Search tips
Search criteria

Results 1-25 (575712)

Clipboard (0)

Related Articles

1.  Development and Evolution of the Muscles of the Pelvic Fin 
PLoS Biology  2011;9(10):e1001168.
Locomotor strategies in terrestrial tetrapods have evolved from the utilisation of sinusoidal contractions of axial musculature, evident in ancestral fish species, to the reliance on powerful and complex limb muscles to provide propulsive force. Within tetrapods, a hindlimb-dominant locomotor strategy predominates, and its evolution is considered critical for the evident success of the tetrapod transition onto land. Here, we determine the developmental mechanisms of pelvic fin muscle formation in living fish species at critical points within the vertebrate phylogeny and reveal a stepwise modification from a primitive to a more derived mode of pelvic fin muscle formation. A distinct process generates pelvic fin muscle in bony fishes that incorporates both primitive and derived characteristics of vertebrate appendicular muscle formation. We propose that the adoption of the fully derived mode of hindlimb muscle formation from this bimodal character state is an evolutionary innovation that was critical to the success of the tetrapod transition.
Author Summary
The transition of vertebrates from water to land is a fundamental step in the evolution of terrestrial life. Innovations that were critical to this transition were the evolution of a weight bearing pelvis, hindlimbs and their associated musculature, and the development of the “rear wheel drive” strategy that predominates in terrestrial locomotion. The fossil record can reveal how the skeletal framework of the load-bearing limbs of tetrapods (animals descended from fish) has evolved, but as soft tissues are rarely preserved within the fossil record, it can shed little light on how the accompanying dramatic alterations of the limb musculature arose developmentally. To examine this question we determined the mechanisms that generate fin muscles within larvae of living species representing several clades of fish across the vertebrate phylogeny. Using this comparative approach and a novel somite transplantation technique in zebrafish, we determine that the pelvic fin muscles of bony fish are generated by a bimodal mechanism that has features of limb/fin muscle formation in tetrapods and primitive cartilaginous fish. Using these data, we propose a unifying evolutionary hypothesis on the origins of the muscle of the paired fins and limbs, and speculate that the adoption of tetrapod mode of hindlimb muscle formation was also an evolutionary innovation critical to the success of the tetrapod transition.
PMCID: PMC3186808  PMID: 21990962
2.  Fossil Fishes from China Provide First Evidence of Dermal Pelvic Girdles in Osteichthyans 
PLoS ONE  2012;7(4):e35103.
The pectoral and pelvic girdles support paired fins and limbs, and have transformed significantly in the diversification of gnathostomes or jawed vertebrates (including osteichthyans, chondrichthyans, acanthodians and placoderms). For instance, changes in the pectoral and pelvic girdles accompanied the transition of fins to limbs as some osteichthyans (a clade that contains the vast majority of vertebrates – bony fishes and tetrapods) ventured from aquatic to terrestrial environments. The fossil record shows that the pectoral girdles of early osteichthyans (e.g., Lophosteus, Andreolepis, Psarolepis and Guiyu) retained part of the primitive gnathostome pectoral girdle condition with spines and/or other dermal components. However, very little is known about the condition of the pelvic girdle in the earliest osteichthyans. Living osteichthyans, like chondrichthyans (cartilaginous fishes), have exclusively endoskeletal pelvic girdles, while dermal pelvic girdle components (plates and/or spines) have so far been found only in some extinct placoderms and acanthodians. Consequently, whether the pectoral and pelvic girdles are primitively similar in osteichthyans cannot be adequately evaluated, and phylogeny-based inferences regarding the primitive pelvic girdle condition in osteichthyans cannot be tested against available fossil evidence.
Methodology/Principal Findings
Here we report the first discovery of spine-bearing dermal pelvic girdles in early osteichthyans, based on a new articulated specimen of Guiyu oneiros from the Late Ludlow (Silurian) Kuanti Formation, Yunnan, as well as a re-examination of the previously described holotype. We also describe disarticulated pelvic girdles of Psarolepis romeri from the Lochkovian (Early Devonian) Xitun Formation, Yunnan, which resemble the previously reported pectoral girdles in having integrated dermal and endoskeletal components with polybasal fin articulation.
The new findings reveal hitherto unknown similarity in pectoral and pelvic girdles among early osteichthyans, and provide critical information for studying the evolution of pelvic girdles in osteichthyans and other gnathostomes.
PMCID: PMC3318012  PMID: 22509388
3.  Comparative pelvic development of the axolotl (Ambystoma mexicanum) and the Australian lungfish (Neoceratodus forsteri): conservation and innovation across the fish-tetrapod transition 
EvoDevo  2013;4:3.
The fish-tetrapod transition was one of the major events in vertebrate evolution and was enabled by many morphological changes. Although the transformation of paired fish fins into tetrapod limbs has been a major topic of study in recent years, both from paleontological and comparative developmental perspectives, the interest has focused almost exclusively on the distal part of the appendage and in particular the origin of digits. Relatively little attention has been paid to the transformation of the pelvic girdle from a small unipartite structure to a large tripartite weight-bearing structure, allowing tetrapods to rely mostly on their hindlimbs for locomotion. In order to understand how the ischium and the ilium evolved and how the acetabulum was reoriented during this transition, growth series of the Australian lungfish Neoceratodus forsteri and the Mexican axolotl Ambystoma mexicanum were cleared and stained for cartilage and bone and immunostained for skeletal muscles. In order to understand the myological developmental data, hypotheses about the homologies of pelvic muscles in adults of Latimeria, Neoceratodus and Necturus were formulated based on descriptions from the literature of the coelacanth (Latimeria), the Australian Lungfish (Neoceratodus) and a salamander (Necturus).
In the axolotl and the lungfish, the chondrification of the pelvic girdle starts at the acetabula and progresses anteriorly in the lungfish and anteriorly and posteriorly in the salamander. The ilium develops by extending dorsally to meet and connect to the sacral rib in the axolotl. Homologous muscles develop in the same order with the hypaxial musculature developing first, followed by the deep, then the superficial pelvic musculature.
Development of the pelvic endoskeleton and musculature is very similar in Neoceratodus and Ambystoma. If the acetabulum is seen as being a fixed landmark, the evolution of the ischium only required pubic pre-chondrogenic cells to migrate posteriorly. It is hypothesized that the iliac process or ridge present in most tetrapodomorph fish is the precursor to the tetrapod ilium and that its evolution mimicked its development in modern salamanders.
