Search tips
Search criteria

Results 1-25 (1408582)

Clipboard (0)

Related Articles

1.  Blocking TLR7- and TLR9-mediated IFN-α Production by Plasmacytoid Dendritic Cells Does Not Diminish Immune Activation in Early SIV Infection 
PLoS Pathogens  2013;9(7):e1003530.
Persistent production of type I interferon (IFN) by activated plasmacytoid dendritic cells (pDC) is a leading model to explain chronic immune activation in human immunodeficiency virus (HIV) infection but direct evidence for this is lacking. We used a dual antagonist of Toll-like receptor (TLR) 7 and TLR9 to selectively inhibit responses of pDC but not other mononuclear phagocytes to viral RNA prior to and for 8 weeks following pathogenic simian immunodeficiency virus (SIV) infection of rhesus macaques. We show that pDC are major but not exclusive producers of IFN-α that rapidly become unresponsive to virus stimulation following SIV infection, whereas myeloid DC gain the capacity to produce IFN-α, albeit at low levels. pDC mediate a marked but transient IFN-α response in lymph nodes during the acute phase that is blocked by administration of TLR7 and TLR9 antagonist without impacting pDC recruitment. TLR7 and TLR9 blockade did not impact virus load or the acute IFN-α response in plasma and had minimal effect on expression of IFN-stimulated genes in both blood and lymph node. TLR7 and TLR9 blockade did not prevent activation of memory CD4+ and CD8+ T cells in blood or lymph node but led to significant increases in proliferation of both subsets in blood following SIV infection. Our findings reveal that virus-mediated activation of pDC through TLR7 and TLR9 contributes to substantial but transient IFN-α production following pathogenic SIV infection. However, the data indicate that pDC activation and IFN-α production are unlikely to be major factors in driving immune activation in early infection. Based on these findings therapeutic strategies aimed at blocking pDC function and IFN-α production may not reduce HIV-associated immunopathology.
Author Summary
A persistent type I interferon (IFN) response is thought to be important in driving immune activation and progression to AIDS in human immunodeficiency virus (HIV)-infected individuals. Plasmacytoid dendritic cells (pDC) produce copious amounts of type I IFN upon virus exposure through engagement of Toll-like receptor (TLR) 7 and TLR9 and thus may be central players in the etiology of immune activation. We used a dual antagonist of TLR7 and TLR9 to selectively block the response of pDC but not other mononuclear phagocytes prior to and for 8 weeks following simian immunodeficiency virus (SIV) infection of rhesus macaques. We show that pDC are major, but not exclusive, producers of IFN-α that mediate a marked but transient IFN-α response in lymph nodes in the acute phase of infection. TLR7 and TLR9 antagonist prevented this IFN-α production without suppressing pDC recruitment. Nevertheless, TLR7 and TLR9 blockade did not impact expression of IFN-stimulated genes or decrease the activation of T cells, the hallmarks of immune activation. The findings indicate that TLR7 and TLR9-driven activation of pDC is unlikely to be a major contributor to immune activation in the early stages of immunodeficiency virus infections and suggest that therapeutic strategies aimed at targeting pDC and IFN-α production may not reduce HIV-associated immunopathology.
PMCID: PMC3723633  PMID: 23935491
2.  Plasmacytoid Dendritic Cell Dynamics Tune Interferon-Alfa Production in SIV-Infected Cynomolgus Macaques 
PLoS Pathogens  2014;10(1):e1003915.
IFN-I production is a characteristic of HIV/SIV primary infections. However, acute IFN-I plasma concentrations rapidly decline thereafter. Plasmacytoid dendritic cells (pDC) are key players in this production but primary infection is associated with decreased responsiveness of pDC to TLR 7 and 9 triggering. IFNα production during primary SIV infection contrasts with increased pDC death, renewal and dysfunction. We investigated the contribution of pDC dynamics to both acute IFNα production and the rapid return of IFNα concentrations to pre-infection levels during acute-to-chronic transition. Nine cynomolgus macaques were infected with SIVmac251 and IFNα-producing cells were quantified and characterized. The plasma IFN-I peak was temporally associated with the presence of IFNα+ pDC in tissues but IFN-I production was not detectable during the acute-to-chronic transition despite persistent immune activation. No IFNα+ cells other than pDC were detected by intracellular staining. Blood-pDC and peripheral lymph node-pDC both lost IFNα− production ability in parallel. In blood, this phenomenon correlated with an increase in the counts of Ki67+-pDC precursors with no IFNα production ability. In tissues, it was associated with increase of both activated pDC and KI67+-pDC precursors, none of these being IFNα+ in vivo. Our findings also indicate that activation/death-driven pDC renewal rapidly blunts acute IFNα production in vivo: pDC sub-populations with no IFNα-production ability rapidly increase and shrinkage of IFNα production thus involves both early pDC exhaustion, and increase of pDC precursors.
