Search tips
Search criteria

Results 1-25 (1344542)

Clipboard (0)

Related Articles

1.  A Novel Pseudopodial Component of the Dendritic Cell Anti-Fungal Response: The Fungipod 
PLoS Pathogens  2010;6(2):e1000760.
Fungal pathologies are seen in immunocompromised and healthy humans. C-type lectins expressed on immature dendritic cells (DC) recognize fungi. We report a novel dorsal pseudopodial protrusion, the “fungipod”, formed by DC after contact with yeast cell walls. These structures have a convoluted cell-proximal end and a smooth distal end. They persist for hours, exhibit noticeable growth and total 13.7±5.6 µm long and 1.8±0.67 µm wide at the contact. Fungipods contain clathrin and an actin core surrounded by a sheath of cortactin. The actin cytoskeleton, but not microtubules, is required for fungipod integrity and growth. An apparent rearward flow (225±55 nm/second) exists from the zymosan contact site into the distal fungipod. The phagocytic receptor Dectin-1 is not required for fungipod formation, but CD206 (Mannose Receptor) is the generative receptor for these protrusions. The human pathogen Candida parapsilosis induces DC fungipod formation strongly, but the response is species specific since the related fungal pathogens Candida tropicalis and Candida albicans induce very few and no fungipods, respectively. Our findings show that fungipods are dynamic actin-driven cellular structures involved in fungal recognition by DC. They may promote yeast particle phagocytosis by DC and are a specific response to large (i.e., 5 µm) particulate ligands. Our work also highlights the importance of this novel protrusive structure to innate immune recognition of medically significant Candida yeasts in a species specific fashion.
Author Summary
Yeasts are normal microbial commensals of humans and a significant source of opportunistic infections, especially in immunocompromised individuals. We report a novel cellular protrusive structure, the fungipod, which participates in the host-microbe interaction between human immature dendritic cells (DC) and yeasts. The fungipod's structure is based on and propelled by a robust process of local actin cytoskeleton growth at the DC-yeast contact site, and this cytoskeletal remodeling results in a durable tubular structure over 10 µm long connecting the dorsal DC membrane and yeast. The fungal cell wall polysaccharides mannan and chitin trigger fungipod formation by stimulating the carbohydrate pattern recognition receptor CD206. Fungipods are part of a specific response to large particulate objects (i.e., yeast), and they may promote the human immature DC's relatively poor phagocytosis of yeast. The human fungal pathogen, Candida parapsilosis, induces a strong fungipod response from DC, and this response is highly species specific since the related pathogens Candida albicans and Candida tropicalis induce fungipods rarely. Our work highlights a novel cell biological element of fungal recognition by the innate immune system.
PMCID: PMC2820528  PMID: 20169183
2.  Fungal pathogens—a sweet and sour treat for toll-like receptors 
Hundred-thousands of fungal species are present in our environment, including normal colonizers that constitute part of the human microbiota. The homeostasis of host-fungus interactions encompasses efficient fungal sensing, tolerance at mucosal surfaces, as well as antifungal defenses. Decrease in host immune fitness or increase in fungal burden may favor pathologies, ranging from superficial mucocutaneous diseases to invasive life-threatening fungal infections. Toll-like receptors (TLRs) are essential players in this balance, due to their ability to control both inflammatory and anti-inflammatory processes upon recognition of fungal-specific pathogen-associated molecular patterns (PAMPs). Certain members of the TLR family participate to the initial recognition of fungal PAMPs on the cell surface, as well as inside phagosomes of innate immune cells. Active signaling cascades in phagocytes ultimately enable fungus clearance and the release of cytokines that shape and instruct other innate immune cells and the adaptive immune system. Some TLRs cooperate with other pattern recognition receptors (PRRs) (e.g., C-type lectins and Galectins), thus allowing for a tailored immune response. The spatio-temporal and physiological contributions of individual TLRs in fungal infections remains ill-defined, although in humans, TLR gene polymorphisms have been linked to increased susceptibility to fungal infections. This review focuses entirely on the role of TLRs that control the host susceptibility to environmental fungi (e.g., Aspergillus, Cryptoccocus, and Coccidoides), as well as to the most frequent human fungal pathogens represented by the commensal Candida species. The emerging roles of TLRs in modulating host tolerance to fungi, and the strategies that evolved in some of these fungi to evade or use TLR recognition to their advantage will also be discussed, as well as their potential suitability as targets in vaccine therapies.
PMCID: PMC3504294  PMID: 23189270
fungal pathogens; TLRs; phagocytes; APCs; hematopoietic cells; epithelial cells
3.  Innate Immune Recognition of Yersinia pseudotuberculosis Type III Secretion 
PLoS Pathogens  2009;5(12):e1000686.
Specialized protein translocation systems are used by many bacterial pathogens to deliver effector proteins into host cells that interfere with normal cellular functions. How the host immune system recognizes and responds to this intrusive event is not understood. To address these questions, we determined the mammalian cellular response to the virulence-associated type III secretion system (T3SS) of the human pathogen Yersinia pseudotuberculosis. We found that macrophages devoid of Toll-like receptor (TLR) signaling regulate expression of 266 genes following recognition of the Y. pseudotuberculosis T3SS. This analysis revealed two temporally distinct responses that could be separated into activation of NFκB- and type I IFN-regulated genes. Extracellular bacteria were capable of triggering these signaling events, as inhibition of bacterial uptake had no effect on the ensuing innate immune response. The cytosolic peptidoglycan sensors Nod1 and Nod2 and the inflammasome component caspase-1 were not involved in NFκB activation following recognition of the Y. pseudotuberculosis T3SS. However, caspase-1 was required for secretion of the inflammatory cytokine IL-1β in response to T3SS-positive Y. pseudotuberculosis. In order to characterize the bacterial requirements for induction of this novel TLR-, Nod1/2-, and caspase-1-independent response, we used Y. pseudotuberculosis strains lacking specific components of the T3SS. Formation of a functional T3SS pore was required, as bacteria expressing a secretion needle, but lacking the pore-forming proteins YopB or YopD, did not trigger these signaling events. However, nonspecific membrane disruption could not recapitulate the NFκB signaling triggered by Y. pseudotuberculosis expressing a functional T3SS pore. Although host cell recognition of the T3SS did not require known translocated substrates, the ensuing response could be modulated by effectors such as YopJ and YopT, as YopT amplified the response, while YopJ dampened it. Collectively, these data suggest that combined recognition of the T3SS pore and YopBD-mediated delivery of immune activating ligands into the host cytosol informs the host cell of pathogenic challenge. This leads to a unique, multifactorial response distinct from the canonical immune response to a bacterium lacking a T3SS.
Author Summary
Most multicellular organisms have immune sensors that recognize molecules common among microorganisms. Recognition of such molecules informs the host that invading microbes are present, triggering an immune response. Many known innate immune sensors, however, do not appear to distinguish commensals from pathogens. This is in spite of the fact that the host must clear pathogens while simultaneously avoiding a response to benign or beneficial microbes. There are few molecular explanations for how this discrimination occurs in mammalian hosts. To address this problem, we analyzed the response of mammalian cells to the gut pathogen Yersinia pseudotuberculosis. We found that Yersinia expressing a virulence-associated secretion system caused a transcriptional response in host cells that was very different from the response to a strain with a nonfunctional version of the secretion system. This transcriptional response included several distinct signaling pathways leading to production of mediators of innate immunity, including cytokines such as type I interferon and TNF-α. A large number of pathogens express specialized secretion systems similar to that in Yersinia, so these findings provide evidence that there is a mammalian immune response to alterations in host cells that results from pathogen attack, supporting known systems for recognition of common microbial molecules.