PMCID: PMC3651358  PMID: 23342976
Fish-tetrapod transition; Pelvic girdle; Heterochrony; Extant phylogenetic bracketing method; Evolutionary novelty; Muscle development
4.  Conservation and Divergence of Regulatory Strategies at Hox Loci and the Origin of Tetrapod Digits 
PLoS Biology  2014;12(1):e1001773.
During development, expression of the Hoxa and Hoxd genes in zebrafish fins and mouse limbs are regulated via a conserved chromatin structure. However, zebrafish lack certain regulatory elements required to produce digits, revealing that radials—the fin's bony elements—are likely not homologous to tetrapod digits.
The evolution of tetrapod limbs from fish fins enabled the conquest of land by vertebrates and thus represents a key step in evolution. Despite the use of comparative gene expression analyses, critical aspects of this transformation remain controversial, in particular the origin of digits. Hoxa and Hoxd genes are essential for the specification of the different limb segments and their functional abrogation leads to large truncations of the appendages. Here we show that the selective transcription of mouse Hoxa genes in proximal and distal limbs is related to a bimodal higher order chromatin structure, similar to that reported for Hoxd genes, thus revealing a generic regulatory strategy implemented by both gene clusters during limb development. We found the same bimodal chromatin architecture in fish embryos, indicating that the regulatory mechanism used to pattern tetrapod limbs may predate the divergence between fish and tetrapods. However, when assessed in mice, both fish regulatory landscapes triggered transcription in proximal rather than distal limb territories, supporting an evolutionary scenario whereby digits arose as tetrapod novelties through genetic retrofitting of preexisting regulatory landscapes. We discuss the possibility to consider regulatory circuitries, rather than expression patterns, as essential parameters to define evolutionary synapomorphies.
Author Summary
Our upper limbs differ from fish fins, notably by their subdivision into arm and hand regions, which are separated by a complex articulation, the wrist. The development of this anatomy is associated with two distinct waves of expression of the Hoxa and Hoxd genes during development. Would such a shared expression pattern be sufficient to infer homology between fish fins and mouse limbs? We investigated this question here, looking at whether the two phases of Hox gene transcription that are observed during tetrapod limb development also occur during zebrafish fin development. We find the answer is “not quite.” For although the mechanisms that regulate the expression of Hoxa and Hoxd are comparable between zebrafish fins and mouse limbs, when the genomic regions that regulate Hox gene expression in fish fins are introduced into transgenic mice, they trigger Hox gene expression in only the proximal limb segment (the segment nearest the body) and not in the presumptive digits. We conclude that although fish have the Hox regulatory toolkit to produce digits, this potential is not utilized as it is in tetrapods, and as a result we propose that fin radials—the bony elements of fins—are not homologous to tetrapod digits.
PMCID: PMC3897358  PMID: 24465181
5.  First description of a musculoskeletal linkage in an adipose fin: innovations for active control in a primitively passive appendage 
Adipose fins are enigmatic appendages found between the dorsal and caudal fins of some teleostean fishes. Long thought to be vestigial, degenerate second dorsal fins, remnants of the primitive gnathostome condition, adipose fins have since been recognized as novel morphologies. Unique among the fins of extant fishes, adipose fins have uniformly been described as passive structures, with no associated musculature. Here we provide the first description of a musculoskeletal linkage in an adipose fin, identified in the sun catfish Horabagrus brachysoma. Modified supracarinalis posterior muscles insert from the dorsal midline anterior to the adipose fin by tendons onto the fin base. An additional pair of posterior adipose-fin muscles also inserts upon the fin base and lay posterolateral to the fin, superficial to the axial muscle. This musculoskeletal linkage is an evolutionary innovation, a novel mechanism for controlling adipose-fin movement. These muscles appear to exemplify two approaches by which fins evolve to be actively controlled. We hypothesize that the anterior muscles arose through co-option of an existing fin linkage, while the posterior muscles originated as de novo fin muscles. These findings present adipose fins as a rich system within which to explore the evolution of novel vertebrate appendages.
PMCID: PMC3574436  PMID: 23135670
adipose fin; evolutionary innovation; swimming; catfish
6.  Forelimb-hindlimb developmental timing changes across tetrapod phylogeny 
Tetrapods exhibit great diversity in limb structures among species and also between forelimbs and hindlimbs within species, diversity which frequently correlates with locomotor modes and life history. We aim to examine the potential relation of changes in developmental timing (heterochrony) to the origin of limb morphological diversity in an explicit comparative and quantitative framework. In particular, we studied the relative time sequence of development of the forelimbs versus the hindlimbs in 138 embryos of 14 tetrapod species spanning a diverse taxonomic, ecomorphological and life-history breadth. Whole-mounts and histological sections were used to code the appearance of 10 developmental events comprising landmarks of development from the early bud stage to late chondrogenesis in the forelimb and the corresponding serial homologues in the hindlimb.
An overall pattern of change across tetrapods can be discerned and appears to be relatively clade-specific. In the primitive condition, as seen in Chondrichthyes and Osteichthyes, the forelimb/pectoral fin develops earlier than the hindlimb/pelvic fin. This pattern is either retained or re-evolved in eulipotyphlan insectivores (= shrews, moles, hedgehogs, and solenodons) and taken to its extreme in marsupials. Although exceptions are known, the two anurans we examined reversed the pattern and displayed a significant advance in hindlimb development. All other species examined, including a bat with its greatly enlarged forelimbs modified as wings in the adult, showed near synchrony in the development of the fore and hindlimbs.
Major heterochronic changes in early limb development and chondrogenesis were absent within major clades except Lissamphibia, and their presence across vertebrate phylogeny are not easily correlated with adaptive phenomena related to morphological differences in the adult fore- and hindlimbs. The apparently conservative nature of this trait means that changes in chondrogenetic patterns may serve as useful phylogenetic characters at higher taxonomic levels in tetrapods. Our results highlight the more important role generally played by allometric heterochrony in this instance to shape adult morphology.
PMCID: PMC2194785  PMID: 17908305
7.  Ancestry of motor innervation to pectoral fin and forelimb 
Nature Communications  2010;1(4):1-8.