Author Summary
Chronic immune activation is a characteristic of HIV infection and a key contributor to CD4 T-cell depletion and progression to AIDS. Persistent up-regulation of interferon-induced genes (ISG) is associated with chronic immune activation and is a molecular signature of the progression of SIV infection in non-human-primate models. Nevertheless, the type and tissue compartmentalization of IFN-I-producing cells at different stages of infection, and the details of the involvement of IFN-I in sustaining chronic immune activation remain elusive. Using the cynomolgus macaque model of progressive SIV infection, we demonstrate in vivo that plasmacytoid dendritic cells (pDC) are major contributors to IFNα production in lymphoid tissues and, most importantly, that this production rapidly shrinks after primary infection. IFNα production rapidly decreased as a consequence of both activation-induced exhaustion of pDC, and their replacement by pDC precursors with no IFNα production ability. Our data indicate that pDC renewal contributes to the rapid contraction of pDC-derived IFNα production during primary infection, which may favor the transition from acute-to-chronic infection by limiting the efficacy of innate immunity.
PMCID: PMC3907389  PMID: 24497833
3.  Hepatitis C Virus Pathogen Associated Molecular Pattern (PAMP) Triggers Production of Lambda-Interferons by Human Plasmacytoid Dendritic Cells 
PLoS Pathogens  2013;9(4):e1003316.
Plasmacytoid Dendritic Cells (pDCs) represent a key immune cell in the defense against viruses. Through pattern recognition receptors (PRRs), these cells detect viral pathogen associated molecular patterns (PAMPs) and initiate an Interferon (IFN) response. pDCs produce the antiviral IFNs including the well-studied Type I and the more recently described Type III. Recent genome wide association studies (GWAS) have implicated Type III IFNs in HCV clearance. We examined the IFN response induced in a pDC cell line and ex vivo human pDCs by a region of the HCV genome referred to as the HCV PAMP. This RNA has been shown previously to be immunogenic in hepatocytes, whereas the conserved X-region RNA is not. We show that in response to the HCV PAMP, pDC-GEN2.2 cells upregulate and secrete Type III (in addition to Type I) IFNs and upregulate PRR genes and proteins. We also demonstrate that the recognition of this RNA is dependent on RIG-I-like Receptors (RLRs) and Toll-like Receptors (TLRs), challenging the dogma that RLRs are dispensable in pDCs. The IFNs produced by these cells in response to the HCV PAMP also control HCV replication in vitro. These data are recapitulated in ex vivo pDCs isolated from healthy donors. Together, our data shows that pDCs respond robustly to HCV RNA to make Type III Interferons that control viral replication. This may represent a novel therapeutic strategy for the treatment of HCV.
Author Summary
Hepatitis C Virus (HCV) is the most common bloodborne pathogen for which no vaccine is available. Infection with the virus often leads to persistent (or chronic) infection. Patients with chronic HCV infection can develop progressive liver disease and liver failure, leading to the need for a transplant. It is not fully understood why some people clear the virus and others develop persistent infection. Understanding differences in how patients respond to the virus in the early phases of infection may lead to better treatment of HCV. Here, we use a highly conserved region of the HCV genome to examine innate immunological responses to HCV. We found that plasmacytoid dendritic cells, innate cells keyed to respond with anti-viral interferon proteins, recognize the virus. Additionally, we show that pDCs use RIG-I in the recognition of this virus, which was previously thought to be dispensable in pDCs. The proteins secreted by these cells can control viral replication in a cell-based laboratory system. In cells isolated from healthy donors, we found that fresh human cells can respond in the same manner to the virus as the laboratory strain of cells, and there was a correlation with genetic differences. Our study offers novel insight to how the body recognizes HCV during early infection and host-virus interactions that mediate viral control of this common infection.
PMCID: PMC3630164  PMID: 23637605
4.  Rotavirus Structural Proteins and dsRNA Are Required for the Human Primary Plasmacytoid Dendritic Cell IFNα Response 
PLoS Pathogens  2010;6(6):e1000931.
