Search tips
Search criteria

Results 1-25 (574563)

Clipboard (0)

Related Articles

1.  Antibacterial effect of Allium sativum cloves and Zingiber officinale rhizomes against multiple-drug resistant clinical pathogens 
To evaluate the antibacterial properties of Allium sativum (garlic) cloves and Zingiber officinale (ginger) rhizomes against multi-drug resistant clinical pathogens causing nosocomial infection.
The cloves of garlic and rhizomes of ginger were extracted with 95% (v/v) ethanol. The ethanolic extracts were subjected to antibacterial sensitivity test against clinical pathogens.
Anti-bacterial potentials of the extracts of two crude garlic cloves and ginger rhizomes were tested against five gram negative and two gram positive multi-drug resistant bacteria isolates. All the bacterial isolates were susceptible to crude extracts of both plants extracts. Except Enterobacter sp. and Klebsiella sp., all other isolates were susceptible when subjected to ethanolic extracts of garlic and ginger. The highest inhibition zone was observed with garlic (19.45 mm) against Pseudomonas aeruginosa (P. aeruginosa). The minimal inhibitory concentration was as low as 67.00 µg/mL against P. aeruginosa.
Natural spices of garlic and ginger possess effective anti-bacterial activity against multi-drug clinical pathogens and can be used for prevention of drug resistant microbial diseases and further evaluation is necessary.
PMCID: PMC3609356  PMID: 23569978
Garlic; Ginger; Multi-drug resistant; Multiple antibiotic resistance; Antibacterial activity; Allium sativum; Zingiber officinale
2.  Antibacterial activity of natural spices on multiple drug resistant Escherichia coli isolated from drinking water, Bangladesh 
Spices traditionally have been used as coloring agents, flavoring agents, preservatives, food additives and medicine in Bangladesh. The present work aimed to find out the antimicrobial activity of natural spices on multi-drug resistant Escherichia coli isolates.
Anti-bacterial potentials of six crude plant extracts (Allium sativum, Zingiber officinale, Allium cepa, Coriandrum sativum, Piper nigrum and Citrus aurantifolia) were tested against five Escherichia coli isolated from potable water sources at kushtia, Bangladesh.
All the bacterial isolates were susceptible to undiluted lime-juice. None of them were found to be susceptible against the aqueous extracts of garlic, onion, coriander, pepper and ginger alone. However, all the isolates were susceptible when subjected to 1:1:1 aqueous extract of lime, garlic and ginger. The highest inhibition zone was observed with lime (11 mm).
Natural spices might have anti-bacterial activity against enteric pathogens and could be used for prevention of diarrheal diseases. Further evaluation is necessary.
PMCID: PMC3070620  PMID: 21406097
3.  Selected spices and their combination modulate hypercholesterolemia-induced oxidative stress in experimental rats 
Biological Research  2014;47(1):5.
Effect of aqueous extracts of Allium sativum (garlic), Zingiber officinale (ginger), Capsicum fructensces (cayenne pepper) and their mixture on oxidative stress in rats fed high Cholesterol/high fat diet was investigated. Rats were randomly distributed into six groups (n = 6) and given different dietary/spice treatments. Group 1 standard rat chow (control), group 2, hypercholesterolemic diet plus water, and groups 3, 4, 5, 6, hypercholesterolemic diet with 0.5 ml 200 mg · kg-1 aqueous extracts of garlic, ginger, cayenne pepper or their mixture respectively daily for 4 weeks.
Pronounced oxidative stress in the hypercholesterolemic rats evidenced by significant (p < 0.05) increase in MDA levels, and suppression of the antioxidant enzymes system in rat’s liver, kidney, heart and brain tissues was observed. Extracts of spices singly or combined administered at 200 body weight significantly (p < 0.05) reduced MDA levels and restored activities of antioxidant enzymes.
It is concluded that consumption of garlic, ginger, pepper, or their mixture may help to modulate oxidative stress caused by hypercholesterolemia in rats.
PMCID: PMC4060372  PMID: 25027235
Lipid peroxidation; Oxidative stress; Spices; Hypercholesterolemia; ROS
4.  Effects of Plant Extracts on Microbial Population, Methane Emission and Ruminal Fermentation Characteristics in In vitro 
This study was conducted to evaluate effects of plant extracts on methanogenesis and rumen microbial diversity in in vitro. Plant extracts (Artemisia princeps var. Orientalis; Wormwood, Allium sativum for. Pekinense; Garlic, Allium cepa; Onion, Zingiber officinale; Ginger, Citrus unshiu; Mandarin orange, Lonicera japonica; Honeysuckle) were obtained from the Plant Extract Bank at Korea Research Institute of Bioscience and Biotechnology. The rumen fluid was collected before morning feeding from a fistulated Holstein cow fed timothy and commercial concentrate (TDN; 73.5%, crude protein; 19%, crude fat; 3%, crude fiber; 12%, crude ash; 10%, Ca; 0.8%, P; 1.2%) in the ratio of 3 to 2. The 30 ml of mixture, comprising McDougall buffer and rumen liquor in the ratio of 4 to 1, was dispensed anaerobically into serum bottles containing 0.3 g of timothy substrate and plant extracts (1% of total volume, respectively) filled with O2-free N2 gas and capped with a rubber stopper. The serum bottles were held in a shaking incubator at 39°C for 24 h. Total gas production in all plant extracts was higher (p<0.05) than that of the control, and total gas production of ginger extract was highest (p<0.05). The methane emission was highest (p<0.05) at control, but lowest (p<0.05) at garlic extract which was reduced to about 20% of methane emission (40.2 vs 32.5 ml/g DM). Other plant extracts also resulted in a decrease in methane emissions (wormwood; 8%, onion; 16%, ginger; 16.7%, mandarin orange; 12%, honeysuckle; 12.2%). Total VFAs concentration and pH were not influenced by the addition of plant extracts. Acetate to propionate ratios from garlic and ginger extracts addition samples were lower (p<0.05, 3.36 and 3.38 vs 3.53) than that of the control. Real-time PCR indicted that the ciliate-associated methanogen population in all added plant extracts decreased more than that of the control, while the fibrolytic bacteria population increased. In particular, the F. succinogens community in added wormwood, garlic, mandarin orange and honeysuckle extracts increased more than that of the others. The addition of onion extract increased R. albus diversity, while other extracts did not influence the R. albus community. The R. flavefaciens population in added wormwood and garlic extracts decreased, while other extracts increased its abundance compared to the control. In conclusion, the results indicated that the plant extracts used in the experiment could be promising feed additives to decrease methane gas emission from ruminant animals while improving ruminal fermentation.
