PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (349103)

Clipboard (0)
None

Related Articles

1.  The phytoene synthase gene family in the Grasses 
Plant Signaling & Behavior  2009;4(3):208-211.
Carotenoids are a complex class of isoprenoid pigments playing diverse roles in plants and providing nutritional value. Metabolic engineering of the biosynthetic pathway has been of interest to specifically address global vitamin A deficiency by breeding cereal crop staples in the Poaceae (Grass family) for elevated levels of provitamin A carotenoids. However, there remain open questions about the rate-controlling steps that limit predictability of metabolic engineering in plants, whether by transgenic or nontransgenic means. We decided to focus on the first committed biosynthetic step which is mediated by phytoene synthase. Our studies revealed that in the Grasses, PSY is encoded by three genes. Maize transcript profiling, together with carotenoid and ABA analysis, revealed that the three PSY copies have subfunctionalized and provide the Grasses with a fine tine control of carotenogenesis in response to various developmental and external cues. Promoter analysis supports subfunctionalization; cis-element analysis of maize PSY1 alleles and comparison with Grass orthologs suggests that man's selection of yellow maize endosperm has occurred at the expense of a change of gene regulation in photosynthetic tissue as compared to the progenitor white endosperm PSY1 allele.
PMCID: PMC2652530  PMID: 19721751
carotenoid biosynthesis; phytoene synthase; gene subfunctionalization; ABA; abiotic stress; transcriptional regulation
2.  Allelic Variation, Alternative Splicing and Expression Analysis of Psy1 Gene in Hordeum chilense Roem. et Schult 
PLoS ONE  2011;6(5):e19885.
Background
The wild barley Hordeum chilense Roem. et Schult. is a valuable source of genes for increasing carotenoid content in wheat. Tritordeums, the amphiploids derived from durum or common wheat and H. chilense, systematically show higher values of yellow pigment colour and carotenoid content than durum wheat. Phytoene synthase 1 gene (Psy1) is considered a key step limiting the carotenoid biosynthesis, and the correlation of Psy1 transcripts accumulation and endosperm carotenoid content has been demonstrated in the main grass species.
Methodology/Principal findings
We analyze the variability of Psy1 alleles in three lines of H. chilense (H1, H7 and H16) representing the three ecotypes described in this species. Moreover, we analyze Psy1 expression in leaves and in two seed developing stages of H1 and H7, showing mRNA accumulation patterns similar to those of wheat. Finally, we identify thirty-six different transcripts forms originated by alternative splicing of the 5′ UTR and/or exons 1 to 5 of Psy1 gene. Transcripts function is tested in a heterologous complementation assay, revealing that from the sixteen different predicted proteins only four types (those of 432, 370, 364 and 271 amino acids), are functional in the bacterial system.
Conclusions/Significance
The large number of transcripts originated by alternative splicing of Psy1, and the coexistence of functional and non functional forms, suggest a fine regulation of PSY activity in H. chilense. This work is the first analysis of H. chilense Psy1 gene and the results reported here are the bases for its potential use in carotenoid enhancement in durum wheat.
doi:10.1371/journal.pone.0019885
PMCID: PMC3095628  PMID: 21603624
3.  Colors in the dark 
Plant Signaling & Behavior  2009;4(10):965-967.
Carotenoids are plastidial isoprenoid pigments essential for plant life. High carotenoid levels are found in chloroplasts and chromoplasts, but they are also produced in the etioplasts of seedlings that germinate in the dark. Our recent work has shown that an enhanced production of carotenoids in plastids of dark-grown Arabidopsis thaliana seedlings results in an improved transition to photosynthetic development (greening) upon illumination, illustrating the relevance of regulating etioplast carotenoid biosynthesis for plant fitness. We showed that the biosynthesis of etioplast carotenoids is controlled at the level of phytoene synthase (PSY), the enzyme catalyzing the first committed step of the pathway. Upregulation of PSY is necessary and sufficient to increase the production of carotenoids in dark-grown seedlings, in part because it triggers a feedback mechanism leading to the post-transcriptional accumulation of flux-controlling enzymes of the methylerythritol 4-phosphate (MEP) pathway, which synthesizes the substrates for PSY activity. Based on these and other recent data on the molecular mechanisms controlling deetiolation, we propose a model for the regulation of carotenoid biosynthesis in etioplasts.
PMCID: PMC2801363  PMID: 19826226
carotenoid; deetiolation; etioplast; feedback regulation; MEP pathway
4.  Enhancement of carotenoids biosynthesis in Chlamydomonas reinhardtii by nuclear transformation using a phytoene synthase gene isolated from Chlorella zofingiensis 
The isolation and characterization of the phytoene synthase gene from the green microalga Chlorella zofingiensis (CzPSY), involved in the first step of the carotenoids biosynthetic pathway, have been performed. CzPSY gene encodes a polypeptide of 420 amino acids. A single copy of CzPSY has been found in C. zofingiensis by Southern blot analysis. Heterologous genetic complementation in Escherichia coli showed the ability of the predicted protein to catalyze the condensation of two molecules of geranylgeranyl pyrophosphate (GGPP) to form phytoene. Phylogenetic analysis has shown that the deduced protein forms a cluster with the rest of the phytoene synthases (PSY) of the chlorophycean microalgae studied, being very closely related to PSY of plants. This new isolated gene has been adequately inserted in a vector and expressed in Chlamydomonas reinhardtii. The overexpression of CzPSY in C. reinhardtii, by nuclear transformation, has led to an increase in the corresponding CzPSY transcript level as well as in the content of the carotenoids violaxanthin and lutein which were 2.0- and 2.2-fold higher than in untransformed cells. This is an example of manipulation of the carotenogenic pathway in eukaryotic microalgae, which can open up the possibility of enhancing the productivity of commercial carotenoids by molecular engineering.
