PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (762964)

Clipboard (0)
None

Related Articles

1.  Development and Postnatal Regulation of Adult Myoblasts 
Microscopy research and technique  1995;30(5):366-380.
The myogenic precursor cells of postnatal and adult skeletal muscle are situated underneath the basement membrane of the myofibers. It is because of their unique positions that these precursor cells are often referred to as satellite cells. Such defined satellite cells can first be detected following the formation of a distinct basement membrane around the fiber, which takes place in late stages of embryogenesis. Like myoblasts found during development, satellite cells can proliferate, differentiate, and fuse into myofibers. However, in the normal, uninjured adult muscle, satellite cells are mitotically quiescent. In recent years several important questions concerning the biology of satellite cells have been asked. One aspect has been the relationship between satellite cells and myoblasts found in the developing muscle: are these myogenie populations identical or different? Another aspect has been the physiological cues that control the quiescent, proliferative, and differentiative states of these myogenie precursors: what are the growth regulators and how do they function? These issues are discussed, referring to previous work by others and further emphasizing our own studies on avian and rodent satellite cells. Collectively, the studies presented indicate that satellite cells represent a distinct myogenie population that becomes dominant in late stages of embryogenesis. Moreover, although satellite cells are already destined to be myogenie precursors, they do not express any of the four known myogenie regulatory genes unless their activation is induced in the animal or in culture. Furthermore, multiple growth factors are important regulators of satellite cell proliferation and differentiation. Our work on the role of one of these growth factors [platelet-derived growth factor (PDGF)] during proliferation of adult myoblasts is further discussed with greater detail and the possibility that PDGF is involved in the transition from fetal to adult myoblasts in late embryogenesis is brought forward.
doi:10.1002/jemt.1070300504
PMCID: PMC4082319  PMID: 7787236
Myogenesis; Myosin; MyoD; Myogenin; PDGF; FGF; Transferrin; Chicken; Rat; C2 cells
2.  3D Timelapse Analysis of Muscle Satellite Cell Motility 
Stem Cells (Dayton, Ohio)  2009;27(10):2527-2538.
Skeletal muscle repair and regeneration requires the activity of satellite cells, a population of myogenic stem cells scattered throughout the tissue and activated to proliferate and differentiate in response to myotrauma or disease. While it seems likely that satellite cells would need to navigate local muscle tissue to reach damaged areas, relatively little data on such motility exist, and most studies have been with immortalized cell lines. We find that primary satellite cells are significantly more motile than myoblast cell lines, and that adhesion to laminin promotes primary cell motility more than fourfold over other substrates. Using timelapse videomicroscopy to assess satellite cell motility on single living myofibers, we have identified a requirement for the laminin-binding integrin α7β1 in satellite cell motility, as well as a role for hepatocyte growth factor in promoting directional persistence. The extensive migratory behavior of satellite cells resident on muscle fibers suggests caution when determining, based on fixed specimens, whether adjacent cells are daughters from the same mother cell. We also observed more persistent long-term contact between individual satellite cells than has been previously supposed, potential cell-cell attractive and repulsive interactions, and migration between host myofibers. Based on such activity, we assayed for expression of “pathfinding” cues, and found that satellite cells express multiple guidance ligands and receptors. Together, these data suggest that satellite cell migration in vivo may be more extensive than currently thought, and could be regulated by combinations of signals, including adhesive haptotaxis, soluble factors, and guidance cues. Stem Cells 2009;27:2527–2538
doi:10.1002/stem.178
PMCID: PMC2798070  PMID: 19609936
Adult stem cells; Cell migration; Muscle stem cells; Integrins; Satellite cells
3.  Early-age feed restriction affects viability and gene expression of satellite cells isolated from the gastrocnemius muscle of broiler chicks 
Background
Muscle growth depends on the fusion of proliferate satellite cells to existing myofibers. We reported previously that 0–14 day intermittent feeding led to persistent retardation in myofiber hypertrophy. However, how satellite cells respond to such nutritional insult has not been adequately elucidated.
Results
One-day-old broiler chicks were allocated to control (Con, ad libitum feeding), intermittent feeding (IF, feed provided on alternate days) and re-feeding (RF, 2 days ad libitum feeding after 12 days of intermittent feeding) groups. Chickens were killed on Day 15 and satellite cells were isolated. When cultured, satellite cells from the IF group demonstrated significant retardation in proliferation and differentiation potential, while RF partly restored the proliferation rate and differentiation potential of the satellite cells. Significant up-regulation of insulin like growth factor I receptor (IGF-IR) (P<0.05) and thyroid hormone receptor α (TRα) (P<0.05), and down-regulation of growth hormone receptor (GHR) (P<0.01) and IGF-I (P<0.01) mRNA expression was observed in freshly isolated IF satellite cells when compared with Con cells. In RF cells, the mRNA expression of IGF-I was higher (P<0.05) and of TRα was lower (P<0.01) than in IF cells, suggesting that RF restored the mRNA expression of TRα and IGF-I, but not of GHR and IGF-IR. The Bax/Bcl-2 ratio tended to increase in the IF group, which was reversed in the RF group (P<0.05), indicating that RF reduced the pro-apoptotic influence of IF. Moreover, no significant effect of T3 was detected on cell survival in IF cells compared with Con (P<0.001) or RF (P<0.05) cells.