PMCID: PMC2779593  PMID: 19997504
4.  Dynamic, Morphotype-Specific Candida albicans β-Glucan Exposure during Infection and Drug Treatment 
PLoS Pathogens  2008;4(12):e1000227.
Candida albicans, a clinically important dimorphic fungal pathogen that can evade immune attack by masking its cell wall β-glucan from immune recognition, mutes protective host responses mediated by the Dectin-1 β-glucan receptor on innate immune cells. Although the ability of C. albicans to switch between a yeast- or hyphal-form is a key virulence determinant, the role of each morphotype in β-glucan masking during infection and treatment has not been addressed. Here, we show that during infection of mice, the C. albicans β-glucan is masked initially but becomes exposed later in several organs. At all measured stages of infection, there is no difference in β-glucan exposure between yeast-form and hyphal cells. We have previously shown that sub-inhibitory doses of the anti-fungal drug caspofungin can expose β-glucan in vitro, suggesting that the drug may enhance immune activity during therapy. This report shows that caspofungin also mediates β-glucan unmasking in vivo. Surprisingly, caspofungin preferentially unmasks filamentous cells, as opposed to yeast form cells, both in vivo and in vitro. The fungicidal activity of caspofungin in vitro is also filament-biased, as corroborated using yeast-locked and hyphal-locked mutants. The uncloaking of filaments is not a general effect of anti-fungal drugs, as another anti-fungal agent does not have this effect. These results highlight the advantage of studying host–pathogen interaction in vivo and suggest new avenues for drug development.
Author Summary
Candida is a common human commensal but disseminated candidiasis is a serious clinical problem, especially among immunocompromised patients. The innate immune system controls Candida infection, in part through the germline-encoded β-glucan receptor Dectin-1. However, during in vitro growth, Candida albicans mutes Dectin-1 recognition by cloaking its β-glucan underneath a layer of mannan. Bridging these two seemingly contradictory observations, we demonstrate that C. albicans masks β-glucan early during infection, but it becomes exposed later, allowing Dectin-1 to recognize the fungi and mediate immunity. Remarkably, treatment of mice with sub-therapeutic doses of the antifungal drug caspofungin causes exposure of β-glucan on C. albicans even when it would not be exposed naturally. We introduce a new technique for monitoring of epitope exposure during infection, which can be used to monitor the availability of any epitope for immune recognition. This technique allowed us to show that natural unmasking of β-glucan is not morphotype-specific, but drug-mediated unmasking is biased towards the invasive filamentous form of C. albicans. These results highlight the unexplored area of dynamic epitope exposure during infection and therapy, which might be targetable to enhance immune recognition and fungal clearance.
PMCID: PMC2587227  PMID: 19057660
5.  Fungal Chitin Dampens Inflammation through IL-10 Induction Mediated by NOD2 and TLR9 Activation 
PLoS Pathogens  2014;10(4):e1004050.
Chitin is an essential structural polysaccharide of fungal pathogens and parasites, but its role in human immune responses remains largely unknown. It is the second most abundant polysaccharide in nature after cellulose and its derivatives today are widely used for medical and industrial purposes. We analysed the immunological properties of purified chitin particles derived from the opportunistic human fungal pathogen Candida albicans, which led to the selective secretion of the anti-inflammatory cytokine IL-10. We identified NOD2, TLR9 and the mannose receptor as essential fungal chitin-recognition receptors for the induction of this response. Chitin reduced LPS-induced inflammation in vivo and may therefore contribute to the resolution of the immune response once the pathogen has been defeated. Fungal chitin also induced eosinophilia in vivo, underpinning its ability to induce asthma. Polymorphisms in the identified chitin receptors, NOD2 and TLR9, predispose individuals to inflammatory conditions and dysregulated expression of chitinases and chitinase-like binding proteins, whose activity is essential to generate IL-10-inducing fungal chitin particles in vitro, have also been linked to inflammatory conditions and asthma. Chitin recognition is therefore critical for immune homeostasis and is likely to have a significant role in infectious and allergic disease.
Authors Summary
Chitin is the second most abundant polysaccharide in nature after cellulose and an essential component of the cell wall of all fungal pathogens. The discovery of human chitinases and chitinase-like binding proteins indicates that fungal chitin is recognised by cells of the human immune system, shaping the immune response towards the invading pathogen. We show that three immune cell receptors– the mannose receptor, NOD2 and TLR9 recognise chitin and act together to mediate an anti-inflammatory response via secretion of the cytokine IL-10. This mechanism may prevent inflammation-based damage during fungal infection and restore immune balance after an infection has been cleared. By increasing the chitin content in the cell wall pathogenic fungi may influence the immune system in their favour, by down-regulating protective inflammatory immune responses. Furthermore, gene mutations and dysregulated enzyme activity in the described chitin recognition pathway are implicated in inflammatory conditions such as Crohn's Disease and asthma, highlighting the importance of the discovered mechanism in human health.
PMCID: PMC3983064  PMID: 24722226
6.  A New Tool to Quantify Receptor Recruitment to Cell Contact Sites during Host-Pathogen Interaction 
PLoS Computational Biology  2014;10(5):e1003639.
To understand the process of innate immune fungal recognition, we developed computational tools for the rigorous quantification and comparison of receptor recruitment and distribution at cell-cell contact sites. We used these tools to quantify pattern recognition receptor spatiotemporal distributions in contacts between primary human dendritic cells and the fungal pathogens C. albicans, C. parapsilosis and the environmental yeast S. cerevisiae, imaged using 3D multichannel laser scanning confocal microscopy. The detailed quantitative analysis of contact sites shows that, despite considerable biochemical similarity in the composition and structure of these species' cell walls, the receptor spatiotemporal distribution in host-microbe contact sites varies significantly between these yeasts. Our findings suggest a model where innate immune cells discriminate fungal microorganisms based on differential mobilization and coordination of receptor networks. Our analysis methods are also broadly applicable to a range of cell-cell interactions central to many biological problems.
Author Summary
Specialized cell-cell contacts are a common theme in cell biology. These structures increase sensitivity and specificity of cellular activation and information flow in contexts ranging from activation of immune responses to transmission of nerve action potentials. Candida species fungal pathogens are responsible for significant morbidity associated with mucocutaneous infections as well as mortality () caused by bloodstream infections. The initial contact between innate immune cells and Candida results in a cell-cell contact between host and microbe. Leukocytes mobilize a network of receptors to these contact sites, and these receptors collaborate to recognize molecular patterns characteristic of microbial surfaces. Receptor recruitment, activation, and cross-talk are critical determinants of the evolution of signaling that directs the activation of downstream immune responses. However, host-pathogen contacts with fungi are complex and variable, and accurate quantification of receptor distribution in space and time is difficult with existing image analysis tools. Therefore, we have developed computational algorithms and a user interface that allows the scientist to both visualize and quantify receptor distribution in and recruitment to cell-cell contacts. We have used this software to show significant differences in contact site receptor accumulation and organization for three different host-fungal contact sites with environmental and pathogenic fungi. We also explored the correlation of contact site characteristics with the important functional outcome of phagocytosis.