PMCID: PMC4093095  PMID: 25049630
Methane Emission; Microbial Population; Real-time PCR; Relative Quantification Analysis
5.  An in-vitro evaluation of the efficacy of garlic extract as an antimicrobial agent on periodontal pathogens: A microbiological study 
Ayu  2013;34(4):445-451.
With the rise in bacterial resistance to antibiotics, there is considerable interest in the development of other classes of antimicrobials for the control of infection. Garlic (Allium sativum Linn.) has been used as medicine since ancient times and has long been known to have antibacterial, antifungal, and antiviral properties. This study was undertaken to assess the inhibitory effect of garlic on Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans, to assess the time-kill curve of P. gingivalis and A. actinomycetemcomitans, and to determine the antiproteolytic activity of garlic on P. gingivalis. Ethanolic garlic extract (EGE) and aqueous garlic extract (AGE) were prepared and the inhibitory effects of these extracts for two periodontal pathogens (P. gingivalis and A. actinomycetemcomitans) were tested. Antiproteolytic activity on protease of P. gingivalis was determined. 25 microliter (μl), 50 μl, and 75 μl of AGE showed 16 mm, 20 mm, and 25 mm zone of inhibition, respectively, on P. gingivalis. The AGE showed greater bacteriostatic activity against the P. gingivalis with minimum inhibitory concentration determined at 16.6 μl/ml. The time-kill assay of AGE and EGE were compared for P. gingivalis and A. actinomycetemcomitans. AGE showed better antiproteolytic activity on total protease of P. gingivalis compared to the EGE. Thus, the study concludes the antimicrobial activity of garlic extract against periodontal pathogens, P. gingivalis, A. actinomycetemcomitans. Its action against P. gingivalis includes inhibition of total protease activity, and this raises the possibility that garlic may have therapeutic use for periodontitis and possibly other oral infections.
PMCID: PMC3968712  PMID: 24695825
Aggregatibacter Actinomycetemcomitans; antimicrobial; garlic; Porphyromonas gingivalis
6.  Does the taste matter? Taste and medicinal perceptions associated with five selected herbal drugs among three ethnic groups in West Yorkshire, Northern England 
In recent years, diverse scholars have addressed the issue of the chemosensory perceptions associated with traditional medicines, nevertheless there is still a distinct lack of studies grounded in the social sciences and conducted from a cross-cultural, comparative perspective. In this urban ethnobotanical field study, 254 informants belonging to the Gujarati, Kashmiri and English ethnic groups and living in Western Yorkshire in Northern England were interviewed about the relationship between taste and medicinal perceptions of five herbal drugs, which were selected during a preliminary study. The herbal drugs included cinnamon (the dried bark of Cinnamomum verum, Lauraceae), mint (the leaves of Mentha spp., Lamiaceae), garlic (the bulbs of Allium sativum, Alliaceae), ginger (the rhizome of Zingiber officinale, Zingiberaceae), and cloves (the dried flower buds of Syzygium aromaticum, Myrtaceae).
The main cross-cultural differences in taste perceptions regarded the perception the perception of the spicy taste of ginger, garlic, and cinnamon, of the bitter taste of ginger, the sweet taste of mint, and of the sour taste of garlic.
The part of the study of how the five selected herbal drugs are perceived medicinally showed that TK (Traditional Knowledge) is widespread among Kashmiris, but not so prevalent among the Gujarati and especially the English samples. Among Kashmiris, ginger was frequently considered to be helpful for healing infections and muscular-skeletal and digestive disorders, mint was chosen for healing digestive and respiratory troubles, garlic for blood system disorders, and cinnamon was perceived to be efficacious for infectious diseases.
Among the Gujarati and Kashmiri groups there was evidence of a strong link between the bitter and spicy tastes of ginger, garlic, cloves, and cinnamon and their perceived medicinal properties, whereas there was a far less obvious link between the sweet taste of mint and cinnamon and their perceived medicinal properties, although the link did exist among some members of the Gujarati group.
Data presented in this study show how that links between taste perceptions and medicinal uses of herbal drugs may be understood as bio-cultural phenomena rooted in human physiology, but also constructed through individual experiences and culture, and that these links can therefore be quite different across diverse cultures.