Conclusions
These data suggest that early-age feed restriction inhibits the proliferation and differentiation of satellite cells, induces changes in mRNA expression of the GH/IGF-I and thyroid hormone receptors in satellite cells, as well as blunted sensitivity of satellite cells to T3, and that RF partially reverses these effects. Thus, a moderate nutritional strategy for feed restriction should be chosen in early chick rearing systems.
doi:10.1186/2049-1891-3-33
PMCID: PMC3546929  PMID: 23127173
Feed restriction; Satellite cells; Proliferation; Gene expression; Chicken
4.  Syndecan-3 and Notch cooperate in regulating adult myogenesis 
The Journal of Cell Biology  2010;190(3):427-441.
Syndecan-3 is required for Notch processing by ADAM17/TACe and therefore regulates proliferation and viability of muscle satellite cells.
Skeletal muscle postnatal growth and repair depend on satellite cells and are regulated by molecular signals within the satellite cell niche. We investigated the molecular and cellular events that lead to altered myogenesis upon genetic ablation of Syndecan-3, a component of the satellite cell niche. In the absence of Syndecan-3, satellite cells stall in S phase, leading to reduced proliferation, increased cell death, delayed onset of differentiation, and markedly reduced numbers of Pax7+ satellite cells accompanied by myofiber hypertrophy and an increased number of centrally nucleated myofibers. We show that the aberrant cell cycle and impaired self-renewal of explanted Syndecan-3–null satellite cells are rescued by ectopic expression of the constitutively active Notch intracellular domain. Furthermore, we show that Syndecan-3 interacts with Notch and is required for Notch processing by ADAM17/tumor necrosis factor-α–converting enzyme (TACE) and signal transduction. Together, our data support the conclusion that Syndecan-3 and Notch cooperate in regulating homeostasis of the satellite cell population and myofiber size.
doi:10.1083/jcb.201003081
PMCID: PMC2922652  PMID: 20696709
5.  MEAT SCIENCE AND MUSCLE BIOLOGY SYMPOSIUM 
Journal of animal science  2011;90(3):924-935.
Stem cell niche plays a critical role in regulating the behavior and function of adult stem cells that underlie tissue growth, maintenance, and regeneration. In the skeletal muscle, stem cells, called satellite cells, contribute to postnatal muscle growth and hypertrophy, and thus, meat production in agricultural animals. Satellite cells are located adjacent to mature muscle fibers underneath a sheath of basal lamina. Microenvironmental signals from extracellular matrix mediated by the basal lamina and from the host myofiber both impinge on satellite cells to regulate their activity. Furthermore, several types of muscle interstitial cells, including intramuscular preadipocytes and connective tissue fibroblasts, have recently been shown to interact with satellite cells and actively regulate the growth and regeneration of postnatal skeletal muscles. From this regard, interstitial adipogenic cells are not only important for marbling and meat quality, but also represent an additional cellular component of the satellite cell niche. At the molecular level, these interstitial cells may interact with satellite cells through cell surface ligands, such as delta-like 1 homolog (Dlk1) protein whose overexpression is thought to be responsible for muscle hypertrophy in callipyge sheep. In fact, extracellular Dlk1 protein has been shown to promote the myogenic differentiation of satellite cells. Understanding the cellular and molecular mechanisms within the stem cell niche that regulate satellite cell differentiation and maintain muscle homeostasis may lead to promising approaches to optimizing muscle growth and composition, thus improving meat production and quality.
doi:10.2527/jas.2011-4594
PMCID: PMC3437673  PMID: 22100594
delta-like 1 homolog; intramuscular adipose tissue; satellite cell; stem cell niche
6.  Cell cycle commitment of rat muscle satellite cells 
The Journal of Cell Biology  1990;111(1):201-207.
Satellite cells of adult muscle are quiescent myogenic stem cells that can be induced to enter the cell cycle by an extract of crushed muscle (Bischoff, R. 1986. Dev. Biol. 115:140-147). Here, evidence is presented that the extract acts transiently to commit cells to enter the cell cycle. Satellite cells associated with both live and killed rat myofibers in culture were briefly exposed to muscle extract and the increase in cell number was determined at 48 h in vitro, before the onset of fusion. An 8-12-h exposure to extract with killed, but not live, myofibers was sufficient to produce maximum proliferation of satellite cells. Continuous exposure for over 40 h was needed to sustain proliferation of satellite cells on live myofibers. The role of serum factors was also studied. Neither serum nor muscle extract alone was able to induce proliferation of satellite cells. In the presence of muscle extract, however, satellite cell proliferation was directly proportional to the concentration of serum in the medium. These results suggest that mitogens released from crushed muscle produce long-lasting effects that commit quiescent satellite cells to divide, whereas serum factors are needed to maintain progression through the cell cycle. Contact with a viable myofiber modulates the response of satellite cells to growth factors.
PMCID: PMC2116175  PMID: 2365732
7.  Overload-Induced Skeletal Muscle Extracellular Matrix Remodeling And Myofiber Growth in Mice Lacking IL-6 
Acta physiologica (Oxford, England)  2009;197(4):321-332.
Aim
Overloading healthy skeletal muscle produces myofiber hypertrophy and extracellular matrix remodeling, and these processes are thought to be interdependent for producing muscle growth. Inflammatory cytokine interleukin-6 (IL-6) gene expression is induced in overloaded skeletal muscle, and the loss of this IL-6 induction can attenuate the hypertrophic response to overload. Although the overload induction of IL-6 in skeletal muscle may be an important regulator of inflammatory processes and satellite cell proliferation, less is known about its role in the regulation of extracellular matrix remodeling. The purpose of the current study was to examine if overload-induced extracellular matrix remodeling, muscle growth, and associated gene expression were altered in mice that lack IL-6, when compared to wild-type mice.
