Search tips
Search criteria

Results 1-25 (652751)

Clipboard (0)

Related Articles

1.  The transcriptional co-activator PCAF regulates cdk2 activity 
Nucleic Acids Research  2009;37(21):7072-7084.
Cyclin dependent kinases (cdks) regulate cell cycle progression and transcription. We report here that the transcriptional co-activator PCAF directly interacts with cdk2. This interaction is mainly produced during S and G2/M phases of the cell cycle. As a consequence of this association, PCAF inhibits the activity of cyclin/cdk2 complexes. This effect is specific for cdk2 because PCAF does not inhibit either cyclin D3/cdk6 or cyclin B/cdk1 activities. The inhibition is neither competitive with ATP, nor with the substrate histone H1 suggesting that somehow PCAF disturbs cyclin/cdk2 complexes. We also demonstrate that overexpression of PCAF in the cells inhibits cdk2 activity and arrests cell cycle progression at S and G2/M. This blockade is dependent on cdk2 because it is rescued by the simultaneous overexpression of this kinase. Moreover, we also observed that PCAF acetylates cdk2 at lysine 33. As this lysine is essential for the interaction with ATP, acetylation of this residue inhibits cdk2 activity. Thus, we report here that PCAF inhibits cyclin/cdk2 activity by two different mechanisms: (i) by somehow affecting cyclin/cdk2 interaction and (ii) by acetylating K33 at the catalytic pocket of cdk2. These findings identify a previously unknown mechanism that regulates cdk2 activity.
PMCID: PMC2790897  PMID: 19773423
2.  Acetylation by PCAF Enhances CIITA Nuclear Accumulation and Transactivation of Major Histocompatibility Complex Class II Genes 
Molecular and Cellular Biology  2000;20(22):8489-8498.
The class II transactivator (CIITA), the master regulator of the tissue-specific and interferon gamma-inducible expression of major histocompatibility complex class II genes, synergizes with the histone acetylase coactivator CBP to activate gene transcription. Here we demonstrate that in addition to CBP, PCAF binds to CIITA both in vivo and in vitro and enhances CIITA-dependent transcriptional activation of class II promoters. Accordingly, E1A mutants defective for PCAF or CBP interaction show reduced ability in suppressing CIITA activity. Interestingly, CBP and PCAF acetylate CIITA at lysine residues within a nuclear localization signal. We show that CIITA is shuttling between the nucleus and cytoplasm. The shuttling behavior and activity of the protein are regulated by acetylation: overexpression of PCAF or inhibition of cellular deacetylases by trichostatin A increases the nuclear accumulation of CIITA in a manner determined by the presence of the acetylation target lysines. Furthermore, mutagenesis of the acetylated residues reduces the transactivation ability of CIITA. These results support a novel function for acetylation, i.e., to regulate gene expression by stimulating the nuclear accumulation of an activator.
PMCID: PMC102155  PMID: 11046145
3.  The histone acetyltransferase PCAF regulates p21 transcription through stress-induced acetylation of histone H3 
Cell Cycle  2012;11(13):2458-2466.
The activity of p53 as a tumor suppressor primarily depends on its ability to transactivate specific target genes in response to genotoxic and other potentially mutagenic stresses. Several histone acetyl transferases (HATs), including p300, CBP, PCAF and GCN5 have been implicated in the activation of p53-dependent transcription of the cyclin-dependent kinase (cdk) inhibitor p21 as well as other target genes. Here we show that PCAF, but not CBP or p300, is a critical regulator of p53-dependent p21 expression in response to multiple p53-activating stresses. PCAF was required for the transcriptional activation of p21 in response to exogenous p53 in p53-null cells, nutlin-3, DNA damaging agents and p14ARF expression, suggesting a broad requirement for PCAF in p53 signaling to p21 after stress. Importantly, cells lacking PCAF failed to undergo cell cycle arrest in response to nutlin-3 treatment or p14ARF expression, consistent with a physiologically important role for PCAF in this p53 function. Surprisingly, the role for PCAF in induction of p21 was independent of p53 lysine 320 acetylation, a previously suggested target of PCAF-mediated acetylation. Though p21 promoter occupancy by p53 was not altered by PCAF knockdown, activation of p21 transcription required an intact PCAF HAT domain, and induction of chromatin marks acetyl-H3K9 and acetyl-H3K14 at the p21 promoter by p53 was dependent upon physiologic levels of PCAF. Together, our experiments indicate that PCAF is required for stress-responsive histone 3 acetylation at the p21 promoter, p53-directed transcription of p21 and the resultant growth arrest.
PMCID: PMC3404877  PMID: 22713239
ARF; DNA damage; PCAF; histone acetylation; p21; p53
4.  A New Coactivator Function for Zac1's C2H2 Zinc Finger DNA-Binding Domain in Selectively Controlling PCAF Activity▿  
Molecular and Cellular Biology  2008;28(19):6078-6093.
