Search tips
Search criteria

Results 1-25 (847629)

Clipboard (0)

Related Articles

1.  Regulation of Actin Cytoskeleton Dynamics in Cells 
Molecules and cells  2010;29(4):311-325.
The dynamic remolding of the actin cytoskeleton is a critical part of most cellular activities, and malfunction of cytoskeletal proteins results in various human diseases. The transition between two forms of actin, monomeric or G-actin and filamentous or F-actin, is tightly regulated in time and space by a large number of signaling, scaffolding and actin-binding proteins (ABPs). New ABPs are constantly being discovered in the post-genomic era. Most of these proteins are modular, integrating actin binding, protein-protein interaction, membrane-binding, and signaling domains. In response to extracellular signals, often mediated by Rho family GTPases, ABPs control different steps of actin cytoskeleton assembly, including filament nucleation, elongation, severing, capping, and depolymerization. This review summarizes structure-function relationships among ABPs in the regulation of actin cytoskeleton assembly.
PMCID: PMC3910092  PMID: 20446344
actin-binding protein; actin cytoskeleton; BAR protein; F-actin; filament cross-linking; filament nucleation and elongation; G-actin; Rho-GTPase; WH2
2.  Caspase-3 Regulates Catalytic Activity and Scaffolding Functions of the Protein Tyrosine Phosphatase PEST, a Novel Modulator of the Apoptotic Response▿ †  
Molecular and Cellular Biology  2006;27(3):1172-1190.
The protein tyrosine phosphatase PEST (PTP-PEST) is involved in the regulation of the actin cytoskeleton. Despite the emerging functions attributed to both PTPs and the actin cytoskeleton in apoptosis, the involvement of PTP-PEST in apoptotic cell death remains to be established. Using several cell-based assays, we showed that PTP-PEST participates in the regulation of apoptosis. As apoptosis progressed, a pool of PTP-PEST localized to the edge of retracting lamellipodia. Expression of PTP-PEST also sensitized cells to receptor-mediated apoptosis. Concertedly, specific degradation of PTP-PEST was observed during apoptosis. Pharmacological inhibitors, immunodepletion experiments, and in vitro cleavage assays identified caspase-3 as the primary regulator of PTP-PEST processing during apoptosis. Caspase-3 specifically cleaved PTP-PEST at the 549DSPD motif and generated fragments, some of which displayed increased catalytic activity. Moreover, caspase-3 regulated PTP-PEST interactions with paxillin, leupaxin, Shc, and PSTPIP. PTP-PEST acted as a scaffolding molecule connecting PSTPIP to additional partners: paxillin, Shc, Csk, and activation of caspase-3 correlated with the modulation of the PTP-PEST adaptor function. In addition, cleavage of PTP-PEST facilitated cellular detachment during apoptosis. Together, our data demonstrate that PTP-PEST actively contributes to the cellular apoptotic response and reveal the importance of caspases as regulators of PTPs in apoptosis.
PMCID: PMC1800677  PMID: 17130234
3.  Morphology and Viscoelasticity of Actin Networks Formed with the Mutually Interacting Crosslinkers: Palladin and Alpha-actinin 
PLoS ONE  2012;7(8):e42773.
Actin filaments and associated actin binding proteins play an essential role in governing the mechanical properties of eukaryotic cells. Even though cells have multiple actin binding proteins (ABPs) that exist simultaneously to maintain the structural and mechanical integrity of the cellular cytoskeleton, how these proteins work together to determine the properties of actin networks is not clearly understood. The ABP, palladin, is essential for the maintenance of cell morphology and the regulation of cell movement. Palladin coexists with -actinin in stress fibers and focal adhesions and binds to both actin and -actinin. To obtain insight into how mutually interacting actin crosslinking proteins modulate the properties of actin networks, we characterized the micro-structure and mechanics of actin networks crosslinked with palladin and -actinin. We first showed that palladin crosslinks actin filaments into bundled networks which are viscoelastic in nature. Our studies also showed that composite networks of -actinin/palladin/actin behave very similar to pure palladin or pure -actinin networks. However, we found evidence that palladin and -actinin synergistically modify network viscoelasticity. To our knowledge, this is the first quantitative characterization of the physical properties of actin networks crosslinked with two mutually interacting crosslinkers.
PMCID: PMC3420904  PMID: 22916157
4.  Actin dynamics and endocytosis in yeast and mammals 
Current opinion in biotechnology  2010;21(5):604-610.