Methods
Male C57/BL6 (WT) and C57/BL6 × IL-6-/- (IL-6-/-) mice (10 wks of age) were assigned to either a sham control or synergist ablation overload (OV) treatments for 3 or 21 days.
Results
Plantaris muscle mass increased 59% in WT and 116% in IL-6-/- mice after 21d OV. Myofiber CSA was also increased by 21d OV in both WT and IL-6-/- mice. Overload induced a 2-fold greater increase in the volume of non-contractile tissue in IL-6-/- muscle as compared to WT. Overload also induced a significantly greater accumulation of hydroxyproline and procollagen-1 mRNA in IL-6-/- muscle, when compared to WT muscle after 21d OV. TGF-β and IGF-1 mRNA expression were also induced to a greater extent in IL-6-/- muscle when compared to WT muscle after 21d OV. There was no effect of IL-6 loss on the induction of myogenin, and cyclin D1 mRNA expression after 3d OV. However, MyoD mRNA expression in 3d OV IL-6-/- muscle was attenuated when compared to WT overload mice.
Conclusion
IL-6 appears to be necessary for the normal regulation of extracellular matrix remodeling during overload-induced growth.
doi:10.1111/j.1748-1716.2009.02029.x
PMCID: PMC3044433  PMID: 19681796
functional overload; extracellular matrix; inflammation; transforming growth factor beta
8.  Muscle satellite cell proliferation and association: new insights from myofiber time-lapse imaging 
Skeletal Muscle  2011;1:7.
Background
As the resident stem cells of skeletal muscle, satellite cells are activated by extracellular cues associated with local damage. Once activated, satellite cells will re-enter the cell cycle to proliferate and supply a population of myoblasts, which will repair or replace damaged myofibers by differentiating and fusing either with an existing myofiber or with each other. There is also evidence that the orientation of cell division with respect to the myofiber may indicate or convey asymmetry in the two daughter cells. Our recent studies with time-lapse imaging of myofiber-associated satellite cells in vitro have yielded new data on the timing and orientation of satellite cell divisions, and revealed persistent differences in the behavior of daughter cells from planar versus vertical divisions.
Results
We analyzed 244 individual fiber-associated satellite cells in time-lapse video from 24 to 48 hours after myofiber harvest. We found that initial cell division in fiber culture is not synchronous, although presumably all cells were activated by the initial trauma of harvest; that cell cycling time is significantly shorter than previously thought (as short as 4.8 hours, averaging 10 hours between the first and second divisions and eight hours between the second and third); and that timing of subsequent divisions is not strongly correlated with timing of the initial division. Approximately 65% of first and 80% of second cell divisions occur parallel to the axis of the myofiber, whereas the remainder occur outside the plane of the fiber surface (vertical division). We previously demonstrated that daughter cells frequently remain associated with each other after division or reassociate after a brief separation, and that unrelated cells may also associate for significant periods of time. We show in this paper that daughter cells resulting from a vertical division remain associated with one another several times longer than do daughters from a horizontal division. However, the total average time of association between sister cells is not significantly different from the total average time of association between unrelated cells.
Conclusions
These longitudinal characterizations of satellite cell behavior shortly after activation provide new insights into cell proliferation and association as a function of relatedness, and indicate significant and consistent heterogeneity within the population based on these metrics.
doi:10.1186/2044-5040-1-7
PMCID: PMC3157006  PMID: 21798086
9.  Isolation and Culture of Skeletal Muscle Myofibers as a Means to Analyze Satellite Cells 
Multinucleated myofibers are the functional contractile units of skeletal muscle. In adult muscle, mononuclear satellite cells, located between the basal lamina and the plasmalemma of the myofiber, are the primary myogenic stem cells. This chapter describes protocols for isolation, culturing and immunostaining of myofibers from mouse skeletal muscle. Myofibers are isolated intact and retain their associated satellite cells. The first protocol discusses myofiber isolation from the flexor digitorum brevis (FDB) muscle. These short myofibers are cultured in dishes coated with PureCol collagen (formerly known as Vitrogen) using a serum replacement medium. Employing such culture conditions, satellite cells remain associated with the myofibers, undergoing proliferation and differentiation on the myofiber surface. The second protocol discusses the isolation of longer myofibers from the extensor digitorum longus (EDL) muscle. Different from the FDB preparation, where multiple myofibers are processed together, the longer EDL myofibers are typically processed and cultured individually in dishes coated with Matrigel using a growth factor rich medium. Under these conditions, satellite cells initially remain associated with the parent myofiber and later migrate away, giving rise to proliferating and differentiating progeny. Myofibers from other types of muscles, such as diaphragm, masseter, and extraocular muscles can also be isolated and analyzed using protocols described herein. Overall, cultures of isolated myofibers provide essential tools for studying the interplay between the parent myofiber and its associated satellite cells. The current chapter provides background, procedural, and reagent updates, and step-by-step images of FDB and EDL muscle isolations, not included in our 2005 publication in this series.
doi:10.1007/978-1-62703-128-8_28
PMCID: PMC3633469  PMID: 23179849
Skeletal muscle; satellite cells; stem cells; collagen; Matrigel; myofiber isolation; flexor digitorum brevis; extensor digitorum longus; diaphragm; masseter; extraocular; mouse; immunostaining; Pax7
10.  Dlk1 Is Necessary for Proper Skeletal Muscle Development and Regeneration 
PLoS ONE  2010;5(11):e15055.