Rotaviruses are the leading cause of severe dehydrating diarrhea in children worldwide. Rotavirus-induced immune responses, especially the T and B cell responses, have been extensively characterized; however, little is known about innate immune mechanisms involved in the control of rotavirus infection. Although increased levels of systemic type I interferon (IFNα and β) correlate with accelerated resolution of rotavirus disease, multiple rotavirus strains, including rhesus rotavirus (RRV), have been demonstrated to antagonize type I IFN production in a variety of epithelial and fibroblast cell types through several mechanisms, including degradation of multiple interferon regulatory factors by a viral nonstructural protein. This report demonstrates that stimulation of highly purified primary human peripheral plasmacytoid dendritic cells (pDCs) with either live or inactivated RRV induces substantial IFNα production by a subset of pDCs in which RRV does not replicate. Characterization of pDC responses to viral stimulus by flow cytometry and Luminex revealed that RRV replicates in a small subset of human primary pDCs and, in this RRV-permissive small subset, IFNα production is diminished. pDC activation and maturation were observed independently of viral replication and were enhanced in cells in which virus replicates. Production of IFNα by pDCs following RRV exposure required viral dsRNA and surface proteins, but neither viral replication nor activation by trypsin cleavage of VP4. These results demonstrate that a minor subset of purified primary human peripheral pDCs are permissive to RRV infection, and that pDCs retain functionality following RRV stimulus. Additionally, this study demonstrates trypsin-independent infection of primary peripheral cells by rotavirus, which may allow for the establishment of extraintestinal viremia and antigenemia. Importantly, these data provide the first evidence of IFNα induction in primary human pDCs by a dsRNA virus, while simultaneously demonstrating impaired IFNα production in primary human cells in which RRV replicates. Rotavirus infection of primary human pDCs provides a powerful experimental system for the study of mechanisms underlying pDC-mediated innate immunity to viral infection and reveals a potentially novel dsRNA-dependent pathway of IFNα induction.
Author Summary
Rotaviruses cause severe dehydrating diarrhea and are a leading cause of death in children worldwide. A potent antiviral, interferon-α (IFNα), is rapidly secreted by plasmacytoid dendritic cells (pDCs) in response to viral single-stranded RNA or DNA genomes. Here, we examined the effects of rotavirus on pDCs purified from human blood. We found that very few pDCs supported rotavirus replication, and that pDCs retained similar functionality in response to live or inactivated rotaviruses. While pDCs produced large quantities of IFNα shortly after rotavirus exposure, this was impaired in cells supporting viral replication. We also found that two viral proteins and the rotavirus double-stranded RNA genome were required for the initiation of the pDC IFNα response to rotavirus. Additionally, we found that cleavage of one of these viral proteins, a traditional prerequisite for rotavirus infection in other cell types, was not required for the infection of pDCs or production of IFNα. This may enable the host to rapidly initiate an immune response to rotavirus that subsequently restricts infection to the intestine and contributes to the resolution of disease. Our study provides novel insight into the interaction between rotavirus and the host innate immune response, and also identifies a unique mechanism for the production of IFNα by pDCs.
PMCID: PMC2880586  PMID: 20532161
5.  BDCA2/FcɛRIγ Complex Signals through a Novel BCR-Like Pathway in Human Plasmacytoid Dendritic Cells 
PLoS Biology  2007;5(10):e248.
Dendritic cells are equipped with lectin receptors to sense the extracellular environment and modulate cellular responses. Human plasmacytoid dendritic cells (pDCs) uniquely express blood dendritic cell antigen 2 (BDCA2) protein, a C-type lectin lacking an identifiable signaling motif. We demonstrate here that BDCA2 forms a complex with the transmembrane adapter FcɛRIγ. Through pathway analysis, we identified a comprehensive signaling machinery in human pDCs, similar to that which operates downstream of the B cell receptor (BCR), which is distinct from the system involved in T cell receptor (TCR) signaling. BDCA2 crosslinking resulted in the activation of the BCR-like cascade, which potently suppressed the ability of pDCs to produce type I interferon and other cytokines in response to Toll-like receptor ligands. Therefore, by associating with FcɛRIγ, BDCA2 activates a novel BCR-like signaling pathway to regulate the immune functions of pDCs.
Author Summary
Dendritic cells (DCs) are specialized sentinels in the immune system that detect invading pathogens and, upon activation, initiate immune responses. DCs express C-type lectin receptors on their surface, which facilitate antigen capture. A distinct population of DCs, called plasmacytoid DCs (pDCs), display an extraordinary ability to rapidly make huge amounts of antiviral interferon (IFN) against viral infections. Human pDCs uniquely express a C-type lectin named BDCA2 that potently regulates pDCs function, yet the mechanism of how BDCA2 transduces signals is unknown. We show here that BDCA2 forms a complex with the transmembrane adapter FcɛRIγ. Using signaling pathway analysis, we discovered a comprehensive signaling machinery in human pDCs, similar to that which operates downstream of B cell receptors (BCRs), but distinct from the pathway involved in T cell receptor signaling. By associating with FcɛRIγ, BDCA2 activates a novel BCR-like signaling pathway to regulate the immune functions of pDCs. Since several pDC receptors use this pathway to modulate IFN and cytokine responses, these findings will guide more studies on how pDCs are regulated. Such mechanisms may lead to potential therapeutic interventions in autoimmune diseases involving hyperactivated pDCs, such as systemic lupus erythematosus and psoriasis.
