PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (209758)

Clipboard (0)
None

Related Articles

1.  The water flea Daphnia - a 'new' model system for ecology and evolution? 
Journal of Biology  2010;9(2):21.
Daphnia pulex is the first crustacean to have its genome sequenced. Availability of the genome sequence will have implications for research in aquatic ecology and evolution in particular, as addressed by a series of papers published recently in BMC Evolutionary Biology and BMC Genomics.
See research articles http://www.biomedcentral.com/1471-2148/9/78, http://www.biomedcentral.com/1471-2164/10/527, http://www.biomedcentral.com/1471-2148/9/79, http://www.biomedcentral.com/1471-2164/10/175, http://www.biomedcentral.com/1471-2164/10/172, http://www.biomedcentral.com/1471-2164/10/169, http://www.biomedcentral.com/1471-2164/10/170 and http://www.biomedcentral.com/1471-2148/9/243.
doi:10.1186/jbiol212
PMCID: PMC2871515  PMID: 20478012
2.  Regeneration review reprise 
Journal of Biology  2010;9(2):15.
There have been notable advances in the scientific understanding of regeneration within the past year alone, including two recently published in BMC Biology. Increasingly, progress in the regeneration field is being inspired by comparisons with stem cell biology and enabled by newly developed techniques that allow simultaneous examination of thousands of genes and proteins.
See research articles http://www.biomedcentral.com/1741-7007/7/83 and http://www.biomedcentral.com/1741-7007/8/5.
doi:10.1186/jbiol224
PMCID: PMC2871519  PMID: 20236485
3.  Inferring the Tree of Life: chopping a phylogenomic problem down to size? 
BMC Biology  2011;9:59.
The combination of molecular sequence data and bioinformatics has revolutionized phylogenetic inference over the past decade, vastly increasing the scope of the evolutionary trees that we are able to infer. A recent paper in BMC Biology describing a new phylogenomic pipeline to help automate the inference of evolutionary trees from public sequence databases provides another important tool in our efforts to derive the Tree of Life.
See research article: http://www.biomedcentral.com/1741-7007/9/55
doi:10.1186/1741-7007-9-59
PMCID: PMC3176480  PMID: 21933452
4.  Genome of a songbird unveiled 
Journal of Biology  2010;9(3):19.
An international collaborative effort has recently uncovered the genome of the zebra finch, a songbird model that has provided unique insights into an array of biological phenomena.
See research articles http://www.biomedcentral.com/1471-2164/9/131, http://www.biomedcentral.com/1471-2164/11/220/, http://www.biomedcentral.com/1471-2202/11/46/ and http://www.biomedcentral.com/1741-7007/8/28/
doi:10.1186/jbiol222
PMCID: PMC2871510  PMID: 20359317
5.  Following autophagy step by step 
BMC Biology  2011;9:39.
Autophagy is an evolutionarily conserved lysosomal degradation route for soluble components of the cytosol and organelles. There is great interest in identifying compounds that modulate autophagy because they may have applications in the treatment of major diseases including cancer and neurodegenerative disease. Hundeshagen and colleagues describe this month in BMC Biology a screening assay based on flow cytometry that makes it possible to track distinct steps in the autophagic process and thereby identify novel modulators of autophagy.
See research article: http://www.biomedcentral.com/1741-7007/9/38
doi:10.1186/1741-7007-9-39
PMCID: PMC3107173  PMID: 21635796
6.  DNA replication: archaeal oriGINS 
BMC Biology  2011;9:36.
GINS is an essential eukaryotic DNA replication factor that is found in a simplified form in Archaea. A new study in this issue of BMC Biology reveals the first structure of the archaeal GINS complex. The structure reveals the anticipated similarity to the previously determined eukaryotic complex but also has some intriguing differences in the relative disposition of subunit domains.
See research article: http://www.biomedcentral.com/1741-7007/9/28
doi:10.1186/1741-7007-9-36
PMCID: PMC3104950  PMID: 21627856
7.  The (r)evolution of cancer genetics 
BMC Biology  2010;8:74.
The identification of an increasing number of cancer genes is opening up unexpected scenarios in cancer genetics. When analyzed for their systemic properties, these genes show a general fragility towards perturbation. A recent paper published in BMC Biology shows how the founder domains of known cancer genes emerged at two macroevolutionary transitions - the advent of the first cell and the transition to metazoan multicellularity.