The generally accepted paradigm of transcription by regulated recruitment defines sequence-specific transcription factors and coactivators as separate categories that are distinguished by their abilities to bind DNA autonomously. The C2H2 zinc finger protein Zac1, with an established role in canonical DNA binding, also acts as a coactivator. Commensurate with this function, p73, which is related to p53, is here shown to recruit Zac1, together with the coactivators p300 and PCAF, to the p21Cip1 promoter during the differentiation of embryonic stem cells into neurons. In the absence of autonomous DNA binding, Zac1's zinc fingers stabilize the association of PCAF with p300, suggesting its scaffolding function. Furthermore, Zac1 regulates the affinities of PCAF substrates as well as the catalytic activities of PCAF to induce a selective switch in favor of histone H4 acetylation and thereby the efficient transcription of p21Cip1. These results are consistent with an authentic coactivator function of Zac1's C2H2 zinc finger DNA-binding domain and suggest coactivation by sequence-specific transcription factors as a new facet of transcriptional control.
PMCID: PMC2546996  PMID: 18663001
5.  Acetylation of Conserved Lysines in Bovine Papillomavirus E2 by p300 
Journal of Virology  2013;87(3):1497-1507.
The p300, CBP, and pCAF lysine acetyltransferase (KAT) proteins have been reported to physically interact with bovine (BPV) and human (HPV) papillomavirus E2 proteins. While overexpression of these KAT proteins enhances E2-dependent transcription, the mechanism has not been determined. Using RNA interference (RNAi) to deplete these factors, we demonstrated that E2 transcriptional activity requires physiological levels of p300, CBP, and pCAF. Each protein appears to have a unique function in E2-dependent transcription, since overexpression of one KAT failed to compensate for RNAi knockdown of another KAT. Using an in vitro acetylation assay, we identified highly conserved lysines that are targeted by p300 for acetylation. The conservative changes of lysines at positions 111 and 112 to arginine were of particular interest. The K111R and the K111R/K112R mutants showed reduced transcriptional activity that was not responsive to p300 overexpression, while the K112R mutant retained activity. p300 and CBP were detected at the viral promoter; however, pCAF was not. We propose a model by which E2 transcriptional activity is controlled by p300-mediated acetylation of lysine 111. This model represents a novel mechanism regulating papillomavirus gene expression.
PMCID: PMC3554136  PMID: 23152516
6.  PCAF Acetylates β-Catenin and Improves Its Stability 
Molecular Biology of the Cell  2009;20(1):419-427.
β-Catenin plays an important role in development and tumorigenesis. However, the effect of a key acetyltransferase p300/CBP-associated factor (PCAF) on β-catenin signaling is largely unknown. In this study, we found PCAF could increase the β-catenin transcriptional activity, induce its nuclear translocation, and up-regulate its protein level by inhibiting its ubiquitination and improving its stability. Further studies showed that PCAF directly binds to and acetylates β-catenin. The key ubiquitination sites Lys-19 and Lys-49 of β-catenin were shown as the critical residues for PCAF-induced acetylation and stabilization. Knockdown of PCAF in colon cancer cells markedly reduced the protein level, transcriptional activity, and acetylation level of β-catenin; promoted cell differentiation; inhibited cell migration; and repressed xenografted tumorigenesis and tumor growth in nude mice. All these data demonstrate that PCAF acetylates β-catenin and regulates its stability, and they raise the prospect that therapies targeting PCAF may be of clinical use in β-catenin–driven diseases, such as colon cancer.
PMCID: PMC2613091  PMID: 18987336
7.  Functional Interaction between Coactivators CBP/p300, PCAF, and Transcription Factor FKLF2* 
The Journal of biological chemistry  2001;277(9):7029-7036.
The Sp1/KLF family of factors regulates diverse cellular processes, including growth and development. Fetal Krüppel-like factor (FKLF2) is a new member of this family. In this study, we characterized the coactivators involved in FKLF2 transcriptional activation. Our results show that both CBP/p300 and p300/CBP-associated factor (PCAF) enhance FKLF2 transcriptional activity. We demonstrate that the acetyltransferase activity of PCAF but not that of CBP/p300 is required for stimulating FKLF2 transcription activity. We further show that p300 and PCAF act cooperatively in stimulating FKLF2 transcriptional activation. FKLF2 interacts with both CBP and PCAF through specific domains, and CBP and PCAF acetylate FKLF2. Both CBP/p300 and PCAF stimulate FKLF2 DNA binding activity. The integrity of the acetyltransferase domain of PCAF but not that of CBP/p300 is required for stimulating FKLF2 DNA binding activity. These results demonstrate that CBP/p300 and PCAF stimulate FKLF2 transcriptional activity at least by enhancing its DNA binding. The acetyltransferase activities of CBP/p300 and PCAF play a distinct role in stimulating FKLF2 transcription and DNA binding.