PMCID: PMC1872019  PMID: 17475019
7.  Antimycobacterial and Antibacterial Activity of Allium sativum Bulbs 
Tuberculosis is one of the major public health problems faced globally. Resistance of Mycobacterium tuberculosis to antitubercular agents has called for an urgent need to investigate newer drugs to combat tuberculosis. Garlic (Allium sativum) is an edible plant which has generated a lot of curiosity throughout human history as a medicinal plant. Garlic contains sulfur compounds like allicin, ajoene, allylmethyltrisulfide, diallyltrisulfide, diallyldisulphide and others which exhibit various biological properties like antimicrobial, anticancer, antioxidant, immunomodulatory, antiinflammatory, hypoglycemic, and cardiovascular effects. According to various traditional systems of medicine, garlic is one of the established remedies for tuberculosis. The objective of the current study was to investigate in vitro antimycobacterial activity as well as anti-bacterial activity of various extracts rich in specific phytoconstituents from garlic. Preparation of garlic extracts was done based on the chemistry of the constituents and their stability. The estimation of in vitro antimycobacterial activity of different garlic extracts was done using Resazurin microtire plate assay technique whereas activity of garlic oil was evaluated by colony count method. The antibacterial activity of extracts and oil was estimated by zone of inhibition method. Extracts of garlic rich in allicin and ajoene showed appreciable antimycobacterial activity as compared to standard drugs. Garlic oil demonstrated significant antibacterial activity, particularly against methicillin-resistant Staphylococcus aureus.
PMCID: PMC4090836  PMID: 25035540
Ajoene; allicin; antimycobacterial; garlic oil; resazurin microtitre assay
8.  Comparison of the Transcriptomes of Ginger (Zingiber officinale Rosc.) and Mango Ginger (Curcuma amada Roxb.) in Response to the Bacterial Wilt Infection 
PLoS ONE  2014;9(6):e99731.
Bacterial wilt in ginger (Zingiber officinale Rosc.) caused by Ralstonia solanacearum is one of the most important production constraints in tropical, sub-tropical and warm temperature regions of the world. Lack of resistant genotype adds constraints to the crop management. However, mango ginger (Curcuma amada Roxb.), which is resistant to R. solanacearum, is a potential donor, if the exact mechanism of resistance is understood. To identify genes involved in resistance to R. solanacearum, we have sequenced the transcriptome from wilt-sensitive ginger and wilt-resistant mango ginger using Illumina sequencing technology. A total of 26387032 and 22268804 paired-end reads were obtained after quality filtering for C. amada and Z. officinale, respectively. A total of 36359 and 32312 assembled transcript sequences were obtained from both the species. The functions of the unigenes cover a diverse set of molecular functions and biological processes, among which we identified a large number of genes associated with resistance to stresses and response to biotic stimuli. Large scale expression profiling showed that many of the disease resistance related genes were expressed more in C. amada. Comparative analysis also identified genes belonging to different pathways of plant defense against biotic stresses that are differentially expressed in either ginger or mango ginger. The identification of many defense related genes differentially expressed provides many insights to the resistance mechanism to R. solanacearum and for studying potential pathways involved in responses to pathogen. Also, several candidate genes that may underline the difference in resistance to R. solanacearum between ginger and mango ginger were identified. Finally, we have developed a web resource, ginger transcriptome database, which provides public access to the data. Our study is among the first to demonstrate the use of Illumina short read sequencing for de novo transcriptome assembly and comparison in non-model species of Zingiberaceae.
PMCID: PMC4062433  PMID: 24940878
9.  Garlic Revisited: Antimicrobial Activity of Allicin-Containing Garlic Extracts against Burkholderia cepacia Complex 
PLoS ONE  2014;9(12):e112726.
The antimicrobial activities of garlic and other plant alliums are primarily based on allicin, a thiosulphinate present in crushed garlic bulbs. We set out to determine if pure allicin and aqueous garlic extracts (AGE) exhibit antimicrobial properties against the Burkholderia cepacia complex (Bcc), the major bacterial phytopathogen for alliums and an intrinsically multiresistant and life-threatening human pathogen. We prepared an AGE from commercial garlic bulbs and used HPLC to quantify the amount of allicin therein using an aqueous allicin standard (AAS). Initially we determined the minimum inhibitory concentrations (MICs) of the AGE against 38 Bcc isolates; these MICs ranged from 0.5 to 3% (v/v). The antimicrobial activity of pure allicin (AAS) was confirmed by MIC and minimum bactericidal concentration (MBC) assays against a smaller panel of five Bcc isolates; these included three representative strains of the most clinically important species, B. cenocepacia. Time kill assays, in the presence of ten times MIC, showed that the bactericidal activity of AGE and AAS against B. cenocepacia C6433 correlated with the concentration of allicin. We also used protein mass spectrometry analysis to begin to investigate the possible molecular mechanisms of allicin with a recombinant form of a thiol-dependent peroxiredoxin (BCP, Prx) from B. cenocepacia. This revealed that AAS and AGE modifies an essential BCP catalytic cysteine residue and suggests a role for allicin as a general electrophilic reagent that targets protein thiols. To our knowledge, we report the first evidence that allicin and allicin-containing garlic extracts possess inhibitory and bactericidal activities against the Bcc. Present therapeutic options against these life-threatening pathogens are limited; thus, allicin-containing compounds merit investigation as adjuncts to existing antibiotics.
PMCID: PMC4249831  PMID: 25438250
10.  Inhibitory effect of allicin and garlic extracts on growth of cultured hyphae  
Objective(s): Trichophyton rubrum (T. rubrum) is one of the most common dermatophytes worldwide. This fungus invaded skin appendages of humans and animals. Recently, resistance to antifungal drugs as well as appearance of side effects due to indication of these kinds of antibiotics has been reported. Besides, using some plant extracts have been indicated in herbal medicine as an alternative treatment of these fungal infections. The aim of this study was to investigate the effects of Garlic (Allium sativum) and pure allicin on the growth of hypha in T. rubrum using Electron miscroscopy.