See research article http://www.biomedcentral.com/1741-7007/8/66
doi:10.1186/1741-7007-8-74
PMCID: PMC2883958  PMID: 20594288
8.  History and phylogeny of intermediate filaments: Now in insects 
BMC Biology  2011;9:16.
Intermediate filaments include the nuclear lamins, which are universal in metazoans, and the cytoplasmic intermediate filaments, which are much more varied and form cell type-specific networks in animal cells. Until now, it has been thought that insects harbor lamins only. This view is fundamentally challenged by the discovery, reported in BMC Biology, of an intermediate filament-like cytoplasmic protein, isomin, in the hexapod Isotomurus maculatus. Here we briefly review the history of research on intermediate filaments, and discuss the implications of this latest finding in the context of what is known of their structure and functions.
See research article: http://www.biomedcentral.com/1741-7007/9/17
doi:10.1186/1741-7007-9-16
PMCID: PMC3046923  PMID: 21356127
9.  How the vertebrates were made: selective pruning of a double-duplicated genome 
BMC Biology  2010;8:144.
Vertebrates are the result of an ancient double duplication of the genome. A new study published in BMC Biology explores the selective retention of genes after this event, finding an extensive enrichment of signaling proteins and transcription factors. Analysis of their expression patterns, interactions and subsequent history reflect the forces that drove their evolution, and with it the evolution of vertebrate complexity.
See research article: http://www.biomedcentral.com/1741-7007/8/146/abstract
doi:10.1186/1741-7007-8-144
PMCID: PMC3001425  PMID: 21144066
10.  Difficult phylogenetic questions: more data, maybe; better methods, certainly 
BMC Biology  2011;9:91.
Contradicting the prejudice that endosymbiosis is a rare phenomenon, Husník and co-workers show in BMC Biology that bacterial endosymbiosis has occured several times independently during insect evolution. Rigorous phylogenetic analyses, in particular using complex models of sequence evolution and an original site removal procedure, allow this conclusion to be established after eschewing inference artefacts that usually plague the positioning of highly divergent endosymbiont genomic sequences.
See research article http://www.biomedcentral.com/1741-7007/9/87
doi:10.1186/1741-7007-9-91
PMCID: PMC3248379  PMID: 22206462
11.  p97 complexes as signal integration hubs 
BMC Biology  2012;10:48.
In the ubiquitin-proteasome system, a subset of ubiquitylated proteins requires the AAA+ ATPase p97 (also known as VCP or Cdc48) for extraction from membranes or protein complexes before delivery to the proteasome for degradation. Diverse ubiquitin adapters are known to link p97 to its client proteins, but two recent papers on the adapter protein UBXD7, including one by Bandau et al. in BMC Biology, suggest that rather than simply linking p97 to ubiquitylated proteins, this adapter may be essential to coordinate ubiquitylation and p97-mediated extraction of the proteasome substrate. These findings add to growing indications of richly diverse roles of adapters in p97-mediated signaling functions.
See research article: http://www.biomedcentral.com/1741-7007/10/36
doi:10.1186/1741-7007-10-48
PMCID: PMC3374291  PMID: 22694940
12.  Mapping the protistan 'rare biosphere' 
Journal of Biology  2009;8(12):105.
The use of cultivation-independent approaches to map microbial diversity, including recent work published in BMC Biology, has now shown that protists, like bacteria/archaea, are much more diverse than had been realized. Uncovering eukaryotic diversity may now be limited not by access to samples or cost but rather by the availability of full-length reference sequence data.
See research article http://www.biomedcentral.com/1741-7007/7/72
doi:10.1186/jbiol201
PMCID: PMC2804278  PMID: 20067591
13.  Vertebrate Hedgehog signaling: cilia rule 
BMC Biology  2010;8:102.
The Hedgehog (Hh) signaling pathway differentially utilizes the primary cilium in mammals and fruit flies. Recent work, including a study in BMC Biology, demonstrates that Hh signals through the cilium in zebrafish, clarifying the evolution of Hh signal transduction.
See research article: http://www.biomedcentral.com/1741-7007/8/65
doi:10.1186/1741-7007-8-102
PMCID: PMC2912248  PMID: 20687907
14.  Scale-eating cichlids: from hand(ed) to mouth 
Journal of Biology  2010;9(2):11.
