PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1191612)

Clipboard (0)
None

Related Articles

1.  A microRNA circuit mediates Transforming Growth Factor-ß1 autoregulation in renal glomerular mesangial cells 
Kidney International  2011;80(4):358-368.
Enhanced transforming growth factor-β1 (TGF-β1) expression in renal cells promotes fibrosis and hypertrophy during the progression of diabetic nephropathy. The TGF-β1 promoter is positively controlled by the E-box regulators, Upstream Stimulatory Factors (USFs), in response to diabetic (high glucose) conditions; however, it is not clear whether TGF-β1 is autoregulated by itself. Since changes in microRNAs (miRNAs) have been implicated in kidney disease, we tested their involvement in this process. TGF-β1 levels were found to be upregulated by microRNA-192 (miR-192) or miR-200b/c in mouse mesangial cells. Amounts of miR-200b/c were increased in glomeruli from type 1 (streptozotocin) and type 2 (db/db) diabetic mice, and in mouse mesangial cells treated with TGF-β1 in vitro. Levels of miR-200b/c were also upregulated by miR-192 in the mesangial cells, suggesting that miR-200b/c are downstream of miR-192. Activity of the TGF-β1 promoter was upregulated by TGF-β1 or miR-192, demonstrating that the miR-192-miR-200 cascade induces TGF-β1 expression. TGF-β1 increased the occupancy of activators USF1 and Tfe3, and decreased that of the repressor Zeb1 on the TGF-β1 promoter E-box binding sites. Inhibitors of miR-192 decreased the expression of miR-200b/c, Col1a2, Col4a1 and TGF-β1 in mouse mesangial cells, and in mouse kidney cortex. Thus, miRNA-regulated circuits may amplify TGF-β1 signaling accelerating chronic fibrotic diseases such as diabetic nephropathy.
doi:10.1038/ki.2011.43
PMCID: PMC3337779  PMID: 21389977
2.  The Role of Angiopoietin-1 in Kidney Disease 
Injury to the renal microvasculature and inflammatory process may be major factors in the progression of renal disease, therefore, protection of the renal endothelial cell and regulation of inflammatory process may be an important therapeutic target of renal disease. Thus, we evaluated the protective effect of cartilage oligomeric matrix protein-angiopoietin-1 (COMP-Ang1) in unilateral ureteral obstruction (UUO)-induced renal fibrosis, cyclosporine A (CsA)-induced renal injury, and the diabetic nephropathy model. In the UUO model, morphologic examination indicated less tubular injury and tubulointerstitial fibrosis in mice that received COMP-Ang1 compared to vehicle-treated mice. Interstitial type I collagen, myofibroblast accumulation, renal surface microvasculature and renal blood flow were higher after treatment with COMP-Ang1 compared to vehicle-treated mice. COMP-Ang1 treatment decreased monocyte/macrophage infiltration, tissue levels of transforming growth factor β1, and Smad 2/3 phosphorylation and increased Smad 7 in the obstructed kidney. In CsA-induced renal injury, histologic examination showed significantly decreased CsA-induced tubular damage and tubulointerstitial fibrosis in COMP-Ang1 treated mice. COMP-Ang1 administration also decreased increased macrophage infiltration, adhesion molecule expression, TGF-β1, and Smad 2/3 levels in CsA-treated kidneys, while increasing Smad 7 levels. Laser-Doppler sonographic findings and endothelial factor VIII staining revealed that COMP-Ang1 had a preservative effect on peritubular vasculature. In the diabetic nephropathy model, COMP-Ang1 reduced albuminuria and decreased mesangial expansion, thickening of the glomerular basement membrane and podocyte foot process broadening and effacement. COMP-Ang1 may delay the fibrotic changes in the kidney of diabetic db/db mice through its anti-inflammatory or metabolic effects. In conclusion, COMP-Ang1 may be an endothelium-specific and anti-inflammatory therapeutic modality in fibrotic renal disease.
doi:10.5049/EBP.2008.6.1.22
PMCID: PMC3894484  PMID: 24459518
angiopoietin-1; kidney; endothelial cells
3.  Enhanced Expression of Janus Kinase–Signal Transducer and Activator of Transcription Pathway Members in Human Diabetic Nephropathy 
Diabetes  2009;58(2):469-477.
OBJECTIVE—Glomerular mesangial expansion and podocyte loss are important early features of diabetic nephropathy, whereas tubulointerstitial injury and fibrosis are critical for progression of diabetic nephropathy to kidney failure. Therefore, we analyzed the expression of genes in glomeruli and tubulointerstitium in kidney biopsies from diabetic nephropathy patients to identify pathways that may be activated in humans but not in murine models of diabetic nephropathy that fail to progress to glomerulosclerosis, tubulointerstitial fibrosis, and kidney failure.
RESEARCH DESIGN AND METHODS—Kidney biopsies were obtained from 74 patients (control subjects, early and progressive type 2 diabetic nephropathy). Glomerular and tubulointerstitial mRNAs were microarrayed, followed by bioinformatics analyses. Gene expression changes were confirmed by real-time RT-PCR and immunohistological staining. Samples from db/db C57BLKS and streptozotocin-induced DBA/2J mice, commonly studied murine models of diabetic nephropathy, were analyzed.
RESULTS—In human glomeruli and tubulointerstitial samples, the Janus kinase (Jak)-signal transducer and activator of transcription (Stat) pathway was highly and significantly regulated. Jak-1, -2, and -3 as well as Stat-1 and -3 were expressed at higher levels in patients with diabetic nephropathy than in control subjects. The estimated glomerular filtration rate significantly correlated with tubulointerstitial Jak-1, -2, and -3 and Stat-1 expression (R2 = 0.30–0.44). Immunohistochemistry found strong Jak-2 staining in glomerular and tubulointerstitial compartments in diabetic nephropathy compared with control subjects. In contrast, there was little or no increase in expression of Jak/Stat genes in the db/db C57BLKS or diabetic DBA/2J mice.