Tight regulation of the actin cytoskeleton is critical for many cell functions, including various forms of cellular uptake. Clathrin-mediated endocytosis (CME) is one of the main methods of uptake in many cell types. An intact and properly regulated actin cytoskeleton is required for CME in Saccharomyces cerevisiae. Yeast CME requires the proper regulation of actin polymerization, filament cross-linking, and filament disassembly. Recent studies also point to a role for F-BAR and BAR domain containing proteins in linking the processes of generating and sensing plasma membrane curvature with those regulating the actin cytoskeleton. Many of these same proteins are conserved in mammalian CME. However, until recently the requirement for actin in mammalian CME was less clear. Several recent studies in mammalian cells provide new support for an actin requirement in the invagination and late stages of CME. This review focuses on the regulation of the actin cytoskeleton during CME in yeast and the emerging evidence for a role for actin during mammalian CME.
PMCID: PMC2952672  PMID: 20637595
5.  When fat is not bad: the regulation of actin dynamics by phospholipid signaling molecules 
The actin cytoskeleton plays a key role in the plant morphogenesis and is involved in polar cell growth, movement of subcellular organelles, cell division, and plant defense. Organization of actin cytoskeleton undergoes dynamic remodeling in response to internal developmental cues and diverse environmental signals. This dynamic behavior is regulated by numerous actin-binding proteins (ABPs) that integrate various signaling pathways. Production of the signaling lipids phosphatidylinositol 4,5-bisphosphate and phosphatidic acid affects the activity and subcellular distribution of several ABPs, and typically correlates with increased actin polymerization. Here we review current knowledge of the inter-regulatory dynamics between signaling phospholipids and the actin cytoskeleton in plant cells.
PMCID: PMC3899574  PMID: 24478785
actin; actin-binding proteins; capping protein; cytoskeleton; phosphatidic acid; phosphatidylinositol 4,5-bisphosphate; phospholipase D; signaling
6.  Human MCF10A Mammary Epithelial Cells Undergo Apoptosis following Actin Depolymerization That Is Independent of Attachment and Rescued by Bcl-2 
Molecular and Cellular Biology  2001;21(19):6529-6536.
Many tumor cells are impaired in adhesion-regulated apoptosis, which contributes to their metastatic potential. However, suppression of this apoptotic pathway in untransformed cells is not mediated only by adhesion to the extracellular matrix but also through the resulting ability to spread and adopt a distinct morphology. Since cell spreading is dependent on the integrity of the actin microfilament cytoskeleton, we sought to determine if actin depolymerization was sufficient to induce apoptosis, even in the presence of continuous attachment. For this study, we used a human mammary epithelial cell line (MCF10A), which is immortalized but remains adhesion dependent for survival. Treatment of MCF10A cells with latrunculin-A (LA), an inhibitor of actin polymerization, rapidly led to disruption of the actin cytoskeleton and caused cell rounding but preserved attachment. Initiation of apoptosis in LA-treated MCF10A cells was detected by mitochondrial localization of the Bax apoptotic protein, which was prevented by overexpression of Bcl-2. DNA fragmentation and poly(ADP-ribose) polymerase (PARP) cleavage in LA-treated MCF10A cells indicated progression to the execution phase of apoptosis. The MDA-MB-453 cell line, which was derived from a metastatic human mammary tumor, was resistant to PARP cleavage and loss of viability in response to actin depolymerization. Stable overexpression of Bcl-2 in the untransformed MCF10A cells was able to recapitulate the resistance to apoptosis found in the tumor cell line. We demonstrate that inhibition of actin polymerization is sufficient to stimulate apoptosis in attached MCF10A cells, and we present a novel role for Bcl-2 in cell death induced by direct disruption of the actin cytoskeleton.
PMCID: PMC99799  PMID: 11533241
7.  Counteracting the activation of pAkt by inhibition of MEK/Erk inhibition reduces actin disruption-mediated apoptosis in PTEN-null PC3M prostate cancer cell lines 
Oncology Letters  2013;6(5):1383-1389.