doi:10.1007/s00253-011-3262-y
PMCID: PMC3125507  PMID: 21519934
Carotenoids; Chlorella zofingiensis; Phytoene synthase; Transgenic microalgae; Chlamydomonas reinhardtii
5.  Induced point mutations in the phytoene synthase 1 gene cause differences in carotenoid content during tomato fruit ripening 
Molecular Breeding  2011;29(3):801-812.
In tomato, carotenoids are important with regard to major breeding traits such as fruit colour and human health. The enzyme phytoene synthase (PSY1) directs metabolic flux towards carotenoid synthesis. Through TILLING (Targeting Induced Local Lesions IN Genomes), we have identified two point mutations in the Psy1 gene. The first mutation is a knockout allele (W180*) and the second mutation leads to an amino acid substitution (P192L). Plants carrying the Psy1 knockout allele show fruit with a yellow flesh colour similar to the r, r mutant, with no further change in colour during ripening. In the line with P192L substitution, fruit remain yellow until 3 days post-breaker and eventually turn red. Metabolite profiling verified the absence of carotenoids in the W180* line and thereby confirms that PSY1 is the only enzyme introducing substrate into the carotenoid pathway in ripening fruit. More subtle effects on carotenoid accumulation were observed in the P192L line with a delay in lycopene and β-carotene accumulation clearly linked to a very slow synthesis of phytoene. The observation of lutein degradation with ripening in both lines showed that lutein and its precursors are still synthesised in ripening fruit. Gene expression analysis of key genes involved in carotenoid biosynthesis revealed that expression levels of genes in the pathway are not feedback-regulated by low levels or absence of carotenoid compounds. Furthermore, protein secondary structure modelling indicated that the P192L mutation affects PSY1 activity through misfolding, leading to the low phytoene accumulation.
doi:10.1007/s11032-011-9591-9
PMCID: PMC3285762  PMID: 22408384
Carotenoids; Point mutation; Psy1; Tomato; TILLING
6.  Hordeum chilense genome, a useful tool to investigate the endosperm yellow pigment content in the Triticeae 
BMC Plant Biology  2012;12:200.
Background
The wild barley Hordeum chilense fulfills some requirements for being a useful tool to investigate the endosperm yellow pigment content (YPC) in the Triticeae including its diploid constitution, the availability of genetic resources (addition and deletion stocks and a high density genetic map) and, especially, its high seed YPC not silenced in tritordeums (amphiploids derived from H. chilense and wheat). Thus, the aim of this work was to test the utility of the H. chilense genome for investigating the YPC in the Triticeae.
Results
Twelve genes related to endosperm carotenoid content and/or YPC in grasses (Dxr, Hdr [synonym ispH], Ggpps1, Psy2, Psy3, Pds, Zds, e-Lcy, b-Lcy, Hyd3, Ccd1 and Ppo1) were identified, and mapped in H. chilense using rice genes to identify orthologs from barley, wheat, sorghum and maize. Macrocolinearity studies revealed that gene positions were in agreement in H. vulgare and H. chilense. Additionally, three main regions associated with YPC were identified in chromosomes 2Hch, 3Hch and 7Hch in H. chilense, the former being the most significant one.
Conclusions
The results obtained are consistent with previous findings in wheat and suggest that Ggpps1, Zds and Hyd3 on chromosome 2Hch may be considered candidate genes in wheat for further studies in YPC improvement. Considering the syntenic location of carotenoid genes in H. chilense, we have concluded that the Hch genome may constitute a valuable tool for YPC studies in the Triticeae.
doi:10.1186/1471-2229-12-200
PMCID: PMC3534404  PMID: 23122232
Yellow pigment content (YPC); Macrocolinearity; Candidate genes; H. chilense; H. vulgare
7.  Carotenoid Crystal Formation in Arabidopsis and Carrot Roots Caused by Increased Phytoene Synthase Protein Levels 
PLoS ONE  2009;4(7):e6373.
Background
As the first pathway-specific enzyme in carotenoid biosynthesis, phytoene synthase (PSY) is a prime regulatory target. This includes a number of biotechnological approaches that have successfully increased the carotenoid content in agronomically relevant non-green plant tissues through tissue-specific PSY overexpression. We investigated the differential effects of constitutive AtPSY overexpression in green and non-green cells of transgenic Arabidopsis lines. This revealed striking similarities to the situation found in orange carrot roots with respect to carotenoid amounts and sequestration mechanism.
Methology/Principal Findings
In Arabidopsis seedlings, carotenoid content remained unaffected by increased AtPSY levels although the protein was almost quantitatively imported into plastids, as shown by western blot analyses. In contrast, non-photosynthetic calli and roots overexpressing AtPSY accumulated carotenoids 10 and 100-fold above the corresponding wild-type tissues and contained 1800 and 500 µg carotenoids per g dry weight, respectively. This increase coincided with a change of the pattern of accumulated carotenoids, as xanthophylls decreased relative to β-carotene and carotene intermediates accumulated. As shown by polarization microscopy, carotenoids were found deposited in crystals, similar to crystalline-type chromoplasts of non-green tissues present in several other taxa. In fact, orange-colored carrots showed a similar situation with increased PSY protein as well as carotenoid levels and accumulation patterns whereas wild white-rooted carrots were similar to Arabidopsis wild type roots in this respect. Initiation of carotenoid crystal formation by increased PSY protein amounts was further confirmed by overexpressing crtB, a bacterial PSY gene, in white carrots, resulting in increased carotenoid amounts deposited in crystals.