CONCLUSIONS—These data suggest a direct relationship between tubulointerstitial Jak/Stat expression and progression of kidney failure in patients with type 2 diabetic nephropathy and distinguish progressive human diabetic nephropathy from nonprogressive murine diabetic nephropathy.
doi:10.2337/db08-1328
PMCID: PMC2628622  PMID: 19017763
4.  Glomerulopathy in Spontaneously Obese Rhesus Monkeys with Type 2 Diabetes: A Stereological Study 
Background
Animal models provide insights into the diabetic nephropathy pathogenesis, however, available rodent models do not mirror the heterogeneity of lesions in type 2 diabetic (T2DM) patients, and do not progress to end stage renal disease. Previous studies showed that spontaneously obese T2DM rhesus monkeys develop many of the features of human diabetic glomerulopathy, and may progress to ESRD. Here, in order to further characterize diabetic glomerulopathy in this model, we used electron microscopic stereology..
Methods
Renal biopsies from 17 diabetic, 17 pre-diabetes/metabolic syndrome (preDM/MS) and 11 non-diabetic monkeys were studied. Fractional volumes of mesangium [Vv(Mes/glom)], mesangial matrix [Vv(MM/glom)] and mesangial cells [Vv(MC/glom)], glomerular basement membrane (GBM) width and peripheral GBM surface density per glomerulus [Sv(PGBM/glom)] were estimated. Glomerular filtration (GFR) and albumin excretion rates (AER) were measured in a limited number of animals. Glomerular structural and biochemical/metabolic data were compared among the groups.
Results
Diabetic monkeys showed classical diabetic nephropathy changes, including GBM thickening (p=0.001), increased Vv(Mes/glom) (p=0.02), and reduced Sv(PGBM/glom) (p=0.03) compared to non-diabetic monkeys. Increased Vv(Mes/glom) was primarily due to increased Vv(MM/glom) (p=0.03). Glomerular structural parameters inter-relationships in diabetic monkeys mirrored those of human diabetic glomerulopathy. AER was greater (p=0.03) in diabetic vs. non-diabetic monkeys. There was evidence for a positive relationship between AER and Vv(Mes/glom).
Conclusions
These studies indicate that this primate model shares many features of human diabetic glomerulopathy. Mesangial expansion in this model, similar to human diabetic nephropathy and different from available rodent models of the disease, is primarily due to increased mesangial matrix.
doi:10.1002/dmrr.1192
PMCID: PMC3115383  PMID: 21370383
Diabetic Nephropathy; Rhesus Monkeys; Stereology; Diabetes Mellitus; Metabolic Syndrome; Type 2 Diabetes
5.  Dual Involvement of Growth Arrest-Specific Gene 6 in the Early Phase of Human IgA Nephropathy 
PLoS ONE  2013;8(6):e66759.
Background
Gas6 is a growth factor that causes proliferation of mesangial cells in the development of glomerulonephritis. Gas6 can bind to three kinds of receptors; Axl, Dtk, and Mer. However, their expression and functions are not entirely clear in the different glomerular cell types. Meanwhile, representative cell cycle regulatory protein p27 has been reported to be expressed in podocytes in normal glomeruli with decreased expression in proliferating glomeruli, which inversely correlated with mesangial proliferation in human IgA nephropathy (IgAN).
Methods
The aim of this study is to clarify Gas6 involvement in the progression of IgAN. Expression of Gas6/Axl/Dtk was examined in 31 biopsy proven IgAN cases. We compared the expression levels with histological severity or clinical data. Moreover, we investigated the expression of Gas6 and its receptors in cultured podocytes.
Results
In 28 of 31 cases, Gas6 was upregulated mainly in podocytes. In the other 3 cases, Gas6 expression was induced in endothelial and mesangial cells, which was similar to animal nephritis models. Among 28 podocyte type cases, the expression level of Gas6 correlated with the mesangial hypercellularity score of IgAN Oxford classification and urine protein excretion. It also inversely correlated with p27 expression in glomeruli. As for the receptors, Axl was mainly expressed in endothelial and mesangial cells, while Dtk was expressed in podocytes. In vitro, Dtk was expressed in cultured murine podocytes, and the expression of p27 was decreased by Gas6 stimulation.
Conclusions
Gas6 was uniquely upregulated in either endothelial/mesangial cells or podocytes in IgAN. The expression pattern can be used as a marker to classify IgAN. Gas6 has a possibility to be involved in not only mesangial proliferation via Axl, but also podocyte injury via Dtk in IgAN.
doi:10.1371/journal.pone.0066759
PMCID: PMC3691258  PMID: 23826128
6.  TRAIL Deficiency Contributes to Diabetic Nephropathy in Fat-Fed ApoE-/- Mice 
PLoS ONE  2014;9(3):e92952.
Background
We recently demonstrated that TNF-related apoptosis-inducing ligand (TRAIL) is protective of diet-induced diabetes in mice. While TRAIL has been implicated in chronic kidney disease, its role in vivo in diabetic nephropathy is not clear. The present study investigated the role of TRAIL in the pathogenesis of diabetic nephropathy using TRAIL-/-ApoE-/- mice.
Methods
TRAIL-/-ApoE-/- and ApoE-/- mice were fed a high fat diet for 20 w. Plasma glucose and insulin levels were assessed over 0, 5, 8 and 20 w. At 20 w, markers of kidney function including creatinine, phosphate, calcium and cystatin C were measured. Changes in mRNA expression of MMPs, TIMP-1, IL-1β and IL-18 were assessed in the kidney. Functional and histological changes in kidneys were examined. Glucose and insulin tolerance tests were performed.
Results
TRAIL-/-ApoE-/- mice had significantly increased urine protein, urine protein:creatinine ratio, plasma phosphorous, and plasma cystatin C, with accelerated nephropathy. Histologically, increased extracellular matrix, mesangial expansion and mesangial cell proliferation in the glomeruli were observed. Moreover, TRAIL-/-ApoE-/- kidneys displayed loss of the brush border and disorganisation of tubular epithelium, with increased fibrosis. TRAIL-deficient kidneys also had increased expression of MMPs, TIMP-1, PAI-1, IL-1β and IL-18, markers of renal injury and inflammation. Compared with ApoE-/- mice, TRAIL-/-ApoE-/- mice displayed insulin resistance and type-2 diabetic features with reduced renal insulin-receptor expression.