PMCID: PMC4038466  PMID: 24874253
7.  Murine Dendritic Cells Transcriptional Modulation upon Paracoccidioides brasiliensis Infection 
Limited information is available regarding the modulation of genes involved in the innate host response to Paracoccidioides brasiliensis, the etiologic agent of paracoccidioidomycosis. Therefore, we sought to characterize, for the first time, the transcriptional profile of murine bone marrow-derived dendritic cells (DCs) at an early stage following their initial interaction with P. brasiliensis. DCs connect innate and adaptive immunity by recognizing invading pathogens and determining the type of effector T-cell that mediates an immune response. Gene expression profiles were analyzed using microarray and validated using real-time RT-PCR and protein secretion studies. A total of 299 genes were differentially expressed, many of which are involved in immunity, signal transduction, transcription and apoptosis. Genes encoding the cytokines IL-12 and TNF-α, along with the chemokines CCL22, CCL27 and CXCL10, were up-regulated, suggesting that P. brasiliensis induces a potent proinflammatory response in DCs. In contrast, pattern recognition receptor (PRR)-encoding genes, particularly those related to Toll-like receptors, were down-regulated or unchanged. This result prompted us to evaluate the expression profiles of dectin-1 and mannose receptor, two other important fungal PRRs that were not included in the microarray target cDNA sequences. Unlike the mannose receptor, the dectin-1 receptor gene was significantly induced, suggesting that this β-glucan receptor participates in the recognition of P. brasiliensis. We also used a receptor inhibition assay to evaluate the roles of these receptors in coordinating the expression of several immune-related genes in DCs upon fungal exposure. Altogether, our results provide an initial characterization of early host responses to P. brasiliensis and a basis for better understanding the infectious process of this important neglected pathogen.
Author Summary
Paracoccidioidomycosis is a systemic disease that has an important mortality and morbidity impact in Latin America, mainly affecting rural workers of Argentina, Colombia, Venezuela and Brazil. Upon host infection, one of the most important aspects contributing to disease outcome is the initial encounter of the Paracoccidioides brasiliensis fungus with dendritic cells. This phagocytic cell is specialized in decoding microbial information and triggering specific immune responses. Thus, using a molecular biology technique to examine the response of thousand of genes, we aimed to identify the ways in which murine dendritic cells interact with P. brasiliensis during an early time point following infection. This approach allowed us to recognize diverse modulated genes, in particular those associated with a proinflamatory response and fungal recognition. Our work provides an initial molecular characterization of early infection process and should promote further investigations into the innate host response to this important fungal pathogen.
PMCID: PMC3250510  PMID: 22235359
8.  The Beta-Glucan Receptor Dectin-1 Recognizes Specific Morphologies of Aspergillus fumigatus 
PLoS Pathogens  2005;1(4):e42.
Alveolar macrophages represent a first-line innate host defense mechanism for clearing inhaled Aspergillus fumigatus from the lungs, yet contradictory data exist as to which alveolar macrophage recognition receptor is critical for innate immunity to A. fumigatus. Acknowledging that the A. fumigatus cell wall contains a high beta-1,3–glucan content, we questioned whether the beta-glucan receptor dectin-1 played a role in this recognition process. Monoclonal antibody, soluble receptor, and competitive carbohydrate blockage indicated that the alveolar macrophage inflammatory response, specifically the production of tumor necrosis factor-α (TNF-α), interleukin-1α (IL-1α), IL-1β, IL-6, CXCL2/macrophage inflammatory protein-2 (MIP-2), CCL3/macrophage inflammatory protein-1α (MIP-1α), granulocyte-colony stimulating factor (G-CSF), and granulocyte monocyte–CSF (GM-CSF), to live A. fumigatus was dependent on recognition via the beta-glucan receptor dectin-1. The inflammatory response was triggered at the highest level by A. fumigatus swollen conidia and early germlings and correlated to the levels of surface-exposed beta glucans, indicating that dectin-1 preferentially recognizes specific morphological forms of A. fumigatus. Intratracheal administration of A. fumigatus conidia to mice in the presence of a soluble dectin-Fc fusion protein reduced both lung proinflammatory cytokine/chemokine levels and cellular recruitment while modestly increasing the A. fumigatus fungal burden, illustrating the importance of beta-glucan–initiated dectin-1 signaling in defense against this pathogen. Collectively, these data show that dectin-1 is centrally required for the generation of alveolar macrophage proinflammatory responses to A. fumigatus and to our knowledge provides the first in vivo evidence for the role of dectin-1 in fungal innate defense.
Individuals with defective immune systems are highly susceptible to infection by parasites, bacteria, viruses, and fungi. Infection by the opportunistic fungal organism Aspergillus fumigatus can be particularly severe in this population. Because many pathogenic microorganisms, including A. fumigatus, enter the body through the lung, it is important to understand the function of its immune system. The alveolar macrophage is one of the first cell types to come in contact with inhaled pathogens. An intense area of research is how lung immune cells—i.e., alveolar macrophages—recognize inhaled pathogens and respond to them. Steele et al. recently discovered that alveolar macrophages express a receptor on their surface, dectin-1, that is essential in recognizing and responding to inhaled fungal pathogens. They now have investigated the interaction between dectin-1 and A. fumigatus to determine how the dectin-1 receptor orchestrates the alveolar macrophage response. They found that alveolar macrophages respond poorly to A. fumigatus when the dectin-1 receptor is blocked. Also, in animal experiments, blocking dectin-1 renders the animals more susceptible to infection with A. fumigatus. This study may lay the foundation for developing new and novel strategies to combat infections caused by A. fumigatus.
PMCID: PMC1311140  PMID: 16344862
9.  The C-Type Lectin Receptor SIGNR3 Binds to Fungi Present in Commensal Microbiota and Influences Immune Regulation in Experimental Colitis 
Inflammatory bowel disease is a condition of acute and chronic inflammation of the gut. An important factor contributing to pathogenesis is a dysregulated mucosal immunity against commensal bacteria and fungi. Host pattern-recognition receptors (PRRs) sense commensals in the gut and are involved in maintaining the balance between controlled responses to pathogens and overwhelming innate immune activation. C-type lectin receptors (CLRs) are PRRs recognizing glycan structures on pathogens and self-antigens. Here we examined the role of the murine CLR specific intracellular adhesion molecule-3 grabbing non-integrin homolog-related 3 (SIGNR3) in the recognition of commensals and its involvement in intestinal immunity. SIGNR3 is the closest murine homolog of the human dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) receptor recognizing similar carbohydrate ligands such as terminal fucose or high-mannose glycans. We discovered that SIGNR3 recognizes fungi present in the commensal microbiota. To analyze whether this interaction impacts the intestinal immunity against microbiota, the dextran sulfate sodium-induced colitis model was employed. SIGNR3−/− mice exhibited an increased weight loss associated with more severe colitis symptoms compared to wild-type control mice. The increased inflammation in SIGNR3−/− mice was accompanied by a higher level of TNF-α in colon. Our findings demonstrate for the first time that SIGNR3 recognizes intestinal fungi and has an immune regulatory role in colitis.
PMCID: PMC3712271  PMID: 23882266
SIGNR3; C-type lectin receptor; host innate immunity; colitis; carbohydrate recognition; microbiota; fungi
10.  A Drug-Sensitive Genetic Network Masks Fungi from the Immune System 
PLoS Pathogens  2006;2(4):e35.