Plasmacytoid dendritic cells (pDCs) are renowned for their production of type 1 interferon in response to viral infection, which is signified by Toll-like receptor (TLR) activation. Here, blood dendritic cell antigen 2(BDCA2), a C-type lectin receptor expressed uniquely on pDCs, is shown to block the ultimate effectors of TLR signaling via a novel pathway.
PMCID: PMC1971124  PMID: 17850179
6.  Abnormalities in circulating plasmacytoid dendritic cells in patients with systemic lupus erythematosus 
Arthritis Research & Therapy  2010;12(4):R137.
Dendritic cells (DCs) are capable of inducing immunity or tolerance. Previous studies have suggested plasmacytoid DCs (pDCs) are pathogenic in systemic lupus erythematosus (SLE). However, the functional characteristics of directly isolated peripheral circulating blood pDCs in SLE have not been evaluated previously.
Peripheral blood pDCs from 62 healthy subjects and 58 SLE patients were treated with apoptotic cells derived from polymorphonuclear cells (PMNs). Antigen loaded or unloaded pDCs were then co-cultured with autologous or allogenous T cells. Changes in T cell proliferation, cell surface CD25 expression, intracellular Foxp3 expression and cytokine production were evaluated. pDCs that had captured apoptotic PMNs (pDCs + apoPMNs were also studied for their cytokine production (interferon (IFN)-alpha, interleukin (IL)-6, IL-10, IL-18) and toll like receptor (TLR) expression.
Circulating pDCs from SLE patients had an increased ability to stimulate T cells when compared with control pDCs. Using allogenous T cells as responder cells, SLE pDCs induced T cell proliferation even in the absence of apoptotic PMNs. In addition, healthy pDCs + apoPMNs induced suppressive T regulatory cell features with increased Foxp3 expression in CD4 + CD25 + cells while SLE pDCs + apoPMNs did not. There were differences in the cytokine profile of pDCs that had captured apoptotic PMNs between healthy subjects and patients with SLE. Healthy pDCs + apoPMNs showed decreased production of IL-6 but no significant changes in IL-10 and IL-18. These pDCs + apoPMNs also showed increased mRNA transcription of TLR9. On the other hand, while SLE pDCs + apoPMNs also had decreased IL-6, there was decreased IL-18 mRNA expression and persistent IL-10 protein synthesis. In addition, SLE pDCs lacked TLR9 recruitment.
We have demonstrated that peripheral circulating pDCs in patients with SLE were functionally abnormal. They lacked TLR9 expression, were less capable of inducing regulatory T cell differentiation and had persistent IL-10 mRNA expression following the capture of apoptotic PMNs. We suggest circulating pDCs may be pathogenically relevant in SLE.
PMCID: PMC2945027  PMID: 20618924
7.  Plasmacytoid Dendritic Cell Ablation Impacts Early Interferon Responses and Antiviral NK and CD8+ T Cell Accrual 
Immunity  2010;33(6):955-966.
Plasmacytoid dendritic cells (pDCs) mediate type I interferon (IFN-I) responses to viruses that are recognized through the Toll-like receptor 7 (TLR7) or TLR9 signaling pathway. However, it is unclear how pDCs regulate the antiviral responses via innate and adaptive immune cells. We generated diphtheria toxin receptor transgenic mice to selectively deplete pDCs by administration of diphtheria toxin. pDC-depleted mice were challenged with viruses known to activate pDCs. In murine cytomegalovirus (MCMV) infection, pDC depletion reduced early IFN-I production and augmented viral burden facilitating the expansion of natural killer (NK) cells expressing the MCMV-specific receptor Ly49H. During vesicular stomatitis virus (VSV) infection, pDC depletion enhanced early viral replication and impaired the survival and accumulation of virus-specific cytotoxic T lymphocytes. We conclude that pDCs mediate early antiviral IFN-I responses and influence the accrual of virus-specific NK or CD8+ T cells in a virus-dependent manner.