Two recent studies in BMC Biology and Evolution raise important questions about a textbook case of frequency-dependent selection in scale-eating cichlid fishes. They also suggest a fascinating new line of research testing the effects of handed behavior on morphological asymmetry.
See research article http://www.biomedcentral.com/1741-7007/8/8.
doi:10.1186/jbiol218
PMCID: PMC2871516  PMID: 20236497
15.  Modularity of gene-regulatory networks revealed in sea-star development 
BMC Biology  2011;9:6.
Evidence that conserved developmental gene-regulatory networks can change as a unit during deutersostome evolution emerges from a study published in BMC Biology. This shows that genes consistently expressed in anterior brain patterning in hemichordates and chordates are expressed in a similar spatial pattern in another deuterostome, an asteroid echinoderm (sea star), but in a completely different developmental context (the animal-vegetal axis). This observation has implications for hypotheses on the type of development present in the deuterostome common ancestor.
See research article: http://www.biomedcentral.com/1741-7007/8/143/abstract
doi:10.1186/1741-7007-9-6
PMCID: PMC3032766  PMID: 21281525
16.  A view to kill 
BMC Biology  2012;10:18.
Genome and proteome data from Hydra magnipapillata have opened the way for the molecular analysis of an ancient nervous system, which includes stinging cells, an unusual neurosensory and neurosecretory cell type. They hold some surprises for the mechanisms and evolution of sensory transduction that could not have been anticipated from what has been learned from flies and vertebrates. Research in BMC Biology now implicates the ancient opsin-mediated transduction pathway in the neuronal control of stinging cell discharge.
See research article http://www.biomedcentral.com/1741-7007/10/17
doi:10.1186/1741-7007-10-18
PMCID: PMC3293708  PMID: 22390773
17.  Cambrian problematica and the diversification of deuterostomes 
BMC Biology  2012;10:79.
Vetulicolians are an enigmatic group of Cambrian organisms that have been affiliated at various times with arthropods, lobopodians, kinorhynchs and deuterostomes. New evidence on the structure of the lateral pores of vetulicolians published in BMC Biology strengthens the view that they may be total group deuterostomes, but unfortunately sheds no new light on early deuterostome evolution.
See research article http://www.biomedcentral.com/1741-7007/10/81
doi:10.1186/1741-7007-10-79
PMCID: PMC3462677  PMID: 23031503
18.  Revisiting the relationship between regenerative ability and aging 
BMC Biology  2013;11:2.
Contrary to the longstanding view that newts (Notophthalamus viridescens), but not axolotls (Ambystoma mexicanum), can regenerate a lens, a recent report in BMC Biology by Panagiotis Tsonis and colleagues shows axolotls indeed possess this ability during early larval stages. In contrast, they show that zebrafish never posses this ability, even as embryos. This underscores the importance of comparing regenerative ability across species and reinforces the need to consider organ regeneration in the context of evolution, development, and aging.
See research article: http://www.biomedcentral.com/1741-7007/10/103
doi:10.1186/1741-7007-11-2
PMCID: PMC3549786  PMID: 23336699
19.  Selecting the right medical student 
BMC Medicine  2013;11:245.
Medical student selection is an important but difficult task. Three recent papers by McManus et al. in BMC Medicine have re-examined the role of tests of attainment of learning (A’ levels, GCSEs, SQA) and of aptitude (AH5, UKCAT), but on a much larger scale than previously attempted. They conclude that A’ levels are still the best predictor of future success at medical school and beyond. However, A’ levels account for only 65% of the variance in performance that is found. Therefore, more work is needed to establish relevant assessment of the other 35%.
Please see related research articles http://www.biomedcentral.com/1741-7015/11/242, http://www.biomedcentral.com/1741-7015/11/243 and http://www.biomedcentral.com/1741-7015/11/244.
doi:10.1186/1741-7015-11-245
PMCID: PMC3827327  PMID: 24229397
Medical School Admission; Predictors of performance; Aptitude testing
20.  Untangling the evolution of Rab G proteins: implications of a comprehensive genomic analysis 
BMC Biology  2012;10:71.
Background
Membrane-bound organelles are a defining feature of eukaryotic cells, and play a central role in most of their fundamental processes. The Rab G proteins are the single largest family of proteins that participate in the traffic between organelles, with 66 Rabs encoded in the human genome. Rabs direct the organelle-specific recruitment of vesicle tethering factors, motor proteins, and regulators of membrane traffic. Each organelle or vesicle class is typically associated with one or more Rab, with the Rabs present in a particular cell reflecting that cell's complement of organelles and trafficking routes.