Fungal pathogens can be recognized by the immune system via their β-glucan, a potent proinflammatory molecule that is present at high levels but is predominantly buried beneath a mannoprotein coat and invisible to the host. To investigate the nature and significance of “masking” this molecule, we characterized the mechanism of masking and consequences of unmasking for immune recognition. We found that the underlying β-glucan in the cell wall of Candida albicans is unmasked by subinhibitory doses of the antifungal drug caspofungin, causing the exposed fungi to elicit a stronger immune response. Using a library of bakers' yeast (Saccharomyces cerevisiae) mutants, we uncovered a conserved genetic network that is required for concealing β-glucan from the immune system and limiting the host response. Perturbation of parts of this network in the pathogen C. albicans caused unmasking of its β-glucan, leading to increased β-glucan receptor-dependent elicitation of key proinflammatory cytokines from primary mouse macrophages. By creating an anti-inflammatory barrier to mask β-glucan, opportunistic fungi may promote commensal colonization and have an increased propensity for causing disease. Targeting the widely conserved gene network required for creating and maintaining this barrier may lead to novel broad-spectrum antimycotics.
Opportunistic fungal pathogens such as Candida albicans often cause fatal infections in patients with a compromised immune system. Unfortunately, current drugs often fail to halt fungal disease, are ineffective against drug-resistant strains, and have severe side effects. Despite the clear clinical significance of fungal infections, it is still not understood how fungi are recognized by the immune system. Candida has high levels of the structural molecule β-glucan in its cell wall, but the majority of its β-glucan is masked by a mannoprotein coat and is therefore invisible to the immune system. Masking of β-glucan may be a fungal virulence factor, because exposed β-glucan provokes a proinflammatory response that is important for mounting an effective immune response against the fungus and clearing the infection. By surveying the genome of the model fungus Saccharomyces cerevisiae (bakers' yeast), the authors discovered a genetic network required for masking β-glucan from the immune system. Mutation of genes in this network in C. albicans caused unmasking of β-glucan and an increased immune response to the fungus. The authors also found that sublethal doses of the antifungal drug caspofungin cause unmasking and lead to a greater immune response. Drugs targeting this fungally conserved masking network may provide new tools to fight fungal infections.
PMCID: PMC1447670  PMID: 16652171
11.  Self-Regulation of Candida albicans Population Size during GI Colonization 
PLoS Pathogens  2007;3(12):e184.
Interactions between colonizing commensal microorganisms and their hosts play important roles in health and disease. The opportunistic fungal pathogen Candida albicans is a common component of human intestinal flora. To gain insight into C. albicans colonization, genes expressed by fungi grown within a host were studied. The EFH1 gene, encoding a putative transcription factor, was highly expressed during growth of C. albicans in the intestinal tract. Counterintuitively, an efh1 null mutant exhibited increased colonization of the murine intestinal tract, a model of commensal colonization, whereas an EFH1 overexpressing strain exhibited reduced colonization of the intestinal tract and of the oral cavity of athymic mice, the latter situation modeling human mucosal candidiasis. When inoculated into the bloodstream of mice, both efh1 null and EFH1 overexpressing strains caused lethal infections. In contrast, other mutants are attenuated in virulence following intravenous inoculation but exhibited normal levels of intestinal colonization. Finally, although expression of several genes is dependent on transcription factor Efg1p during laboratory growth, Efg1p-independent expression of these genes was observed during growth within the murine intestinal tract. These results show that expression of EFH1 regulated the level of colonizing fungi, favoring commensalism as opposed to candidiasis. Also, different genes are required in different host niches and the pathway(s) that regulates gene expression during host colonization can differ from well-characterized pathways used during laboratory growth.
Author Summary
Although the fungus Candida albicans commonly colonizes the human gastrointestinal tract as a commensal, the organism is also an opportunistic pathogen, responsible for a wide range of infections in immunocompromised persons. While numerous studies of infection have been conducted, few studies have analyzed the commensal state. The studies described here analyze C. albicans cells colonizing the intestinal tract of immunocompetent mice in the absence of disease, a model for commensalism. Results showed that expression of the putative transcription factor Efh1p by cells colonizing the intestinal tract was relatively high, but paradoxically, expression of Efh1p was associated with lower colonization. Efh1p had no detectable effect on the ability of C. albicans to cause lethal disseminated infection in mice. In contrast, Rbt1p and Rbt4p, two proteins of poorly defined function required for normal disseminated infection, were not required for intestinal colonization. These results argue that the commensal state is distinct from the pathogenic state and that different factors are important in different states. Also, the regulation of expression of genes RBT1, RBT4, and ECE1 during intestinal colonization differed from their well-characterized regulation during laboratory growth. Further studies of commensal colonization are needed to understand this important stage of C. albicans biology.
PMCID: PMC2134954  PMID: 18069889
12.  Candida albicans β-Glucan Exposure Is Controlled by the Fungal CEK1-Mediated Mitogen-Activated Protein Kinase Pathway That Modulates Immune Responses Triggered through Dectin-1 ▿ †  
Infection and Immunity  2010;78(4):1426-1436.
Innate immunity to Candida albicans depends upon the recognition of molecular patterns on the fungal cell wall. However, the masking of major components such as β-glucan seems to be a mechanism that fungi have evolved to avoid immune cell recognition through the dectin-1 receptor. Although the role of C. albicans mitogen-activated protein kinase (MAPK) pathways as virulence determinants has been established previously with animal models, the mechanism involved in this behavior is largely unknown. In this study we demonstrate that a disruption of the C. albicans extracellular signal-regulated kinase (ERK)-like 1 (CEK1)-mediated MAPK pathway causes enhanced cell wall β-glucan exposure, triggering immune responses more efficiently than the wild type, as measured by dectin-1-mediated specific binding and human dendritic cell (hDC)- and macrophage-mediated phagocytosis, killing, and activation of intracellular signaling pathways. At the molecular level, the disruption of CEK1 resulted in altered spleen tyrosine kinase (Syk), Raf-1, and ERK1/2 activations together with IκB degradation on hDCs and increased dectin-1-dependent activator protein 1 (AP-1) activation on transfected cells. In addition, concurring with these altered pathways, we detected increased reactive oxygen species production and cytokine secretion. In conclusion, the CEK1-mediated MAPK pathway is involved in β-glucan exposure in a fungal pathogen, hence influencing dectin-1-dependent immune cell recognition, thus establishing this fungal intracellular signaling route as a promising novel therapeutic target.
PMCID: PMC2849429  PMID: 20100861
13.  N-acetylglucosamine (GlcNAc) Triggers a Rapid, Temperature-Responsive Morphogenetic Program in Thermally Dimorphic Fungi 
PLoS Genetics  2013;9(9):e1003799.