Motor innervation to the tetrapod forelimb and fish pectoral fin is assumed to share a conserved spinal cord origin, despite major structural and functional innovations of the appendage during the vertebrate water-to-land transition. In this paper, we present anatomical and embryological evidence showing that pectoral motoneurons also originate in the hindbrain among ray-finned fish. New and previous data for lobe-finned fish, a group that includes tetrapods, and more basal cartilaginous fish showed pectoral innervation that was consistent with a hindbrain-spinal origin of motoneurons. Together, these findings support a hindbrain–spinal phenotype as the ancestral vertebrate condition that originated as a postural adaptation for pectoral control of head orientation. A phylogenetic analysis indicated that Hox gene modules were shared in fish and tetrapod pectoral systems. We propose that evolutionary shifts in Hox gene expression along the body axis provided a transcriptional mechanism allowing eventual decoupling of pectoral motoneurons from the hindbrain much like their target appendage gained independence from the head.
It was previously thought that the nerves in the pectoral fin of fish came solely from the spinal cord. Here, motoneurons in ray-finned fish are shown to also originate from the hindbrain, demonstrating that innervation was from both the hindbrain and the spinal cord in ancesteral vertebrates.
PMCID: PMC2963806  PMID: 20975699
8.  Tetrapod-like axial regionalization in an early ray-finned fish 
Tetrapods possess up to five morphologically distinct vertebral series: cervical, thoracic, lumbar, sacral and caudal. The evolution of axial regionalization has been linked to derived Hox expression patterns during development and the demands of weight-bearing and walking on land. These evolutionary and functional explanations are supported by an absence of similar traits in fishes, living and extinct. Here, I show that, Tarrasius problematicus, a marine ray-finned fish from the Mississippian (Early Carboniferous; 359–318 Ma) of Scotland, is the first non-tetrapod known to possess tetrapod-like axial regionalization. Tarrasius exhibits five vertebral regions, including a seven-vertebrae ‘cervical’ series and a reinforced ‘sacrum’ over the pelvic area. Most vertebrae possess processes for intervertebral contact similar to tetrapod zygapophyses. The fully aquatic Tarrasius evolved these morphologies alongside other traits convergent with early tetrapods, including a naked trunk, and a single median continuous fin. Regional modifications in Tarrasius probably facilitated pelagic swimming, rather than a terrestrial lifestyle or walking gait, presenting an alternative scenario for the evolution of such traits in tetrapods. Axial regionalization in Tarrasius could indicate tetrapod-like Hox expression patterns, possibly representing the primitive state for jawed vertebrates. Alternately, it could signal a weaker relationship, or even a complete disconnect, between Hox expression domains and vertebrate axial plans.
PMCID: PMC3385743  PMID: 22628471
axial patterning; neck; evolutionary development; biomechanics; sacrum; terrestriality
9.  Biphasic Hoxd Gene Expression in Shark Paired Fins Reveals an Ancient Origin of the Distal Limb Domain 
PLoS ONE  2007;2(8):e754.
The evolutionary transition of fins to limbs involved development of a new suite of distal skeletal structures, the digits. During tetrapod limb development, genes at the 5′ end of the HoxD cluster are expressed in two spatiotemporally distinct phases. In the first phase, Hoxd9-13 are activated sequentially and form nested domains along the anteroposterior axis of the limb. This initial phase patterns the limb from its proximal limit to the middle of the forearm. Later in development, a second wave of transcription results in 5′ HoxD gene expression along the distal end of the limb bud, which regulates formation of digits. Studies of zebrafish fins showed that the second phase of Hox expression does not occur, leading to the idea that the origin of digits was driven by addition of the distal Hox expression domain in the earliest tetrapods. Here we test this hypothesis by investigating Hoxd gene expression during paired fin development in the shark Scyliorhinus canicula, a member of the most basal lineage of jawed vertebrates. We report that at early stages, 5′Hoxd genes are expressed in anteroposteriorly nested patterns, consistent with the initial wave of Hoxd transcription in teleost and tetrapod paired appendages. Unexpectedly, a second phase of expression occurs at later stages of shark fin development, in which Hoxd12 and Hoxd13 are re-expressed along the distal margin of the fin buds. This second phase is similar to that observed in tetrapod limbs. The results indicate that a second, distal phase of Hoxd gene expression is not uniquely associated with tetrapod digit development, but is more likely a plesiomorphic condition present the common ancestor of chondrichthyans and osteichthyans. We propose that a temporal extension, rather than de novo activation, of Hoxd expression in the distal part of the fin may have led to the evolution of digits.
PMCID: PMC1937022  PMID: 17710153
10.  Basal jawed vertebrate phylogeny inferred from multiple nuclear DNA-coded genes 
BMC Biology  2004;2:3.
Phylogenetic analyses of jawed vertebrates based on mitochondrial sequences often result in confusing inferences which are obviously inconsistent with generally accepted trees. In particular, in a hypothesis by Rasmussen and Arnason based on mitochondrial trees, cartilaginous fishes have a terminal position in a paraphyletic cluster of bony fishes. No previous analysis based on nuclear DNA-coded genes could significantly reject the mitochondrial trees of jawed vertebrates.
We have cloned and sequenced seven nuclear DNA-coded genes from 13 vertebrate species. These sequences, together with sequences available from databases including 13 jawed vertebrates from eight major groups (cartilaginous fishes, bichir, chondrosteans, gar, bowfin, teleost fishes, lungfishes and tetrapods) and an outgroup (a cyclostome and a lancelet), have been subjected to phylogenetic analyses based on the maximum likelihood method.
Cartilaginous fishes have been inferred to be basal to other jawed vertebrates, which is consistent with the generally accepted view. The minimum log-likelihood difference between the maximum likelihood tree and trees not supporting the basal position of cartilaginous fishes is 18.3 ± 13.1. The hypothesis by Rasmussen and Arnason has been significantly rejected with the minimum log-likelihood difference of 123 ± 23.3. Our tree has also shown that living holosteans, comprising bowfin and gar, form a monophyletic group which is the sister group to teleost fishes. This is consistent with a formerly prevalent view of vertebrate classification, although inconsistent with both of the current morphology-based and mitochondrial sequence-based trees. Furthermore, the bichir has been shown to be the basal ray-finned fish. Tetrapods and lungfish have formed a monophyletic cluster in the tree inferred from the concatenated alignment, being consistent with the currently prevalent view. It also remains possible that tetrapods are more closely related to ray-finned fishes than to lungfishes.
PMCID: PMC387836  PMID: 15070407
11.  An Independent Genome Duplication Inferred from Hox Paralogs in the American Paddlefish—A Representative Basal Ray-Finned Fish and Important Comparative Reference 
Genome Biology and Evolution  2012;4(9):937-953.