The actin cytoskeleton is important in the maintenance of cellular homeostasis and in signal transduction pathways leading to cell growth and apoptotic cell death in eukaryotic cells. Disruption of actin dynamics is associated with morphological changes in cancer cells. Deletion of phosphatase and tensin homolog (PTEN), a tumor suppressor gene involved in the regulation of the cell cycle and apoptosis, leads to cytoskeleton disruption and double-strand breaks (DSBs). To study the mechanism(s) of actin disruption-mediated apoptosis and its potential application for anticancer therapy, PTEN-null PC3M prostate cancer cells were treated with latrunculin B (LB). LB induced destabilization of the actin microfilament and apoptosis in a dose-dependent manner, as demonstrated by morphological changes and nuclear condensation in the PC3M cells. In addition, it resulted in an increase in the levels of γH2AX recruitment, implicating the induction of DNA damage, including DSBs. Induction of Bax, with little effect on Bcl-2 expression, indicated that actin disruption causes apoptosis through activation of Bax signaling in PC3M cells. Treatment with U20126, a mitogen-activated protein kinase kinase (MEK) inhibitor, resulted in attenuated induction of DSBs and apoptosis through activation of protein kinase B (Akt), suggesting that LB-mediated actin dysfunction induces DSBs via the MEK/extracellular signal-regulated kinase (Erk) pathway in cells. Therefore, counteracting activation of phosphorylated Akt stemming from the inhibition of MEK/Erk resulted in attenuation of actin disruption-induced apoptotic events in the PC3M cells. The results of this study provide information not only for use in delineation of the molecular association between actin disruption and tumorigenesis, but also for the development of a strategy for actin-based anticancer chemotherapy against highly metastatic prostate cancer.
PMCID: PMC3813806  PMID: 24179529
latrunculin B; PTEN-null PC3M prostate cancer cell lines; apoptosis; pAkt; MEK/Erk; actin
8.  Actin-Binding Protein 1 Regulates B Cell Receptor-Mediated Antigen Processing and Presentation in Response to B Cell Receptor Activation1 
The BCR serves as both signal transducer and Ag transporter. Binding of Ags to the BCR induces signaling cascades and Ag processing and presentation, two essential cellular events for B cell activation. BCR-initiated signaling increases BCR-mediated Ag-processing efficiency by increasing the rate and specificity of Ag transport. Previous studies showed a critical role for the actin cytoskeleton in these two processes. In this study, we found that actin-binding protein 1 (Abp1/HIP-55/SH3P7) functioned as an actin-binding adaptor protein, coupling BCR signaling and Ag-processing pathways with the actin cytoskeleton. Gene knockout of Abp1 and overexpression of the Src homology 3 domain of Abp1 inhibited BCR-mediated Ag internalization, consequently reducing the rate of Ag transport to processing compartments and the efficiency of BCR-mediated Ag processing and presentation. BCR activation induced tyrosine phosphorylation of Abp1 and translocation of both Abp1 and dynamin 2 from the cytoplasm to plasma membrane, where they colocalized with the BCR and cortical F-actin. Mutations of the two tyrosine phosphorylation sites of Abp1 and depolymerization of the actin cytoskeleton interfered with BCR-induced Abp1 recruitment to the plasma membrane. The inhibitory effect of a dynamin proline-rich domain deletion mutant on the recruitment of Abp1 to the plasma membrane, coimmunoprecipitation of dynamin with Abp1, and coprecipitation of Abp1 with GST fusion of the dyanmin proline-rich domain demonstrate the interaction of Abp1 with dynamin 2. These results demonstrate that the BCR regulates the function of Abp1 by inducing Abp1 phosphorylation and actin cytoskeleton rearrangement, and that Abp1 facilitates BCR-mediated Ag processing by simultaneously interacting with dynamin and the actin cytoskeleton. The Journal of Immunology, 2008, 180: 6685–6695.
PMCID: PMC2855894  PMID: 18453588
9.  Actin Cytoskeleton Regulates Hippo Signaling 
PLoS ONE  2013;8(9):e73763.
Hippo pathway controls the organ size by modulating cell proliferation and apoptosis. However, the upstream regulation of hippo signaling by actin cytoskeleton is not clear. To elucidate the role of actin as an upstream regulator of Hippo signaling, the levels of F (filamentous)-actin in cells were elevated using jasplakinolide, an actin-stabilizing drug. Induction of F-actin formation in HeLa cells resulted in decreased phosphorylation of YAP, a key effector molecule for Hippo signaling. The activated YAP is localized to the cell nucleus and YAP increase was associated with increased expression of downstream CCN growth factors CCN1/CYR61 and CCN2/CTGF. The effect of the actin-stabilizing drug was blocked when YAP levels were suppressed in YAP “knock-down” cells. In summary, using an actin-stabilizing drug we show that actin cytoskeleton is one of the upstream regulators of Hippo signaling capable of activating YAP and increasing its downstream CCN growth factors.