PMCID: PMC3588567  PMID: 21130004
8.  Plasmacytoid Dendritic Cell Number and Responses to Toll-Like Receptor 7 and 9 Agonists Vary in HIV Type 1-Infected Individuals in Relation to Clinical State 
In HIV-1 infection, plasmacytoid dendritic cell (PDC) numbers and function are decreased. No detailed comparisons of PDC responses to various stimuli in HIV-1-infected patients are available. Using for the first time purified PDCs, we compared PDC responses [interferon (IFN)-α production/cell] to various stimuli in a large number (n=48) of HIV-1-infected patients and healthy volunteers (n=19). Toll-like receptor (TLR)7- and TLR9-induced expression of PDC surface activation and maturation markers was also compared in the two populations. We have confirmed that PDC number coincides with CD4+ T cell counts and clinical state. Notably, we have shown that a direct association of PDC function in terms of IFN-α production/cell exists with PDC numbers and CD4+ cell counts when PDCs are exposed to a TLR9 ligand and HIV-infected cells, but not with a TLR7 ligand. Moreover, in the HIV-infected subjects but not the healthy controls, the magnitude of IFN-α release per PDC in response to the TLR7 ligand is significantly (p<0.01) lower than that to the TLR9 ligand. However, in both study populations, the TLR7 stimulation in comparison to TLR9 stimulation induced higher expression of PDC surface activation and maturation markers and significantly (p<0.05) decreased the expression of BDCA-2, a negative regulator of interferon. Furthermore, the cross-ligation of BDCA-2 significantly (p<0.05) inhibited TLR9- but not TLR7-induced IFN-α production by PDCs from both clinical groups. These findings suggest that differences exist in TLR7- and TLR9-induced IFN-α production by PDCs in HIV-infected individuals that are not directly related to BDCA-2 down-modulation.
PMCID: PMC3581027  PMID: 23131038
9.  Production of Interferon α by Human Immunodeficiency Virus Type 1 in Human Plasmacytoid Dendritic Cells Is Dependent on Induction of Autophagy 
The Journal of Infectious Diseases  2012;205(8):1258-1267.
Background. The mechanisms responsible for interferon α (IFN-α) production by plasmacytoid dendritic cells (pDCs) during human immunodeficiency virus type 1 (HIV-1) infection are unknown. This research examined the roles of Toll-like receptor 7 (TLR7) and autophagy in IFN-α production by pDCs during HIV-1 infection.
Methods. pDCs from human peripheral blood mononuclear cells were incubated with infectious or aldrithiol 2 (AT-2)–inactivated HIV-1 or with uridine-rich single-stranded RNA40 (ssRNA40) from the HIV-1 long terminal repeat. IFN-α was quantified by enzyme-linked immunosorbant assay. Autophagic proteins were detected by Western blot, and autophagosomes were identified using immunofluorescent and confocal microscopy. To inhibit autophagy, pDCs were treated with the phosphoinositide-3 kinase inhibitor 3-methyladenine (3-MA) or were transfected with autophagy-related protein 7 or TLR7 small interfering RNA (siRNA).
Results. Increased levels of IFN-α were present in culture supernatants following 16-hour incubation of pDCs with infectious or AT-2–inactivated HIV-1. Treatment of pDCs with ssRNA40 but not ssRNA41 resulted in high levels of IFN-α. pDCs exposed to HIV-1 gp120, rapamycin, or 3-MA alone failed to induce IFN-α. Pretreatment of pDCs with 3-MA significantly reduced the induction of IFN-α by ssRNA40. Similarly, knock down of autophagy-related protein 7 and TLR7 by use of siRNA significantly reduced the induction of IFN-α by ssRNA40 or HIV-1.
Conclusions. These findings demonstrate that IFN-α production by pDCs exposed to infectious or noninfectious HIV-1 and ssRNA40 occurs through induction of autophagy following TLR7 signaling.
PMCID: PMC3308911  PMID: 22396599
10.  Slc15a4, a Gene Required for pDC Sensing of TLR Ligands, Is Required to Control Persistent Viral Infection 
PLoS Pathogens  2012;8(9):e1002915.
Plasmacytoid dendritic cells (pDCs) are the major producers of type I IFN in response to viral infection and have been shown to direct both innate and adaptive immune responses in vitro. However, in vivo evidence for their role in viral infection is lacking. We evaluated the contribution of pDCs to acute and chronic virus infection using the feeble mouse model of pDC functional deficiency. We have previously demonstrated that feeble mice have a defect in TLR ligand sensing. Although pDCs were found to influence early cytokine secretion, they were not required for control of viremia in the acute phase of the infection. However, T cell priming was deficient in the absence of functional pDCs and the virus-specific immune response was hampered. Ultimately, infection persisted in feeble mice. We conclude that pDCs are likely required for efficient T cell priming and subsequent viral clearance. Our data suggest that reduced pDC functionality may lead to chronic infection.