PMCID: PMC2808425  PMID: 11748222
8.  Specific Acetylation of Chromosomal Protein HMG-17 by PCAF Alters Its Interaction with Nucleosomes 
Molecular and Cellular Biology  1999;19(5):3466-3473.
Nonhistone chromosomal proteins HMG-14 and HMG-17 are closely related nucleosomal binding proteins that unfold the higher-order chromatin structure, thereby enhancing the transcription and replication potential of chromatin. Here we report that PCAF, a transcription coactivator with intrinsic histone acetyltransferase activity, specifically acetylates HMG-17 but not HMG-14. Using mass spectrum sequence analysis, we identified the lysine at position 2 as the predominant site acetylated by PCAF. Lysine 2 is a prominent acetylation site in vivo, suggesting that this PCAF-mediated acetylation is physiologically relevant. Experiments with HMG-17 deletion mutants and competition studies with various protein fragments indicate that the specific acetylation of HMG-17 is not determined solely by the primary sequence near the acetylation site. By equilibrium dialysis we demonstrated that acetylation reduces the affinity of HMG-17 to nucleosome cores. In addition, we found that the binding of HMG-14 and HMG-17 to nucleosome cores inhibits the PCAF-mediated acetylation of histone H3. Thus, the presence of HMG-14 and HMG-17 affects the ability of PCAF to acetylate chromatin, while the acetylation of HMG-17 reduces its binding affinity to chromatin. Conceivably, in HMG-17-containing chromatin, acetylation of HMG-17 precedes the acetylation of histones.
PMCID: PMC84139  PMID: 10207070
9.  Structural Basis of Site-Specific Histone Recognition by the Bromodomains of Human Coactivators PCAF and CBP/p300 
Structure(London, England:1993)  2008;16(4):643-652.
Histone lysine acetylation is central to epigenetic control of gene transcription. Bromodomains of chromosomal proteins function as acetyl-lysine (Kac) binding domains. However, how bromodomains recognize site-specific histones remains unanswered. Here, we report three three-dimensional solution structures of the bromodomains of the human transcriptional coactivators CREB-binding protein (CBP) and p300/CBP-associated factor (PCAF) bound to peptides derived from histone acetylation sites at lysines 36 and 9 in H3, and lysine 20 in H4. From structural and biochemical binding analyses, we determine consensus histone recognition by the bromodomains of PCAF and CBP, which represent two different subgroups of the bromodomain family. Through bromodomain residues in the ZA and BC loops, PCAF prefers acetylation sites with a hydrophobic residue at (Kac+2) position and a positively charged or aromatic residue at (Kac+3), whereas CBP favors bulky hydrophobic residues at (Kac+1) and (Kac+2), a positively charged residue at (Kac−1), and an aromatic residue at (Kac−2).
PMCID: PMC3339198  PMID: 18400184
10.  Dimeric structure of p300/CBP associated factor 
p300/CBP associating factor (PCAF, also known as KAT2B for lysine acetyltransferase 2B) is a catalytic subunit of megadalton metazoan complex ATAC (Ada-Two-A containing complex) for acetylation of histones. However, relatively little is known about the regulation of the enzymatic activity of PCAF.
Here we present two dimeric structures of the PCAF acetyltransferase (HAT) domain. These dimerizations are mediated by either four-helical hydrophobic interactions or a ß-sheet extension. Our chemical cross-linking experiments in combined with site-directed mutagenesis demonstrated that the PCAF HAT domain mainly forms a dimer in solution through one of the observed interfaces. The results of maltose binding protein (MBP)-pulldown, co-immunoprecipitation and multiangle static light scattering experiments further indicated that PCAF dimeric state is detectable and may possibly exist in vivo.
Taken together, our structural and biochemical studies indicate that PCAF appears to be a dimer in its functional ATAC complex.
PMCID: PMC3897949  PMID: 24423233
PCAF; Histone acetyltransferase; Dimerization; ATAC
11.  The role of acetylation in rDNA transcription 
Nucleic Acids Research  2001;29(20):4114-4124.
Treatment of NIH 3T3 cells with trichostatin A (TSA), an inhibitor of histone deacetylase (HDAC), resulted in a dose-dependent increase in transcription from a rDNA reporter and from endogenous rRNA genes. Chromatin immunoprecipitation using anti-acetyl-histone H4 antibodies demonstrated a direct effect of TSA on the acetylation state of the ribosomal chromatin. TSA did not reverse inhibition of transcription from the rDNA reporter by retinoblastoma (Rb) protein, suggesting that the main mechanism by which Rb blocks rDNA transcription may not involve recruitment of deacetylases to rDNA chromatin. Overexpression of histone transacetylases p300, CBP and PCAF stimulated transcription in transfected NIH 3T3 cells. Recombinant p300, but not PCAF, stimulated rDNA transcription in vitro in the absence of nucleosomes, suggesting that the stimulation of rDNA transcription by TSA might have a chromatin-independent component. We found that the rDNA transcription factor UBF was acetylated in vivo. Finally, we also demonstrated the nucleolar localization of CBP. Our results suggest that the organization of ribosomal chromatin of higher eukaryotes is not static and that acetylation may be involved in affecting these dynamic changes directly through histone acetylation and/or through acetylation of UBF or one of the other components of rDNA transcription.