Conclusions
The sequestration of carotenoids into crystals can be driven by the functional overexpression of one biosynthetic enzyme in non-green plastids not requiring a chromoplast developmental program as this does not exist in Arabidopsis. Thus, PSY expression plays a major, rate-limiting role in the transition from white to orange-colored carrots.
doi:10.1371/journal.pone.0006373
PMCID: PMC2712097  PMID: 19636414
8.  A Root Specific Induction of Carotenoid Biosynthesis Contributes to ABA Production upon Salt Stress in Arabidopsis 
PLoS ONE  2014;9(3):e90765.
Abscisic acid (ABA) is a hormone that plays a vital role in mediating abiotic stress responses in plants. Salt exposure induces the synthesis of ABA through the cleavage of carotenoid precursors (xanthophylls), which are found at very low levels in roots. Here we show that de novo ABA biosynthesis in salt-treated Arabidopsis thaliana roots involves an organ-specific induction of the carotenoid biosynthetic pathway. Upregulation of the genes encoding phytoene synthase (PSY) and other enzymes of the pathway producing ABA precursors was observed in roots but not in shoots after salt exposure. A pharmacological block of the carotenoid pathway substantially reduced ABA levels in stressed roots, confirming that an increase in carotenoid accumulation contributes to fuel hormone production after salt exposure. Treatment with exogenous ABA was also found to upregulate PSY expression only in roots, suggesting an organ-specific feedback regulation of the carotenoid pathway by ABA. Taken together, our results show that the presence of high concentrations of salt in the growth medium rapidly triggers a root-specific activation of the carotenoid pathway, probably to ensure a proper supply of ABA precursors required for a sustained production of the hormone.
doi:10.1371/journal.pone.0090765
PMCID: PMC3942475  PMID: 24595399
9.  A transcriptional analysis of carotenoid, chlorophyll and plastidial isoprenoid biosynthesis genes during development and osmotic stress responses in Arabidopsis thaliana 
BMC Systems Biology  2011;5:77.
Background
The carotenoids are pure isoprenoids that are essential components of the photosynthetic apparatus and are coordinately synthesized with chlorophylls in chloroplasts. However, little is known about the mechanisms that regulate carotenoid biosynthesis or the mechanisms that coordinate this synthesis with that of chlorophylls and other plastidial synthesized isoprenoid-derived compounds, including quinones, gibberellic acid and abscisic acid. Here, a comprehensive transcriptional analysis of individual carotenoid and isoprenoid-related biosynthesis pathway genes was performed in order to elucidate the role of transcriptional regulation in the coordinated synthesis of these compounds and to identify regulatory components that may mediate this process in Arabidopsis thaliana.
Results
A global microarray expression correlation analysis revealed that the phytoene synthase gene, which encodes the first dedicated and rate-limiting enzyme of carotenogenesis, is highly co-expressed with many photosynthesis-related genes including many isoprenoid-related biosynthesis pathway genes. Chemical and mutant analysis revealed that induction of the co-expressed genes following germination was dependent on gibberellic acid and brassinosteroids (BR) but was inhibited by abscisic acid (ABA). Mutant analyses further revealed that expression of many of the genes is suppressed in dark grown plants by Phytochrome Interacting transcription Factors (PIFs) and activated by photoactivated phytochromes, which in turn degrade PIFs and mediate a coordinated induction of the genes. The promoters of PSY and the co-expressed genes were found to contain an enrichment in putative BR-auxin response elements and G-boxes, which bind PIFs, further supporting a role for BRs and PIFs in regulating expression of the genes. In osmotically stressed root tissue, transcription of Calvin cycle, methylerythritol 4-phosphate pathway and carotenoid biosynthesis genes is induced and uncoupled from that of chlorophyll biosynthesis genes in a manner that is consistent with the increased synthesis of carotenoid precursors for ABA biosynthesis. In all tissues examined, induction of β-carotene hydroxylase transcript levels are linked to an increased demand for ABA.
Conclusions
This analysis provides compelling evidence to suggest that coordinated transcriptional regulation of isoprenoid-related biosynthesis pathway genes plays a major role in coordinating the synthesis of functionally related chloroplast localized isoprenoid-derived compounds.
doi:10.1186/1752-0509-5-77
PMCID: PMC3123201  PMID: 21595952
10.  Plastid structure and carotenogenic gene expression in red- and white-fleshed loquat (Eriobotrya japonica) fruits 
Journal of Experimental Botany  2011;63(1):341-354.