Author Summary
The immune system consists of two arms aimed at fighting infection. Innate immunity represents the first barrier of defense to swiftly react – within minutes – following intrusion by a pathogen. Adaptive immunity is activated a few days later. Cross-talk between these two systems is critical but the means of communication are not yet fully understood. Plasmacytoid dendritic cells (pDCs) are innate immune cells best recognized for their ability to produce type I interferon (e.g. in response to viral infection.) Evidence for pDCs to modulate the adaptive system in vivo is only recent and still elusive. Using a newly described mouse model named feeble that is characterized by functional deficiency of pDCs, we analysed the role of feeble in the context of acute and chronic viral infection. We found that the feeble mutation affecting pDCs is dispensable for immunity during an acute infection. However our data show that feeble mice failed to control a chronic infection. This was likely due to a reduction in early cytokine secretion and improper activation of adaptive T cells, resulting in virus persistence. Therefore we propose that pDCs are critical for the resolution of chronic infection by linking both arms of immunity.
PMCID: PMC3441671  PMID: 23028315
11.  Hepatitis C Virus Is a Weak Inducer of Interferon Alpha in Plasmacytoid Dendritic Cells in Comparison with Influenza and Human Herpesvirus Type-1 
PLoS ONE  2009;4(2):e4319.
Plasmacytoid dendritic cells (pDCs) are responsible for the production of type I IFN during viral infection. Viral elimination by IFN-α-based therapy in more than 50% of patients chronically infected with hepatitis C virus (HCV) suggests a possible impairment of production of endogenous IFN-α by pDCs in infected individuals. In this study, we investigated the impact of HCV on pDC function. We show that exposure of pDCs to patient serum- and cell culture-derived HCV resulted in production of IFN-α by pDCs isolated from some donors, although this production was significantly lower than that induced by influenza and human herpesvirus type 1 (HHV-1). Using specific inhibitors we demonstrate that endocytosis and endosomal acidification were required for IFN-α production by pDCs in response to cell culture-derived HCV. HCV and noninfectious HCV-like particles inhibited pDC-associated production of IFN-α stimulated with Toll-like receptor 9 (TLR9) agonists (CpG-A or HHV-1) but not that of IFN-α stimulated with TLR7 agonists (resiquimod or influenza virus). The blockade of TLR9-mediated production of IFN-α, effective only when pDCs were exposed to virus prior to or shortly after CpG-A stimulation, was already detectable at the IFN-α transcription level 2 h after stimulation with CpG-A and correlated with down-regulation of the transcription factor IRF7 expression and of TLR9 expression. In conclusion, rapidly and early occurring particle–host cell protein interaction during particle internalization and endocytosis followed by blockade of TLR9 function could result in less efficient sensing of HCV RNA by TLR7, with impaired production of IFN-α. This finding is important for our understanding of HCV-DC interaction and immunopathogenesis of HCV infection.
PMCID: PMC2629532  PMID: 19183807
12.  Major Depletion of Plasmacytoid Dendritic Cells in HIV-2 Infection, an Attenuated Form of HIV Disease 
PLoS Pathogens  2009;5(11):e1000667.
Plasmacytoid dendritic cells (pDC) provide an important link between innate and acquired immunity, mediating their action mainly through IFN-α production. pDC suppress HIV-1 replication, but there is increasing evidence suggesting they may also contribute to the increased levels of cell apoptosis and pan-immune activation associated with disease progression. Although having the same clinical spectrum, HIV-2 infection is characterized by a strikingly lower viremia and a much slower rate of CD4 decline and AIDS progression than HIV-1, irrespective of disease stage. We report here a similar marked reduction in circulating pDC levels in untreated HIV-1 and HIV-2 infections in association with CD4 depletion and T cell activation, in spite of the undetectable viremia found in the majority of HIV-2 patients. Moreover, the same overexpression of CD86 and PD-L1 on circulating pDC was found in both infections irrespective of disease stage or viremia status. Our observation that pDC depletion occurs in HIV-2 infected patients with undetectable viremia indicates that mechanisms other than direct viral infection determine the pDC depletion during persistent infections. However, viremia was associated with an impairment of IFN-α production on a per pDC basis upon TLR9 stimulation. These data support the possibility that diminished function in vitro may relate to prior activation by HIV virions in vivo, in agreement with our finding of higher expression levels of the IFN-α inducible gene, MxA, in HIV-1 than in HIV-2 individuals. Importantly, serum IFN-α levels were not elevated in HIV-2 infected individuals. In conclusion, our data in this unique natural model of “attenuated” HIV immunodeficiency contribute to the understanding of pDC biology in HIV/AIDS pathogenesis, showing that in the absence of detectable viremia a major depletion of circulating pDC in association with a relatively preserved IFN-α production does occur.