Conclusions
Here, we show that TRAIL-deficiency in ApoE-/- mice exacerbates nephropathy and insulin resistance. Understanding TRAIL signalling in kidney disease and diabetes, may therefore lead to novel strategies for the treatment of diabetic nephropathy.
doi:10.1371/journal.pone.0092952
PMCID: PMC3965481  PMID: 24667560
7.  A mesangium-predominant gene, megsin, is a new serpin upregulated in IgA nephropathy. 
Journal of Clinical Investigation  1998;102(4):828-836.
Mesangial cells play an important role in maintaining a structure and function of the glomerulus and in the pathogenesis of glomerular diseases. To identify a specific gene expressed in human mesangial cells, we used a rapid large-scale DNA sequencing and computerized data processing to compare the transcripts in cultured human mesangial cells with various different cells and organs. Using this novel approach, we discovered a new mesangium-predominant gene termed "megsin." We obtained a full-length cDNA clone of megsin, which coded for a novel 380-amino acid protein. Amino acid homology search revealed that megsin belonged to the serpin (serine protease inhibitor) superfamily. The amino acid sequences in the reactive loop site of megsin showed characteristic features of functional serpins. Northern blot and reverse-transcribed PCR analyses of various tissues and cells demonstrated that megsin was predominantly expressed in human mesangial cells. In situ hybridization studies showed the megsin expression in the mesangium of normal glomeruli, while it increased in the expanded mesangium of glomeruli from patients with IgA nephropathy with the degree of mesangial proliferation. Here we report a new human mesangium-predominant gene that may function as an inhibitory serpin in normal and abnormal biological processes of glomerulus.
PMCID: PMC508946  PMID: 9710452
8.  Diabetic nephropathy 
Diabetic nephropathy is the leading cause of chronic renal disease and a major cause of cardiovascular mortality. Diabetic nephropathy has been categorized into stages: microalbuminuria and macroalbuminuria. The cut-off values of micro- and macroalbuminuria are arbitrary and their values have been questioned. Subjects in the upper-normal range of albuminuria seem to be at high risk of progression to micro- or macroalbuminuria and they also had a higher blood pressure than normoalbuminuric subjects in the lower normoalbuminuria range. Diabetic nephropathy screening is made by measuring albumin in spot urine. If abnormal, it should be confirmed in two out three samples collected in a three to six-months interval. Additionally, it is recommended that glomerular filtration rate be routinely estimated for appropriate screening of nephropathy, because some patients present a decreased glomerular filtration rate when urine albumin values are in the normal range. The two main risk factors for diabetic nephropathy are hyperglycemia and arterial hypertension, but the genetic susceptibility in both type 1 and type 2 diabetes is of great importance. Other risk factors are smoking, dyslipidemia, proteinuria, glomerular hyperfiltration and dietary factors. Nephropathy is pathologically characterized in individuals with type 1 diabetes by thickening of glomerular and tubular basal membranes, with progressive mesangial expansion (diffuse or nodular) leading to progressive reduction of glomerular filtration surface. Concurrent interstitial morphological alterations and hyalinization of afferent and efferent glomerular arterioles also occur. Podocytes abnormalities also appear to be involved in the glomerulosclerosis process. In patients with type 2 diabetes, renal lesions are heterogeneous and more complex than in individuals with type 1 diabetes. Treatment of diabetic nephropathy is based on a multiple risk factor approach, and the goal is retarding the development or progression of the disease and to decrease the subject's increased risk of cardiovascular disease. Achieving the best metabolic control, treating hypertension (<130/80 mmHg) and dyslipidemia (LDL cholesterol <100 mg/dl), using drugs that block the renin-angiotensin-aldosterone system, are effective strategies for preventing the development of microalbuminuria, delaying the progression to more advanced stages of nephropathy and reducing cardiovascular mortality in patients with diabetes.
doi:10.1186/1758-5996-1-10
PMCID: PMC2761852  PMID: 19825147
9.  Podocyte detachment and reduced glomerular capillary endothelial fenestration promote kidney disease in type 2 diabetic nephropathy 
Kidney international  2012;82(9):1010-1017.
Podocyte detachment and reduced endothelial cell fenestration and relationships between these features and the classic structural changes of diabetic nephropathy have not been described in patients with type 2 diabetes. Here we studied these relationships in 37 Pima Indians with type 2 diabetes of whom 11 had normal albuminuria, 16 had microalbuminuria, and 10 had macroalbuminuria. Biopsies from ten kidney donors (not Americans Indians) showed almost undetectable (0.03%) podocyte detachment and 43.5% endothelial cell fenestration. In patients with type 2 diabetes, by comparison, the mean percentage of podocyte detachment was significantly higher in macroalbuminuria (1.48%) than in normal albuminuria (0.41%) or microalbuminuria (0.37%). Podocyte detachment correlated significantly with podocyte number per glomerulus and albuminuria. The mean percentage of endothelial cell fenestration was significantly lower in macroalbuminuria (19.3%) than in normal (27.4%) or microalbuminuria (27.2%) and correlated significantly with glomerular basement membrane thickness, albuminuria, fractional mesangial area, and the glomerular filtration rate (iothalamate clearance). Podocyte detachment and diminished endothelial cell fenestration were not correlated, but were related to classic lesions of diabetic nephropathy. Thus, our findings confirm the important role these injuries play in the development and progression of kidney disease in type 2 diabetes, just as they do in type 1 diabetes. Whether podocyte detachment creates conduits for proteins to escape the glomerular circulation and reduced endothelial fenestration lowers glomerular hydraulic permeability requires further study.
doi:10.1038/ki.2012.234
PMCID: PMC3472108  PMID: 22718189
10.  Lack of Type VIII Collagen in Mice Ameliorates Diabetic Nephropathy 
Diabetes  2009;58(7):1672-1681.