PMCID: PMC60214  PMID: 11600700
12.  Functional Interplay between CBP and PCAF in Acetylation and Regulation of Transcription Factor KLF13 Activity 
Journal of molecular biology  2003;329(2):207-215.
The transcriptional co-activators CBP/p300 and PCAF participate in transcriptional activation by many factors. We have shown that both CBP/p300 and PCAF stimulate the transcriptional activation by KLF13, a member of the KLF/Sp1 family, either individually or cooperatively. Here we further investigated how CBP and PCAF acetylation regulate KLF13 activity, and how these two co-activators functionally interplay in the regulation of KLF13 activity. We found that CBP and PCAF acetylated KLF13 at specific lysine residues in the zinc finger domain of KLF13. The acetylation by CBP, however, resulted in disruption of KLF13 DNA binding. Although the acetyltransferase activity of CBP is not required for stimulating the DNA binding activity of all of the transcription factors that we have examined, the disruption of factor DNA binding by CBP acetylation is factor-specific. We further showed that PCAF and CBP act synergistically and antagonistically to regulate KLF13 DNA binding depending on the status of acetylation. PCAF blocked CBP acetylation and disruption of KLF13 DNA binding. Conversely, acetylation of KLF13 by CBP prevented PCAF stimulation of KLF13 DNA binding. PCAF blocked CBP disruption of KLF13 DNA binding by preventing CBP acetylation of KLF13. These results demonstrate that acetylation by CBP has distinct effects on transcription factor DNA binding, and that CBP and PCAF regulate each other functionally in their regulation of transcription factor DNA binding.
PMCID: PMC2808423  PMID: 12758070
CBP/p300; PCAF; KLF13; acetylation; regulation of DNA-binding
13.  miR-17-5p targets the p300/CBP-associated factor and modulates androgen receptor transcriptional activity in cultured prostate cancer cells 
BMC Cancer  2012;12:492.
Androgen receptor (AR) signalling is critical to the initiation and progression of prostate cancer (PCa). Transcriptional activity of AR involves chromatin recruitment of co-activators, including the p300/CBP-associated factor (PCAF). Distinct miRNA expression profiles have been identified in PCa cells during the development and progression of the disease. Whether miRNAs regulate PCAF expression in PCa cells to regulate AR transcriptional activity is still unclear.
Expression of PCAF was investigated in several PCa cell lines by qRT-PCR, Western blot, and immunocytochemistry. The effects of PCAF expression on AR-regulated transcriptional activity and cell growth in PCa cells were determined by chromatin immunoprecipitation, reporter gene construct analysis, and MTS assay. Targeting of PCAF by miR-17-5p was evaluated using the luciferase reporter assay.
PCAF was upregulated in several PCa cell lines. Upregulation of PCAF promoted AR transcriptional activation and cell growth in cultured PCa cells. Expression of PCAF in PCa cells was associated with the downregulation of miR-17-5p. Targeting of the 3’-untranslated region of PCAF mRNA by miR-17-5p caused translational suppression and RNA degradation, and, consequently, modulation of AR transcriptional activity in PCa cells.
PCAF is upregulated in cultured PCa cells, and upregulation of PCAF is associated with the downregulation of miR-17-5p. Targeting of PCAF by miR-17-5p modulates AR transcriptional activity and cell growth in cultured PCa cells.
PMCID: PMC3519561  PMID: 23095762
14.  Altered Memory Capacities and Response to Stress in p300/CBP-Associated Factor (PCAF) Histone Acetylase Knockout Mice 
Neuropsychopharmacology   2007;33(7):1584-1602.