Author Summary
Infection by HIV-2, the second AIDS-associated virus, is considered a unique natural model of attenuated HIV disease. HIV-2 infected individuals exhibit much lower levels of circulating virus (viremia) and progress to AIDS at slower rates than HIV-1 infected patients. In this study, we characterized for the first time blood plasmacytoid dendritic cells (pDC), important mediators between innate and acquired immunity, in HIV-2 infection. We observed a profound reduction in circulating pDC levels in HIV-2 infected patients, even in those with undetectable viremia, to levels similar to those found in HIV-1 infection. Moreover, we documented a more differentiated pDC phenotype in both infected cohorts relative to healthy individuals. Despite these similarities between HIV-1 and HIV-2 infections, pDC from HIV-2 patients with undetectable viremia exhibited, upon in vitro stimulation, a better-preserved ability to produce interferon-α (IFN-α), an important anti-viral cytokine with potential to stimulate other immune cells. Overall, our data suggest that the presence of virus in circulation, although not critical for the reduction in pDC number, appears to be central for the impairment of their function. This study of pDC in HIV-2 infection fills a gap in the understanding of their potential role in HIV/AIDS pathogenesis.
PMCID: PMC2773933  PMID: 19936055
13.  Type I interferon negatively controls plasmacytoid dendritic cell numbers in vivo 
The Journal of Experimental Medicine  2011;208(12):2367-2374.
Production of type I interferon in response to virus infection reduces plasmacytoid dendritic cell numbers, thus creating a negative feedback loop.
Plasmacytoid dendritic cells (pDCs) specialize in the secretion of type I interferons (IFN-I) and thus are considered critical mediators of antiviral responses. We recently reported that pDCs have a very early but limited and transient capacity to curtail viral infections. Additionally, pDC numbers are not sustained in human infections caused by Hepatitis B or C viruses (HBV and HCV) and HIV. Thus, the numbers and/or function of pDCs appear to be regulated during the course of viral infection. In this study, we show that splenic pDCs are reduced in vivo during several systemic viral infections and after administration of synthetic toll-like receptor ligands. We demonstrate that IFN-I, regardless of the source, contributes to this decline and mediates pDC death via the intrinsic apoptosis pathway. These findings demonstrate a feedback control mechanism by which IFN-I modulates pDC numbers, thus fine-tuning systemic IFN-I response to viruses. IFN-I–mediated control of pDCs may explain the loss of pDCs during human infections caused by HBV, HCV, or HIV and has important therapeutic implications for settings in which IFN-I is used to treat infections and autoimmune diseases.
PMCID: PMC3256963  PMID: 22084408
14.  Hepatitis B Virus Impairs TLR9 Expression and Function in Plasmacytoid Dendritic Cells 
PLoS ONE  2011;6(10):e26315.
Plasmacytoid dendritic cells (pDCs) play a key role in detecting pathogens by producing large amounts of type I interferon (IFN) by sensing the presence of viral infections through the Toll-Like Receptor (TLR) pathway. TLR9 is a sensor of viral and bacterial DNA motifs and activates the IRF7 transcription factor which leads to type I IFN secretion by pDCs. However, during chronic hepatitis B virus (HBV) infection, pDCs display an impaired ability to secrete IFN-α following ex vivo stimulation with TLR9 ligands. Here we highlight several strategies used by HBV to block IFN-α production through a specific impairment of the TLR9 signaling. Our results show that HBV particle internalisation could inhibit TLR9- but not TLR7-mediated secretion of IFN-α by pDCs. We observed that HBV down-regulated TLR9 transcriptional activity in pDCs and B cells in which TLR9 mRNA and protein levels were reduced. HBV can interfere with TLR9 activity by blocking the MyD88-IRAK4 axis and Sendai virus targeting IRF7 to block IFN-α production. Neutralising CpG motif sequences were identified within HBV DNA genome of genotypes A to H which displayed a suppressive effect on TLR9-immune activation. Moreover, TLR9 mRNA and protein were downregulated in PBMCs from patients with HBV-associated chronic hepatitis and hepatocellular carcinoma. Thus HBV has developed several escape mechanisms to avoid TLR9 activation in both pDCs and B lymphocytes, which may in turn contribute to the establishment and/or persistence of chronic infection.