Loquat (Eriobotrya japonica Lindl.) can be sorted into red- and white-fleshed cultivars. The flesh of Luoyangqing (LYQ, red-fleshed) appears red-orange because of a high content of carotenoids while the flesh of Baisha (BS, white-fleshed) appears ivory white due to a lack of carotenoid accumulation. The carotenoid content in the peel and flesh of LYQ was approximately 68 μg g−1 and 13 μg g−1 fresh weight (FW), respectively, and for BS 19 μg g−1 and 0.27 μg g−1 FW. The mRNA levels of 15 carotenogenesis-related genes were analysed during fruit development and ripening. After the breaker stage (S4), the mRNA levels of phytoene synthase 1 (PSY1) and chromoplast-specific lycopene β-cyclase (CYCB) were higher in the peel, and CYCB and β-carotene hydroxylase (BCH) mRNAs were higher in the flesh of LYQ, compared with BS. Plastid morphogenesis during fruit ripening was also studied. The ultrastructure of plastids in the peel of BS changed less than in LYQ during fruit development. Two different chromoplast shapes were observed in the cells of LYQ peel and flesh at the fully ripe stage. Carotenoids were incorporated in the globules in chromoplasts of LYQ and BS peel but were in a crystalline form in the chromoplasts of LYQ flesh. However, no chromoplast structure was found in the cells of fully ripe BS fruit flesh. The mRNA level of plastid lipid-associated protein (PAP) in the peel and flesh of LYQ was over five times higher than in BS peel and flesh. In conclusion, the lower carotenoid content in BS fruit was associated with the lower mRNA levels of PSY1, CYCB, and BCH; however, the failure to develop normal chromoplasts in BS flesh is the most convincing explanation for the lack of carotenoid accumulation. The expression of PAP was well correlated with chromoplast numbers and carotenoid accumulation, suggesting its possible role in chromoplast biogenesis or interconversion of loquat fruit.
doi:10.1093/jxb/err284
PMCID: PMC3245473  PMID: 21994170
Carotenoid; chloroplast; chromoplast; colour; gene expression; fruit development; fruit ripening; loquat; plastid
11.  Carotenoid Biosynthetic and Catabolic Pathways: Gene Expression and Carotenoid Content in Grains of Maize Landraces 
Nutrients  2014;6(2):546-563.
Plant carotenoids have been implicated in preventing several age-related diseases, and they also provide vitamin A precursors; therefore, increasing the content of carotenoids in maize grains is of great interest. It is not well understood, however, how the carotenoid biosynthetic pathway is regulated. Fortunately, the maize germplasm exhibits a high degree of genetic diversity that can be exploited for this purpose. Here, the accumulation of carotenoids and the expression of genes from carotenoid metabolic and catabolic pathways were investigated in several maize landraces. The carotenoid content in grains varied from 10.03, in the white variety MC5, to 61.50 μg·g−1, in the yellow-to-orange variety MC3, and the major carotenoids detected were lutein and zeaxanthin. PSY1 (phythoene synthase) expression showed a positive correlation with the total carotenoid content. Additionally, the PSY1 and HYD3 (ferredoxin-dependent di-iron monooxygenase) expression levels were positively correlated with β-cryptoxanthin and zeaxanthin, while CYP97C (cytochrome P450-type monooxygenase) expression did not correlate with any of the carotenoids. In contrast, ZmCCD1 (carotenoid dioxygenase) was more highly expressed at the beginning of grain development, as well as in the white variety, and its expression was inversely correlated with the accumulation of several carotenoids, suggesting that CCD1 is also an important enzyme to be considered when attempting to improve the carotenoid content in maize. The MC27 and MC1 varieties showed the highest HYD3/CYP97C ratios, suggesting that they are promising candidates for increasing the zeaxanthin content; in contrast, MC14 and MC7 showed low HYD3/CYP97C, suggesting that they may be useful in biofortification efforts aimed at promoting the accumulation of provitamin A. The results of this study demonstrate the use of maize germplasm to provide insight into the regulation of genes involved in the carotenoid pathway, which would thus better enable us to select promising varieties for biofortification efforts.
doi:10.3390/nu6020546
PMCID: PMC3942716  PMID: 24476639
Zea mays L.; landrace varieties; carotenoids; carotenoid-related genes; carotenoid cleavage dioxygenases
12.  Genetic Stability Developed for β-Carotene Synthesis in BR29 Rice Line Using Dihaploid Homozygosity 
PLoS ONE  2014;9(6):e100212.
Obtaining transgenic crop lines with stable levels of carotenoids is highly desirable. We addressed this issue by employing the anther culture technique to develop dihaploid lines containing genes involved in β-carotene metabolism. First, we used Agrobacterium- mediated transformation to develop primary transgenic plants containing the β-carotene biosynthetic genes, phytoene synthase (psy) and phytoene desaturase (crtI), which were engineered for expression and accumulation in the endosperm. Transgenic plants were recovered by selecting for the expression of the phosphomannose isomerase (pmi) gene. Dihaploid plants in addition to haploid and tetraploid plant were generated from anther cultures of these primary transgenic plants. In addition to anatomical features of stomata, pollen of different ploidy-plants, molecular analyses confirmed the stable integration of the genes in the anther culture-derived dihaploid plants, and the yellow color of the polished seeds indicated the accumulation of carotenoids in the endosperm. High performance liquid chromatography (HPLC) analysis of the carotenoid extract further confirmed the levels of β–carotene accumulation in the endosperms of the transgenic dihaploid rice seeds.