Chromatin remodeling by post-translational modification of histones plays an important role in brain plasticity, including memory, response to stress and depression. The importance of H3/4 histones acetylation by CREB binding protein (CBP) or related histone acetyltransferase, including p300, was specifically demonstrated using knockout (KO) mouse models. The physiological role of a related protein that also acts as a transcriptional coactivator with intrinsic histone acetylase activity, the p300/CBP associated factor (PCAF), is poorly documented. We analyzed the behavioral phenotype of homozygous male and female PCAF KO mice and report a marked impact of PCAF deletion on memory processes and stress response. PCAF KO animals showed short-term memory deficits at 2 months of age, measured using spontaneous alternation, object recognition or acquisition of a daily changing platform position in the water-maze. Acquisition of a fixed platform location was delayed, but preserved, and no passive avoidance deficit was noted. No gender-related difference was observed. These deficits were associated with hippocampal alterations in pyramidal cell layer organization, basal levels of Fos immunoreactivity and MAP kinase activation. PCAF KO mice also showed an exaggerated response to acute stress, forced swimming and conditioned fear, associated with increased plasma corticosterone levels. Moreover, learning and memory impairments worsened at 6 and 12 months of age, when animals failed to acquire the fixed platform location in the water-maze and showed passive avoidance deficits. These observations demonstrate that PCAF histone acetylase is involved lifelong in the chromatin remodeling necessary for memory formation and response to stress.
PMCID: PMC2459231  PMID: 17805310
histone acetylase PCAF; short-term memory; spatial memory; stress; age; behavioral phenotyping
15.  p53 Sites Acetylated In Vitro by PCAF and p300 Are Acetylated In Vivo in Response to DNA Damage 
Molecular and Cellular Biology  1999;19(2):1202-1209.
The p53 tumor suppressor protein is a sequence-specific transcription factor that modulates the response of cells to DNA damage. Recent studies suggest that full transcriptional activity of p53 requires the coactivators CREB binding protein (CBP)/p300 and PCAF. These coactivators interact with each other, and both possess intrinsic histone acetyltransferase activity. Furthermore, p300 acetylates p53 to activate its sequence-specific DNA binding activity in vitro. In this study, we demonstrate that PCAF also acetylates p53 in vitro at a lysine residue distinct from that acetylated by p300 and thereby increases p53’s ability to bind to its cognate DNA site. We have generated antibodies to acetylated p53 peptides at either of the two lysine residues that are targeted by PCAF or p300 and have demonstrated that these antibodies are highly specific for both acetylation and the particular site. Using these antibodies, we detect acetylation of these sites in vivo, and interestingly, acetylation at both sites increases in response to DNA-damaging agents. These data indicate that site-specific acetylation of p53 increases under physiological conditions that activate p53 and identify CBP/p300 and PCAF as the probable enzymes that modify p53 in vivo.
PMCID: PMC116049  PMID: 9891054
16.  Cortactin Modulates RhoA Activation and Expression of Cip/Kip Cyclin-Dependent Kinase Inhibitors To Promote Cell Cycle Progression in 11q13-Amplified Head and Neck Squamous Cell Carcinoma Cells ▿ †  
Molecular and Cellular Biology  2010;30(21):5057-5070.
The cortactin oncoprotein is frequently overexpressed in head and neck squamous cell carcinoma (HNSCC), often due to amplification of the encoding gene (CTTN). While cortactin overexpression enhances invasive potential, recent research indicates that it also promotes cell proliferation, but how cortactin regulates the cell cycle machinery is unclear. In this article we report that stable short hairpin RNA-mediated cortactin knockdown in the 11q13-amplified cell line FaDu led to increased expression of the Cip/Kip cyclin-dependent kinase inhibitors (CDKIs) p21WAF1/Cip1, p27Kip1, and p57Kip2 and inhibition of S-phase entry. These effects were associated with increased binding of p21WAF1/Cip1 and p27Kip1 to cyclin D1- and E1-containing complexes and decreased retinoblastoma protein phosphorylation. Cortactin regulated expression of p21WAF1/Cip1 and p27Kip1 at the transcriptional and posttranscriptional levels, respectively. The direct roles of p21WAF1/Cip1, p27Kip1, and p57Kip2 downstream of cortactin were confirmed by the transient knockdown of each CDKI by specific small interfering RNAs, which led to partial rescue of cell cycle progression. Interestingly, FaDu cells with reduced cortactin levels also exhibited a significant diminution in RhoA expression and activity, together with decreased expression of Skp2, a critical component of the SCF ubiquitin ligase that targets p27Kip1 and p57Kip2 for degradation. Transient knockdown of RhoA in FaDu cells decreased expression of Skp2, enhanced the level of Cip/Kip CDKIs, and attenuated S-phase entry. These findings identify a novel mechanism for regulation of proliferation in 11q13-amplified HNSCC cells, in which overexpressed cortactin acts via RhoA to decrease expression of Cip/Kip CDKIs, and highlight Skp2 as a downstream effector for RhoA in this process.