OBJECTIVE
Key features of diabetic nephropathy include the accumulation of extracellular matrix proteins. In recent studies, increased expression of type VIII collagen in the glomeruli and tubulointerstitium of diabetic kidneys has been noted. The objectives of this study were to assess whether type VIII collagen affects the development of diabetic nephropathy and to determine type VIII collagen–dependent pathways in diabetic nephropathy in the mouse model of streptozotocin (STZ)-induced diabetes.
RESEARCH DESIGN AND METHODS
Diabetes was induced by STZ injections in collagen VIII–deficient or wild-type mice. Functional and histological analyses were performed 40 days after induction of diabetes. Type VIII collagen expression was assessed by Northern blots, immunohistochemistry, and real-time PCR. Proliferation of primary mesangial cells was measured by thymidine incorporation and direct cell counting. Expression of phosphorylated extracellular signal–regulated kinase (ERK1/2) and p27Kip1 was assessed by Western blots. Finally, Col8a1 was stably overexpressed in mesangial cells.
RESULTS
Diabetic wild-type mice showed a strong renal induction of type VIII collagen. Diabetic Col8a1−/Col8a2− animals revealed reduced mesangial expansion and cellularity and extracellular matrix expansion compared with the wild type. These were associated with less albuminuria. High-glucose medium as well as various cytokines induced Col8a1 in cultured mesangial cells. Col8a1−/Col8a2− mesangial cells revealed decreased proliferation, less phosphorylation of Erk1/2, and increased p27Kip1 expression. Overexpression of Col8a1 in mesangial cells induced proliferation.
CONCLUSIONS
Lack of type VIII collagen confers renoprotection in diabetic nephropathy. One possible mechanism is that type VIII collagen permits and/or fosters mesangial cell proliferation in early diabetic nephropathy.
doi:10.2337/db08-0183
PMCID: PMC2699847  PMID: 19401424
11.  Plasminogen Activator Inhibitor-1 Antisense Oligodeoxynucleotides Abrogate Mesangial Fibronectin Accumulation 
Excessive extracellular matrix (ECM) accumulation is the main feature of chronic renal disease including diabetic nephropathy. Plasminogen activator inhibitor (PAI)-1 is known to play an important role in renal ECM accumulation in part through suppression of plasmin generation and matrix metalloproteinase (MMP) activation. The present study examined the effect of PAI-1 antisense oligodeoxynucleotide (ODN) on fibronectin upregulation and plasmin/MMP suppression in primary mesangial cells cultured under high glucose (HG) or transforming growth factor (TGF)-β1, major mediators of diabetic renal ECM accumulation. Growth arrested and synchronized rat primary mesangial cells were transfected with 1 µM phosphorothioate-modified antisense or control mis-match ODN for 24 hours with cationic liposome and then stimulated with 30 mM D-glucose or 2 ng/ml TGF-β1. PAI-1 or fibronectin protein was measured by Western blot analysis. Plasmin activity was determined using a synthetic fluorometric plasmin substrate and MMP-2 activity analyzed using zymography. HG and TGF-β1 significantly increased PAI-1 and fibronectin protein expression as well as decreased plasmin and MMP-2 activity. Transient transfection of mesangial cells with PAI-1 antisense ODN, but not mis-match ODN, effectively reversed basal as well as HG- and TGF-β1-induced suppression of plasmin and MMP-2 activity. Both basal and upregulated fibronectin secretion were also inhibited by PAI-1 antisense ODN. These data confirm that PAI-1 plays an important role in ECM accumulation in diabetic mesangium through suppression of protease activity and suggest that PAI-1 antisense ODN would be an effective therapeutic strategy for prevention of renal fibrosis including diabetic nephropathy.
doi:10.4196/kjpp.2010.14.6.385
PMCID: PMC3034118  PMID: 21311679
Plasminogen activator inhibitor-1; Antisense oligodeoxynucleotide; Plasmin; Matrix metalloproteinase; Mesangial cells
12.  Novel roles of the IGF-IGFBP axis in etiopathophysiology of diabetic nephropathy 
Mechanisms contributing to development of diabetic nephropathy (DN) remain unclear. High ambient glucose level transforms intracellular pathways, promoting stable phenotypic changes in the glomerulus such as mesangial cell hypertrophy, podocyte apoptosis, and matrix expansion. Insulin-like growth factors (IGFs) and the high affinity IGF binding proteins (IGFBPs) exert major effects on cell growth and metabolism. Compared with diabetic patients without microalbuminuria (MA), MA diabetic patients display perturbed GH-IGF-IGFBP homeostasis, including increased circulating IGF-I and IGFBP-3 protease activity, increased excretion of bioactive GH, IGF-I, and IGFBP-3, but decreased circulating IGFBP-3 levels. In diabetic animal models, expression of IGF-I and IGFBP-1 to -4 increases in key renal tissues and glomerular ulrafiltrate. Epithelial, mesangial, and endothelial cells derived from the kidney respond to IGF-I binding with increased protein synthesis, migration, and proliferation. This article reviews classic and emerging concepts for the roles of the GH-IGF-IGFBP axis in the etiopathophysiology, treatment, and prevention of diabetic renal disease.
doi:10.1016/j.diabres.2006.09.012
PMCID: PMC1892792  PMID: 17011663
Diabetic nephropathy; IGF; IGFBPs; IGF receptor
13.  Urinary protein markers predict the severity of renal histological lesions in children with mesangial proliferative glomerulonephritis 
BMC Nephrology  2012;13:29.
Background
Several renal histopathological features, including mesangial hypercellularity, glomerulosclerosis, tubular atrophy and interstitial fibrosis, are considered to be independent predictors of end-stage renal failure in patients with glomerular diseases. Mesangial proliferative glomerulonephritis (MesPGN) is characterized by proliferations of mesangial cells with increase in mesangial matrix and/or deposits in mesangial region. The purpose of this study is to determine the association between urinary protein markers measured at the same time as renal biopsy and the severity of renal histological lesions in children with MesPGN, and to evaluate whether these markers could serve as predictors of severe renal histological lesions in this population.
Methods
Ninety-eight children with MesPGN (40 with IgA nephropathy, 37 with IgM nephropathy, and 21 with MesPGN without IgA/IgM deposition) were enrolled. Urinary level of IgG, albumin, transferrin, α1-microglobulin, β2-microglobulin and N-acetyl-β-glucosaminidase from a morning sample before biopsy was measured.