The monosaccharide N-acetylglucosamine (GlcNAc) is a major component of microbial cell walls and is ubiquitous in the environment. GlcNAc stimulates developmental pathways in the fungal pathogen Candida albicans, which is a commensal organism that colonizes the mammalian gut and causes disease in the setting of host immunodeficiency. Here we investigate GlcNAc signaling in thermally dimorphic human fungal pathogens, a group of fungi that are highly evolutionarily diverged from C. albicans and cause disease even in healthy individuals. These soil organisms grow as polarized, multicellular hyphal filaments that transition into a unicellular, pathogenic yeast form when inhaled by a human host. Temperature is the primary environmental cue that promotes reversible cellular differentiation into either yeast or filaments; however, a shift to a lower temperature in vitro induces filamentous growth in an inefficient and asynchronous manner. We found GlcNAc to be a potent and specific inducer of the yeast-to-filament transition in two thermally dimorphic fungi, Histoplasma capsulatum and Blastomyces dermatitidis. In addition to increasing the rate of filamentous growth, micromolar concentrations of GlcNAc induced a robust morphological transition of H. capsulatum after temperature shift that was independent of GlcNAc catabolism, indicating that fungal cells sense GlcNAc to promote filamentation. Whole-genome expression profiling to identify candidate genes involved in establishing the filamentous growth program uncovered two genes encoding GlcNAc transporters, NGT1 and NGT2, that were necessary for H. capsulatum cells to robustly filament in response to GlcNAc. Unexpectedly, NGT1 and NGT2 were important for efficient H. capsulatum yeast-to-filament conversion in standard glucose medium, suggesting that Ngt1 and Ngt2 monitor endogenous levels of GlcNAc to control multicellular filamentous growth in response to temperature. Overall, our work indicates that GlcNAc functions as a highly conserved cue of morphogenesis in fungi, which further enhances the significance of this ubiquitous sugar in cellular signaling in eukaryotes.
Author Summary
In stark contrast to most fungal pathogens, thermally dimorphic fungal pathogens cause systemic infections in immunocompetent humans. Thermally dimorphic fungi grow in the soil as a multicellular filamentous form specialized for replication in this particular environmental niche. Upon infection of a human, these fungi transition to a parasitic cell type that is adapted for replication and pathogenesis within a mammalian host. In this work, we examined factors that are important for growth of the infectious, environmental form of thermally dimorphic fungi. We discovered that N-acetylglucosamine (GlcNAc), a ubiquitous carbohydrate with cellular roles across all kingdoms of life, stimulated a switch to the environmental form for two thermally dimorphic fungal pathogens, Histoplasma capsulatum and Blastomyces dermatitidis. Analysis of how fungal cells respond to GlcNAc revealed that these fungi possess two GlcNAc transporters that are important for controlling their ability to switch between infectious and parasitic states. Overall, our work begins to elucidate the pathways that promote growth in the infectious form of these organisms, which is critical to our understanding of environmental signals that promote disease transmission of thermally dimorphic fungi.
PMCID: PMC3778022  PMID: 24068964
14.  Fungal Recognition Enhances Mannose Receptor Shedding through Dectin-1 Engagement* 
The Journal of Biological Chemistry  2011;286(10):7822-7829.
The mannose receptor (MR) is an endocytic type I membrane molecule with a broad ligand specificity that is involved in both hemostasis and pathogen recognition. Membrane-anchored MR is cleaved by a metalloproteinase into functional soluble MR (sMR) composed of the extracellular domains of intact MR. Although sMR production was initially considered a constitutive process, enhanced MR shedding has been observed in response to the fungal pathogen Pneumocystis carinii. In this work, we have investigated the mechanism mediating enhanced MR shedding in response to fungi. We show that other fungal species, including Candida albicans and Aspergillus fumigatus, together with zymosan, a preparation of the cell wall of Saccharomyces cerevisiae, mimic the effect of P. carinii on sMR production and that this effect takes place mainly through β-glucan recognition. Additionally, we demonstrate that MR cleavage in response to C. albicans and bioactive particulate β-glucan requires expression of dectin-1. Our data, obtained using specific inhibitors, are consistent with the canonical Syk-mediated pathway triggered by dectin-1 being mainly responsible for inducing MR shedding, with Raf-1 being partially involved. As in the case of steady-state conditions, MR shedding in response to C. albicans and β-glucan particles requires metalloprotease activity. The induction of MR shedding by dectin-1 has clear implications for the role of MR in fungal recognition, as sMR was previously shown to retain the ability to bind fungal pathogens and can interact with numerous host molecules, including lysosomal hydrolases. Thus, MR cleavage could also impact on the magnitude of inflammation during fungal infection.
PMCID: PMC3048669  PMID: 21205820
ADAM; ADAMTS; Fungi; Inflammation; Lectin; Macrophage; Metalloprotease; Mouse; Shedding
15.  Commensal-Induced Regulatory T Cells Mediate Protection against Pathogen-Stimulated NF-κB Activation 
PLoS Pathogens  2008;4(8):e1000112.
Host defence against infection requires a range of innate and adaptive immune responses that may lead to tissue damage. Such immune-mediated pathologies can be controlled with appropriate T regulatory (Treg) activity. The aim of the present study was to determine the influence of gut microbiota composition on Treg cellular activity and NF-κB activation associated with infection. Mice consumed the commensal microbe Bifidobacterium infantis 35624 followed by infection with Salmonella typhimurium or injection with LPS. In vivo NF-κB activation was quantified using biophotonic imaging. CD4+CD25+Foxp3+ T cell phenotypes and cytokine levels were assessed using flow cytometry while CD4+ T cells were isolated using magnetic beads for adoptive transfer to naïve animals. In vivo imaging revealed profound inhibition of infection and LPS induced NF-κB activity that preceded a reduction in S. typhimurium numbers and murine sickness behaviour scores in B. infantis–fed mice. In addition, pro-inflammatory cytokine secretion, T cell proliferation, and dendritic cell co-stimulatory molecule expression were significantly reduced. In contrast, CD4+CD25+Foxp3+ T cell numbers were significantly increased in the mucosa and spleen of mice fed B. infantis. Adoptive transfer of CD4+CD25+ T cells transferred the NF-κB inhibitory activity. Consumption of a single commensal micro-organism drives the generation and function of Treg cells which control excessive NF-κB activation in vivo. These cellular interactions provide the basis for a more complete understanding of the commensal-host-pathogen trilogue that contribute to host homeostatic mechanisms underpinning protection against aberrant activation of the innate immune system in response to a translocating pathogen or systemic LPS.
Author Summary
The normal response to infection is rapid and effective clearance of pathogenic microbes. However, this immune response may occasionally cause collateral inflammatory damage to host tissue and in severe cases, such as systemic sepsis, results in organ failure. Various cellular mechanisms, including regulatory T cells, protect against aggressive immune responses. However, environmental agents which promote regulatory T cells are not well understood. We and others have previously shown that non-pathogenic or commensal micro-organisms can protect the host from aberrant pro-inflammatory activity within the gut, but the influence of these microbes on regulatory T cells in the context of systemic infection has not been examined. In this study, we demonstrate that consumption of a single commensal bacterium induces regulatory T cells in vivo which protect the host from pathogen-induced inflammatory responses by limiting activation of the pro-inflammatory transcription factor NF-κB via the toll-like receptor 4 (TLR-4) pathway. This report conclusively demonstrates a cellular and molecular basis for the commensal-host-pathogen trilogue resulting in enhanced protection from systemic infection whilst limiting pro-inflammatory damage mediated by activation of the innate immune system.
PMCID: PMC2474968  PMID: 18670628
16.  Use of Fungal Derived Polysaccharide-Conjugated Particles to Probe Dectin-1 Responses in Innate Immunity 
Integrative Biology  2011;4(2):220-227.