PMCID: PMC2953065  PMID: 20805359
17.  Regulation of the oncoprotein KLF8 by a switch between acetylation and sumoylation 
KLF8 regulates target genes by recruiting the p300 and PCAF co-activators via glutamines (Q) 118 and 248, the CtBP co-repressor to 86PVDLS90 or SUMO to lysine (K) 67. Here we examined how these interactions coordinate to regulate KLF8 transactivity. Mass spectrometry and immunoprecipitations determined that p300 and/or PCAF promoted KLF8 acetylation at K67, K93, and K95 and this acetylation was abolished in lysine-to-arginine (R) mutants. Treatment with HDAC inhibitors or expression of co-activators inhibited sumoylation at K67. K93R or K95R mutation exerted high levels of sumoylation while the acetylation mimetic mutations K93Q and K95Q blocked the sumoylation. Interestingly, CtBP promoted sumoylation at K67 of wild-type but not AVALF mutant KLF8, and KLF8 interaction with CtBP was inhibited by treatment with the HDAC inhibitors, ectopic expression of the co-activators, or K93Q or K95Q mutation. Promoter reporter assays showed that CtBP inhibited KLF8 transactivity which was rescued by PCAF or p300 expresson. Finally, KLF8-mediated cyclin D1 protein expression and cell cycle progression were significantly decreased in the K93R and K95R but increased in the K93Q, K95Q, K67R or K67Q mutant. Taken together, these results identified a novel mechanism by which co-activators promote KLF8 transactivity by competing with SUMO for K67 modification and by acetylating K93 and K95 to inhibit CtBP-induced K67 sumoylation.
PMCID: PMC3056558  PMID: 21416054
Krüppel-like factor 8 (KLF8); histone acetyltransferase (HAT); small ubiquitin modifier (SUMO); p300; p300/CBP associated factor (PCAF); histone deacetylase (HDAC); C-terminal binding protein (CtBP); acetylation and sumoylation
18.  Adenovirus E1B 55-Kilodalton Oncoprotein Inhibits p53 Acetylation by PCAF 
Molecular and Cellular Biology  2000;20(15):5540-5553.
The adenovirus E1B 55-kDa protein binds to cellular tumor suppressor p53 and inactivates its transcriptional transactivation function. p53 transactivation activity is dependent upon its ability to bind to specific DNA sequences near the promoters of its target genes. It was shown recently that p53 is acetylated by transcriptional coactivators p300, CREB bidning protein (CBP), and PCAF and that acetylation of p53 by these proteins enhances p53 sequence-specific DNA binding. Here we show that the E1B 55-kDa protein specifically inhibits p53 acetylation by PCAF in vivo and in vitro, while acetylation of histones and PCAF autoacetylation is not affected. Furthermore, the DNA-binding activity of p53 is diminished in cells expressing the E1B 55-kDa protein. PCAF binds to the E1B 55-kDa protein and to a region near the C terminus of p53 encompassing Lys-320, the specific PCAF acetylation site. We further show that the E1B 55-kDa protein interferes with the physical interaction between PCAF and p53, suggesting that the E1B 55-kDa protein inhibits PCAF acetylase function on p53 by preventing enzyme-substrate interaction. These results underscore the importance of p53 acetylation for its function and suggest that inhibition of p53 acetylation by viral oncoproteins prevent its activation, thereby contributing to viral transformation.
PMCID: PMC86007  PMID: 10891493
19.  Regulation of Transcription Factor YY1 by Acetylation and Deacetylation 
Molecular and Cellular Biology  2001;21(17):5979-5991.
YY1 is a sequence-specific DNA-binding transcription factor that has many important biological roles. It activates or represses many genes during cell growth and differentiation and is also required for the normal development of mammalian embryos. Previous studies have established that YY1 interacts with histone acetyltransferases p300 and CREB-binding protein (CBP) and histone deacetylase 1 (HDAC1), HDAC2, and HDAC3. Here, we present evidence that the activity of YY1 is regulated through acetylation by p300 and PCAF and through deacetylation by HDACs. YY1 was acetylated in two regions: both p300 and PCAF acetylated the central glycine-lysine-rich domain of residues 170 to 200, and PCAF also acetylated YY1 at the C-terminal DNA-binding zinc finger domain. Acetylation of the central region was required for the full transcriptional repressor activity of YY1 and targeted YY1 for active deacetylation by HDACs. However, the C-terminal region of YY1 could not be deacetylated. Rather, the acetylated C-terminal region interacted with HDACs, which resulted in stable HDAC activity associated with the YY1 protein. Finally, acetylation of the C-terminal zinc finger domain decreased the DNA-binding activity of YY1. Our findings suggest that in the natural context, YY1 activity is regulated through intricate mechanisms involving negative feedback loops, histone deacetylation, and recognition of the cognate DNA sequence affected by acetylation and deacetylation of the YY1 protein.
PMCID: PMC87316  PMID: 11486036
20.  Cloning of Drosophila GCN5: conserved features among metazoan GCN5 family members. 
Nucleic Acids Research  1998;26(12):2948-2954.