The scores of mesangial hypercellularity, glomerulosclerosis, and tubule-interstitial damage were used to semi-quantitatively evaluate renal histological lesions.
Results
The urine proteins, as independent factors associated with severe mesangial cellularity (> 5 mesangial cells/ mesangial area) were transferrin, albumin, α1-microglobulin, IgG and 24-hour total protein, with severe glomerulosclerosis (≥ 10 % glomeruli showing segmental adhesions or sclerosis) were transferrin and 24-hour total protein, and with severe tubule-interstitial damage (focal or diffuse tubular and interstitial lesions) were transferrin and N-acetyl-β-glucosaminidase. Urinary transferrin achieved the area under-the-receiver-operating-characteristic curve (AUC) of 0.86 and 0.82, respectively, for predicting severe mesangial cellularity and glomerulosclerosis. Urinary N-acetyl-β-glucosaminidase achieved the highest AUC of 0.82 for predicting severe tubule-interstitial damage. The combination of urinary protein markers, however, did not improve the predictability for renal histological lesions.
Conclusions
Urinary protein markers are useful to predict the severity of renal histological lesions in children with MesPGN, which suggests that urinary proteins might be useful to predict the development and progression of renal histological lesions, and assist in evaluating the outcome and prognosis in children with MesPGN as non-invasive and easily repeatable indicators on the follow-up examination.
doi:10.1186/1471-2369-13-29
PMCID: PMC3403987  PMID: 22607047
14.  Deletion of the Receptor for Advanced Glycation End Products Reduces Glomerulosclerosis and Preserves Renal Function in the Diabetic OVE26 Mouse 
Diabetes  2010;59(8):2043-2054.
OBJECTIVE
Previous studies showed that genetic deletion or pharmacological blockade of the receptor for advanced glycation end products (RAGE) prevents the early structural changes in the glomerulus associated with diabetic nephropathy. To overcome limitations of mouse models that lack the progressive glomerulosclerosis observed in humans, we studied the contribution of RAGE to diabetic nephropathy in the OVE26 type 1 mouse, a model of progressive glomerulosclerosis and decline of renal function.
RESEARCH DESIGN AND METHODS
We bred OVE26 mice with homozygous RAGE knockout (RKO) mice and examined structural changes associated with diabetic nephropathy and used inulin clearance studies and albumin:creatinine measurements to assess renal function. Transcriptional changes in the Tgf-β1 and plasminogen activator inhibitor 1 gene products were measured to investigate mechanisms underlying accumulation of mesangial matrix in OVE26 mice.
RESULTS
Deletion of RAGE in OVE26 mice reduced nephromegaly, mesangial sclerosis, cast formation, glomerular basement membrane thickening, podocyte effacement, and albuminuria. The significant 29% reduction in glomerular filtration rate observed in OVE26 mice was completely prevented by deletion of RAGE. Increased transcription of the genes for plasminogen activator inhibitor 1, Tgf-β1, Tgf-β–induced, and α1-(IV) collagen observed in OVE26 renal cortex was significantly reduced in OVE26 RKO kidney cortex. ROCK1 activity was significantly lower in OVE26 RKO compared with OVE26 kidney cortex.
CONCLUSIONS
These data provide compelling evidence for critical roles for RAGE in the pathogenesis of diabetic nephropathy and suggest that strategies targeting RAGE in long-term diabetes may prevent loss of renal function.
doi:10.2337/db09-1766
PMCID: PMC2911065  PMID: 20627935
15.  A susceptibility gene for kidney disease in an obese mouse model of type II diabetes maps to chromosome 8 
Kidney international  2010;78(5):453-462.
Most mouse models of diabetes do not fully reproduce features of human diabetic nephropathy, limiting their utility in inferring mechanisms of human disease. Here we performed detailed phenotypic and genetic characterization of leptin-receptor (Lepr) deficient mice on the FVB/NJ background (FVBdb/db), an obese model of type II diabetes, to determine their suitability to model human diabetic nephropathy. These mice have sustained hyperglycemia, significant albuminuria and characteristic diabetic renal findings including mesangial sclerosis and nodular glomerulosclerosis after 6 months of age. In contrast, equally obese, hyperglycemic Lepr/Sur1 deficient C57BL/6J (Sur1 has defective insulin secretion) mice have minimal evidence of nephropathy. A genome-wide scan in 165 Lepr deficient backcross progeny derived from FVB/NJ and C57BL/6J identified a major locus influencing nephropathy and albuminuria on chromosome 8B1-C5 (Dbnph1 locus, peak lod score 5.0). This locus was distinct from those contrasting susceptibility to beta cell hypertrophy and HIV-nephropathy between the same parental strains, indicating specificity to diabetic kidney disease. Genome-wide expression profiling showed that high and low risk Dbnph1 genotypes were associated with significant enrichment for oxidative phosphorylation and lipid clearance, respectively; molecular pathways shared with human diabetic nephropathy. Hence, we found that the FVBdb/db mouse recapitulates many clinical, histopathological and molecular features of human diabetic nephropathy. Identifying underlying susceptibility gene(s) and downstream dysregulated pathways in these mice may provide insight into the disease pathogenesis in humans.
doi:10.1038/ki.2010.160
PMCID: PMC3998677  PMID: 20520596
16.  The Protective Role of Nrf2 in Streptozotocin-Induced Diabetic Nephropathy 
Diabetes  2010;59(4):850-860.
OBJECTIVE
Diabetic nephropathy is one of the major causes of renal failure, which is accompanied by the production of reactive oxygen species (ROS). Nrf2 is the primary transcription factor that controls the antioxidant response essential for maintaining cellular redox homeostasis. Here, we report our findings demonstrating a protective role of Nrf2 against diabetic nephropathy.
RESEARCH DESIGN AND METHODS
We explore the protective role of Nrf2 against diabetic nephropathy using human kidney biopsy tissues from diabetic nephropathy patients, a streptozotocin-induced diabetic nephropathy model in Nrf2−/− mice, and cultured human mesangial cells.