PMCID: PMC3770699  PMID: 24040060
10.  Modulation of Actin Mechanics by Caldesmon and Tropomyosin 
The ability of cells to sense and respond to physiological forces relies on the actin cytoskeleton, a dynamic structure that can directly convert forces into biochemical signals. Because of the association of muscle actin-binding proteins (ABPs) may affect F-actin and hence cytoskeleton mechanics, we investigated the effects of several ABPs on the mechanical properties of the actin filaments. The structural interactions between ABPs and helical actin filaments can vary between interstrand interactions that bridge azimuthally adjacent actin monomers between filament strands (i.e. by molecular stapling as proposed for caldesmon) or, intrastrand interactions that reinforce axially adjacent actin monomers along strands (i.e. as in the interaction of tropomyosin with actin). Here, we analyzed thermally driven fluctuations in actin’s shape to measure the flexural rigidity of actin filaments with different ABPs bound. We show that the binding of phalloidin increases the persistence length of actin by 1.9-fold. Similarly, the intrastrand reinforcement by smooth and skeletal muscle tropomyosins increases the persistence length 1.5-and 2- fold respectively. We also show that the interstrand crosslinking by the C-terminal actin-binding fragment of caldesmon, H32K, increases persistence length by 1.6-fold. While still remaining bound to actin, phosphorylation of H32K by ERK abolishes the molecular staple (Foster et al. 2004. J Biol Chem 279;53387–53394) and reduces filament rigidity to that of actin with no ABPs bound. Lastly, we show that the effect of binding both smooth muscle tropomyosin and H32K is not additive. The combination of structural and mechanical studies on ABP-actin interactions will help provide information about the biophysical mechanism of force transduction in cells.
PMCID: PMC2975105  PMID: 18000881
actin-binding proteins; persistence length; flexural rigidity; cytoskeleton; filament mechanics
11.  Association of Mouse Actin-binding Protein 1 (mAbp1/SH3P7), an Src Kinase Target, with Dynamic Regions of the Cortical Actin Cytoskeleton in Response to Rac1 Activation 
Molecular Biology of the Cell  2000;11(1):393-412.
Yeast Abp1p is a cortical actin cytoskeleton protein implicated in cytoskeletal regulation, endocytosis, and cAMP-signaling. We have identified a gene encoding a mouse homologue of Abp1p, and it is identical to SH3P7, a protein shown recently to be a target of Src tyrosine kinases. Yeast and mouse Abp1p display the same domain structure including an N-terminal actin-depolymerizing factor homology domain and a C-terminal Src homology 3 domain. Using two independent actin-binding domains, mAbp1 binds to actin filaments with a 1:5 saturation stoichiometry. In stationary cells, mAbp1 colocalizes with cortical F-actin in fibroblast protrusions that represent sites of cellular growth. mAbp1 appears at the actin-rich leading edge of migrating cells. Growth factors cause mAbp1 to rapidly accumulate in lamellipodia. This response can be mimicked by expression of dominant-positive Rac1. mAbp1 recruitment appears to be dependent on de novo actin polymerization and occurs specifically at sites enriched for the Arp2/3 complex. mAbp1 is a newly identified cytoskeletal protein in mice and may serve as a signal-responsive link between the dynamic cortical actin cytoskeleton and regions of membrane dynamics.
PMCID: PMC14781  PMID: 10637315
12.  Filamin Is Required for Ring Canal Assembly and Actin Organization during Drosophila Oogenesis 
The Journal of Cell Biology  1999;146(5):1061-1074.
The remodeling of the actin cytoskeleton is essential for cell migration, cell division, and cell morphogenesis. Actin-binding proteins play a pivotal role in reorganizing the actin cytoskeleton in response to signals exchanged between cells. In consequence, actin-binding proteins are increasingly a focus of investigations into effectors of cell signaling and the coordination of cellular behaviors within developmental processes. One of the first actin-binding proteins identified was filamin, or actin-binding protein 280 (ABP280). Filamin is required for cell migration (Cunningham et al. 1992), and mutations in human α-filamin (FLN1; Fox et al. 1998) are responsible for impaired migration of cerebral neurons and give rise to periventricular heterotopia, a disorder that leads to epilepsy and vascular disorders, as well as embryonic lethality. We report the identification and characterization of a mutation in Drosophila filamin, the homologue of human α-filamin. During oogenesis, filamin is concentrated in the ring canal structures that fortify arrested cleavage furrows and establish cytoplasmic bridges between cells of the germline. The major structural features common to other filamins are conserved in Drosophila filamin. Mutations in Drosophila filamin disrupt actin filament organization and compromise membrane integrity during oocyte development, resulting in female sterility. The genetic and molecular characterization of Drosophila filamin provides the first genetic model system for the analysis of filamin function and regulation during development.
PMCID: PMC2169474  PMID: 10477759
filamin; ABP280; Drosophila; actin; ring canals
13.  Actin-Induced Hyperactivation of the Ras Signaling Pathway Leads to Apoptosis in Saccharomyces cerevisiae 
Molecular and Cellular Biology  2006;26(17):6487-6501.