Delta-like 1homolog (Dlk1) is an imprinted gene encoding a transmembrane protein whose increased expression has been associated with muscle hypertrophy in animal models. However, the mechanisms by which Dlk1 regulates skeletal muscle plasticity remain unknown. Here we combine conditional gene knockout and over-expression analyses to investigate the role of Dlk1 in mouse muscle development, regeneration and myogenic stem cells (satellite cells). Genetic ablation of Dlk1 in the myogenic lineage resulted in reduced body weight and skeletal muscle mass due to reductions in myofiber numbers and myosin heavy chain IIB gene expression. In addition, muscle-specific Dlk1 ablation led to postnatal growth retardation and impaired muscle regeneration, associated with augmented myogenic inhibitory signaling mediated by NF-κB and inflammatory cytokines. To examine the role of Dlk1 in satellite cells, we analyzed the proliferation, self-renewal and differentiation of satellite cells cultured on their native host myofibers. We showed that ablation of Dlk1 inhibits the expression of the myogenic regulatory transcription factor MyoD, and facilitated the self-renewal of activated satellite cells. Conversely, Dlk1 over-expression inhibited the proliferation and enhanced differentiation of cultured myoblasts. As Dlk1 is expressed at low levels in satellite cells but its expression rapidly increases upon myogenic differentiation in vitro and in regenerating muscles in vivo, our results suggest a model in which Dlk1 expressed by nascent or regenerating myofibers non-cell autonomously promotes the differentiation of their neighbor satellite cells and therefore leads to muscle hypertrophy.
doi:10.1371/journal.pone.0015055
PMCID: PMC2993959  PMID: 21124733
11.  Skeletal Muscle Cells Express ICAM-1 after Muscle Overload and ICAM-1 Contributes to the Ensuing Hypertrophic Response 
PLoS ONE  2013;8(3):e58486.
We previously reported that leukocyte specific β2 integrins contribute to hypertrophy after muscle overload in mice. Because intercellular adhesion molecule-1 (ICAM-1) is an important ligand for β2 integrins, we examined ICAM-1 expression by murine skeletal muscle cells after muscle overload and its contribution to the ensuing hypertrophic response. Myofibers in control muscles of wild type mice and cultures of skeletal muscle cells (primary and C2C12) did not express ICAM-1. Overload of wild type plantaris muscles caused myofibers and satellite cells/myoblasts to express ICAM-1. Increased expression of ICAM-1 after muscle overload occurred via a β2 integrin independent mechanism as indicated by similar gene and protein expression of ICAM-1 between wild type and β2 integrin deficient (CD18-/-) mice. ICAM-1 contributed to muscle hypertrophy as demonstrated by greater (p<0.05) overload-induced elevations in muscle protein synthesis, mass, total protein, and myofiber size in wild type compared to ICAM-1-/- mice. Furthermore, expression of ICAM-1 altered (p<0.05) the temporal pattern of Pax7 expression, a marker of satellite cells/myoblasts, and regenerating myofiber formation in overloaded muscles. In conclusion, ICAM-1 expression by myofibers and satellite cells/myoblasts after muscle overload could serve as a mechanism by which ICAM-1 promotes hypertrophy by providing a means for cell-to-cell communication with β2 integrin expressing myeloid cells.
doi:10.1371/journal.pone.0058486
PMCID: PMC3594308  PMID: 23505517
12.  A role for Galgt1 in skeletal muscle regeneration 
Skeletal Muscle  2015;5:3.
Background
Cell surface glycans are known to play vital roles in muscle membrane stability and muscle disease, but to date, roles for glycans in muscle regeneration have been less well understood. Here, we describe a role for complex gangliosides synthesized by the Galgt1 gene in muscle regeneration.
Methods
Cardiotoxin-injected wild type (WT) and Galgt1−/− muscles, and mdx and Galgt1−/−mdx muscles, were used to study regeneration in response to acute and chronic injury, respectively. Muscle tissue was analyzed at various time points for morphometric measurements and for gene expression changes in satellite cell and muscle differentiation markers by quantitative real-time polymerase chain reaction (qRT-PCR). Primary cell cultures were used to measure growth rate and myotube formation and to identify Galgt1 expression changes after cardiotoxin by fluorescence-activated cell sorting (FACS). Primary cell culture and tissue sections were also used to quantify satellite cell apoptosis.
Results
A query of a microarray data set of cardiotoxin-induced mouse muscle gene expression changes identified Galgt1 as the most upregulated glycosylation gene immediately after muscle injury. This was validated by qRT-PCR as a 23-fold upregulation in Galgt1 expression 1 day after cardiotoxin administration and a 16-fold upregulation in 6-week-old mdx muscles. These changes correlated with increased expression of Galgt1 protein and GM1 ganglioside in mononuclear muscle cells. In the absence of Galgt1, cardiotoxin-induced injury led to significantly reduced myofiber diameters after 14 and 28 days of regeneration. Myofiber diameters were also significantly reduced in Galgt1-deficient mdx mice compared to age-matched mdx controls, and this was coupled with a significant increase in the loss of muscle tissue. Cardiotoxin-injected Galgt1−/− muscles showed reduced gene expression of the satellite cell marker Pax7 and increased expression of myoblast markers MyoD, Myf5, and Myogenin after injury along with a tenfold increase in apoptosis of Pax7-positive muscle cells. Cultured primary Galgt1−/− muscle cells showed a normal growth rate but demonstrated premature fusion into myofibers, resulting in an overall impairment of myofiber formation coupled with a threefold increase in muscle cell apoptosis.