Vertebrates have experienced two rounds of whole-genome duplication (WGD) in the stem lineages of deep nodes within the group and a subsequent duplication event in the stem lineage of the teleosts—a highly diverse group of ray-finned fishes. Here, we present the first full Hox gene sequences for any member of the Acipenseriformes, the American paddlefish, and confirm that an independent WGD occurred in the paddlefish lineage, approximately 42 Ma based on sequences spanning the entire HoxA cluster and eight genes on the HoxD gene cluster. These clusters comprise different HOX loci and maintain conserved synteny relative to bichir, zebrafish, stickleback, and pufferfish, as well as human, mouse, and chick. We also provide a gene genealogy for the duplicated fzd8 gene in paddlefish and present evidence for the first Hox14 gene in any ray-finned fish. Taken together, these data demonstrate that the American paddlefish has an independently duplicated genome. Substitution patterns of the “alpha” paralogs on both the HoxA and HoxD gene clusters suggest transcriptional inactivation consistent with functional diploidization. Further, there are similarities in the pattern of sequence divergence among duplicated Hox genes in paddlefish and teleost lineages, even though they occurred independently approximately 200 Myr apart. We highlight implications on comparative analyses in the study of the “fin-limb transition” as well as gene and genome duplication in bony fishes, which includes all ray-finned fishes as well as the lobe-finned fishes and tetrapod vertebrates.
PMCID: PMC3509897  PMID: 22851613
Polyodon spathula; whole-genome duplication; WGD; rate asymmetry; paralog retention; fin-limb transition
12.  Visual ecology of the Australian lungfish (Neoceratodus forsteri) 
BMC Ecology  2008;8:21.
The transition from water to land was a key event in the evolution of vertebrates that occurred over a period of 15–20 million years towards the end of the Devonian. Tetrapods, including all land-living vertebrates, are thought to have evolved from lobe-finned (sarcopterygian) fish that developed adaptations for an amphibious existence. However, while many of the biomechanical and physiological modifications necessary to achieve this feat have been studied in detail, little is known about the sensory adaptations accompanying this transition. In this study, we investigated the visual system and visual ecology of the Australian lungfish Neoceratodus forsteri, which is the most primitive of all the lungfish and possibly the closest living relative to the ancestors of tetrapods.
Juvenile Neoceratodus have five spectrally distinct retinal visual pigments. A single type of rod photoreceptor contains a visual pigment with a wavelength of maximum absorbance (λmax) at 540 nm. Four spectrally distinct single cone photoreceptors contain visual pigments with λmax at 366 (UVS), 479 (SWS), 558 (MWS) and 623 nm (LWS). No double cones were found. Adult lungfish do not possess UVS cones and, unlike juveniles, have ocular media that prevent ultraviolet light from reaching the retina. Yellow ellipsoidal/paraboloidal pigments in the MWS cones and red oil droplets in the LWS cones narrow the spectral sensitivity functions of these photoreceptors and shift their peak sensitivity to 584 nm and 656 nm, respectively. Modelling of the effects of these intracellular spectral filters on the photoreceptor colour space of Neoceratodus suggests that they enhance their ability to discriminate objects, such as plants and other lungfishes, on the basis of colour.
The presence of a complex colour vision system based on multiple cone types and intracellular spectral filters in lungfishes suggests that many of the ocular characteristics seen in terrestrial or secondarily aquatic vertebrates, such as birds and turtles, may have evolved in shallow water prior to the transition onto land. Moreover, the benefits of spectral filters for colour discrimination apply equally to purely aquatic species as well as semi-aquatic and terrestrial animals. The visual system of the Australian lungfish resembles that of terrestrial vertebrates far more closely than that of other sarcopterygian fish. This supports the idea that lungfishes, and not the coelacanth, are the closest living relatives of the ancestors of tetrapods.
PMCID: PMC2639370  PMID: 19091135
13.  Analysis of the African coelacanth genome sheds light on tetrapod evolution 
Amemiya, Chris T. | Alföldi, Jessica | Lee, Alison P. | Fan, Shaohua | Philippe, Hervé | MacCallum, Iain | Braasch, Ingo | Manousaki, Tereza | Schneider, Igor | Rohner, Nicolas | Organ, Chris | Chalopin, Domitille | Smith, Jeramiah J. | Robinson, Mark | Dorrington, Rosemary A. | Gerdol, Marco | Aken, Bronwen | Biscotti, Maria Assunta | Barucca, Marco | Baurain, Denis | Berlin, Aaron M. | Blatch, Gregory L. | Buonocore, Francesco | Burmester, Thorsten | Campbell, Michael S. | Canapa, Adriana | Cannon, John P. | Christoffels, Alan | De Moro, Gianluca | Edkins, Adrienne L. | Fan, Lin | Fausto, Anna Maria | Feiner, Nathalie | Forconi, Mariko | Gamieldien, Junaid | Gnerre, Sante | Gnirke, Andreas | Goldstone, Jared V. | Haerty, Wilfried | Hahn, Mark E. | Hesse, Uljana | Hoffmann, Steve | Johnson, Jeremy | Karchner, Sibel I. | Kuraku, Shigehiro | Lara, Marcia | Levin, Joshua Z. | Litman, Gary W. | Mauceli, Evan | Miyake, Tsutomu | Mueller, M. Gail | Nelson, David R. | Nitsche, Anne | Olmo, Ettore | Ota, Tatsuya | Pallavicini, Alberto | Panji, Sumir | Picone, Barbara | Ponting, Chris P. | Prohaska, Sonja J. | Przybylski, Dariusz | Saha, Nil Ratan | Ravi, Vydianathan | Ribeiro, Filipe J. | Sauka-Spengler, Tatjana | Scapigliati, Giuseppe | Searle, Stephen M. J. | Sharpe, Ted | Simakov, Oleg | Stadler, Peter F. | Stegeman, John J. | Sumiyama, Kenta | Tabbaa, Diana | Tafer, Hakim | Turner-Maier, Jason | van Heusden, Peter | White, Simon | Williams, Louise | Yandell, Mark | Brinkmann, Henner | Volff, Jean-Nicolas | Tabin, Clifford J. | Shubin, Neil | Schartl, Manfred | Jaffe, David | Postlethwait, John H. | Venkatesh, Byrappa | Di Palma, Federica | Lander, Eric S. | Meyer, Axel | Lindblad-Toh, Kerstin
Nature  2013;496(7445):311-316.