doi:10.1371/journal.pone.0100212
PMCID: PMC4061092  PMID: 24937154
13.  Variability of Carotenoid Biosynthesis in Orange Colored Capsicum spp. 
Pepper, Capsicum spp., is a worldwide crop valued for heat, nutrition, and rich pigment content. Carotenoids, the largest group of plant pigments, function as antioxidants and as vitamin A precursors. The most abundant carotenoids in ripe pepper fruits are β-carotene, capsanthin, and capsorubin. In this study, the carotenoid composition of orange fruited Capsicum lines was defined along with the allelic variability of the biosynthetic enzymes. The carotenoid chemical profiles present in seven orange pepper varieties were determined using a novel UPLC method. The orange appearance of the fruit was due either to the accumulation of β-carotene, or in two cases, due to only the accumulation of red and yellow carotenoids. Four carotenoid biosynthetic genes, Psy, Lcyb, CrtZ-2, and Ccs were cloned and sequenced from these cultivars. This data tested the hypothesis that different alleles for specific carotenoid biosynthetic enzymes are associated with specific carotenoid profiles in orange peppers. While the coding regions within Psy and CrtZ-2 did not change in any of the lines, the genomic sequence contained introns not previously reported. Lcyb and Ccs contained no introns but did exhibit polymorphisms resulting in amino acid changes; a new Ccs variant was found. When selectively breeding for high provitamin A levels, phenotypic recurrent selection based on fruit color is not sufficient, carotenoid chemical composition should also be conducted. Based on these results, specific alleles are candidate molecular markers for selection of orange pepper lines with high β-carotene and therefore high pro-vitamin A levels.
doi:10.1016/j.plantsci.2010.04.014
PMCID: PMC2889374  PMID: 20582146
fruit pigmentation; carotenes; xanthophylls; capsanthin; capsorubin
14.  The Accumulation of Crocin and Geniposide and Transcripts of Phytoene Synthase during Maturation of Gardenia jasminoides Fruit 
Gardenia fruit (fruit of Gardenia jasminoides Ellis) is used as a natural pigment resource and a Chinese traditional medicine. The white mesocarp turning orange or red that occurs during gardenia fruit maturation arises from the production and accumulation of the apocarotenoids, especially crocin-1, which is derived from carotenoid. Meanwhile, the major medical component geniposide is accumulated in gardenia fruit. To further our understanding of the synthetic and accumulation mechanism for crocin-1 and geniposide in gardenia fruit, the contents of crocin-1 and geniposide and the transcripts of phytoene synthase (GjPSY) profiles in gardenia fruits were examined at various stages of maturation. The concentration of crocin-1 and geniposide in gardenia fruit was determined by reversed-phase high-performance liquid chromatography (HPLC). The results showed that the concentration of crocetin-1 was increased during fruit development and the concentration of geniposide does not change significantly during maturing. The expression levels of GjPSY mRNA were examined by RT-PCR. It was revealed that GjPSY was constitutively expressed during fruit development, suggesting that the primary mechanism that controls crocin accumulation in G. jasminoides fruits during development is not correlated to the differential regulation of transcript levels of GjPSY gene.
doi:10.1155/2013/686351
PMCID: PMC3619689  PMID: 23634173
15.  Effect of photon flux densities on regulation of carotenogenesis and cell viability of Haematococcus pluvialis (Chlorophyceae) 
Journal of Applied Phycology  2009;22(3):253-263.
The green alga Haematococcus pluvialis produces large amounts of the pink carotenoid astaxanthin under high photon flux density (PFD) and other oxidative stress conditions. However, the regulation and physiological role of carotenogenesis leading to astaxanthin formation is not well understood. Comparative transcriptional expression of five carotenoid genes along with growth and pigment composition as a function of PFD was studied using a wild-type and an astaxanthin-overproduction mutant of H. pluvialis NIES144. The results indicate that astaxanthin biosynthesis was mainly under transcriptional control of the gene encoding carotenoid hydroxylase, and to a lesser extent, the genes encoding isopentenyl isomerase and phytoene desaturase, and to the least extent, the genes encoding phytoene synthase and carotenoid oxygenase. The expression of a plastid terminal oxidase (PTOX) gene ptox2 underwent transient up-regulation under elevated PFDs, suggesting that PTOX may be functionally coupled with phytoene desaturase through the plastoquinone pool and may play a role in reducing redox-potential-dependent and oxygen-concentration-dependent formation of reactive oxygen species in the chloroplast. Over-expression of both the carotenogenic and PTOX genes confers to the astaxanthin-overproduction mutant more effective photoprotective capability than that of the wild type under photooxidative stress.
doi:10.1007/s10811-009-9453-6
PMCID: PMC2946551  PMID: 20949119
Astaxanthin; Haematococcus pluvialis; High light; mRNA expression; Oxidative stress
16.  Metabolic Engineering of Potato Carotenoid Content through Tuber-Specific Overexpression of a Bacterial Mini-Pathway 
PLoS ONE  2007;2(4):e350.
Background
Since the creation of “Golden Rice”, biofortification of plant-derived foods is a promising strategy for the alleviation of nutritional deficiencies. Potato is the most important staple food for mankind after the cereals rice, wheat and maize, and is extremely poor in provitamin A carotenoids.