Materials and Methods: This study was carried out to observe the morphological changes of T. rubrum treated with allicin as well as aqueous garlic extract using scanning electron microscopy (SEM) and transmission electron microscopy (TEM).
Results: SEM surveys, showed that hypha treated with allicin has rough and granular like surface, abnormal and irregularly-shape. However, hypha treated with garlic extract had rough and fluffy surface and also irregularly-shape. TEM studies also found that hypha treated with allicin displays disintegration of cytoplasm, breaking down in cell membrane and the cell wall, and collapsing of hypha, meanwhile hypha treated with garlic extract exhibiting degradation and dissolution of cytoplasm components, demolition of cell wall and cell membrane, and hypha appeared to break.
Conclusion: The present study revealed that pure allicin (6.25 µg/ml and 12.5 µg/ml) is more efficient in inhibition of the growth in hyphal cells compare to the garlic extract (2 mg/ml and 4 mg/ml) and they could be used as alternatives in treatment of dermatophytosis.
PMCID: PMC4016684  PMID: 24847416
Allicin; Dermatophytosis; Electron microscopy; Garlic (allium sativum) extract;  Trichophytonrubrum
11.  Combined antibacterial activity of stingless bee (Apis mellipodae) honey and garlic (Allium sativum) extracts against standard and clinical pathogenic bacteria 
To investigate the synergic antibacterial activity of garlic and tazma honey against standard and clinical pathogenic bacteria.
Antimicrobial activity of tazma honey, garlic and mixture of them against pathogenic bacteria were determined. Chloramphenicol and water were used as positive and negative controls, respectively. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration of antimicrobial samples were determined using standard methods.
Inhibition zone of mixture of garlic and tazma honey against all tested pathogens was significantly (P≤0.05) greater than garlic and tazma honey alone. The diameter zone of inhibition ranged from (18±1) to (35±1) mm for mixture of garlic and tazma honey, (12±1) to (20±1) mm for tazma honey and (14±1) to (22±1) mm for garlic as compared with (10±1) to (30±1) mm for chloramphenicol. The combination of garlic and tazma honey (30-35 mm) was more significantly (P≤0.05) effective against Salmonella (NCTC 8385), Staphylococcus aureus (ATCC 25923), Lyesria moncytogenes (ATCC 19116) and Streptococcus pneumonia (ATCC 63). Results also showed considerable antimicrobial activity of garlic and tazma honey. MIC of mixture of garlic and tazma honey at 6.25% against total test bacteria was 88.9%. MIC of mixture of garlic and tazma honey at 6.25% against Gram positive and negative were 100% and 83.33%, respectively. The bactericidal activities of garlic, tazma honey, and mixture of garlic and tazma honey against all pathogenic bacteria at 6.25% concentration were 66.6%, 55.6% and 55.6%, respectively.
This finding strongly supports the claim of the local community to use the combination of tazma honey and garlic for the treatment of different pathogenic bacterial infections. Therefore, garlic in combination with tazma honey can serve as an alternative natural antimicrobial drug for the treatment of pathogenic bacterial infections. Further in vivo study is recommended to come up with a comprehensive conclusion.
PMCID: PMC3757282  PMID: 23998014
Garlic; Honey; Antimicrobial activity; Bactericidal activity; Inhibition zone; Minimum inhibitory concentration; Minimum bactericidal concentration
12.  Protective Effect of Ginger on Gentamicin-Induced Apoptosis in Testis of Rats 
Advanced Pharmaceutical Bulletin  2012;2(2):197-200.
Purpose: Ginger, the rhizome of Zingiber officinale, is one of the most widely used spices for various foods and as an herbal medicine in Asian countries. It has been shown that ginger has antioxidant power. Gentamicin is an aminoglycoside antibiotic with a very broad spectrum against microbial pathogens, especially the gram-negative. Many studies revealed that gentamicin induces an oxidative stress-status in the testis by increasing free radical formation and lipid peroxidation. The present study was designed to investigate on the effects of Ginger as a natural anioxidant on testis apoptosis after treatment with gentamicin in rats. Methods: In order to study the recovery effects of ginger on testis apoptosis after treatment with gentamicin 40 adult Wistar male rats were selected and randomly divided into four groups. Normal salin control (group I) (n=10), gentamicin control (group II), ginger control (group III) and gentamicin + ginger (group IV) each 10 rats. There was observation of negative effect of Gentamicin on testis histology in rats. Results: The results revealed that there was a significant increase in apoptosis in group III when compared with other groups (P<0.05).However, ginger could decrease apoptosis in group IV that received 100mg/kg/rat of Ginger. Conclusion: Regarding the results, it is recommended that administration of ginger with gentamicin might be beneficial in men who receive gentamicin to treat infections.
PMCID: PMC3845986  PMID: 24312793
Gentamicin; Ginger; Apoptosis; Antioxidant; Zingiber officinale; Testis
13.  Total antioxidant activity and antimicrobial potency of the essential oil and oleoresin of Zingiber officinale Roscoe 
To compare in vitro antioxidant and antimicrobial activities of the essential oil and oleoresin of Zingiber officinale Roscoe.
The antioxidant activity was evaluated based on the ability of the ginger extracts to scavenge ABTS°+ free radical. The antimicrobial activity was studied by the disc diffusion method and minimal inhibitory concentration was determined by using the agar incorporation method.