It was a zoological sensation when a living specimen of the coelacanth was first discovered in 1938, as this lineage of lobe-finned fish was thought to have gone extinct 70 million years ago. The modern coelacanth looks remarkably similar to many of its ancient relatives, and its evolutionary proximity to our own fish ancestors provides a glimpse of the fish that first walked on land. Here we report the genome sequence of the African coelacanth, Latimeria chalumnae. Through a phylogenomic analysis, we conclude that the lungfish, and not the coelacanth, is the closest living relative of tetrapods. Coelacanth protein-coding genes are significantly more slowly evolving than those of tetrapods, unlike other genomic features . Analyses of changes in genes and regulatory elements during the vertebrate adaptation to land highlight genes involved in immunity, nitrogen excretion and the development of fins, tail, ear, eye, brain, and olfaction. Functional assays of enhancers involved in the fin-to-limb transition and in the emergence of extra-embryonic tissues demonstrate the importance of the coelacanth genome as a blueprint for understanding tetrapod evolution.
PMCID: PMC3633110  PMID: 23598338
14.  Positive Darwinian selection in the singularly large taste receptor gene family of an ‘ancient’ fish, Latimeria chalumnae 
BMC Genomics  2014;15(1):650.
Chemical senses are one of the foremost means by which organisms make sense of their environment, among them the olfactory and gustatory sense of vertebrates and arthropods. Both senses use large repertoires of receptors to achieve perception of complex chemosensory stimuli. High evolutionary dynamics of some olfactory and gustatory receptor gene families result in considerable variance of chemosensory perception between species. Interestingly, both ora/v1r genes and the closely related t2r genes constitute small and rather conserved families in teleost fish, but show rapid evolution and large species differences in tetrapods. To understand this transition, chemosensory gene repertoires of earlier diverging members of the tetrapod lineage, i.e. lobe-finned fish such as Latimeria would be of high interest.
We report here the complete T2R repertoire of Latimeria chalumnae, using thorough data mining and extensive phylogenetic analysis. Eighty t2r genes were identified, by far the largest family reported for any species so far. The genomic neighborhood of t2r genes is enriched in repeat elements, which may have facilitated the extensive gene duplication events resulting in such a large family. Examination of non-synonymous vs. synonymous substitution rates (dN/dS) suggests pronounced positive Darwinian selection in Latimeria T2Rs, conceivably ensuring efficient neo-functionalization of newly born t2r genes. Notably, both traits, positive selection and enrichment of repeat elements in the genomic neighborhood, are absent in the twenty v1r genes of Latimeria. Sequence divergence in Latimeria T2Rs and V1Rs is high, reminescent of the corresponding teleost families. Some conserved sequence motifs of Latimeria T2Rs and V1Rs are shared with the respective teleost but not tetrapod genes, consistent with a potential role of such motifs in detection of aquatic chemosensory stimuli.
The singularly large T2R repertoire of Latimeria may have been generated by facilitating local gene duplication via increased density of repeat elements, and efficient neofunctionalization via positive Darwinian selection.
The high evolutionary dynamics of tetrapod t2r gene families precedes the emergence of tetrapods, i.e. the water-to-land transition, and thus constitutes a basal feature of the lobe-finned lineage of vertebrates.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-650) contains supplementary material, which is available to authorized users.
PMCID: PMC4132921  PMID: 25091523
Coelacanth; Bitter taste; Pheromone; Phylogeny; Sarcopterygian; Evolution
15.  Distinct patterns of notochord mineralization in zebrafish coincide with the localization of Osteocalcin isoform 1 during early vertebral centra formation 
In chondrichthyans, basal osteichthyans and tetrapods, vertebral bodies have cartilaginous anlagen that subsequently mineralize (chondrichthyans) or ossify (osteichthyans). Chondrocytes that form the vertebral centra derive from somites. In teleost fish, vertebral centrum formation starts in the absence of cartilage, through direct mineralization of the notochord sheath. In a second step, the notochord is surrounded by somite-derived intramembranous bone. In several small teleost species, including zebrafish (Danio rerio), even haemal and neural arches form directly as intramembranous bone and only modified caudalmost arches remain cartilaginous. This study compares initial patterns of mineralization in different regions of the vertebral column in zebrafish. We ask if the absence or presence of cartilaginous arches influences the pattern of notochord sheath mineralization.
To reveal which cells are involved in mineralization of the notochord sheath we identify proliferating cells, we trace mineralization on the histological level and we analyze cell ultrastructure by TEM. Moreover, we localize proteins and genes that are typically expressed by skeletogenic cells such as Collagen type II, Alkaline phosphatase (ALP) and Osteocalcin (Oc). Mineralization of abdominal and caudal vertebrae starts with a complete ring within the notochord sheath and prior to the formation of the bony arches. In contrast, notochord mineralization of caudal fin centra starts with a broad ventral mineral deposition, associated with the bases of the modified cartilaginous arches. Similar, arch-related, patterns of mineralization occur in teleosts that maintain cartilaginous arches throughout the spine.
Throughout the entire vertebral column, we were able to co-localize ALP-positive signal with chordacentrum mineralization sites, as well as Collagen II and Oc protein accumulation in the mineralizing notochord sheath. In the caudal fin region, ALP and Oc signals were clearly produced both by the notochord epithelium and cells outside the notochord, the cartilaginous arches. Based on immunostaining, real time PCR and oc2:gfp transgenic fish, we identify Oc in the mineralizing notochord sheath as osteocalcin isoform 1 (Oc1).
If notochord mineralization occurs prior to arch formation, mineralization of the notochord sheath is ring-shaped. If notochord mineralization occurs after cartilaginous arch formation, mineralization of the notochord sheath starts at the insertion point of the arches, with a basiventral origin. The presence of ALP and Oc1, not only in cells outside the notochord, but also in the notochord epithelium, suggests an active role of the notochord in the mineralization process. The same may apply to Col II-positive chondrocytes of the caudalmost haemal arches that show ALP activity and Oc1 accumulation, since these chondrocytes do not mineralize their own cartilage matrix. Even without cartilaginous preformed vertebral centra, the cartilaginous arches may have an inductive role in vertebral centrum formation, possibly contributing to the distinct mineralization patterns of zebrafish vertebral column and caudal fin vertebral fusion.
PMCID: PMC3517302  PMID: 23043290
Vertebral column; Vertebral fusion; Notochord; Osteocalcin
16.  Resolving Shifting Patterns of Muscle Energy Use in Swimming Fish 
PLoS ONE  2014;9(8):e106030.