Conclusions
These experiments demonstrate a role for Galgt1 in skeletal muscle regeneration and suggest that complex gangliosides made by Galgt1 modulate the survival and differentiation of satellite cells.
doi:10.1186/s13395-014-0028-0
PMCID: PMC4333175
Duchenne muscular dystrophy; Muscle regeneration; Ganglioside; Satellite cell; Apoptosis
13.  Myostatin negatively regulates satellite cell activation and self-renewal 
The Journal of Cell Biology  2003;162(6):1135-1147.
Satellite cells are quiescent muscle stem cells that promote postnatal muscle growth and repair. Here we show that myostatin, a TGF-β member, signals satellite cell quiescence and also negatively regulates satellite cell self-renewal. BrdU labeling in vivo revealed that, among the Myostatin-deficient satellite cells, higher numbers of satellite cells are activated as compared with wild type. In contrast, addition of Myostatin to myofiber explant cultures inhibits satellite cell activation. Cell cycle analysis confirms that Myostatin up-regulated p21, a Cdk inhibitor, and decreased the levels and activity of Cdk2 protein in satellite cells. Hence, Myostatin negatively regulates the G1 to S progression and thus maintains the quiescent status of satellite cells. Immunohistochemical analysis with CD34 antibodies indicates that there is an increased number of satellite cells per unit length of freshly isolated Mstn−/− muscle fibers. Determination of proliferation rate suggests that this elevation in satellite cell number could be due to increased self-renewal and delayed expression of the differentiation gene (myogenin) in Mstn−/− adult myoblasts. Taken together, these results suggest that Myostatin is a potent negative regulator of satellite cell activation and thus signals the quiescence of satellite cells.
doi:10.1083/jcb.200207056
PMCID: PMC2172861  PMID: 12963705
myostatin; GDF-8; satellite cell; quiescence; MyoD
14.  Identification of a New Hybrid Serum Response Factor and Myocyte Enhancer Factor 2-binding Element in MyoD Enhancer Required for MyoD Expression during Myogenesis 
Molecular Biology of the Cell  2007;18(6):1992-2001.
MyoD is a critical myogenic factor induced rapidly upon activation of quiescent satellite cells, and required for their differentiation during muscle regeneration. One of the two enhancers of MyoD, the distal regulatory region, is essential for MyoD expression in postnatal muscle. This enhancer contains a functional divergent serum response factor (SRF)-binding CArG element required for MyoD expression during myoblast growth and muscle regeneration in vivo. Electrophoretic mobility shift assay, chromatin immunoprecipitation, and microinjection analyses show this element is a hybrid SRF- and MEF2 Binding (SMB) sequence where myocyte enhancer factor 2 (MEF2) complexes can compete out binding of SRF at the onset of differentiation. As cells differentiate into postmitotic myotubes, MyoD expression no longer requires SRF but instead MEF2 binding to this dual-specificity element. As such, the MyoD enhancer SMB element is the site for a molecular relay where MyoD expression is first initiated in activated satellite cells in an SRF-dependent manner and then increased and maintained by MEF2 binding in differentiated myotubes. Therefore, SMB is a DNA element with dual and stage-specific binding activity, which modulates the effects of regulatory proteins critical in controlling the balance between proliferation and differentiation.
doi:10.1091/mbc.E06-09-0867
PMCID: PMC1877109  PMID: 17377068
15.  New Role for Serum Response Factor in Postnatal Skeletal Muscle Growth and Regeneration via the Interleukin 4 and Insulin-Like Growth Factor 1 Pathways†  
Molecular and Cellular Biology  2006;26(17):6664-6674.
Serum response factor (SRF) is a crucial transcriptional factor for muscle-specific gene expression. We investigated SRF function in adult skeletal muscles, using mice with a postmitotic myofiber-targeted disruption of the SRF gene. Mutant mice displayed severe skeletal muscle mass reductions due to a postnatal muscle growth defect resulting in highly hypotrophic adult myofibers. SRF-depleted myofibers also failed to regenerate following injury. Muscles lacking SRF had very low levels of muscle creatine kinase and skeletal alpha-actin (SKA) transcripts and displayed other alterations to the gene expression program, indicating an overall immaturity of mutant muscles. This loss of SKA expression, together with a decrease in beta-tropomyosin expression, contributed to myofiber growth defects, as suggested by the extensive sarcomere disorganization found in mutant muscles. However, we observed a downregulation of interleukin 4 (IL-4) and insulin-like growth factor 1 (IGF-1) expression in mutant myofibers which could also account for their defective growth and regeneration. Indeed, our demonstration of SRF binding to interleukin 4 and IGF-1 promoters in vivo suggests a new crucial role for SRF in pathways involved in muscle growth and regeneration.
doi:10.1128/MCB.00138-06
PMCID: PMC1592825  PMID: 16914747
16.  BMP signaling balances proliferation and differentiation of muscle satellite cell descendants 
BMC Cell Biology  2011;12:26.
Background
The capacity of muscle to grow or to regenerate after damage is provided by adult stem cells, so called satellite cells, which are located under the basement lamina of each myofiber. Upon activation satellite cells enter the cell cycle, proliferate and differentiate into myoblasts, which fuse to injured myofibers or form new fibers. These processes are tightly controlled by many growth factors.