Ginger extracts exerted significant antioxidant activity and dose-depend effect. In general, oleoresin showed higher antioxidant activity [IC50=(1.820±0.034) mg/mL] when compared to the essential oil [IC50=(110.14±8.44) mg/mL]. In terms of antimicrobial activity, ginger compounds were more effective against Escherichia coli, Bacillus subtilis and Staphylococcus aureus, and less effective against Bacillus cereus. Aspergillus niger was least, whereas, Penicillium spp. was higher sensitive to the ginger extracts; minimal inhibitory concentrations of the oleoresin and essential oil were 2 mg/mL and 869.2 mg/mL, respectively. Moreover, the studied extracts showed an important antifungal activity against Candida albicans.
The study confirms the wide application of ginger oleoresin and essential oil in the treatment of many bacterial and fungal diseases.
PMCID: PMC4027350
Zingiber officinale; Essential oil; Oleoresin; Antioxidant and antimicrobial activities
14.  Ameliorating reactive oxygen species-induced in vitro lipid peroxidation in brain, liver, mitochondria and DNA damage by Zingiber officinale Roscoe 
Iron is an essential nutrient for a number of cellular activities. However, excess cellular iron can be toxic by producing reactive oxygen species (ROS) such as superoxide anion (O2−) and hydroxyl radical (HO·) that damage proteins, lipids and DNA. Mutagenic and genotoxic end products of lipid peroxidation can induce the decline of mitochondrial respiration and are associated with various human ailments including aging, neurodegenerative disorders, cancer etc. Zingiber officinale Roscoe (ginger) is a widely used spice around the world. The protective effect of aqueous ethanol extract of Z. officinale against ROS-induced in vitro lipid peroxidation and DNA damage was evaluated in this study. The lipid peroxidation was induced by hydroxyl radical generated from Fenton’s reaction in rat liver and brain homogenates and mitochondrial fraction (isolated from rat liver). The DNA protection was evaluated using H2O2-induced changes in pBR-322 plasmid and Fenton reaction-induced DNA fragmentation in rat liver. The results indicated that Z. officinale significantly (P<0.001) protected the lipid peroxidation in all the tissue homogenate/mitochondria. The extract at 2 and 0.5 mg/ml could protect 92 % of the lipid peroxidation in brain homogenate and liver mitochondria respectively. The percent inhibition of lipid peroxidation at 1mg/ml of Z. officinale in the liver homogenate was 94 %. However, the extract could partially alleviate the DNA damage. The protective mechanism can be correlated to the radical scavenging property of Z. officinale. The results of the study suggest the possible nutraceutical role of Z. officinale against the oxidative stress induced human ailments.
PMCID: PMC3453022  PMID: 23105887
Antioxidants; Nutraceutics; Reactive oxygen species; Zingiber officinale
15.  Screening of 20 Commonly Used Iranian Traditional Medicinal Plants Against Urease  
Infection with Helicobacter pyloriis the most common cause of stomach and duodenal ulcers. About more than 80 % of people are infected with H. pylori in developing countries. H. pylori uses urease enzyme product “ammonia” in order to neutralize and protect itself from the stomach acidic condition and urease enzyme activity has been shown to be essential to the colonization of H. pylori. Inhibitory activity of 20 traditional medicinal plants were examined and evaluated against Jack bean urease activity by Berthelot reaction to obtains natural sources of urease inhibitors. Each herb was extracted using 80% aqueous methanol, then tested its IC50 value was determined. Eight of the whole 20 studied plants crude extracts were found the most effective with IC50 values of less than 100 μg/mL including Laurus nobilis, Zingiber officinale, Nigella sativa, Angelica archangelica, Acorus calamus, Allium sativum,Curcuma longa, and Citrus aurantium extracts, from which most potent urease inhibitory was observed for Zingiber officinale, Laurus nobilis, and Nigella sativa with IC50 values of 48.54, 48.69 and 59.10 μg/mL, respectively.
PMCID: PMC3977070  PMID: 24711846
Urease; H. pylori; Medical plants; Extracts; Urease inhibitor
16.  Functional Ginger Extracts from Supercritical Fluid Carbon Dioxide Extraction via In Vitro and In Vivo Assays: Antioxidation, Antimicroorganism, and Mice Xenografts Models 
The Scientific World Journal  2013;2013:210845.
Supercritical fluid carbon dioxide extraction technology was developed to gain the active components from a Taiwan native plant, Zingiber officinale (ginger). We studied the biological effects of ginger extracts via multiple assays and demonstrated the biofunctions in each platform. Investigations of ginger extracts indicated antioxidative properties in dose-dependant manners on radical scavenging activities, reducing powers and metal chelating powers. We found that ginger extracts processed moderate scavenging values, middle metal chelating levels, and slight ferric reducing powers. The antibacterial susceptibility of ginger extracts on Staphylococcus aureus, Streptococcus sobrinus, S. mutans, and Escherichia coli was determined with the broth microdilution method technique. The ginger extracts had operative antimicroorganism potentials against both Gram-positive and Gram-negative bacteria. We further discovered the strong inhibitions of ginger extracts on lethal carcinogenic melanoma through in vivo xenograft model. To sum up, the data confirmed the possible applications as medical cosmetology agents, pharmaceutical antibiotics, and food supplements.
PMCID: PMC3745960  PMID: 23983624
17.  Ginger (Zingiber Officinale Roscoe) Prevents Morphine-Induced Addictive Behaviors in Conditioned Place Preference Test in Rats 
Addiction & Health  2014;6(1-2):65-72.