Muscle metabolism dominates the energy costs of locomotion. Although in vivo measures of muscle strain, activity and force can indicate mechanical function, similar muscle-level measures of energy use are challenging to obtain. Without this information locomotor systems are essentially a black box in terms of the distribution of metabolic energy. Although in situ measurements of muscle metabolism are not practical in multiple muscles, the rate of blood flow to skeletal muscle tissue can be used as a proxy for aerobic metabolism, allowing the cost of particular muscle functions to be estimated. Axial, undulatory swimming is one of the most common modes of vertebrate locomotion. In fish, segmented myotomal muscles are the primary power source, driving undulations of the body axis that transfer momentum to the water. Multiple fins and the associated fin muscles also contribute to thrust production, and stabilization and control of the swimming trajectory. We have used blood flow tracers in swimming rainbow trout (Oncorhynchus mykiss) to estimate the regional distribution of energy use across the myotomal and fin muscle groups to reveal the functional distribution of metabolic energy use within a swimming animal for the first time. Energy use by the myotomal muscle increased with speed to meet thrust requirements, particularly in posterior myotomes where muscle power outputs are greatest. At low speeds, there was high fin muscle energy use, consistent with active stability control. As speed increased, and fins were adducted, overall fin muscle energy use declined, except in the caudal fin muscles where active fin stiffening is required to maintain power transfer to the wake. The present data were obtained under steady-state conditions which rarely apply in natural, physical environments. This approach also has potential to reveal the mechanical factors that underlie changes in locomotor cost associated with movement through unsteady flow regimes.
PMCID: PMC4148346  PMID: 25165858
17.  The Timing of Timezyme Diversification in Vertebrates 
PLoS ONE  2014;9(12):e112380.
All biological functions in vertebrates are synchronized with daily and seasonal changes in the environment by the time keeping hormone melatonin. Its nocturnal surge is primarily due to the rhythmic activity of the arylalkylamine N-acetyl transferase AANAT, which thus became the focus of many investigations regarding its evolution and function. Various vertebrate isoforms have been reported from cartilaginous fish to mammals but their origin has not been clearly established. Using phylogeny and synteny, we took advantage of the increasing number of available genomes in order to test whether the various rounds of vertebrate whole genome duplications were responsible for the diversification of AANAT. We highlight a gene secondary loss of the AANAT2 in the Sarcopterygii, revealing for the first time that the AAANAT1/2 duplication occurred before the divergence between Actinopterygii (bony fish) and Sarcopterygii (tetrapods, lobe-finned fish, and lungfish). We hypothesize the teleost-specific whole genome duplication (WDG) generated the appearance of the AANAT1a/1b and the AANAT2/2′paralogs, the 2′ isoform being rapidly lost in the teleost common ancestor (ray-finned fish). We also demonstrate the secondary loss of the AANAT1a in a Paracantopterygii (Atlantic cod) and of the 1b in some Ostariophysi (zebrafish and cave fish). Salmonids present an even more diverse set of AANATs that may be due to their specific WGD followed by secondary losses. We propose that vertebrate AANAT diversity resulted from 3 rounds of WGD followed by previously uncharacterized secondary losses. Extant isoforms show subfunctionalized localizations, enzyme activities and affinities that have increased with time since their emergence.
PMCID: PMC4259306  PMID: 25486407
18.  Stem sarcopterygians have primitive polybasal fin articulation 
Biology Letters  2009;5(3):372-375.
Among osteichthyans, basal actinopterygian fishes (e.g. paddlefish and bowfins) have paired fins with three endoskeletal components (pro-, meso- and metapterygia) articulating with polybasal shoulder girdles, while sarcopterygian fishes (lungfish, coelacanths and relatives) have paired fins with one endoskeletal component (metapterygium) articulating with monobasal shoulder girdles. In the fin–limb transition, the origin of the sarcopterygian paired fins triggered new possibilities of fin articulation and movement, and established the proximal segments (stylopod and zeugopod) of the presumptive tetrapod limb. Several authors have stated that the monobasal paired fins in sarcopterygians evolved from a primitive polybasal condition. However, the fossil record has been silent on whether and when the inferred transition took place. Here we describe three-dimensionally preserved shoulder girdles of two stem sarcopterygians (Psarolepis and Achoania) from the Lower Devonian of Yunnan, which demonstrate that stem sarcopterygians have polybasal pectoral fin articulation as in basal actinopterygians. This finding provides a phylogenetic and temporal constraint for studying the origin of the stylopod, which must have originated within the stem sarcopterygian lineage through the loss of the propterygium and mesopterygium.
PMCID: PMC2679918  PMID: 19324642
sarcopterygians; fin–limb transition; stylopod; shoulder girdle; polybasal fin articulation
19.  Regionalization of the axial skeleton in the ‘ambush predator’ guild – are there developmental rules underlying body shape evolution in ray-finned fishes? 
A long, slender body plan characterized by an elongate antorbital region and posterior displacement of the unpaired fins has evolved multiple times within ray-finned fishes, and is associated with ambush predation. The axial skeleton of ray-finned fishes is divided into abdominal and caudal regions, considered to be evolutionary modules. In this study, we test whether the convergent evolution of the ambush predator body plan is associated with predictable, regional changes in the axial skeleton, specifically whether the abdominal region is preferentially lengthened relative to the caudal region through the addition of vertebrae. We test this hypothesis in seven clades showing convergent evolution of this body plan, examining abdominal and caudal vertebral counts in over 300 living and fossil species. In four of these clades, we also examined the relationship between the fineness ratio and vertebral regionalization using phylogenetic independent contrasts.
We report that in five of the clades surveyed, Lepisosteidae, Esocidae, Belonidae, Sphyraenidae and Fistulariidae, vertebrae are added preferentially to the abdominal region. In Lepisosteidae, Esocidae, and Belonidae, increasing abdominal vertebral count was also significantly related to increasing fineness ratio, a measure of elongation. Two clades did not preferentially add abdominal vertebrae: Saurichthyidae and Aulostomidae. Both of these groups show the development of a novel caudal region anterior to the insertion of the anal fin, morphologically differentiated from more posterior caudal vertebrae.
The preferential addition of abdominal vertebrae in fishes with an elongate body shape is consistent with the existence of a conservative positioning module formed by the boundary between the abdominal and caudal vertebral regions and the anterior insertion of the anal fin. Dissociation of this module is possible, although less probable than changes in the independently evolving abdominal region. Dissociation of the axial skeleton-median fin module leads to increased regionalization within the caudal vertebral column, something that has evolved several times in bony fishes, and may be homologous with the sacral region of tetrapods. These results suggest that modularity of the axial skeleton may result in somewhat predictable evolutionary outcomes in bony fishes.