Results
Here we investigate the role of bone morphogenetic proteins (BMPs) during satellite cell differentiation. Unlike the myogenic C2C12 cell line, primary satellite cells do not differentiate into osteoblasts upon BMP signaling. Instead BMP signaling inhibits myogenic differentiation of primary satellite cells ex vivo. In contrast, inhibition of BMP signaling results in cell cycle exit, followed by enhanced myoblast differentiation and myotube formation. Using an in vivo trauma model we demonstrate that satellite cells respond to BMP signals during the regeneration process. Interestingly, we found the BMP inhibitor Chordin upregulated in primary satellite cell cultures and in regenerating muscles. In both systems Chordin expression follows that of Myogenin, a marker for cells committed to differentiation.
Conclusion
Our data indicate that BMP signaling plays a critical role in balancing proliferation and differentiation of activated satellite cells and their descendants. Initially, BMP signals maintain satellite cells descendants in a proliferating state thereby expanding cell numbers. After cells are committed to differentiate they upregulate the expression of the BMP inhibitor Chordin thereby supporting terminal differentiation and myotube formation in a negative feedback mechanism.
doi:10.1186/1471-2121-12-26
PMCID: PMC3149017  PMID: 21645366
17.  Skeletal Muscle Activity and the Fate of Myonuclei  
Acta Naturae  2010;2(2):59-66.
Abstract Adult skeletal muscle fiber is a symplast multinuclear structure developed in ontogenesis by the fusion of the myoblasts (muscle progenitor cells). The nuclei of a muscle fiber (myonuclei) are those located at the periphery of fiber in the space between myofibrils and sarcolemma. In theory, a mass change in skeletal muscle during exercise or unloading may be associated with the altered myonuclear number, ratio of the transcription, and translation and proteolysis rates. Here we review the literature data related to the phenomenology and hypothetical mechanisms of the myonuclear number alterations during enhanced or reduced muscle contractile activity. In many cases (during severe muscle and systemic diseases and gravitational unloading), muscle atrophy is accompanied by a reduction in the amount of myonuclei. Such reduction is usually explained by the development of myonuclear apoptosis. A myonuclear number increase may be provided only by the satellite cell nuclei incorporation via cell fusion with the adjacent myofiber. It is believed that it is these cells which supply fiber with additional nuclei, providing postnatal growth, work hypertrophy, and repair processes. Here we discuss the possible mechanisms controlling satellite cell proliferation during exercise, functional unloading, and passive stretch.
PMCID: PMC3347558  PMID: 22649641
skeletal muscle; myonuclei apoptosis; physical training; working hypertrophy; satellite cells; growth factors; gravitational unloading; muscle stretch
18.  Moderate-intensity treadmill running promotes expansion of the satellite cell pool in young and old mice 
The FEBS journal  2013;280(17):4063-4073.
Satellite cells, myogenic progenitors located at the myofiber surface, are essential for repair of adult skeletal muscle. There is ample evidence for age-linked decline in satellite cell numbers and performance in limb muscles. Hence, effective means to activate and expand the satellite cell pool may enhance muscle maintenance and reduce the impact of age-associated muscle deterioration (sarcopenia). Toward this aim, we explored the potential beneficial effect of endurance exercise on satellite cells in young and old mice. Animals were subjected to an 8-week moderate-intensity treadmill running approach that does not inflict apparent muscle damage (0° inclination, 11.5 meter/min, 30 min/day, 6 days/week). Myofibers of extensor digitorum longus muscles were then isolated from exercised and sedentary mice and used for monitoring satellite cell numbers and for harvesting individual satellite cells for clonal growth assays. We specifically focused on satellite cell pools of single myofibers, with the view that daily ware of muscles is likely inflicting individual myofibers rather than causing overall muscle damage. We found an expansion of the satellite cell pool in the exercised groups compared with the sedentary groups, with the same increase factor (~1.6) in both age groups. Current results accord with our findings with rat gastrocnemius, attesting for the consistent effect of exercise running on satellite cell expansion in limb muscles. The experimental paradigm established here is useful for studying satellite cell dynamic at the myofiber niche and for broader investigation of the impact of physiologically and pathologically relevant factors on adult myogenesis.
doi:10.1111/febs.12228
PMCID: PMC3711960  PMID: 23464362
Skeletal muscle; myofibers; satellite cells; aging; endurance exercise; Nestin-GFP
19.  Dominant Negative Murine Serum Response Factor: Alternative Splicing within the Activation Domain Inhibits Transactivation of Serum Response Factor Binding Targets 
Molecular and Cellular Biology  1999;19(7):4582-4591.
Primary transcripts encoding the MADS box superfamily of proteins, such as MEF2 in animals and ZEMa in plants, are alternatively spliced, producing several isoformic species. We show here that murine serum response factor (SRF) primary RNA transcripts are alternatively spliced at the fifth exon, deleting approximately one-third of the C-terminal activation domain. Among the different muscle types examined, visceral smooth muscles have a very low ratio of SRFΔ5 to SRF. Increased levels of SRFΔ5 correlates well with reduced smooth muscle contractile gene activity within the elastic aortic arch, suggesting important biological roles for differential expression of SRFΔ5 variant relative to wild-type SRF. SRFΔ5 forms DNA binding-competent homodimers and heterodimers. SRFΔ5 acts as a naturally occurring dominant negative regulatory mutant that blocks SRF-dependent skeletal α-actin, cardiac α-actin, smooth α-actin, SM22α, and SRF promoter-luciferase reporter activities. Expression of SRFΔ5 interferes with differentiation of myogenic C2C12 cells and the appearance of skeletal α-actin and myogenin mRNAs. SRFΔ5 repressed the serum-induced activity of the c-fos serum response element. SRFΔ5 fused to the yeast Gal4 DNA binding domain displayed low transcriptional activity, which was complemented by overexpression of the coactivator ATF6. These results indicate that the absence of exon 5 might be bypassed through recruitment of transcription factors that interact with extra-exon 5 regions in the transcriptional activating domain. The novel alternatively spliced isoform of SRF, SRFΔ5, may play an important regulatory role in modulating SRF-dependent gene expression.