PCAF and hGCN5 are distinct human genes that encode proteins related to the yeast histone acetyltransferase and transcriptional adapter GCN5. The PCAF protein shares extensive similarity with the 439 amino acids of yGCN5, but it has an approximately 350 amino acid N-terminal extension that interacts with the transcriptional co-activator p300/CBP. Adenoviral protein E1a can disrupt PCAF-CBP interactions and prevent PCAF-dependent cellular differentiation. In this report, we describe the cloning and initial characterization of a Drosophila homolog of yGCN5. In addition to the homology to yGCN5, the Drosophila protein shares sequencesimilarity with the N-terminal portion of human PCAF that is involved in binding to CBP. In the course of characterizing dGCN5, we have discovered that hGCN5 also contains an N-terminal extension with significant similarity to PCAF. Interestingly, in the case of the h GCN5 gene, alternative splicing may regulate the production of full-length hGCN5. The presence of the N-terminal domain in a Drosophila GCN5 homolog and both human homologs suggests that it was part of the ancestral form of metazoan GCN5.
PMCID: PMC147644  PMID: 9611240
21.  Phosphorylation of the Cyclin-Dependent Kinase Inhibitor p21Cip1 on Serine 130 Is Essential for Viral Cyclin-Mediated Bypass of a p21Cip1-Imposed G1 Arrest 
Molecular and Cellular Biology  2006;26(6):2430-2440.
K cyclin encoded by Kaposi's sarcoma-associated herpesvirus confers resistance to the cyclin-dependent kinase (cdk) inhibitors p16Ink4A, p21Cip1, and p27Kip1 on the associated cdk6. We have previously shown that K cyclin expression enforces S-phase entry on cells overexpressing p27Kip1 by promoting phosphorylation of p27Kip1 on threonine 187, triggering p27Kip1 down-regulation. Since p21Cip1 acts in a manner similar to that of p27Kip1, we have investigated the subversion of a p21Cip1-induced G1 arrest by K cyclin. Here, we show that p21Cip1 is associated with K cyclin both in overexpression models and in primary effusion lymphoma cells and is a substrate of the K cyclin/cdk6 complex, resulting in phosphorylation of p21Cip1 on serine 130. This phosphoform of p21Cip1 appeared unable to associate with cdk2 in vivo. We further demonstrate that phosphorylation on serine 130 is essential for K cyclin-mediated release of a p21Cip1-imposed G1 arrest. Moreover, we show that under physiological conditions of cell cycle arrest due to elevated levels of p21Cip1 resulting from oxidative stress, K cyclin expression enabled S-phase entry and was associated with p21Cip1 phosphorylation and partial restoration of cdk2 kinase activity. Thus, expression of the viral cyclin enables cells to subvert the cell cycle inhibitory function of p21Cip1 by promoting cdk6-dependent phosphorylation of this antiproliferative protein.
PMCID: PMC1430279  PMID: 16508017
22.  Enhancement of lysine acetylation accelerates wound repair 
In physiopathological conditions, such as diabetes, wound healing is significantly compromised and chronic complications, including ulcers, may occur. In a mouse model of skin repair, we recently reported that wound treatment with Sirtuin activators and class I HDAC inhibitors induced keratinocyte proliferation and enhanced healing via a nitric oxide (NO) dependent mechanism. We observed an increase in total protein acetylation in the wound area, as determined by acetylation of α-tubulin and histone H3 Lysine 9. We reasoned that this process activated cell function as well as regulated gene expression to foster tissue repair. We report here that the direct activation of P300/CBP-associated factor (PCAF) by the histone acetylase activator pentadecylidenemalonate 1b (SPV-106) induced Lysine acetylation in the wound area. This intervention was sufficient to enhance repair process by a NO-independent mechanism. Hence, an impairment of PCAF and/or other GCN5 family acetylases may delay skin repair in physiopathological conditions.
PMCID: PMC3829946  PMID: 24265859
Lysine acetylation; epigenetics; PCAF; wound healing; nitric oxide; keratinocyte
23.  Pcaf Modulates Polyglutamine Pathology in a Drosophila Model of Huntington's Disease 
Neuro-Degenerative Diseases  2011;9(2):104-106.
Huntingtin peptides with elongated polyglutamine domains, the root causes of Huntington's disease, hinder histone acetylation, which leads to transcriptional dysregulation. However, the range of acetyltransferases interacting with mutant Huntingtin has not been systematically evaluated. We used genetic interaction tests in Drosophila to determine whether specific acetyltransferases belonging to distinct protein families influence polyglutamine pathology. We found that flies expressing a mutant form of the Huntingtin protein (Httex1pQ93) exhibit reduced viability, which is further decreased by partial loss of Pcaf or nejire, while the tested MYST family acetyltransferases did not affect pathology. Reduced levels of Pcaf also led to the increased degeneration of photoreceptor neurons in the retina. Overexpression of Pcaf, however, was not sufficient to ameliorate these phenotypes, and the level of soluble Pcaf is unchanged in Httex1pQ93-expressing flies. Thus, our results indicate that while Pcaf has a significant impact on Huntington's disease pathology, therapeutic strategies aimed at elevating its levels are likely to be ineffective in ameliorating Huntington's disease pathology; however, strategies that aim to increase the specific activity of Pcaf remain to be tested.