Recent research has revealed a conserved role for the actin cytoskeleton in the regulation of aging and apoptosis among eukaryotes. Here we show that the stabilization of the actin cytoskeleton caused by deletion of Sla1p or End3p leads to hyperactivation of the Ras signaling pathway. The consequent rise in cyclic AMP (cAMP) levels leads to the loss of mitochondrial membrane potential, accumulation of reactive oxygen species (ROS), and cell death. We have established a mechanistic link between Ras signaling and actin by demonstrating that ROS production in actin-stabilized cells is dependent on the G-actin binding region of the cyclase-associated protein Srv2p/CAP. Furthermore, the artificial elevation of cAMP directly mimics the apoptotic phenotypes displayed by actin-stabilized cells. The effect of cAMP elevation in inducing actin-mediated apoptosis functions primarily through the Tpk3p subunit of protein kinase A. This pathway represents the first defined link between environmental sensing, actin remodeling, and apoptosis in Saccharomyces cerevisiae.
PMCID: PMC1592845  PMID: 16914733
14.  Structural and Functional Dissection of the Abp1 ADFH Actin-binding Domain Reveals Versatile In Vivo Adapter FunctionsD⃞ 
Molecular Biology of the Cell  2005;16(7):3128-3139.
Abp1 is a multidomain protein that regulates the Arp2/3 complex and links proteins involved in endocytosis to the actin cytoskeleton. All of the proposed cellular functions of Abp1 involve actin filament binding, yet the actin binding site(s) on Abp1 have not been identified, nor has the importance of actin binding for Abp1 localization and function in vivo been tested. Here, we report the crystal structure of the Saccharomyces cerevisiae Abp1 actin-binding actin depolymerizing factor homology (ADFH) domain and dissect its activities by mutagenesis. Abp1-ADFH domain and ADF/cofilin structures are similar, and they use conserved surfaces to bind actin; however, there are also key differences that help explain their differential effects on actin dynamics. Using point mutations, we demonstrate that actin binding is required for localization of Abp1 in vivo, the lethality caused by Abp1 overexpression, and the ability of Abp1 to activate Arp2/3 complex. Furthermore, we genetically uncouple ABP1 functions that overlap with SAC6, SLA1, and SLA2, showing they require distinct combinations of activities and interactions. Together, our data provide the first structural and functional view of the Abp1–actin interaction and show that Abp1 has distinct cellular roles as an adapter, linking different sets of ligands for each function.
PMCID: PMC1165398  PMID: 15872087
15.  Regulation of actin cytoskeleton architecture by Eps8 and Abi1 
BMC Cell Biology  2005;6:36.
The actin cytoskeleton participates in many fundamental processes including the regulation of cell shape, motility, and adhesion. The remodeling of the actin cytoskeleton is dependent on actin binding proteins, which organize actin filaments into specific structures that allow them to perform various specialized functions. The Eps8 family of proteins is implicated in the regulation of actin cytoskeleton remodeling during cell migration, yet the precise mechanism by which Eps8 regulates actin organization and remodeling remains elusive.
Here, we show that Eps8 promotes the assembly of actin rich filopodia-like structures and actin cables in cultured mammalian cells and Xenopus embryos, respectively. The morphology of actin structures induced by Eps8 was modulated by interactions with Abi1, which stimulated formation of actin cables in cultured cells and star-like structures in Xenopus. The actin stars observed in Xenopus animal cap cells assembled at the apical surface of epithelial cells in a Rac-independent manner and their formation was accompanied by recruitment of N-WASP, suggesting that the Eps8/Abi1 complex is capable of regulating the localization and/or activity of actin nucleators. We also found that Eps8 recruits Dishevelled to the plasma membrane and actin filaments suggesting that Eps8 might participate in non-canonical Wnt/Polarity signaling. Consistent with this idea, mis-expression of Eps8 in dorsal regions of Xenopus embryos resulted in gastrulation defects.
Together, these results suggest that Eps8 plays multiple roles in modulating actin filament organization, possibly through its interaction with distinct sets of actin regulatory complexes. Furthermore, the finding that Eps8 interacts with Dsh and induced gastrulation defects provides evidence that Eps8 might participate in non-canonical Wnt signaling to control cell movements during vertebrate development.