Consumption of chronic morphine induces neuro-inflammation and addictive seeking behavior. Ginger (Zingiber Officinale Roscoe), a well-known spice plant, has been used traditionally in the treatment of a wide variety of ailments. It has been shown that ginger has anti-inflammatory, anti-oxidative and antinociceptive properties. However, its influences on morphine-induced addictive behaviors have not yet been clarified. The aim of the present study was the inhibition of exploratory behavior of morphine addiction in the conditioned place preference test in male desert rats through ginger.
For conditioning to the morphine, the male Wistar rats received morphine (12 mg/kg intraperitoneally or i.p.) for 6 consecutive days and treatment groups were given different doses of ginger (25, 50 and 100 mg/kg intragastrically or i.g.) 30 min before morphine injection. For investigating addictive seeking behavior, conditioned place preference test (CPP) was used.
Our result demonstrated that injection of morphine for 6 days induces dependency to morphine and creates addictive seeking behavior and ginger (100 mg/kg) could decrease time spend in conditioning box (addictive seeking behavior).
The data indicated that ginger extract has a potential anti-addictive property against chronic usage of morphine.
PMCID: PMC4137441  PMID: 25140219
Ginger extract; Morphine; Conditioned place preference; Addictive seeking behavior; Rats
18.  Inhibition of virulence potential of Vibrio cholerae by natural compounds 
The rise in multi-drug resistant Vibrio cholerae strains is a big problem in treatment of patients suffering from severe cholera. Only a few studies have evaluated the potential of natural compounds against V. cholerae. Extracts from plants like ‘neem’, ‘guazuma’, ‘daio’, apple, hop, green tea and elephant garlic have been shown to inhibit bacterial growth or the secreted cholera toxin (CT). However, inhibiting bacterial growth like common antimicrobial agents may also impose selective pressure facilitating development of resistant strains. A natural compound that can inhibit virulence in V. cholerae is an alternative choice for remedy. Recently, some common spices were examined to check their inhibitory capacity against virulence expression of V. cholerae. Among them methanol extracts of red chili, sweet fennel and white pepper could substantially inhibit CT production. Fractionation of red chili methanol extracts indicated a hydrophobic nature of the inhibitory compound(s), and the n-hexane and 90 per cent methanol fractions could inhibit >90 per cent of CT production. Purification and further fractionation revealed that capsaicin is one of the major components among these red chili fractions. Indeed, capsaicin inhibited the production of CT in various V. cholerae strains regardless of serogroups and biotypes. The quantitative reverse transcription real-time PCR assay revealed that capsaicin dramatically reduced the expression of major virulence-related genes such as ctxA, tcpA and toxT but enhanced the expression of hns gene that transcribes a global prokaryotic gene regulator (H-NS). This indicates that the repression of CT production by capsaicin or red chili might be due to the repression of virulence genes transcription by H-NS. Regular intake of spices like red chili might be a good approach to fight against devastating cholera.
PMCID: PMC3089057  PMID: 21415500
Capsaicin; cholera toxin; real-time PCR; spice; Vibrio cholerae
19.  Fourier transform infra-red spectroscopy and flow cytometric assessment of the antibacterial mechanism of action of aqueous extract of garlic (Allium sativum) against selected probiotic Bifidobacterium strains 
It is generally reported that garlic (Allium sativum) harms pathogenic but not beneficial bacteria. Although numerous studies supporting the alleged garlic effects on pathogens are available, there are limited studies to prove this claim for beneficial bacteria. We have recently shown that garlic exhibits antibacterial activity against probiotic bifidobacteria. The aim of the current study was to elucidate the mechanism of action of garlic clove extract (GCE) on Bifidobacterium bifidum LMG 11041, B. longum LMG 13197 and B. lactis Bb12 using Fourier transform infrared (FT-IR) spectroscopy and flow cytometry.
Cultures (1 × 108 CFU ml-1) were individually incubated for 6 h at 37°C in garlic clove extract containing allicin at a corresponding predetermined minimum bactericidal concentration for each strain. For FTIR, an aliquot of each culture was deposited on CaF2 slide and vacuum dried. The slides were immediately viewed using a Bruker Vertex 70 V FT-IR spectrometer equipped with a Hyperion microscope and data analyzed using OPUS software (version 6, Bruker). Spectra were smoothed with a Savitsky-Goly function algorithim, base-line corrected and normalized. Samples for flow cytometry were stained using the Live/Dead BacLight bacterial viability kit L7012. Data compensation and analysis was performed using a BD FACSAria and FlowJo (version 7.6.1).
Fourier transform infrared spectroscopy showed changes in spectral features of lipids and fatty acids in cell membranes, proteins, polysaccharides and nucleic acids. Spectral data as per principle component analysis (PCA) revealed segregation of control and GCE-treated cells for all the tested bifidobacteria. Flow cytometry not only showed increase in numbers of membrane damaged and possibly lysed cells after GCE treatment, but also displayed diffuse light scatter patterns for GCE treated cells, which is evidence for changes to the size, granularity and molecular content of the cells.
Garlic has multiple target sites in bifidobacteria, penetrating the cell membrane and entering the cytoplasm, where it causes changes to carbohydrates, fatty acids, proteins and nucleic acids. These changes, for example, modification of membrane properties, may prevent exposed bifidobacteria from colonizing the intestinal mucosa. Loss of colonization potential would render them less efficient as probiotics.
PMCID: PMC4137090  PMID: 25099661
Fourier transform infrared spectroscopy; Flow cytometry; Bifidobacterium; Garlic (Allium sativum); Probiotic
20.  Antimicrobial activity of the bioactive components of essential oils from Pakistani spices against Salmonella and other multi-drug resistant bacteria 
The main objective of this study was the phytochemical characterization of four indigenous essential oils obtained from spices and their antibacterial activities against the multidrug resistant clinical and soil isolates prevalent in Pakistan, and ATCC reference strains.