The number of life-threatening fungal infections has risen in immunocompromised patients, and identification of the rules that govern an appropriate immune response is essential to develop better diagnostics and targeted therapeutics. The outer cell wall component on pathogenic fungi consists of β-1,3-glucan, and Dectin-1, a pattern recognition receptor present on the cell surface of innate immune cells, binds specifically to this carbohydrate. A barrier in understanding the exact immunological response to pathogen-derived carbohydrate epitopes is the presence of multiple types of carbohydrate moieties on fungal cell walls. To dissect the immunological mechanisms used to recognize pathogens, a system of “fungal like particles” was developed that consisted of polystyrene beads, which mimicked the three dimensional shape of the fungus, coated covalently with purified β-1,3-glucan derived from Saccharomyces cerevisiae. The morphology of the β-1,3-glucan layer was examined by immunofluorescence, flow cytometery, and immuno-transmission electron microscopy. The covalent linkages of the β-1,3-glucan to the polystyrene surface were stable after subjecting the beads to detergents. By pre-treating β-1,3-glucan beads with laminarinase, a specific β-1,3-gluconase, the reactivity of the anti-β-1,3-glucan antibody was abrogated in comparison to treatment with proteinase K indicating that the coating of these beads was predominantly β-1,3-glucan. TNF-α was also measured by stimulating bone-marrow derived macrophages with the β-1,3-glucan beads, and showed a dose dependent response compared to soluble β-glucan, insoluble β-1,3-glucan, uncoated beads, and soluble β-1,3-glucan mixed with uncoated beads. Finally, β-1,3-glucan beads were incubated with GFP-Dectin-1 expressing macrophages and imaged using confocal microscopy. β-1,3-beads were taken up within minutes and retained Dectin-1 recruitment to the phagosome as compared to uncoated beads. This data describes a unique fungal-like particle system that will permit immunologists to probe the critical steps in early recognition of pathogen-derived fungal carbohydrate antigens by innate immune cells.
PMCID: PMC3346694  PMID: 22200052
17.  Cell Cycle-Independent Phospho-Regulation of Fkh2 during Hyphal Growth Regulates Candida albicans Pathogenesis 
PLoS Pathogens  2015;11(1):e1004630.
The opportunistic human fungal pathogen, Candida albicans, undergoes morphological and transcriptional adaptation in the switch from commensalism to pathogenicity. Although previous gene-knockout studies have identified many factors involved in this transformation, it remains unclear how these factors are regulated to coordinate the switch. Investigating morphogenetic control by post-translational phosphorylation has generated important regulatory insights into this process, especially focusing on coordinated control by the cyclin-dependent kinase Cdc28. Here we have identified the Fkh2 transcription factor as a regulatory target of both Cdc28 and the cell wall biosynthesis kinase Cbk1, in a role distinct from its conserved function in cell cycle progression. In stationary phase yeast cells 2D gel electrophoresis shows that there is a diverse pool of Fkh2 phospho-isoforms. For a short window on hyphal induction, far before START in the cell cycle, the phosphorylation profile is transformed before reverting to the yeast profile. This transformation does not occur when stationary phase cells are reinoculated into fresh medium supporting yeast growth. Mass spectrometry and mutational analyses identified residues phosphorylated by Cdc28 and Cbk1. Substitution of these residues with non-phosphorylatable alanine altered the yeast phosphorylation profile and abrogated the characteristic transformation to the hyphal profile. Transcript profiling of the phosphorylation site mutant revealed that the hyphal phosphorylation profile is required for the expression of genes involved in pathogenesis, host interaction and biofilm formation. We confirmed that these changes in gene expression resulted in corresponding defects in pathogenic processes. Furthermore, we identified that Fkh2 interacts with the chromatin modifier Pob3 in a phosphorylation-dependent manner, thereby providing a possible mechanism by which the phosphorylation of Fkh2 regulates its specificity. Thus, we have discovered a novel cell cycle-independent phospho-regulatory event that subverts a key component of the cell cycle machinery to a role in the switch from commensalism to pathogenicity.
Author Summary
The fungus Candida albicans is a commensal in the human microbiota, responsible for superficial infections such as oral and vaginal thrush. However, it can become highly virulent, causing life-threatening systemic candidemia in severely immunocompromised patients, including those taking immunosuppressive drugs for transplantation, sufferers of AIDS and neutropenia, and individuals undergoing chemotherapy or at extremes of age. With a rapidly increasing ageing population worldwide, C. albicans and other fungal pathogens will become more prevalent, demanding a greater understanding of their pathogenesis for the development of effective therapeutics. Fungal pathogenicity requires a coordinated change in the pattern of gene expression orchestrated by a set of transcription factors. Here we have discovered that a transcription factor, Fkh2, is modified by phosphorylation under the control of the kinases Cdc28 and Cbk1 in response to conditions that activate virulence factor expression. Fkh2 is involved in a wide variety of cellular processes including cell proliferation, but this phosphorylation endows it with a specialized function in promoting the expression of genes required for tissue invasion, biofilm formation, and pathogenesis in the host. This study highlights the role of protein phosphorylation in regulating pathogenesis and furthers our understanding of the pathogenic switch in this important opportunistic fungal pathogen.
PMCID: PMC4305328  PMID: 25617770
18.  Surface α-1,3-Glucan Facilitates Fungal Stealth Infection by Interfering with Innate Immunity in Plants 
PLoS Pathogens  2012;8(8):e1002882.
Plants evoke innate immunity against microbial challenges upon recognition of pathogen-associated molecular patterns (PAMPs), such as fungal cell wall chitin. Nevertheless, pathogens may circumvent the host PAMP-triggered immunity. We previously reported that the ascomycete Magnaporthe oryzae, a famine-causing rice pathogen, masks cell wall surfaces with α-1,3-glucan during invasion. Here, we show that the surface α-1,3-glucan is indispensable for the successful infection of the fungus by interfering with the plant's defense mechanisms. The α-1,3-glucan synthase gene MgAGS1 was not essential for infectious structure development but was required for infection in M. oryzae. Lack or degradation of surface α-1,3-glucan increased fungal susceptibility towards chitinase, suggesting the protective role of α-1,3-glucan against plants' antifungal enzymes during infection. Furthermore, rice plants secreting bacterial α-1,3-glucanase (AGL-rice) showed strong resistance not only to M. oryzae but also to the phylogenetically distant ascomycete Cochlioborus miyabeanus and the polyphagous basidiomycete Rhizoctonia solani; the histocytochemical analysis of the latter two revealed that α-1,3-glucan also concealed cell wall chitin in an infection-specific manner. Treatment with α-1,3-glucanase in vitro caused fragmentation of infectious hyphae in R. solani but not in M. oryzae or C. miyabeanus, indicating that α-1,3-glucan is also involved in maintaining infectious structures in some fungi. Importantly, rapid defense responses were evoked (a few hours after inoculation) in the AGL-rice inoculated with M. oryzae, C. miyabeanus and R. solani as well as in non-transgenic rice inoculated with the ags1 mutant. Taken together, our results suggest that α-1,3-glucan protected the fungal cell wall from degradative enzymes secreted by plants even from the pre-penetration stage and interfered with the release of PAMPs to delay innate immune defense responses. Because α-1,3-glucan is nondegradable in plants, it is reasonable that many fungal plant pathogens utilize α-1,3-glucan in the innate immune evasion mechanism and some in maintaining the structures.
