lactose utilization exist in the two strains, with a phosphorylation step dependent on PEP involved in S. lactis C2F.
PMCID: PMC250061  PMID: 5808082
24.  Peptidase-deficient mutants of Escherichia coli. 
Journal of Bacteriology  1978;135(2):603-611.
Mutant derivatives of Escherichia coli K-12 deficient in several peptidases have been obtained. Mutants lacking a naphthylamidase, peptidase N, were isolated by screening for colonies unable to hydrolyze L-alanine beta-naphthylamide. Other mutants were isolated using positive selections for resistance to valine peptides. Mutants lacking peptidase A, a broad-specificity aminopeptidase, were obtained by selection for resistance to L-valyl-L-leucine amide. Mutants lacking a dipeptidase, peptidase D, were isolated from a pepN pepA strain by selection for resistance to L-valyl-glycine. Starting with a pepN pepA pepD strain, selection for resistance to L-valyl-glycyl-glycine or several other valine peptides produced mutants deficient in another aminopeptidase, peptidase B. Mutants resistant to L-valyl-L-proline lack peptidase Q, an activity capable of rapid hydrolysis of X-proline dipeptides. Using these selection procedures, a strain (CM89) lacking five different peptidases has been isolated. Although still sensitive to valine, this strain is resistant to a variety of valine di- and tripeptides. The ability of this strain to use peptides as sources of amino acids is much more restricted than that of wild-type E. coli strains. Strains containing only one of the five peptidases missing in CM89 have been constructed by transduction. The peptide utilization profiles of these strains show that each of the five peptidases can function during growth in the catabolism of peptides.
PMCID: PMC222421  PMID: 355237
25.  Regulation of Proteolytic Enzyme Activity in Lactococcus lactis 
Two different Lactococcus lactis host strains, L. lactis subsp. lactis MG1363 and L. lactis subsp. cremoris SK1128, both containing plasmid pNZ521, which encodes the extracellular serine proteinase (PrtP) from strain SK110, were used to study the medium and growth-rate-dependent activity of three different enzymes involved in the proteolytic system of lactococci. The activity levels of PrtP and both the intracellular aminopeptidase PepN and the X-prolyl-dipeptidyl aminopeptidase PepXP were studied during batch and continuous cultivation. In both strains, the PrtP activity level was regulated by the peptide content of the medium. The highest activity level was found during growth in milk, and the lowest level was found during growth in the peptide-rich laboratory medium M17. Regulation of the intracellular peptidase activity appeared to be a strain-dependent phenomenon. In cells of strain MG1363, the activity levels of PepN and PepXP were regulated in a similar way to that observed for PrtP. In cells of strain SK1128, the levels of both peptidases were not significantly influenced by the peptide content of the medium. The presence of specific concentrations of the dipeptide prolylleucine could mimic the low activity levels of the regulated proteolytic enzymes, even to the activity level found on M17 medium. The effect of the presence of the dipeptide prolylleucine in the medium on the activity level of the regulated proteolytic enzymes was confirmed at fixed growth rates in chemostat cultures.
PMCID: PMC1388749  PMID: 16535207

Results 1-25 (506472)