PMCID: PMC3304510  PMID: 21912091
Polyglutamine; Huntington's disease; Histone acetyltransferase; Pcaf; Nejire; Drosophila
24.  Induction of p21CIP1/WAF1 expression by human T-lymphotropic virus type 1 Tax requires transcriptional activation and mRNA stabilization 
Retrovirology  2009;6:35.
HTLV-1 Tax can induce senescence by up-regulating the levels of cyclin-dependent kinase inhibitors p21CIP1/WAF1 and p27KIP1. Tax increases p27KIP1 protein stability by activating the anaphase promoting complex/cyclosome (APC/C) precociously, causing degradation of Skp2 and inactivation of SCFSkp2, the E3 ligase that targets p27KIP1. The rate of p21CIP1/WAF1 protein turnover, however, is unaffected by Tax. Rather, the mRNA of p21CIP1/WAF1 is greatly up-regulated. Here we show that Tax increases p21 mRNA expression by transcriptional activation and mRNA stabilization. Transcriptional activation of p21CIP1/WAF1 by Tax occurs in a p53-independent manner and requires two tumor growth factor-β-inducible Sp1 binding sites in the -84 to -60 region of the p21CIP1/WAF1 promoter. Tax binds Sp1 directly, and the CBP/p300-binding activity of Tax is required for p21CIP1/WAF1 trans-activation. Tax also increases the stability of p21CIP1/WAF1 transcript. Several Tax mutants trans-activated the p21 promoter, but were attenuated in stabilizing p21CIP1/WAF1 mRNA, and were less proficient in increasing p21CIP1/WAF1 expression. The possible involvement of Tax-mediated APC/C activation in p21CIP1/WAF1 mRNA stabilization is discussed.
PMCID: PMC2676247  PMID: 19356250
25.  Glycogen Synthase Kinase (GSK) 3β Phosphorylates and Protects Nuclear Myosin 1c from Proteasome-Mediated Degradation to Activate rDNA Transcription in Early G1 Cells 
PLoS Genetics  2014;10(6):e1004390.
Nuclear myosin 1c (NM1) mediates RNA polymerase I (pol I) transcription activation and cell cycle progression by facilitating PCAF-mediated H3K9 acetylation, but the molecular mechanism by which NM1 is regulated remains unclear. Here, we report that at early G1 the glycogen synthase kinase (GSK) 3β phosphorylates and stabilizes NM1, allowing for NM1 association with the chromatin. Genomic analysis by ChIP-Seq showed that this mechanism occurs on the rDNA as active GSK3β selectively occupies the gene. ChIP assays and transmission electron microscopy in GSK3β−/− mouse embryonic fibroblasts indicated that at G1 rRNA synthesis is suppressed due to decreased H3K9 acetylation leading to a chromatin state incompatible with transcription. We found that GSK3β directly phosphorylates the endogenous NM1 on a single serine residue (Ser-1020) located within the NM1 C-terminus. In G1 this phosphorylation event stabilizes NM1 and prevents NM1 polyubiquitination by the E3 ligase UBR5 and proteasome-mediated degradation. We conclude that GSK3β-mediated phosphorylation of NM1 is required for pol I transcription activation.
Author Summary
Nuclear actin and myosin are essential regulators of gene expression. At the exit of mitosis, nuclear myosin 1c (NM1) mediates RNA polymerase I (pol I) transcription activation and cell cycle progression by modulating assembly of the chromatin remodeling complex WICH with the subunits WSTF and SNF2h and, crucially, facilitating H3K9 acetylation by the histone acetyl transferase PCAF. The molecular mechanism by which NM1 is regulated remains however unknown. Here, we conducted a genome-wide screen and demonstrate that GSK3β is selectively coupled to the rDNA transcription unit. In embryonic fibroblasts lacking GSK3β there is a significant drop in rRNA synthesis levels and the rDNA is devoid of actin, NM1 and SNF2h. Concomitantly with a transcriptional block we reveal decreased levels of histone H3 acetylation by the histone acetyl transferase PCAF. At G1, transcriptional repression in the GSK3β knockout mouse embryonic fibroblasts, leads to NM1 ubiquitination by the E3 ligase UBR5 and proteasome-mediated degradation. We conclude that GSK3β suppresses NM1 degradation through the ubiquitin-proteasome system, facilitates NM1 association with the rDNA chromatin and transcription activation at G1. We therefore propose a novel and fundamental role for GSK3β as essential regulator of rRNA synthesis and cell cycle progression.
PMCID: PMC4046919  PMID: 24901984

Results 1-25 (652751)