Author Summary
Magnaporthe oryzae, Cochlioborus miyabeanus, and Rhizoctonia solani are the top three fungal pathogens that are responsible for devastating damage to the production of rice, a staple cereal for half of the world's population. These fungal pathogens infect host plants despite the plants' innate immunity, which is activated upon recognition of a conserved cell wall component in fungi, such as chitin. Fungal pathogens seem to have evading mechanism(s) against the host innate immunity; however, the mechanisms are still unclear. In this study, we discovered a novel mechanism that is commonly used by fungal pathogens to prevent host innate immunity. In this mechanism, fungal pathogens mask the cell wall surfaces with α-1,3-glucan, a polysaccharide that plants cannot degrade. In fact, a transgenic rice secreting a bacterial α-1,3-glucanase, which is able to remove α-1,3-glucan on the fungal surfaces, obtained strong resistance to all of those fungal pathogens. We also showed that plants rapidly activated defense responses against fungi (even before the fungal penetration) when α-1,3-glucan on the fungal surfaces were damaged or removed. Our study suggests that fungal surface α-1,3-glucan interferes with host immunity in many fungal pathogens and that α-1,3-glucan is a potential target for controlling various fungal diseases in plants.
PMCID: PMC3426526  PMID: 22927818
19.  NFATc1 Mediates Toll-Like Receptor-Independent Innate Immune Responses during Trypanosoma cruzi Infection 
PLoS Pathogens  2009;5(7):e1000514.
Host defense against the intracellular protozoan parasite Trypanosoma cruzi depends on Toll-like receptor (TLR)-dependent innate immune responses. Recent studies also suggest the presence of TLR-independent responses to several microorganisms, such as viruses, bacteria, and fungi. However, the TLR-independent responses to protozoa remain unclear. Here, we demonstrate a novel TLR-independent innate response pathway to T. cruzi. Myd88−/−Trif−/− mice lacking TLR signaling showed normal T. cruzi-induced Th1 responses and maturation of dendritic cells (DCs), despite high sensitivity to the infection. IFN-γ was normally induced in T. cruzi-infected Myd88−/−Trif−/− innate immune cells, and further was responsible for the TLR-independent Th1 responses and DC maturation after T. cruzi infection. T. cruzi infection induced elevation of the intracellular Ca2+ level. Furthermore, T. cruzi-induced IFN-γ expression was blocked by inhibition of Ca2+ signaling. NFATc1, which plays a pivotal role in Ca2+ signaling in lymphocytes, was activated in T. cruzi-infected Myd88−/−Trif−/− innate immune cells. T. cruzi-infected Nfatc1−/− fetal liver DCs were impaired in IFN-γ production and DC maturation. These results demonstrate that NFATc1 mediates TLR-independent innate immune responses in T. cruzi infection.
Author Summary
Trypanosoma cruzi is an intracellular protozoan parasite that causes Chagas diseases in humans. Invasion of T. cruzi into the host is sensed by Toll-like receptors (TLRs), which recognize microbial components that are present in microbes but not in the host. TLRs are essential for the initiation of immune responses against pathogens. Recent evidence indicates the presence of TLR-independent mechanisms for the recognition of microbes, such as bacteria, viruses, and fungi. However, TLR-independent recognition of protozoa remains unknown. We found that immune responses against T. cruzi were induced even in the absence of TLR signaling. The TLR-independent responses were found to be mediated by IFN-γ production in innate immune cells. Furthermore, the TLR-independent IFN-γ production was revealed to be mediated by Ca2+-dependent activation of NFATc1, which has been shown to play a pivotal role in cytokine production in T lymphocytes. Our study provides a novel mechanism for the TLR-independent innate immune response against protozoan parasites. It is also worth noting that the host defense mechanism utilizes a factor (Ca2+) that is a prerequisite for the survival of intracellular protozoan parasites.
PMCID: PMC2704961  PMID: 19609356
20.  A Conserved Peptide Pattern from a Widespread Microbial Virulence Factor Triggers Pattern-Induced Immunity in Arabidopsis 
PLoS Pathogens  2014;10(11):e1004491.
Microbe- or host damage-derived patterns mediate activation of pattern-triggered immunity (PTI) in plants. Microbial virulence factor (effector)-triggered immunity (ETI) constitutes a second layer of plant protection against microbial attack. Various necrosis and ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs) produced by bacterial, oomycete and fungal microbes are phytotoxic virulence factors that exert immunogenic activities through phytotoxin-induced host cell damage. We here show that multiple cytotoxic NLPs also carry a pattern of 20 amino acid residues (nlp20) that triggers immunity-associated plant defenses and immunity to microbial infection in Arabidopsis thaliana and related plant species with similar characteristics as the prototype pattern, bacterial flagellin. Characteristic differences in flagellin and nlp20 plant responses exist however, as nlp20s fail to trigger extracellular alkalinization in Arabidopsis cell suspensions and seedling growth inhibition. Immunogenic nlp20 peptide motifs are frequently found in bacterial, oomycete and fungal NLPs. Such an unusually broad taxonomic distribution within three phylogenetic kingdoms is unprecedented among microbe-derived triggers of immune responses in either metazoans or plants. Our findings suggest that cytotoxic NLPs carrying immunogenic nlp20 motifs trigger PTI in two ways as typical patterns and by inflicting host cell damage. We further propose that conserved structures within a microbial virulence factor might have driven the emergence of a plant pattern recognition system mediating PTI. As this is reminiscent of the evolution of immune receptors mediating ETI, our findings support the idea that there is a continuum between PTI and ETI.
Author Summary
Eukaryotic host immunity to microbial infection requires recognition systems sensing the presence of potential invaders. Microbial surface structures (patterns) or host breakdown products generated during microbial attack serve as ligands for host immune receptors (pattern recognition receptors) mediating activation of immune responses. Microbial pathogens employ, however, host-targeting effector proteins to establish infection, and the efficiencies of microbial pathogen attack and host defense mechanisms determine the outcome of microbe-host interactions. Necrosis and ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs) from bacteria, oomycetes and fungi are cytotoxic virulence factors (effectors) that trigger plant immunity through toxin-induced host cell damage. Here we show that, in addition, numerous NLPs harbor a characteristic 20-mer sequence motif (nlp20) that is recognized by Brassicacae plant species and perception of which confers immunity to infection by bacterial, oomycete and fungal pathogens. Our findings provide evidence that cytotoxic NLPs are virulence factors that trigger plant immunity by pattern recognition and by inflicting host cell damage. We further conclude that NLPs from prokaryotic and eukaryotic microorganisms and from three organismal kingdoms evoke plant defense. Such an exceptionally wide taxonomic distribution of microbe-derived triggers of immunity has neither been reported before from metazoans nor from plants.
PMCID: PMC4223075  PMID: 25375108
21.  DAMP signaling in fungal infections and diseases 
Fungal infections and diseases predominantly affect patients with deregulated immunity. Compelling experimental and clinical evidence indicate that severe fungal diseases belong to the spectrum of fungus-related inflammatory diseases. Some degree of inflammation is required for protection during the transitional response occurring temporally between the rapid innate and slower adaptive response. However, progressive inflammation worsens disease and ultimately prevents pathogen eradication. The challenge now is to elucidate cellular and molecular pathways distinguishing protective vs. pathogenic inflammation to fungi. In addition to fungal ligands of pattern recognition receptors (pathogen-associated molecular patterns, PAMPs), several host-encoded proteins, the damage-associated molecular patterns (DAMPs), are released during tissue injury and activate innate recognition receptors. DAMPs have been shown to regulate inflammation in fungal diseases. The DAMP/receptor for advanced glycation end-products axis integrated with the PAMP/Toll-like receptors axis in the generation of the inflammatory response in experimental and clinical fungal pneumonia. These emerging themes better accommodate fungal pathogenesis in the face of high-level inflammation seen in several clinical settings and point to DAMP targeting as a novel immunomodulatory strategy in fungal diseases.