PMCID: PMC1274305  PMID: 16225669
16.  p57KIP2 control of actin cytoskeleton dynamics is responsible for its mitochondrial pro-apoptotic effect 
Cell Death & Disease  2012;3(5):e311-.
p57 (Kip2, cyclin-dependent kinase inhibitor 1C), often found downregulated in cancer, is reported to hold tumor suppressor properties. Originally described as a cyclin-dependent kinase (cdk) inhibitor, p57KIP2 has since been shown to influence other cellular processes, beyond cell cycle regulation, including cell death and cell migration. Inhibition of cell migration by p57KIP2 is attributed to the stabilization of the actin cytoskeleton through the activation of LIM domain kinase-1 (LIMK-1). Furthermore, p57KIP2 is able to enhance mitochondrial-mediated apoptosis. Here, we report that the cell death promoting effect of p57KIP2 is linked to its effect on the actin cytoskeleton. Indeed, whereas Jasplakinolide, an actin cytoskeleton-stabilizing agent, mimicked p57KIP2's pro-apoptotic effect, destabilizing the actin cytoskeleton with cytochalsin D reversed p57KIP2's pro-apoptotic function. Conversely, LIMK-1, the enzyme mediating p57KIP2's effect on the actin cytoskeleton, was required for p57KIP2's death promoting effect. Finally, p57KIP2-mediated stabilization of the actin cytoskeleton was associated with the displacement of hexokinase-1, an inhibitor of the mitochondrial voltage-dependent anion channel, from the mitochondria, providing a possible mechanism for the promotion of the mitochondrial apoptotic cell death pathway. Altogether, our findings link together two tumor suppressor properties of p57KIP2, by showing that the promotion of cell death by p57KIP2 requires its actin cytoskeleton stabilization function.
PMCID: PMC3366085  PMID: 22592318
p57KIP2; cell migration; cancer; cytoskeleton
17.  Application of Lifeact Reveals F-Actin Dynamics in Arabidopsis thaliana and the Liverwort, Marchantia polymorpha 
Plant and Cell Physiology  2009;50(6):1041-1048.
Actin plays fundamental roles in a wide array of plant functions, including cell division, cytoplasmic streaming, cell morphogenesis and organelle motility. Imaging the actin cytoskeleton in living cells is a powerful methodology for studying these important phenomena. Several useful probes for live imaging of filamentous actin (F-actin) have been developed, but new versatile probes are still needed. Here, we report the application of a new probe called Lifeact for visualizing F-actin in plant cells. Lifeact is a short peptide comprising 17 amino acids that was derived from yeast Abp140p. We used a Lifeact–Venus fusion protein for staining F-actin in Arabidopsis thaliana and were able to observe dynamic rearrangements of the actin meshwork in root hair cells. We also used Lifeact–Venus to visualize the actin cytoskeleton in the liverwort Marchantia polymorpha; this revealed unique and dynamic F-actin motility in liverwort cells. Our results suggest that Lifeact could be a useful tool for studying the actin cytoskeleton in a wide range of plant lineages.
PMCID: PMC2694730  PMID: 19369273
Actin; Arabidopsis thaliana; Lifeact; Liverwort; Marchantia polymorpha
18.  Bundling actin filaments from membranes: some novel players 
Progress in live-cell imaging of the cytoskeleton has significantly extended our knowledge about the organization and dynamics of actin filaments near the plasma membrane of plant cells. Noticeably, two populations of filamentous structures can be distinguished. On the one hand, fine actin filaments which exhibit an extremely dynamic behavior basically characterized by fast polymerization and prolific severing events, a process referred to as actin stochastic dynamics. On the other hand, thick actin bundles which are composed of several filaments and which are comparatively more stable although they constantly remodel as well. There is evidence that the actin cytoskeleton plays critical roles in trafficking and signaling at both the cell cortex and organelle periphery but the exact contribution of actin bundles remains unclear. A common view is that actin bundles provide the long-distance tracks used by myosin motors to deliver their cargo to growing regions and accordingly play a particularly important role in cell polarization. However, several studies support that actin bundles are more than simple passive highways and display multiple and dynamic roles in the regulation of many processes, such as cell elongation, polar auxin transport, stomatal and chloroplast movement, and defense against pathogens. The list of identified plant actin-bundling proteins is ever expanding, supporting that plant cells shape structurally and functionally different actin bundles. Here I review the most recently characterized actin-bundling proteins, with a particular focus on those potentially relevant to membrane trafficking and/or signaling.
PMCID: PMC3426786  PMID: 22936939
actin bundling; fimbrins; formins; LIM proteins; SCAB1; THRUMIN1; V-ATPases; villins
19.  Extracellular Inhibitors, Repellents, and Semaphorin/Plexin/MICAL-mediated Actin Filament Disassembly 
Cytoskeleton (Hoboken, N.J.)  2011;68(8):415-433.