PMCID: PMC3867419  PMID: 24314064
Actinopterygii; Axial skeleton; Modularity; Axial elongation; Saurichthyidae; Aulostomidae; Lepisosteidae; Esocidae; Beloniformes; Sphyraenidae
20.  Pdlim7 is required for maintenance of the mesenchymal/epidermal Fgf signaling feedback loop during zebrafish pectoral fin development 
Vertebrate limb development involves a reciprocal feedback loop between limb mesenchyme and the overlying apical ectodermal ridge (AER). Several gene pathways participate in this feedback loop, including Fgf signaling. In the forelimb lateral plate mesenchyme, Tbx5 activates Fgf10 expression, which in turn initiates and maintains the mesenchyme/AER Fgf signaling loop. Recent findings have revealed that Tbx5 transcriptional activity is regulated by dynamic nucleocytoplasmic shuttling and interaction with Pdlim7, a PDZ-LIM protein family member, along actin filaments. This Tbx5 regulation is critical in heart formation, but the coexpression of both proteins in other developing tissues suggests a broader functional role.
Knock-down of Pdlim7 function leads to decreased pectoral fin cell proliferation resulting in a severely stunted fin phenotype. While early gene induction and patterning in the presumptive fin field appear normal, the pectoral fin precursor cells display compaction and migration defects between 18 and 24 hours post-fertilization (hpf). During fin growth fgf24 is sequentially expressed in the mesenchyme and then in the apical ectodermal ridge (AER). However, in pdlim7 antisense morpholino-treated embryos this switch of expression is prevented and fgf24 remains ectopically active in the mesenchymal cells. Along with the lack of fgf24 in the AER, other critical factors including fgf8 are reduced, suggesting signaling problems to the underlying mesenchyme. As a consequence of perturbed AER function in the absence of Pdlim7, pathway components in the fin mesenchyme are misregulated or absent, indicating a breakdown of the Fgf signaling feedback loop, which is ultimately responsible for the loss of fin outgrowth.
This work provides the first evidence for the involvement of Pdlim7 in pectoral fin development. Proper fin outgrowth requires fgf24 downregulation in the fin mesenchyme with subsequent activation in the AER, and Pdlim7 appears to regulate this transition, potentially through Tbx5 regulation. By controlling Tbx5 subcellular localization and transcriptional activity and possibly additional yet unknown means, Pdlim7 is required for proper development of the heart and the fins. These new regulatory mechanisms may have important implications how we interpret Tbx5 function in congenital hand/heart syndromes in humans.
PMCID: PMC2967529  PMID: 20950450
21.  Multiple Thyrotropin β-Subunit and Thyrotropin Receptor-Related Genes Arose during Vertebrate Evolution 
PLoS ONE  2014;9(11):e111361.
Thyroid-stimulating hormone (TSH) is composed of a specific β subunit and an α subunit that is shared with the two pituitary gonadotropins. The three β subunits derive from a common ancestral gene through two genome duplications (1R and 2R) that took place before the radiation of vertebrates. Analysis of genomic data from phylogenetically relevant species allowed us to identify an additional Tshβ subunit-related gene that was generated through 2R. This gene, named Tshβ2, present in cartilaginous fish, little skate and elephant shark, and in early lobe-finned fish, coelacanth and lungfish, was lost in ray-finned fish and tetrapods. The absence of a second type of TSH receptor (Tshr) gene in these species suggests that both TSHs act through the same receptor. A novel Tshβ sister gene, named Tshβ3, was generated through the third genomic duplication (3R) that occurred early in the teleost lineage. Tshβ3 is present in most teleost groups but was lostin tedraodontiforms. The 3R also generated a second Tshr, named Tshrb. Interestingly, the new Tshrb was translocated from its original chromosomic position after the emergence of eels and was then maintained in its new position. Tshrb was lost in tetraodontiforms and in ostariophysians including zebrafish although the latter species have two TSHs, suggesting that TSHRb may be dispensable. The tissue distribution of duplicated Tshβs and Tshrs was studied in the European eel. The endocrine thyrotropic function in the eel would be essentially mediated by the classical Tshβ and Tshra, which are mainly expressed in the pituitary and thyroid, respectively. Tshβ3 and Tshrb showed a similar distribution pattern in the brain, pituitary, ovary and adipose tissue, suggesting a possible paracrine/autocrine mode of action in these non-thyroidal tissues. Further studies will be needed to determine the binding specificity of the two receptors and how these two TSH systems are interrelated.
PMCID: PMC4227674  PMID: 25386660
22.  An antiarch placoderm shows that pelvic girdles arose at the root of jawed vertebrates 
Biology Letters  2012;8(3):453-456.
Almost all gnathostomes or jawed vertebrates (including osteichthyans, chondrichthyans, ‘acanthodians’ and most placoderms) possess paired pectoral and pelvic fins. To date, it has generally been believed that antiarch placoderms (extinct armoured jawed fishes from the Silurian–Devonian periods) lacked pelvic fins. The putative absence of pelvic fins is a key character bearing on the monophyly or paraphyly of placoderms. It also has far-reaching implications for studying the sequence of origin of pelvic girdles versus that of movable jaws in the course of vertebrate evolution. Parayunnanolepis xitunensis represents the only example of a primitive antiarch with extensive post-thoracic preservation, and its original description has been cited as confirming the primitive lack of pelvic fins in early antiarchs. Here, we present a revised description of Parayunnanolepis and offer the first unambiguous evidence for the presence of pelvic girdles in antiarchs. As antiarchs are placed at the base of the gnathostome radiation in several recent studies, our finding shows that all jawed vertebrates (including antiarch placoderms) primitively possess both pectoral and pelvic fins and that the pelvic fins did not arise within gnathostomes at a point subsequent to the origin of jaws.
PMCID: PMC3367742  PMID: 22219394
pelvic girdles; placoderms; antiarchs; jawed vertebrates; Devonian
23.  Sequence and organization of coelacanth neurohypophysial hormone genes: Evolutionary history of the vertebrate neurohypophysial hormone gene locus 
The mammalian neurohypophysial hormones, vasopressin and oxytocin are involved in osmoregulation and uterine smooth muscle contraction respectively. All jawed vertebrates contain at least one homolog each of vasopressin and oxytocin whereas jawless vertebrates contain a single neurohypophysial hormone called vasotocin. The vasopressin homolog in non-mammalian vertebrates is vasotocin; and the oxytocin homolog is mesotocin in non-eutherian tetrapods, mesotocin and [Phe2]mesotocin in lungfishes, and isotocin in ray-finned fishes. The genes encoding vasopressin and oxytocin genes are closely linked in the human and rodent genomes in a tail-to-tail orientation. In contrast, their pufferfish homologs (vasotocin and isotocin) are located on the same strand of DNA with isotocin gene located upstream of vasotocin gene separated by five genes, suggesting that this locus has experienced rearrangements in either mammalian or ray-finned fish lineage, or in both lineages. The coelacanths occupy a unique phylogenetic position close to the divergence of the mammalian and ray-finned fish lineages.