RESULTS
The glomeruli of human diabetic nephropathy patients were under oxidative stress and had elevated Nrf2 levels. In the animal study, Nrf2 was demonstrated to be crucial in ameliorating streptozotocin-induced renal damage. This is evident by Nrf2−/− mice having higher ROS production and suffering from greater oxidative DNA damage and renal injury compared with Nrf2+/+ mice. Mechanistic studies in both in vivo and in vitro systems showed that the Nrf2-mediated protection against diabetic nephropathy is, at least, partially through inhibition of transforming growth factor-β1 (TGF-β1) and reduction of extracellular matrix production. In human renal mesangial cells, high glucose induced ROS production and activated expression of Nrf2 and its downstream genes. Furthermore, activation or overexpression of Nrf2 inhibited the promoter activity of TGF-β1 in a dose-dependent manner, whereas knockdown of Nrf2 by siRNA enhanced TGF-β1 transcription and fibronectin production.
CONCLUSIONS
This work clearly indicates a protective role of Nrf2 in diabetic nephropathy, suggesting that dietary or therapeutic activation of Nrf2 could be used as a strategy to prevent or slow down the progression of diabetic nephropathy.
doi:10.2337/db09-1342
PMCID: PMC2844833  PMID: 20103708
17.  Nuclear Hormone Receptor Expression in Mouse Kidney and Renal Cell Lines 
PLoS ONE  2014;9(1):e85594.
Nuclear hormone receptors (NHRs) are transcription factors that regulate carbohydrate and lipid metabolism, immune responses, and inflammation. Although several NHRs, including peroxisome proliferator-activated receptor-γ (PPARγ) and PPARα, demonstrate a renoprotective effect in the context of diabetic nephropathy (DN), the expression and role of other NHRs in the kidney are still unrecognized. To investigate potential roles of NHRs in the biology of the kidney, we used quantitative real-time polymerase chain reaction to profile the expression of all 49 members of the mouse NHR superfamily in mouse kidney tissue (C57BL/6 and db/m), and cell lines of mesangial (MES13), podocyte (MPC), proximal tubular epithelial (mProx24) and collecting duct (mIMCD3) origins in both normal and high-glucose conditions. In C57BL/6 mouse kidney cells, hepatocyte nuclear factor 4α, chicken ovalbumin upstream promoter transcription factor II (COUP-TFII) and COUP-TFIII were highly expressed. During hyperglycemia, the expression of the NHR 4A subgroup including neuron-derived clone 77 (Nur77), nuclear receptor-related factor 1, and neuron-derived orphan receptor 1 significantly increased in diabetic C57BL/6 and db/db mice. In renal cell lines, PPARδ was highly expressed in mesangial and proximal tubular epithelial cells, while COUP-TFs were highly expressed in podocytes, proximal tubular epithelial cells, and collecting duct cells. High-glucose conditions increased the expression of Nur77 in mesangial and collecting duct cells, and liver x receptor α in podocytes. These data demonstrate NHR expression in mouse kidney cells and cultured renal cell lines and suggest potential therapeutic targets in the kidney for the treatment of DN.
doi:10.1371/journal.pone.0085594
PMCID: PMC3899020  PMID: 24465611
18.  Human Recombinant ACE2 Reduces the Progression of Diabetic Nephropathy 
Diabetes  2009;59(2):529-538.
OBJECTIVE
Diabetic nephropathy is one of the most common causes of end-stage renal failure. Inhibition of ACE2 function accelerates diabetic kidney injury, whereas renal ACE2 is downregulated in diabetic nephropathy. We examined the ability of human recombinant ACE2 (hrACE2) to slow the progression of diabetic kidney injury.
RESEARCH DESIGN AND METHODS
Male 12-week-old diabetic Akita mice (Ins2WT/C96Y) and control C57BL/6J mice (Ins2WT/WT) were injected daily with placebo or with rhACE2 (2 mg/kg, i.p.) for 4 weeks. Albumin excretion, gene expression, histomorphometry, NADPH oxidase activity, and peptide levels were examined. The effect of hrACE2 on high glucose and angiotensin II (ANG II)–induced changes was also examined in cultured mesangial cells.
RESULTS
Treatment with hrACE2 increased plasma ACE2 activity, normalized blood pressure, and reduced the urinary albumin excretion in Akita Ins2WT/C96Y mice in association with a decreased glomerular mesangial matrix expansion and normalization of increased α-smooth muscle actin and collagen III expression. Human recombinant ACE2 increased ANG 1–7 levels, lowered ANG II levels, and reduced NADPH oxidase activity. mRNA levels for p47phox and NOX2 and protein levels for protein kinase Cα (PKCα) and PKCβ1 were also normalized by treatment with hrACE2. In vitro, hrACE2 attenuated both high glucose and ANG II–induced oxidative stress and NADPH oxidase activity.
CONCLUSIONS
Treatment with hrACE2 attenuates diabetic kidney injury in the Akita mouse in association with a reduction in blood pressure and a decrease in NADPH oxidase activity. In vitro studies show that the protective effect of hrACE2 is due to reduction in ANG II and an increase in ANG 1–7 signaling.
doi:10.2337/db09-1218
PMCID: PMC2809962  PMID: 19934006
19.  Connective tissue growth factor(CCN2), a pathogenic factor in diabetic nephropathy. What does it do? How does it do it? 