Chemical composition of essential oils from four Pakistani spices cumin (Cuminum cyminum), cinnamon (Cinnamomum verum), cardamom (Amomum subulatum) and clove (Syzygium aromaticum) were analyzed on GC/MS. Their antibacterial activities were investigated by minimum inhibitory concentration (MIC) and Thin-Layer Chromatography-Bioautographic (TLC-Bioautographic) assays against pathogenic strains Salmonella typhi (D1 Vi-positive), Salmonella typhi (G7 Vi-negative), Salmonella paratyphi A, Escherichia coli (SS1), Staphylococcus aureus, Pseudomonas fluorescens and Bacillus licheniformis (ATCC 14580). The data were statistically analyzed by using Analysis of Variance (ANOVA) and Least Significant Difference (LSD) method to find out significant relationship of essential oils biological activities at p <0.05.
Among all the tested essential oils, oil from the bark of C. verum showed best antibacterial activities against all selected bacterial strains in the MIC assay, especially with 2.9 mg/ml concentration against S. typhi G7 Vi-negative and P. fluorescens strains. TLC-bioautography confirmed the presence of biologically active anti-microbial components in all tested essential oils. P. fluorescens was found susceptible to C. verum essential oil while E. coli SS1 and S. aureus were resistant to C. verum and A. subulatum essential oils, respectively, as determined in bioautography assay. The GC/MS analysis revealed that essential oils of C. cyminum, C. verum, A. subulatum, and S. aromaticum contain 17.2% cuminaldehyde, 4.3% t-cinnamaldehyde, 5.2% eucalyptol and 0.73% eugenol, respectively.
Most of the essential oils included in this study possessed good antibacterial activities against selected multi drug resistant clinical and soil bacterial strains. Cinnamaldehyde was identified as the most active antimicrobial component present in the cinnamon essential oil which acted as a strong inhibitory agent in MIC assay against the tested bacteria. The results indicate that essential oils from Pakistani spices can be pursued against multidrug resistant bacteria.
PMCID: PMC3853939  PMID: 24119438
Essential oils; Multidrug resistant; Minimum inhibitory concentration; GC/MS; TLC-bioautography
21.  Effect of Allium Cepa and Allium Sativum on Some Immunological Cells in Rats 
Extracts of some spices have been reported to play a contributory role in enhancing immune function. We evaluated and compared the effect(s) of single and combined oral administration of fresh aqueous onion (Allium cepa) and garlic (Allium sativum) extracts at different concentrations on some immunological determinants in rats. CD4 cells of the rats were estimated using Partec flow cytometric technique, while total and differential white blood cell (WBC) counts were estimated using the Sysmsex® automated haematology analyzing technique. Our findings revealed that, CD4 and total WBC counts were significantly increased (P≤0.05) in a dose-dependent manner in both onion (250mg/Kg/d: 349±11cell/ul and 2.75±0.15X103cell/l; 500mg/Kg/d: 389±10cells/µl and 3.05±0.05 X103cell/l; 750mg/Kg/d: 600±11cell/µl and 3.25±0.05X103cells/l) and garlic (250mg/Kg/d: 410±10cell/ul and 2.85±0.15X103cell/l; 500mg/Kg/d: 494±32cells/µl and 3.30±0.10 X103cell/l; 750mg/Kg/d: 684±11cell/µl and 3.55±0.05X103cells/l) treated rats when compared to the zero control (200±11cells/µl and 1.55±0.05X103cells/l, respectively). Extract of garlic at 750mg/Kg/d had significantly increased the CD4 cells and total white cell count when compared to other concentrations (P≤0.05). However, no significant effect was observed on these parameters when extracts were combined (250mg/Kg/d: 252±21cell/µl and 1.80±0.10X103cells/l; 500mg/Kg/d: 315±21cells/ul and 2.10±0.10X103cells/l; 750mg/Kg/d: 368±10cells/µl and 2.35±0.05X103cells/l, respectively), the differential WBC count showed a significant increase in the proportion of cell types (lymphocytes, neutophils and monocytes) (P≤0.05). The results from this study revealed the immune boosting capabilities of Allium cepa and Allium sativum, but underscored their synergistic activities.
PMCID: PMC3746674  PMID: 23983369
Allium cepa and Allium sativum; immunological cells; rats
22.  Ginger (Zingiber officinale Roscoe) and the Gingerols Inhibit the Growth of Cag A+ Strains of Helicobacter pylori 
Anticancer research  2003;23(0):3699-3702.
Ginger root (Zingiber officinale) has been used traditionally for the treatment of gastrointestinal ailments such as motion sickness, dyspepsia and hyperemesis gravidarum, and is also reported to have chemopreventative activity in animal models. The gingerols are a group of structurally related polyphenolic compounds isolated from ginger and known to be the active constituents. Since Helicobacter pylori (HP) is the primary etiological agent associated with dyspepsia, peptic ulcer disease and the development of gastric and colon cancer, the anti-HP effects of ginger and its constituents were tested in vitro.
Materials and Methods
A methanol extract of the dried powdered ginger rhizome, fractions of the extract and the isolated constituents, 6-,8-, 10-gingerol and 6-shogoal, were tested against 19 strains of HP, including 5 CagA+ strains.