PMCID: PMC84256  PMID: 10373507
20.  Muscle satellite cell heterogeneity and self-renewal 
Adult skeletal muscle possesses extraordinary regeneration capacities. After muscle injury or exercise, large numbers of newly formed muscle fibers are generated within a week as a result of expansion and differentiation of a self-renewing pool of muscle stem cells termed muscle satellite cells. Normally, satellite cells are mitotically quiescent and reside beneath the basal lamina of muscle fibers. Upon regeneration, satellite cells are activated, and give rise to daughter myogenic precursor cells. After several rounds of proliferation, these myogenic precursor cells contribute to the formation of new muscle fibers. During cell division, a minor population of myogenic precursor cells returns to quiescent satellite cells as a self-renewal process. Currently, accumulating evidence has revealed the essential roles of satellite cells in muscle regeneration and the regulatory mechanisms, while it still remains to be elucidated how satellite cell self-renewal is molecularly regulated and how satellite cells are important in aging and diseased muscle. The number of satellite cells is decreased due to the changing niche during ageing, resulting in attenuation of muscle regeneration capacity. Additionally, in Duchenne muscular dystrophy (DMD) patients, the loss of satellite cell regenerative capacity and decreased satellite cell number due to continuous needs for satellite cells lead to progressive muscle weakness with chronic degeneration. Thus, it is necessary to replenish muscle satellite cells continuously. This review outlines recent findings regarding satellite cell heterogeneity, asymmetric division and molecular mechanisms in satellite cell self-renewal which is crucial for maintenance of satellite cells as a muscle stem cell pool throughout life. In addition, we discuss roles in the stem cell niche for satellite cell maintenance, as well as related cell therapies for approaching treatment of DMD.
PMCID: PMC4073305  PMID: 24977132
skeletal muscle; myogenesis; satellite cells; self-renewal; muscle regeneration; MyoD; Pax7; Myf5
21.  Muscle satellite cell heterogeneity and self-renewal 
Adult skeletal muscle possesses extraordinary regeneration capacities. After muscle injury or exercise, large numbers of newly formed muscle fibers are generated within a week as a result of expansion and differentiation of a self-renewing pool of muscle stem cells termed muscle satellite cells. Normally, satellite cells are mitotically quiescent and reside beneath the basal lamina of muscle fibers. Upon regeneration, satellite cells are activated, and give rise to daughter myogenic precursor cells. After several rounds of proliferation, these myogenic precursor cells contribute to the formation of new muscle fibers. During cell division, a minor population of myogenic precursor cells returns to quiescent satellite cells as a self-renewal process. Currently, accumulating evidence has revealed the essential roles of satellite cells in muscle regeneration and the regulatory mechanisms, while it still remains to be elucidated how satellite cell self-renewal is molecularly regulated and how satellite cells are important in aging and diseased muscle. The number of satellite cells is decreased due to the changing niche during ageing, resulting in attenuation of muscle regeneration capacity. Additionally, in Duchenne muscular dystrophy (DMD) patients, the loss of satellite cell regenerative capacity and decreased satellite cell number due to continuous needs for satellite cells lead to progressive muscle weakness with chronic degeneration. Thus, it is necessary to replenish muscle satellite cells continuously. This review outlines recent findings regarding satellite cell heterogeneity, asymmetric division and molecular mechanisms in satellite cell self-renewal which is crucial for maintenance of satellite cells as a muscle stem cell pool throughout life. In addition, we discuss roles in the stem cell niche for satellite cell maintenance, as well as related cell therapies for approaching treatment of DMD.
doi:10.3389/fcell.2014.00001
PMCID: PMC4206996  PMID: 25364710
skeletal muscle; myogenesis; satellite cells; self-renewal; muscle regeneration; MyoD; Pax7; Myf5
22.  Satellite cells from dystrophic muscle retain regenerative capacity 
Stem Cell Research  2015;14(1):20-29.
Duchenne muscular dystrophy is an inherited disorder that is characterized by progressive skeletal muscle weakness and wasting, with a failure of muscle maintenance/repair mediated by satellite cells (muscle stem cells). The function of skeletal muscle stem cells resident in dystrophic muscle may be perturbed by being in an increasing pathogenic environment, coupled with constant demands for repairing muscle. To investigate the contribution of satellite cell exhaustion to this process, we tested the functionality of satellite cells isolated from the mdx mouse model of Duchenne muscular dystrophy. We found that satellite cells derived from young mdx mice contributed efficiently to muscle regeneration within our in vivo mouse model. To then test the effects of long-term residence in a dystrophic environment, satellite cells were isolated from aged mdx muscle. Surprisingly, they were as functional as those derived from young or aged wild type donors. Removing satellite cells from a dystrophic milieu reveals that their regenerative capacity remains both intact and similar to satellite cells derived from healthy muscle, indicating that the host environment is critical for controlling satellite cell function.