We have sequenced a coelacanth (Latimeria menadoensis) BAC clone encompassing the neurohypophysial hormone genes and investigated the evolutionary history of the vertebrate neurohypophysial hormone gene locus within a comparative genomics framework. The coelacanth contains vasotocin and mesotocin genes like non-mammalian tetrapods. The coelacanth genes are present on the same strand of DNA with no intervening genes, with the vasotocin gene located upstream of the mesotocin gene. Nucleotide sequences of the second exons of the two genes are under purifying selection implying a regulatory function. We have also analyzed the neurohypophysial hormone gene locus in the genomes of opossum, chicken and Xenopus tropicalis. The opossum contains two tandem copies of vasopressin and mesotocin genes. The vasotocin and mesotocin genes in chicken and Xenopus, and the vasopressin and mesotocin genes in opossum are linked tail-to-head similar to their orthologs in coelacanth and unlike their homologs in human and rodents.
Our results indicate that the neurohypophysial hormone gene locus has experienced independent rearrangements in both placental mammals and teleost fishes. The coelacanth genome appears to be more stable than mammalian and teleost fish genomes. As such, it serves as a valuable outgroup for studying the evolution of mammalian and teleost fish genomes.
PMCID: PMC2315648  PMID: 18366747
24.  Developmental Change in the Function of Movement Systems: Transition of the Pectoral Fins between Respiratory and Locomotor Roles in Zebrafish 
An animal may experience strikingly different functional demands on its body’s systems through development. One way of meeting those demands is with temporary, stage-specific adaptations. This strategy requires the animal to develop appropriate morphological states or physiological pathways that address transient functional demands as well as processes that transition morphology, physiology, and function to that of the mature form. Recent research on ray-finned (actinopterygian) fishes is a developmental transition in function of the pectoral fin, thereby providing an opportunity to examine how an organism copes with changes in the roles of its morphology between stages of its life history. As larvae, zebrafish alternate their pectoral fins in coordination with the body axis during slow swimming. The movements of their fins do not appear to contribute to the production of thrust or to stability but instead exchange fluid near the body for cutaneous respiration. The morphology of the larval fin includes a simple stage-specific endoskeletal disc overlaid by fan-shaped adductor and abductor muscles. In contrast, the musculoskeletal system of the mature fin consists of a suite of muscles and bones. Fins are extended laterally during slow swimming of the adult, without the distinct, high-amplitude left-right fin alternation of the larval fin. The morphological and functional transition of the pectoral fin occurs through juvenile development. Early in this period, at about 3 weeks post-fertilization, the gills take over respiratory function, presumably freeing the fins for other roles. Kinematic data suggest that the loss of respiratory function does not lead to a rapid switch in patterns of fin movement but rather that both morphology and movement transition gradually through the juvenile stage of development. Studies relating structure to function often focus on stable systems that are arguably well adapted for the roles they play. Examining how animals navigate transitional periods, when the link of structure to function may be less taut, provides insight both into how animals contend with such change and into the developmental pressures that shape mature form and function.
PMCID: PMC4097112  PMID: 24748600
25.  Genetic Analysis of Fin Development in Zebrafish Identifies Furin and Hemicentin1 as Potential Novel Fraser Syndrome Disease Genes 
PLoS Genetics  2010;6(4):e1000907.
Using forward genetics, we have identified the genes mutated in two classes of zebrafish fin mutants. The mutants of the first class are characterized by defects in embryonic fin morphogenesis, which are due to mutations in a Laminin subunit or an Integrin alpha receptor, respectively. The mutants of the second class display characteristic blistering underneath the basement membrane of the fin epidermis. Three of them are due to mutations in zebrafish orthologues of FRAS1, FREM1, or FREM2, large basement membrane protein encoding genes that are mutated in mouse bleb mutants and in human patients suffering from Fraser Syndrome, a rare congenital condition characterized by syndactyly and cryptophthalmos. Fin blistering in a fourth group of zebrafish mutants is caused by mutations in Hemicentin1 (Hmcn1), another large extracellular matrix protein the function of which in vertebrates was hitherto unknown. Our mutant and dose-dependent interaction data suggest a potential involvement of Hmcn1 in Fraser complex-dependent basement membrane anchorage. Furthermore, we present biochemical and genetic data suggesting a role for the proprotein convertase FurinA in zebrafish fin development and cell surface shedding of Fras1 and Frem2, thereby allowing proper localization of the proteins within the basement membrane of forming fins. Finally, we identify the extracellular matrix protein Fibrillin2 as an indispensable interaction partner of Hmcn1. Thus we have defined a series of zebrafish mutants modelling Fraser Syndrome and have identified several implicated novel genes that might help to further elucidate the mechanisms of basement membrane anchorage and of the disease's aetiology. In addition, the novel genes might prove helpful to unravel the molecular nature of thus far unresolved cases of the human disease.
Author Summary
There are a large number of human genetic syndromes with limb and digit deformities. It has been shown that the genes underlying these syndromes are well conserved in evolution, and most perform the same role even in the fins of fish. One such human syndrome is Fraser Syndrome, characterized by a number of defects including fusion of the fingers (syndactyly). Data obtained with corresponding mouse mutants suggest that all of these defects are due to transient basement membrane disruptions and epithelial blistering during development. Whilst some of the Fraser Syndrome genes have been identified, others are unknown. We show that mutation of the known Fraser Syndrome genes in zebrafish generate comparable blistering defects in the fins. Importantly, we have also identified additional genes and mechanisms required for the same processes. Included in this are hemicentin1, a gene whose function had thus far only been studied in nematodes, and furinA, encoding a proprotein convertase, for which we reveal a novel role in ectodomain shedding of Fras/Frem proteins. This work thus expands our understanding, not only of Fraser Syndrome, but also of the common processes of basement membrane formation and function during fin and limb development.
PMCID: PMC2855323  PMID: 20419147

Results 1-25 (575712)