Multiple extracellular signals have been identified that regulate actin dynamics within motile cells, but how these instructive cues present on the cell surface exert their precise effects on the internal actin cytoskeleton is still poorly understood. One particularly interesting class of these cues is a group of extracellular proteins that negatively alter the movement of cells and their processes. Over the years, these types of events have been described using a variety of terms and herein we provide an overview of inhibitory/repulsive cellular phenomena and highlight the largest known protein family of repulsive extracellular cues, the Semaphorins. Specifically, the Semaphorins (Semas) utilize Plexin cell-surface receptors to dramatically collapse the actin cytoskeleton and we summarize what is known of the direct molecular and biochemical mechanisms of Sema-triggered actin filament (F-actin) disassembly. We also discuss new observations from our lab that reveal that the multi-domain oxidoreductase (Redox) enzyme MICAL, an important mediator of Sema/Plexin repulsion, is a novel F-actin disassembly factor. Our results indicate that MICAL triggers Sema/Plexin-mediated reorganization of the F-actin cytoskeleton and suggest a role for specific Redox signaling events in regulating actin dynamics.
PMCID: PMC3612987  PMID: 21800438
Actin Depolymerization; Signal Transduction to the Actin Cytoskeleton; Repulsive Signaling; Motility; Navigation; Axon Guidance and Cell Morphology
20.  Unexpected combinations of null mutations in genes encoding the actin cytoskeleton are lethal in yeast. 
Molecular Biology of the Cell  1993;4(5):459-468.
To understand the role of the actin cytoskeleton in cell physiology, and how actin-binding proteins regulate the actin cytoskeleton in vivo, we and others previously identified actin-binding proteins in Saccharomyces cerevisiae and studied the effect of null mutations in the genes for these proteins. A null mutation of the actin gene (ACT1) is lethal, but null mutations in the tropomyosin (TPM1), fimbrin (SAC6), Abp1p (ABP1), and capping protein (CAP1 and CAP2) genes have relatively mild or no effects. We have now constructed double and triple mutants lacking 2 or 3 of these actin-binding proteins, and studied the effect of the combined mutations on cell growth, morphology, and organization of the actin cytoskeleton. Double mutants lacking fimbrin and either Abp1p or capping protein show negative synthetic effects on growth, in the most extreme case resulting in lethality. All other combinations of double mutations and the triple mutant lacking tropomyosin, Abp1p, and capping protein, are viable and their phenotypes are similar to or only slightly more severe than those of the single mutants. Therefore, the synthetic phenotypes are highly specific. We confirmed this specificity by overexpression of capping protein and Abp1p in strains lacking fimbrin. Thus, while overexpression of these proteins has deleterious effects on actin organization in wild-type strains, no synthetic phenotype was observed in the absence of fimbrin. We draw two important conclusions from these results. First, since mutations in pairs of actin-binding protein genes cause inviability, the actin cytoskeleton of yeast does not contain a high degree of redundancy. Second, the lack of structural and functional homology among these genetically redundant proteins (fimbrin and capping protein or Abp1p) indicates that they regulate the actin cytoskeleton by different mechanisms. Determination of the molecular basis for this surprising conclusion will provide unique insights into the essential mechanisms that regulate the actin cytoskeleton.
PMCID: PMC300950  PMID: 8334302
21.  Aip1 and Cofilin Promote Rapid Turnover of Yeast Actin Patches and Cables: A Coordinated Mechanism for Severing and Capping Filaments 
Molecular Biology of the Cell  2006;17(7):2855-2868.
Rapid turnover of actin structures is required for dynamic remodeling of the cytoskeleton and cell morphogenesis, but the mechanisms driving actin disassembly are poorly defined. Cofilin plays a central role in promoting actin turnover by severing/depolymerizing filaments. Here, we analyze the in vivo function of a ubiquitous actin-interacting protein, Aip1, suggested to work with cofilin. We provide the first demonstration that Aip1 promotes actin turnover in living cells. Further, we reveal an unanticipated role for Aip1 and cofilin in promoting rapid turnover of yeast actin cables, dynamic structures that are decorated and stabilized by tropomyosin. Through systematic mutagenesis of Aip1 surfaces, we identify two well-separated F-actin–binding sites, one of which contributes to actin filament binding and disassembly specifically in the presence of cofilin. We also observe a close correlation between mutations disrupting capping of severed filaments in vitro and reducing rates of actin turnover in vivo. We propose a model for balanced regulation of actin cable turnover, in which Aip1 and cofilin function together to “prune” tropomyosin-decorated cables along their lengths. Consistent with this model, deletion of AIP1 rescues the temperature-sensitive growth and loss of actin cable defects of tpm1Δ mutants.
PMCID: PMC1483024  PMID: 16611742
22.  Regulation of podocyte actin dynamics by calcium 
Seminars in nephrology  2012;32(4):319-326.