Highlights
•Grafted mdx satellite cells regenerate muscle as well as wild-type satellite cells.•Aged mdx myofibers bear more satellite cells than aged wild type fibers.•mdx satellite cells retain their ability to activate.•Aged mdx satellite cells are robustly regenerative in vivo.
doi:10.1016/j.scr.2014.10.007
PMCID: PMC4305370  PMID: 25460248
23.  Isolation and Culture of Skeletal Muscle Myofibers as a Means to Analyze Satellite Cells 
Summary
Myofibers are the functional contractile units of skeletal muscle. Mononuclear satellite cells located between the basal lamina and the plasmalemma of the myofiber are the primary source of myogenic precursor cells in postnatal muscle. This chapter describes protocols used in our laboratory for isolation, culturing and immunostaining of single myofibers from mouse skeletal muscle. The isolated myofibers are intact and retain their associated satellite cells underneath the basal lamina. The first protocol discusses myofiber isolation from the flexor digitorum brevis (FDB) muscle. Myofibers are cultured in dishes coated with Vitrogen collagen and satellite cells remain associated with the myofibers undergoing proliferation and differentiation on the myofiber surface. The second protocol discusses the isolation of longer myofibers from the extensor digitorum longus (EDL). Different from the FDB myofibers, the longer EDL myofibers tend to tangle and break if cultured together; therefore, EDL myofibers are cultured individually. These myofibers are cultured in dishes coated with Matrigel. The satellite cells initially remain associated with the myofiber and later migrate away to its vicinity, resulting in extensive cell proliferation and differentiation. These culture protocols allow studies on the interplay between the myofiber and its associated satellite cells.
PMCID: PMC3523695  PMID: 15361669
Satellite cells; skeletal muscle; myofiber isolation; single myofiber culture; flexor digitorum brevis; extensor digitorum longus; mouse; Vitrogen collagen; Matrigel
24.  Sprouty1 Regulates Reversible Quiescence of a Self-Renewing Adult Muscle Stem Cell Pool during Regeneration 
Cell stem cell  2010;6(2):117-129.
Summary
Satellite cells are a heterogeneous population of skeletal muscle specific stem cells capable of self-renewal and differentiation after transplantation. Whether quiescent satellite cells can self-renew and contribute to muscle fiber repair in their endogenous environment in normal regenerating muscle has remained unknown. The transcription factor Pax7 is expressed in satellite cells and is critical for establishing the adult satellite cell pool. Using a temporally-inducible genetic lineage tracing approach (Pax7-CreERtm; R26R-lacZ) to fate-map adult satellite cells, we show that in response to injury quiescent adult Pax7+ cells enter the cell cycle; a subpopulation return to quiescence to fully replenish the satellite cell compartment and the others contribute to de novo muscle fiber formation. We demonstrate that Sprouty1 (Spry1), an inhibitor of receptor tyrosine kinase signaling, is robustly expressed in quiescent Pax7+ satellite cells in uninjured adult muscle, down-regulated in proliferating myogenic cells in injured muscles, and re-induced as Pax7+ cells return to quiescence in regenerated muscles. We show through deletion of Spry1 specifically in cycling adult Pax7+ satellite cells, that Spry1 is required for the return to quiescence and homeostasis of the self-renewing Pax7+ satellite cell pool during repair. Satellite cells unable to return to quiescence succumb to apoptosis leading to a diminished self-renewing Pax7-derived satellite cell pool. Our results define a novel role for Spry1 in adult stem cell biology and tissue repair.
doi:10.1016/j.stem.2009.12.015
PMCID: PMC2846417  PMID: 20144785
25.  Novel Mutations That Control the Sphingolipid and Cholesterol Dependence of the Semliki Forest Virus Fusion Protein 
Journal of Virology  2002;76(24):12712-12722.
The enveloped alphavirus Semliki Forest virus (SFV) infects cells via a membrane fusion reaction mediated by the E1 membrane protein. Efficient SFV-membrane fusion requires the presence of cholesterol and sphingolipid in the target membrane. Here we report on two mutants, srf-4 and srf-5, selected for growth in cholesterol-depleted cells. Like the previously isolated srf-3 mutant (E1 proline 226 to serine), the phenotypes of the srf-4 and srf-5 mutants were conferred by single-amino-acid changes in the E1 protein: leucine 44 to phenylalanine and valine 178 to alanine, respectively. Like srf-3, srf-4 and srf-5 show striking increases in the cholesterol independence of growth, infection, membrane fusion, and exit. Unexpectedly, and unlike srf-3, srf-4 and srf-5 showed highly efficient fusion with sphingolipid-free membranes in both lipid- and content-mixing assays. Both srf-4 and srf-5 formed E1 homotrimers of decreased stability compared to the homotrimers of the wild type and the srf-3 mutant. All three srf mutations lie in the same domain of E1, but the srf-4 and srf-5 mutations are spatially separated from srf-3. When expressed together, the three mutations could interact to produce increased sterol independence and to cause temperature-sensitive E1 transport. Thus, the srf-4 and srf-5 mutations identify novel regions of E1 that are distinct from the fusion peptide and srf-3 region and modulate the requirements for both sphingolipid and cholesterol in virus-membrane fusion.
doi:10.1128/JVI.76.24.12712-12722.2002
PMCID: PMC136714  PMID: 12438597

Results 1-25 (762964)