Connective tissue growth factor (CTGF/CCN2) is a member of the CCN family of matricellular proteins. Its expression is induced by a number of factors including TGF-β. It has been associated with fibrosis in various tissues including the kidney. Diabetic nephropathy (DN) develops in about 30% of patients with diabetes and is characterized by thickening of renal basement membranes, fibrosis in the glomerulus (glomerulosclerosis), tubular atrophy and interstitial fibrosis, all of which compromise kidney function. This review examines changes in CTGF expression in the kidney in DN, the effects they have on glomerular mesangial and podocyte cells and the tubulointerstitium, and how these contribute to driving fibrotic changes in the disease. CTGF can bind to several other growth factors modifying their function. CTGF is also able to interact with receptors on cells, including integrins, tyrosine receptor kinase A (TrkA), low density lipoprotein receptor-related protein (LRP) and heparan sulphate proteoglycans. These interactions, the intracellular signalling pathways they activate, and the cellular responses evoked are reviewed. CTGF also induces the expression of chemokines which themselves have pharmacological actions on cells. CTGF may prompt some responses by acting through several different mechanisms, possibly simultaneously. For example, CTGF is often described as an effector of TGF-β. It can promote TGF-β signalling by binding directly to the growth factor, promoting its interaction with the TGF-β receptor; by triggering intracellular signalling on binding the TrkA receptor, which leads to the transcriptional repression of Smad7, an inhibitor of the TGF-β signalling pathway; and by binding to BMP-7 whose own signalling pathway opposing TGF-β is inhibited, leading to enhanced TGF-β signalling.
doi:10.1007/s12079-009-0038-6
PMCID: PMC2721079  PMID: 19214781
CTGF; CCN2; Fibrosis; Diabetic nephropathy
20.  Connective tissue growth factor(CCN2), a pathogenic factor in diabetic nephropathy. What does it do? How does it do it? 
Connective tissue growth factor (CTGF/CCN2) is a member of the CCN family of matricellular proteins. Its expression is induced by a number of factors including TGF-β. It has been associated with fibrosis in various tissues including the kidney. Diabetic nephropathy (DN) develops in about 30% of patients with diabetes and is characterized by thickening of renal basement membranes, fibrosis in the glomerulus (glomerulosclerosis), tubular atrophy and interstitial fibrosis, all of which compromise kidney function. This review examines changes in CTGF expression in the kidney in DN, the effects they have on glomerular mesangial and podocyte cells and the tubulointerstitium, and how these contribute to driving fibrotic changes in the disease. CTGF can bind to several other growth factors modifying their function. CTGF is also able to interact with receptors on cells, including integrins, tyrosine receptor kinase A (TrkA), low density lipoprotein receptor-related protein (LRP) and heparan sulphate proteoglycans. These interactions, the intracellular signalling pathways they activate, and the cellular responses evoked are reviewed. CTGF also induces the expression of chemokines which themselves have pharmacological actions on cells. CTGF may prompt some responses by acting through several different mechanisms, possibly simultaneously. For example, CTGF is often described as an effector of TGF-β. It can promote TGF-β signalling by binding directly to the growth factor, promoting its interaction with the TGF-β receptor; by triggering intracellular signalling on binding the TrkA receptor, which leads to the transcriptional repression of Smad7, an inhibitor of the TGF-β signalling pathway; and by binding to BMP-7 whose own signalling pathway opposing TGF-β is inhibited, leading to enhanced TGF-β signalling.
doi:10.1007/s12079-009-0038-6
PMCID: PMC2721079  PMID: 19214781
CTGF; CCN2; Fibrosis; Diabetic nephropathy
21.  Vascular Endothelial Growth Factor-Receptor 1 Inhibition Aggravates Diabetic Nephropathy through eNOS Signaling Pathway in db/db Mice 
PLoS ONE  2014;9(4):e94540.
The manipulation of vascular endothelial growth factor (VEGF)-receptors (VEGFRs) in diabetic nephropathy is as controversial as issue as ever. It is known to be VEGF-A and VEGFR2 that regulate most of the cellular actions of VEGF in experimental diabetic nephropathy. On the other hand, such factors as VEGF-A, -B and placenta growth factor bind to VEGFR1 with high affinity. Such notion instigated us to investigate on whether selective VEGFR1 inhibition with GNQWFI hexamer aggravates the progression of diabetic nephropathy in db/db mice.
While diabetes suppressed VEGFR1, it did increase VEGFR2 expressions in the glomerulus. Db/db mice with VEGFR1 inhibition showed more prominent features with respect to, albuminuria, mesangial matrix expansion, inflammatory cell infiltration and greater numbers of apoptotic cells in the glomerulus, and oxidative stress than that of control db/db mice. All these changes were related to the suppression of diabetes-induced increases in PI3K activity and Akt phosphorylation as well as the aggravation of endothelial dysfunction associated with the inactivation of FoxO3a and eNOS-NOx. In cultured human glomerular endothelial cells (HGECs), high-glucose media with VEGFR1 inhibition induced more apoptotic cells and oxidative stress than did high-glucose media alone, which were associated with the suppression of PI3K-Akt phosphorylation, independently of the activation of AMP-activated protein kinase, and inactivation of FoxO3a and eNOS-NOx pathway. In addition, transfection with VEGFR1 siRNA in HGECs also suppressed PI3K-Akt-eNOS signaling.
In conclusion, the specific blockade of VEGFR1 with GNQWFI caused severe renal injury related to profound suppression of the PI3K-Akt, FoxO3a and eNOS-NOx pathway, giving rise to the oxidative stress-induced apoptosis of glomerular cells in type 2 diabetic nephropathy.
doi:10.1371/journal.pone.0094540
PMCID: PMC3997361  PMID: 24759928
22.  Role of MicroRNA 1207-5P and Its Host Gene, the Long Non-Coding RNA Pvt1, as Mediators of Extracellular Matrix Accumulation in the Kidney: Implications for Diabetic Nephropathy 
PLoS ONE  2013;8(10):e77468.
Diabetic nephropathy is the most common cause of chronic kidney failure and end-stage renal disease in the Western World. One of the major characteristics of this disease is the excessive accumulation of extracellular matrix (ECM) in the kidney glomeruli. While both environmental and genetic determinants are recognized for their role in the development of diabetic nephropathy, epigenetic factors, such as DNA methylation, long non-coding RNAs, and microRNAs, have also recently been found to underlie some of the biological mechanisms, including ECM accumulation, leading to the disease. We previously found that a long non-coding RNA, the plasmacytoma variant translocation 1 (PVT1), increases plasminogen activator inhibitor 1 (PAI-1) and transforming growth factor beta 1 (TGF-β1) in mesangial cells, the two main contributors to ECM accumulation in the glomeruli under hyperglycemic conditions, as well as fibronectin 1 (FN1), a major ECM component. Here, we report that miR-1207-5p, a PVT1-derived microRNA, is abundantly expressed in kidney cells, and is upregulated by glucose and TGF-β1. We also found that like PVT1, miR-1207-5p increases expression of TGF-β1, PAI-1, and FN1 but in a manner that is independent of its host gene. In addition, regulation of miR-1207-5p expression by glucose and TGFβ1 is independent of PVT1. These results provide evidence supporting important roles for miR-1207-5p and its host gene in the complex pathogenesis of diabetic nephropathy.
doi:10.1371/journal.pone.0077468
PMCID: PMC3808414  PMID: 24204837
23.  In Vivo Delivery of Gremlin siRNA Plasmid Reveals Therapeutic Potential against Diabetic Nephropathy by Recovering Bone Morphogenetic Protein-7 
PLoS ONE  2010;5(7):e11709.