Ca2+− mediated remodeling of the actin cytoskeleton is a dynamic process that regulates cell motility through the modulation of Rho GTPase signaling. Kidney podocytes are unique, pericyte-like, cells with a complex cellular organization consisting of a cell body, major processes, and foot processes (FP). The FPs form a characteristic interdigitating pattern with FPs of neighboring podocytes leaving in between the filtration slits that are covered by the slit diaphragm (SD). The actin-based FP and the SD form the final barrier to proteinuria. Mutations affecting several podocyte proteins cause disruption of the filtration barrier and rearrangement of the highly dynamic podocyte actin cytoskeleton. Proteins regulating the plasticity of the podocyte actin cytoskeleton are therefore of critical importance for sustained kidney barrier function [1]. Dynamic regulation of the actin-based contractile apparatus in podocyte FPs is essential for sustained kidney filter function [2]. Thus, the podocyte represents an excellent model system to study calcium signaling and actin dynamics in a physiologic context. Here we discuss the regulation of podocyte actin dynamics by angiotensin or bradykinin mediated calcium influx and downstream Rho GTPase signaling pathways and how these pathways are operative in other cells including fibroblasts and cancer cells.
PMCID: PMC3581337  PMID: 22958486
Cdc42; fibroblasts; synaptopodin; TRPC channels; Rac1; RhoA; tropomyosin
23.  Catenins: Playing Both Sides of the Synapse 
Current opinion in cell biology  2007;19(5):551-556.
Synapses of the central nervous system (CNS) are specialized cell-cell junctions that mediate intercellular signal transmission from one neuron to another. The directional nature of signal relay requires that synaptic contacts are morphologically asymmetric with distinct protein components, while changes in synaptic communication during neural network formation require synapses to be plastic. Synapse morphology and plasticity require a dynamic actin cytoskeleton. Classical cadherins, which are junctional proteins associated with the actin cytoskeleton, localize to synapses and regulate synaptic adhesion, stability and remodeling. The major intracellular components of cadherin junctions are the catenin proteins, and increasing evidence suggests that cadherin-catenin complexes modulate an array of synaptic processes. Here we review the role of catenins in regulating the development of pre- and postsynaptic compartments and function in synaptic plasticity, with particular focus on their role in regulating the actin cytoskeleton.
PMCID: PMC2674286  PMID: 17936606
24.  Nuclear actin and actin-binding proteins in the regulation of transcription and gene expression 
The FEBS journal  2009;276(10):2669-2685.
Nuclear actin is involoved in transcription of all three RNA polymerases, chromatin remodeling, and formation of hnRNP complexes as well as recruitment of histone modifier to the active gene. In addition, actin-binding proteins (ABPs) control actin nucleation, bundling, filament capping, fragmentation, and monomer availability in the cytoplasm. In recent years, more and more attention is on the role of actin and ABPs in the modulation of the subcellular localization of transcriptional regulators. This review focuses on the recent developments about transcription and transcriptional regulation by nuclear actin, regulation of muscle-specific gene expression, nuclear receptor and transcription complexes by ABPs. Among them, STARS and ABLIM regulate actin dynamics and SRF-dependent muscle-specific gene expression. Functionally and structurally unrelated cytoplasmic ABPs interact cooperatively with nuclear receptor and regulate its transactivation. Furthermore, ABPs also participate in the formation of transcription complexes.
PMCID: PMC2978034  PMID: 19459931
nuclear actin; actin-binding protein; actin dynamics; transcription complex; gene regulation
25.  Effect of actin-binding protein on the sedimentation properties of actin 
The Journal of Cell Biology  1982;94(1):51-55.
Actin and actin-binding protein (ABP) have recently been purified from human platelet cytoskeletons (S. Rosenberg, A. Stracher, and R.C. Lucas, 1981, J. Cell Biol. 91:201-211). Here, the effect of ABP on the sedimentation of actin was studied. When ABP was added to preformed F- actin filaments, it bound until a maximum ratio of 1:9 (ABP:actin, mol:mol) was reached. however, when actin was polymerized in the presence of ABP, two and a half times more ABP was able to bind to the actin- that is, every 3.4 actin monomers were now bound by an ABP dimer. ABP was not able to induce the sedimentation of actin under nonpolymerizing conditions but was able to reduce the time and concentration of actin required for sedimentation under slow polymerizing conditions. ABP, therefore, exerts its effect of G-actin by either nucleating polymerization or by cross-linking newly formed oligomers into a more sedimentable form.
PMCID: PMC2112186  PMID: 6889604

Results 1-25 (847629)