Methodology
We transformed potato with a mini-pathway of bacterial origin, driving the synthesis of beta-carotene (Provitamin A) from geranylgeranyl diphosphate. Three genes, encoding phytoene synthase (CrtB), phytoene desaturase (CrtI) and lycopene beta-cyclase (CrtY) from Erwinia, under tuber-specific or constitutive promoter control, were used. 86 independent transgenic lines, containing six different promoter/gene combinations, were produced and analyzed. Extensive regulatory effects on the expression of endogenous genes for carotenoid biosynthesis are observed in transgenic lines. Constitutive expression of the CrtY and/or CrtI genes interferes with the establishment of transgenosis and with the accumulation of leaf carotenoids. Expression of all three genes, under tuber-specific promoter control, results in tubers with a deep yellow (“golden”) phenotype without any adverse leaf phenotypes. In these tubers, carotenoids increase approx. 20-fold, to 114 mcg/g dry weight and beta-carotene 3600-fold, to 47 mcg/g dry weight.
Conclusions
This is the highest carotenoid and beta-carotene content reported for biofortified potato as well as for any of the four major staple foods (the next best event being “Golden Rice 2”, with 31 mcg/g dry weight beta-carotene). Assuming a beta-carotene to retinol conversion of 6∶1, this is sufficient to provide 50% of the Recommended Daily Allowance of Vitamin A with 250 gms (fresh weight) of “golden” potatoes.
doi:10.1371/journal.pone.0000350
PMCID: PMC1831493  PMID: 17406674
17.  Carotenoids in Algae: Distributions, Biosyntheses and Functions 
Marine Drugs  2011;9(6):1101-1118.
For photosynthesis, phototrophic organisms necessarily synthesize not only chlorophylls but also carotenoids. Many kinds of carotenoids are found in algae and, recently, taxonomic studies of algae have been developed. In this review, the relationship between the distribution of carotenoids and the phylogeny of oxygenic phototrophs in sea and fresh water, including cyanobacteria, red algae, brown algae and green algae, is summarized. These phototrophs contain division- or class-specific carotenoids, such as fucoxanthin, peridinin and siphonaxanthin. The distribution of α-carotene and its derivatives, such as lutein, loroxanthin and siphonaxanthin, are limited to divisions of Rhodophyta (macrophytic type), Cryptophyta, Euglenophyta, Chlorarachniophyta and Chlorophyta. In addition, carotenogenesis pathways are discussed based on the chemical structures of carotenoids and known characteristics of carotenogenesis enzymes in other organisms; genes and enzymes for carotenogenesis in algae are not yet known. Most carotenoids bind to membrane-bound pigment-protein complexes, such as reaction center, light-harvesting and cytochrome b6f complexes. Water-soluble peridinin-chlorophyll a-protein (PCP) and orange carotenoid protein (OCP) are also established. Some functions of carotenoids in photosynthesis are also briefly summarized.
doi:10.3390/md9061101
PMCID: PMC3131562  PMID: 21747749
algal phylogeny; biosynthesis of carotenoids; distribution of carotenoids; function of carotenoids; pigment-protein complex
18.  Marker-trait association analysis of functional gene markers for provitamin A levels across diverse tropical yellow maize inbred lines 
BMC Plant Biology  2013;13:227.
Background
Biofortification of staple crops is a cost effective and sustainable approach that can help combat vitamin A and other micronutrient deficiencies in developing countries. PCR -based DNA markers distinguishing alleles of three key genes of maize endosperm carotenoid biosynthesis (PSY1, lcyE and crtRB1) have been developed to facilitate maize provitamin A biofortification via marker assisted selection. Previous studies of these functional DNA markers revealed inconsistent effects. The germplasm previously employed for discovering and validating these functional markers was mainly of temperate origin containing low frequencies of the favourable allele of the most significant polymorphism, crtRB1-5′TE. Here, we investigate the vitamin A biofortification potential of these DNA markers in a germplasm panel of diverse tropical yellow maize inbred lines, with mixed genetic backgrounds of temperate and tropical germplasm to identify the most effective diagnostic markers for vitamin A biofortification.
Results
The functional DNA markers crtRB1-5′TE and crtRB1-3′TE were consistently and strongly associated with provitamin A content across the tropical maize inbred lines tested. The alleles detected by these two functional markers were in high linkage disequilibrium (R2 = 0.75) and occurred in relatively high frequency (18%). Genotypes combining the favourable alleles at the two loci (N = 20) displayed a 3.22 fold average increase in β-carotene content compared to those genotypes lacking the favourable alleles (N = 106). The PSY1 markers were monomorphic across all of the inbred lines. The functional DNA markers for lcyE were associated with lutein, and with the ratio of carotenoids in the alpha and beta branches, but not with provitamin A levels. However, the combined effects of the two genes were stronger than their individual effects on all carotenoids.
Conclusions
Tropical maize inbred lines harbouring the favourable alleles of the crtRB1-5′TE and 3′TE functional markers produce higher levels of provitamin A. Such maize lines can be used as donor parents to speed up the development of provitamin A biofortified tropical maize varieties adapted to growing conditions and consumer preferences, providing a route towards mitigation of vitamin A malnutrition in Sub-Saharan Africa.
doi:10.1186/1471-2229-13-227
PMCID: PMC3890589  PMID: 24373137
Provitamin A; Carotenoids; Functional markers; Marker assisted selection; Biofortification; Vitamin A deficiency
19.  Analysis of al-2 Mutations in Neurospora 
PLoS ONE  2011;6(7):e21948.