Results
Through iterative use of hidden Markov models and tree building, we classified Rabs across the eukaryotic kingdom to provide the most comprehensive view of Rab evolution obtained to date. A strikingly large repertoire of at least 20 Rabs appears to have been present in the last eukaryotic common ancestor (LECA), consistent with the 'complexity early' view of eukaryotic evolution. We were able to place these Rabs into six supergroups, giving a deep view into eukaryotic prehistory.
Conclusions
Tracing the fate of the LECA Rabs revealed extensive losses with many extant eukaryotes having fewer Rabs, and none having the full complement. We found that other Rabs have expanded and diversified, including a large expansion at the dawn of metazoans, which could be followed to provide an account of the evolutionary history of all human Rabs. Some Rab changes could be correlated with differences in cellular organization, and the relative lack of variation in other families of membrane-traffic proteins suggests that it is the changes in Rabs that primarily underlies the variation in organelles between species and cell types.
doi:10.1186/1741-7007-10-71
PMCID: PMC3425129  PMID: 22873208
Organelles; G proteins; humans; last eukaryotic common ancestor
21.  Regulation of lipid droplet turnover by ubiquitin ligases 
BMC Biology  2010;8:94.
Mutation of the protein spartin is a cause of one form of spastic paraplegia. Spartin interacts with ubiquitin ligases of the Nedd4 family, and a recent report in BMC Biology now shows that it acts as an adaptor to recruit and activate the ubiquitin ligase AIP4 onto lipid droplets, leading to the ubiquitination and degradation of droplet-associated proteins. A deficiency of spartin apparently causes lipid droplets to accumulate.
See research article: http://www.biomedcentral.com/1741-7007/8/72/
doi:10.1186/1741-7007-8-94
PMCID: PMC2906420  PMID: 20646264
22.  Response to Klütsch and Crapon de Caprona 
BMC Biology  2010;8:120.
This article is a response to Klütsch and Crapon de Caprona
See correspondence article http://www.biomedcentral.com/1741-7007/8/119 and our original research article http://www.biomedcentral.com/1741-7007/8/16.
doi:10.1186/1741-7007-8-120
PMCID: PMC2944130  PMID: 20825654
23.  Answer to Wang and Luo, "Polyploidization increases meiotic recombination frequency in Arabidopsis: a close look at statistical modelling and data analysis" 
BMC Biology  2012;10:31.
This article is a response to Wang and Luo.
See correspondence article http://www.biomedcentral.com/1741-7007/10/30/ [WEBCITE] and the original research article http://www.biomedcentral.com/1741-7007/9/24 [WEBCITE].
doi:10.1186/1741-7007-10-31
PMCID: PMC3353204  PMID: 22513141
24.  Response to Wang and Luo 
BMC Biology  2012;10:32.
This article is a response to Wang and Luo.
See correspondence article http://www.biomedcentral.com/1741-7007/10/30 and the original research article http://www.biomedcentral.com/1741-7007/9/24.
doi:10.1186/1741-7007-10-32
PMCID: PMC3379956  PMID: 22513177
25.  No severe and global X chromosome inactivation in meiotic male germline of Drosophila 
BMC Biology  2012;10:50.
This article is a response to Vibranovski et al.
See correspondence article http://www.biomedcentral.com/1741-7007/10/49 and the original research article http://www.biomedcentral.com/1741-7007/9/29
We have previously reported a high propensity of testis-expressed X-linked genes to activation in meiotic cells, a similarity in global gene expression between the X chromosome and autosomes in meiotic germline, and under-representation of various types of tissue-specific genes on the X chromosome. Based on our findings and a critical review of the current literature, we believe that there is no global and severe silencing of the X chromosome in the meiotic male germline of Drosophila. The term 'meiotic sex chromosome inactivation' (MSCI) therefore seems misleading when used to describe the minor underexpression of the X chromosome in the testis of Drosophila, because this term erroneously implies a profound and widespread silencing of the X-linked genes, by analogy to the well-studied MSCI system in mammals, and therefore distracts from identification and analysis of the real mechanisms that orchestrate gene expression and evolution in this species.
doi:10.1186/1741-7007-10-50
PMCID: PMC3391177

Results 1-25 (209758)