PMCID: PMC3437516  PMID: 22973279
DAMPs; PAMPs; fungal diseases; inflammation; immunoregulation
22.  Interspecific Sex in Grass Smuts and the Genetic Diversity of Their Pheromone-Receptor System 
PLoS Genetics  2011;7(12):e1002436.
The grass smuts comprise a speciose group of biotrophic plant parasites, so-called Ustilaginaceae, which are specifically adapted to hosts of sweet grasses, the Poaceae family. Mating takes a central role in their life cycle, as it initiates parasitism by a morphological and physiological transition from saprobic yeast cells to pathogenic filaments. As in other fungi, sexual identity is determined by specific genomic regions encoding allelic variants of a pheromone-receptor (PR) system and heterodimerising transcription factors. Both operate in a biphasic mating process that starts with PR–triggered recognition, directed growth of conjugation hyphae, and plasmogamy of compatible mating partners. So far, studies on the PR system of grass smuts revealed diverse interspecific compatibility and mating type determination. However, many questions concerning the specificity and evolutionary origin of the PR system remain unanswered. Combining comparative genetics and biological approaches, we report on the specificity of the PR system and its genetic diversity in 10 species spanning about 100 million years of mating type evolution. We show that three highly syntenic PR alleles are prevalent among members of the Ustilaginaceae, favouring a triallelic determination as the plesiomorphic characteristic of this group. Furthermore, the analysis of PR loci revealed increased genetic diversity of single PR locus genes compared to genes of flanking regions. Performing interspecies sex tests, we detected a high potential for hybridisation that is directly linked to pheromone signalling as known from intraspecies sex. Although the PR system seems to be optimised for intraspecific compatibility, the observed functional plasticity of the PR system increases the potential for interspecific sex, which might allow the hybrid-based genesis of newly combined host specificities.
Author Summary
Sexual reproduction is prevalent among eukaryotes and involves the maintenance of different sexes within reproducing populations. Due to similarities to higher eukaryotes like animals and plants, fungi serve as adequate model systems to study sex determination, mate recognition, and mating type evolution. In fungi, sexual identity is determined by a few genes that reside at specific genomic regions. Those so-called mating type loci encode a pheromone-receptor system and heterodimerising transcription factors. Intensive studies of various model organisms uncovered important aspects of sex in fungi. However, comparative surveys that cover distinct phylogenetic groups within the fungal kingdom are still rare, leaving many questions unanswered about the diversity, specificity, and evolutionary transitions of fungal mating types. Here, we report on mating genetics and the specificity of mate recognition in the plant biotrophic basidiomycete family Ustilaginaceae. In our Ustilaginaceae-wide study, we unravel a conserved triallelic pheromone-receptor system that preserved interspecific sexual compatibility for more than 100 million years and most likely gave rise to the convergent evolution of biallelic mating type determinations. Moreover, our results demonstrate that grass smuts represent a valuable model group to study the hybrid-based genesis of novel genotypes and their evolutionary impact on speciation.
PMCID: PMC3248468  PMID: 22242007
23.  Differential Adaptation of Candida albicans In Vivo Modulates Immune Recognition by Dectin-1 
PLoS Pathogens  2013;9(4):e1003315.
The β-glucan receptor Dectin-1 is a member of the C-type lectin family and functions as an innate pattern recognition receptor in antifungal immunity. In both mouse and man, Dectin-1 has been found to play an essential role in controlling infections with Candida albicans, a normally commensal fungus in man which can cause superficial mucocutaneous infections as well as life-threatening invasive diseases. Here, using in vivo models of infection, we show that the requirement for Dectin-1 in the control of systemic Candida albicans infections is fungal strain-specific; a phenotype that only becomes apparent during infection and cannot be recapitulated in vitro. Transcript analysis revealed that this differential requirement for Dectin-1 is due to variable adaptation of C. albicans strains in vivo, and that this results in substantial differences in the composition and nature of their cell walls. In particular, we established that differences in the levels of cell-wall chitin influence the role of Dectin-1, and that these effects can be modulated by antifungal drug treatment. Our results therefore provide substantial new insights into the interaction between C. albicans and the immune system and have significant implications for our understanding of susceptibility and treatment of human infections with this pathogen.
Author Summary
Dectin-1 is a pattern recognition receptor recognising the fungal cell-wall component, β-glucan, and plays an essential role in controlling C. albicans infections in both mouse and man. Candida albicans is part of the normal human microflora, yet is capable of causing superficial mucosal infections as well as life-threatening invasive diseases, particularly in patients whose immune function is compromised. Here we found that the contribution of Dectin-1 is limited to specific strains of C. albicans; effects which are due to the differential adaptation of these pathogens during infection. Importantly, C. albicans strains showed variations in both the composition and nature of their cell walls, and it was these differences which influenced the role of Dectin-1. Crucially, we found that we could alter the fungal cell wall, and subsequent interactions with the host, using antifungal drugs. These findings have substantial implications for our understanding of the factors contributing to human susceptibility to infections with C. albicans, but also treatment strategies.
PMCID: PMC3630191  PMID: 23637604
24.  The Pattern Recognition Receptor Dectin-1: From Fungi to Mycobacteria 
Current drug targets  2008;9(2):123-129.
The ability of the innate immune system to quickly recognize and respond to an invading pathogen is essential for controlling the infection. For this purpose, cells of the immune system express receptors which recognize evolutionarily conserved structures expressed by various pathogens but absent from host cells. In this review we focus on the non-classical C-type lectin receptors including Dectin-1 whose role has been extensively characterized in the recognition and response to fungal pathogens. Dectin-1 is a type II transmembrane protein which binds β-1,3 and β-1,6 glucans. It is expressed on most cells of the innate immune system and has been implicated in phagocytosis as well as killing of fungi by macrophages, neutrophils and dendritic cells. The Dectin-1 cytoplasmic tail contains an immunoreceptor tyrosine based activation motif (ITAM) that signals in part through the spleen tyrosine kinase and in collaboration with Toll-like receptors. Although the main research focus has been on Dectin-1’s role as a fungal and yeast pathogen recognition receptor, more recent studies suggest that Dectin-1 may have a broader function in pathogen recognition including a role in directing a macrophage response to mycobacterial infections.
PMCID: PMC3664456  PMID: 18288963
Pattern recognition receptors; Dectin-1; signaling; mycobacteria; fungi; glucans; C-type lectin
25.  Internalization of Dectin-1 terminates induction of inflammatory responses 
European Journal of Immunology  2009;39(2):507-513.
Dectin-1 is a pattern-recognition receptor recognizing β-(1,3)-glucans found on fungal cell walls. Dectin-1 plays an important role in immunity to fungi by mediating phagocytic clearance of fungal particles and inducing transcription of innate response genes. We show here that the two processes are linked and that Dectin-1 signalling for inflammation is attenuated by phagocytosis. Blocking Dectin-1 ligand-dependent internalization using either actin polymerization or dynamin inhibitors, large non-phagocytosable β-glucan particles or poorly phagocytic cells leads in all cases to enhanced and sustained activation of downstream signalling pathways and culminates in production of high levels of pro-inflammatory cytokines. These findings establish the importance of phagocytosis not only in the clearance of pathogens, but also in the modulation of pattern-recognition receptor signalling and strongly suggest that internalization is the first step to attenuation of Dectin-1-mediated pro-inflammatory responses.
PMCID: PMC2699426  PMID: 19130473
DC; Dectin-1; Phagocytosis; Syk

Results 1-25 (1344542)