The orange pigmentation of the fungus Neurospora crassa is due to the accumulation of the xanthophyll neurosporaxanthin and precursor carotenoids. Two key reactions in the synthesis of these pigments, the formation of phytoene from geranylgeranyl pyrophosphate and the introduction of β cycles in desaturated carotenoid products, are catalyzed by two domains of a bifunctional protein, encoded by the gene al-2. We have determined the sequence of nine al-2 mutant alleles and analyzed the carotenoid content in the corresponding strains. One of the mutants is reddish and it is mutated in the cyclase domain of the protein, and the remaining eight mutants are albino and harbor different mutations on the phytoene synthase (PS) domain. Some of the mutations are expected to produce truncated polypeptides. A strain lacking most of the PS domain contained trace amounts of a carotenoid-like pigment, tentatively identified as the squalene desaturation product diapolycopene. In support, trace amounts of this compound were also found in a knock-out mutant for gene al-2, but not in that for gene al-1, coding for the carotene desaturase. The cyclase activity of the AL-2 enzyme from two albino mutants was investigated by heterologous expression in an appropriately engineered E. coli strain. One of the AL-2 enzymes, predictably with only 20% of the PS domain, showed full cyclase activity, suggesting functional independence of both domains. However, the second mutant showed no cyclase activity, indicating that some alterations in the phytoene synthase segment affect the cyclase domain. Expression experiments showed a diminished photoinduction of al-2 transcripts in the al-2 mutants compared to the wild type strain, suggesting a synergic effect between reduced expression and impaired enzymatic activities in the generation of their albino phenotypes.
doi:10.1371/journal.pone.0021948
PMCID: PMC3139582  PMID: 21818281
20.  Carotenoid Biosynthesis in Arabidopsis: A Colorful Pathway 
Plant carotenoids are a family of pigments that participate in light harvesting and are essential for photoprotection against excess light. Furthermore, they act as precursors for the production of apocarotenoid hormones such as abscisic acid and strigolactones. In this review, we summarize the current knowledge on the genes and enzymes of the carotenoid biosynthetic pathway (which is now almost completely elucidated) and on the regulation of carotenoid biosynthesis at both transcriptional and post-transcriptional levels. We also discuss the relevance of Arabidopsis as a model system for the study of carotenogenesis and how metabolic engineering approaches in this plant have taught important lessons for carotenoid biotechnology.
doi:10.1199/tab.0158
PMCID: PMC3350171  PMID: 22582030
21.  Biological Role of Pigment Production for the Bacterial Phytopathogen Pantoea stewartii subsp. stewartii 
Applied and Environmental Microbiology  2012;78(19):6859-6865.
Pantoea stewartii subsp. stewartii, the causal agent of Stewart's wilt of sweet corn, produces a yellow carotenoid pigment. A nonpigmented mutant was selected from a bank of mutants generated by random transposon mutagenesis. The transposon insertion site was mapped to the crtB gene, encoding a putative phytoene synthase, an enzyme involved in the early steps of carotenoid biosynthesis. We demonstrate here that the carotenoid pigment imparts protection against UV radiation and also contributes to the complete antioxidant pathway of P. stewartii. Moreover, production of this pigment is regulated by the EsaI/EsaR quorum-sensing system and significantly contributes to the virulence of the pathogen in planta.
doi:10.1128/AEM.01574-12
PMCID: PMC3457488  PMID: 22820327
22.  Enrichment of provitamin A content in wheat (Triticum aestivum L.) by introduction of the bacterial carotenoid biosynthetic genes CrtB and CrtI  
Journal of Experimental Botany  2014;65(9):2545-2556.
Summary
Co-expression of CrtB and CrtI enhanced carotenoid in endosperm through upregulation of the endogenous carotenogenic genes. Our results also indicate important roles of LCYB and HYD in wheat carotenoid biosynthesis.
Carotenoid content is a primary determinant of wheat nutritional value and affects its end-use quality. Wheat grains contain very low carotenoid levels and trace amounts of provitamin A content. In order to enrich the carotenoid content in wheat grains, the bacterial phytoene synthase gene (CrtB) and carotene desaturase gene (CrtI) were transformed into the common wheat cultivar Bobwhite. Expression of CrtB or CrtI alone slightly increased the carotenoid content in the grains of transgenic wheat, while co-expression of both genes resulted in a darker red/yellow grain phenotype, accompanied by a total carotenoid content increase of approximately 8-fold achieving 4.76 μg g–1 of seed dry weight, a β-carotene increase of 65-fold to 3.21 μg g–1 of seed dry weight, and a provitamin A content (sum of α-carotene, β-carotene, and β-cryptoxanthin) increase of 76-fold to 3.82 μg g–1 of seed dry weight. The high provitamin A content in the transgenic wheat was stably inherited over four generations. Quantitative PCR analysis revealed that enhancement of provitamin A content in transgenic wheat was also a result of the highly coordinated regulation of endogenous carotenoid biosynthetic genes, suggesting a metabolic feedback regulation in the wheat carotenoid biosynthetic pathway. These transgenic wheat lines are not only valuable for breeding wheat varieties with nutritional benefits for human health but also for understanding the mechanism regulating carotenoid biosynthesis in wheat endosperm.
doi:10.1093/jxb/eru138
PMCID: PMC4036513  PMID: 24692648
Bacterial phytoene synthase (CrtB); bacterial phytoene desaturase (CrtI); carotenoid β-hydroxylase (HYD); lycopene β-cyclase (LCYB); provitamin A; particle bombardment; transgenic wheat.
23.  Analysis of peptide PSY1 responding transcripts in the two Arabidopsis plant lines: wild type and psy1r receptor mutant 
BMC Genomics  2014;15(1):441.