The methanol extract of ginger rhizome inhibited the growth of all 19 strains in vitro with a minimum inhibitory concentration range of 6.25–50 µg/ml. One fraction of the crude extract, containing the gingerols, was active and inhibited the growth of all HP strains with an MIC range of 0.78 to 12.5 µg/ml and with significant activity against the CagA+ strains.
These data demonstrate that ginger root extracts containing the gingerols inhibit the growth of H. pylori CagA+ strains in vitro and this activity may contribute to its chemopreventative effects.
PMCID: PMC3761965  PMID: 14666666
Ginger; gingerols; chemoprevention; Helicobacter pylori; Zingiber officinale
23.  Synergetic Antimicrobial Effects of Mixtures of Ethiopian Honeys and Ginger Powder Extracts on Standard and Resistant Clinical Bacteria Isolates 
Purpose. To evaluate antimicrobial effects of mixtures of Ethiopian honeys and ginger rhizome powder extracts on Staphylococcus aureus (ATCC 25923), Escherichia coli (ATCC 25922), Staphylococcus aureus (MRSA), Escherichia coli (R), and Klebsiella pneumoniae (R). Methods. Agar diffusion and broth assays were performed to determine susceptibility of these standard and resistant clinical bacteria isolates using honey-ginger powder extract mixtures. Results. Honey-ginger powder extract mixtures produced the highest mean inhibition (25.62 mm ± 2.55) compared to the use of honeys (21.63 mm ± 3.30) or ginger extracts (19.23 mm ± 3.42) individually. The ranges of inhibitions produced by honey-ginger extract mixtures on susceptible test organisms (26–30 mm) and resistant strains (range: 19–27 mm) were higher compared to 7–22 mm and 0–14 mm by standard antibiotic discs. Minimum inhibitory concentrations (MIC) of mixture of honeys-ginger extracts were 6.25% (0.625 v/mL) on the susceptible bacteria compared to 75% for resistant clinical isolates. Minimum bactericidal concentration (MBC) of honey-ginger extracts was 12.5% (0.125 g/mL) for all the test organisms. Conclusion. The result of this study showed that honey-ginger powder extract mixtures have the potential to serve as cheap source of antibacterial agents especially for the drug resistant bacteria strains.
PMCID: PMC3977104  PMID: 24772182
24.  Zingiber Officinale Alters 3,4-methylenedioxymethamphetamine-Induced Neurotoxicity in Rat Brain 
Cell Journal (Yakhteh)  2012;14(3):177-184.
The spice Zingiber officinale or ginger possesses antioxidant activity and neuroprotective effects. The effects of this traditional herbal medicine on 3,4-methylenedioxymethamphetamine (MDMA) induced neurotoxicity have not yet been studied. The present study considers the effects of Zingiber officinale on MDMA-induced spatial memory impairment and apoptosis in the hippocampus of male rats.
Materials and Methods:
In this experimental study, 21 adult male Sprague Dawley rats (200-250 g) were classified into three groups (control, MDMA, and MDMA plus ginger). The groups were intraperitoneally administered 10 mg/kg MDMA, 10 mg/kg MDMA plus 100 mg/kg ginger extract, or 1 cc/kg normal saline as the control solution for one week (n=7 per group). Learning memory was assessed by Morris water maze (MWM) after the last administration. Finally, the brains were removed to study the cell number in the cornu ammonis (CA1) hippocampus by light microscope, Bcl-2 by immunoblotting, and Bax expression by reverse transcription polymerase chain reaction (RT-PCR). Data was analyzed using SPSS 16 software and a one-way ANOVA test.
Escape latency and traveled distances decreased significantly in the MDMA plus ginger group relative to the MDMA group (p<0.001). Cell number increased in the MDMA plus ginger group in comparison to the MDMA group. Down-regulation of Bcl-2 and up-regulation of Bax were observed in the MDMA plus ginger group in comparison to the MDMA group (p<0.05).
Our findings suggest that ginger consumption may lead to an improvement of MDMA-induced neurotoxicity.
PMCID: PMC3584433  PMID: 23508562
Apoptosis; Ginger; Spatial Memory; MDMA; Hippocampus; Bcl-2 Family
25.  Zingiber officinale acts as a nutraceutical agent against liver fibrosis 
Zingiber officinale Roscoe (ginger) (Zingiberaceae) has been cultivated for thousands of years both as a spice and for medicinal purposes. Ginger rhizomes successive extracts (petroleum ether, chloroform and ethanol) were examined against liver fibrosis induced by carbon tetrachloride in rats.
The evaluation was done through measuring antioxidant parameters; glutathione (GSH), total superoxide dismutase (SOD) and malondialdehyde (MDA). Liver marker enzymes; succinate and lactate dehydrogenases (SDH and LDH), glucose-6-phosphatase (G-6-Pase), acid phosphatase (AP), 5'- nucleotidase (5'NT) and liver function enzymes; aspartate and alanine aminotransferases (AST and ALT) as well as cholestatic markers; alkaline phosphatase (ALP), gamma glutamyl transferase (GGT), total bilirubin were estimated. Liver histopathological analysis and collagen content were also evaluated. Treatments with the selected extracts significantly increased GSH, SOD, SDH, LDH, G-6-Pase, AP and 5'NT. However, MDA, AST, ALT ALP, GGT and total bilirubin were significantly decreased.
Extracts of ginger, particularly the ethanol one resulted in an attractive candidate for the treatment of liver fibrosis induced by CCl4. Further studies are required in order to identify the molecules responsible of the pharmacological activity.
PMCID: PMC3199745  PMID: 21689445
Zingiber officinale; liver fibrosis; enzymes; antioxidants; histology

Results 1-25 (574563)