Diabetic nephropathy is a complex and poorly understood disease process, and our current treatment options are limited. It remains critical, then, to identify novel therapeutic targets. Recently, a developmental protein and one of the bone morphogenetic protein antagonists, Gremlin, has emerged as a novel modulator of diabetic nephropathy. The high expression and strong co-localization with transforming growth factor- β1 in diabetic kidneys suggests a role for Gremlin in the pathogenesis of diabetic nephropathy. We have constructed a gremlin siRNA plasmid and have examined the effect of Gremlin inhibition on the progression of diabetic nephropathy in a mouse model. CD-1 mice underwent uninephrectomy and STZ treatment prior to receiving weekly injections of the plasmid. Inhibition of Gremlin alleviated proteinuria and renal collagen IV accumulation 12 weeks after the STZ injection and inhibited renal cell proliferation and apoptosis. In vitro experiments, using mouse mesangial cells, revealed that the transfect ion of gremlin siRNA plasmid reversed high glucose induced abnormalities, such as increased cell proliferation and apoptosis and increased collagen IV production. The decreased matrix metalloprotease level was partially normalized by transfection with gremlin siRNA plasmid. Additionally, we observed recovery of bone morphogenetic protein-7 signaling activity, evidenced by increases in phosphorylated Smad 5 protein levels. We conclude that inhibition of Gremlin exerts beneficial effects on the diabetic kidney mainly through maintenance of BMP-7 activity and that Gremlin may serve as a novel therapeutic target in the management of diabetic nephropathy.
doi:10.1371/journal.pone.0011709
PMCID: PMC2908623  PMID: 20661431
24.  Insulin regulates SOCS2 expression and the mitogenic effect of IGF-1 in mesangial cells 
Kidney international  2008;74(11):1434-1443.
Renal hypertrophy and deposition of extracellular matrix proteins are consistent findings in diabetic nephropathy and these processes can be halted or reversed by euglycemic control. Using DNA microarray analysis of glomerular RNA from control and diabetic rats we found that the expression levels of insulin-like growth factor 1 receptor (IGF-1R) were increased while those of suppressor of cytokine signaling 2 (SOCS2) and STAT5 were decreased. All of these changes were normalized by islet cell transplantation. Overexpression of SOCS2 in rat mesangial cells inhibited IGF-1-induced activation of extracellular signal-regulated kinase, which subsequently reduced type IV collagen and DNA synthesis, an effect due to interaction of SOCS2 with IGF-1R. Inhibition of SOCS2 overexpression by small interfering RNA suppressed IGF-1R-mediated actions by preventing phosphorylation of tyrosine 317 in the p66Shc adaptor protein; however, overexpression of either SOCS1 or SOCS3 did not affect IGF-1R signaling. Insulin directly increased STAT5 and SOCS2 expression in mesangial cells. This study shows that insulin can inhibit the mitogenic action of IGF-1 in mesangial cells by regulating STAT5/SOCS2 expression. Insulin deficiency may contribute to the mesangial expansion found in diabetes through reduced STAT5/SOCS2 expression.
doi:10.1038/ki.2008.403
PMCID: PMC2644821  PMID: 19008912
diabetes; insulin; SOCS2; STAT; signaling; nephropathy
25.  Hepatocyte Growth Factor Is a Downstream Effector that Mediates the Antifibrotic Action of Peroxisome Proliferator–Activated Receptor-γ Agonists 
Peroxisome proliferator–activated receptor-γ (PPAR-γ) is a ligand-dependent transcription factor that plays an important role in the regulation of insulin sensitivity and lipid metabolism. Evidence shows that PPAR-γ agonists also ameliorate renal fibrotic lesions in both diabetic nephropathy and nondiabetic chronic kidney disease. However, little is known about the mechanism underlying their antifibrotic action. This study demonstrated that PPAR-γ agonists could exert their actions by inducing antifibrotic hepatocyte growth factor (HGF) expression. Incubation of mesangial cells with natural or synthetic PPAR-γ agonists 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) or troglitazone and ciglitazone suppressed TGF-β1–mediated α-smooth muscle actin, fibronectin, and plasminogen activator inhibitor-1 expression. PPAR-γ agonists also induced HGF mRNA expression and protein secretion. Transfection studies revealed that 15d-PGJ2 stimulated HGF gene promoter activity, which was dependent on the presence of a novel peroxisome proliferator response element. Treatment of mesangial cells with 15d-PGJ2 induced the binding of PPAR-γ to the peroxisome proliferator response element in the HGF promoter region. PPAR-γ agonists also activated c-met receptor tyrosine phosphorylation, induced Smad transcriptional co-repressor TG-interacting factor expression, and blocked TGF-β/Smad-mediated gene transcription in mesangial cells. Furthermore, ablation of c-met receptor through the LoxP-Cre system in mesangial cells abolished the antifibrotic effect of 15d-PGJ2. PPAR-γ activation also induced HGF expression in renal interstitial fibroblasts and repressed TGF-β1–mediated myofibroblast activation. Both HGF and 15d-PGJ2 attenuated Smad nuclear translocation in response to TGF-β1 stimulation in renal fibroblasts. Together, these findings suggest that HGF may act as a downstream effector that mediates the antifibrotic action of PPAR-γ agonists.
doi:10.1681/ASN.2005030257
PMCID: PMC1820837  PMID: 16291834

Results 1-25 (1191612)