Background
Small-secreted peptides are emerging as important components in cell-cell communication during basic developmental stages of plant cell growth and development. Plant peptide containing sulfated tyrosine 1 (PSY1) has been reported to promote cell expansion and differentiation in the elongation zone of roots. PSY1 action is dependent on a receptor PSY1R that triggers a signaling cascade leading to cell elongation. However little is known about cellular functions and the components involved in PSY1-based signaling cascade.
Results
Differentially expressed genes were identified in a wild type plant line and in a psy1r receptor mutant line of Arabidopsis thaliana after treatment with PSY1. Seventy-seven genes were found to be responsive to the PSY1 peptide in wild type plants while 154 genes were responsive in the receptor mutant plants. PSY1 activates the transcripts of genes involved in cell wall modification. Gene enrichment analysis revealed that PSY1-responsive genes are involved in responses to stimuli, metabolic processes and biosynthetic processes. The significant enrichment terms of PSY1-responsive genes were higher in psy1r mutant plants compared to in wild type plants. Two parallel responses to PSY1 were identified, differing in their dependency on the PSY1R receptor. Promoter analysis of the differentially expressed genes identified a light regulatory motif in some of these.
Conclusion
PSY1-responsive genes are involved in cellular functions and stimuli responses suggesting a crosstalk between developmental cues and environmental stimuli. Possibly, two parallel responses to PSY1 exist. A motif involved in light regulation was identified in the promoter region of the differentially expressed genes. Reduced hypocotyl growth was observed in etiolated receptor mutant seedlings.
Electronic supplementary material
The online version of this article (doi: 10.1186/1471-2164-15-441) contains supplementary material, which is available to authorized users.
doi:10.1186/1471-2164-15-441
PMCID: PMC4070568  PMID: 24906416
Cellular functions; Gene enrichment analysis; Microarray; Signaling cascade; Small signaling peptides
24.  Proteome changes in tomato lines transformed with phytoene synthase-1 in the sense and antisense orientations 
Journal of Experimental Botany  2012;63(16):6035-6043.
The commercial cultivation of genetically engineered (GE) crops in Europe has met with considerable consumer resistance, which has led to vigorous safety assessments including the measurement of substantial equivalence between the GE and parent lines. This necessitates the identification and quantification of significant changes to the metabolome and proteome in the GE crop. In this study, the quantitative proteomic analysis of tomato fruit from lines that have been transformed with the carotenogenic gene phytoene synthase-1 (Psy-1), in the sense and antisense orientations, in comparison with a non-transformed, parental line is described. Multidimensional protein identification technology (MudPIT), with tandem mass spectrometry, has been used to identify proteins, while quantification has been carried out with isobaric tags for relative and absolute quantification (iTRAQ). Fruit from the GE plants showed significant alterations to their proteomes compared with the parental line, especially those from the Psy-1 sense transformants. These results demonstrate that MudPIT and iTRAQ are suitable techniques for the verification of substantial equivalence of the proteome in GE crops.
doi:10.1093/jxb/ers252
PMCID: PMC3467302  PMID: 22987837
Genetic modification; mass spectrometry; multidimensional liquid chromatography; phytoene synthase; proteomics; Solanum lycopersicum
25.  Physical mapping of a large plant genome using global high-information-content-fingerprinting: the distal region of the wheat ancestor Aegilops tauschii chromosome 3DS 
BMC Genomics  2010;11:382.
Background
Physical maps employing libraries of bacterial artificial chromosome (BAC) clones are essential for comparative genomics and sequencing of large and repetitive genomes such as those of the hexaploid bread wheat. The diploid ancestor of the D-genome of hexaploid wheat (Triticum aestivum), Aegilops tauschii, is used as a resource for wheat genomics. The barley diploid genome also provides a good model for the Triticeae and T. aestivum since it is only slightly larger than the ancestor wheat D genome. Gene co-linearity between the grasses can be exploited by extrapolating from rice and Brachypodium distachyon to Ae. tauschii or barley, and then to wheat.
Results
We report the use of Ae. tauschii for the construction of the physical map of a large distal region of chromosome arm 3DS. A physical map of 25.4 Mb was constructed by anchoring BAC clones of Ae. tauschii with 85 EST on the Ae. tauschii and barley genetic maps. The 24 contigs were aligned to the rice and B. distachyon genomic sequences and a high density SNP genetic map of barley. As expected, the mapped region is highly collinear to the orthologous chromosome 1 in rice, chromosome 2 in B. distachyon and chromosome 3H in barley. However, the chromosome scale of the comparative maps presented provides new insights into grass genome organization. The disruptions of the Ae. tauschii-rice and Ae. tauschii-Brachypodium syntenies were identical. We observed chromosomal rearrangements between Ae. tauschii and barley. The comparison of Ae. tauschii physical and genetic maps showed that the recombination rate across the region dropped from 2.19 cM/Mb in the distal region to 0.09 cM/Mb in the proximal region. The size of the gaps between contigs was evaluated by comparing the recombination rate along the map with the local recombination rates calculated on single contigs.
Conclusions
The physical map reported here is the first physical map using fingerprinting of a complete Triticeae genome. This study demonstrates that global fingerprinting of the large plant genomes is a viable strategy for generating physical maps. Physical maps allow the description of the co-linearity between wheat and grass genomes and provide a powerful tool for positional cloning of new genes.
doi:10.1186/1471-2164-11-382
PMCID: PMC2900270  PMID: 20553621

Results 1-25 (349103)