PMCID: PMC3201951  PMID: 22046272
15.  Plasmacytoid Dendritic Cells Promote Host Defense Against Acute Pneumovirus Infection via the TLR7-MyD88-Dependent Signaling Pathway 
Human respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection in infants. In human infants, plasmacytoid dendritic cells (pDC) are recruited to the nasal compartment during infection and initiate host defense through the secretion of type I IFN, IL-12 and IL-6. However, RSV-infected pDCs are refractory to TLR7-mediated activation. Here, we used the rodent-specific pathogen, pneumonia virus of mice (PVM), to determine the contribution of pDC and TLR7-signaling to the development of the innate inflammatory and early adaptive immune response. In wild-type (WT) but not TLR7- or myeloid differentiation protein 88 (MyD88)-deficient mice, PVM inoculation led to a marked infiltration of pDCs and increased expression of type I, II and III IFNs. The delayed induction of IFNs in the absence of TLR7 or MyD88 was associated with a diminished innate inflammatory response and augmented virus recovery from lung tissue. In the absence of TLR7, PVM-specific CD8+ T cell cytokine production was abrogated. The adoptive transfer of TLR7-sufficient but not TLR7-deficient pDC to TLR7-gene-deleted mice recapitulated the antiviral responses observed in WT mice and promoted virus clearance. In summary, TLR7-mediated signaling by pDC is required for appropriate innate responses to acute pneumovirus infection. It is conceivable that as-yet-unidentified defects in the TLR7 signaling pathway may be associated with elevated levels of RSV-associated morbidity and mortality among otherwise healthy human infants.
PMCID: PMC3404606  PMID: 21482736
16.  Differential Expression of Toll-like Receptors in Dendritic Cells of Patients with Dengue during Early and Late Acute Phases of the Disease 
Dengue hemorrhagic fever (DHF) is observed in individuals that have pre-existing heterotypic dengue antibodies and is associated with increased viral load and high levels of pro-inflammatory cytokines early in infection. Interestingly, a recent study showed that dengue virus infection in the presence of antibodies resulted in poor stimulation of Toll-like receptors (TLRs), thereby facilitating virus particle production, and also suggesting that TLRs may contribute to disease pathogenesis.
Methodology/Principal Findings
We evaluated the expression levels of TLR2, 3, 4 and 9 and the co-stimulatory molecules CD80 and CD86 by flow cytometry. This was evaluated in monocytes, in myeloid and plasmacytoid dendritic cells (mDCs and pDCs) from 30 dengue patients with different clinical outcomes and in 20 healthy controls. Increased expression of TLR3 and TLR9 in DCs of patients with dengue fever (DF) early in infection was detected. In DCs from patients with severe manifestations, poor stimulation of TLR3 and TLR9 was observed. In addition, we found a lower expression of TLR2 in patients with DF compared to DHF. Expression levels of TLR4 were not affected. Furthermore, the expression of CD80 and CD86 was altered in mDCs and CD86 in pDCs of severe dengue cases. We show that interferon alpha production decreased in the presence of dengue virus after stimulation of PBMCs with the TLR9 agonist (CpG A). This suggests that the virus can affect the interferon response through this signaling pathway.
These results show that during dengue disease progression, the expression profile of TLRs changes depending on the severity of the disease. Changes in TLRs expression could play a central role in DC activation, thereby influencing the innate immune response.
Author Summary
Dengue virus (DENV) infections cause a broad spectrum of clinical manifestations, ranging from self-limited fever to severe disease, such as dengue hemorrhagic fever (DHF) that can be fatal. The pathogenesis of severe dengue is associated with an inadequate immune response characterized by the over-production of cytokines and other inflammatory components. However, little is known about the role of the innate immune response in the progression to hemorrhagic manifestations. TLRs are among the most important components of innate immunity and are responsible for initiating a response against a variety of pathogens, including viruses. Recent studies suggest that TLRs may contribute to disease pathogenesis. Here we aimed to explore the role of these receptors in dengue disease progression. To this end, we examined the expression of several TLRs and of co-stimulatory molecules in monocytes and DCs from dengue patients. A link between TLRs expression and the severity of dengue was observed: patients with dengue fever express higher levels of TLR3 and TLR9 than patients with DHF. This could be crucial for the host defense against dengue virus or disease progression. In addition, expression of CD80 and CD86 was altered in DCs of severe dengue cases. We show that interferon type I production is also altered in vitro through TLR9. This suggests that dengue virus affects the interferon response through this signaling pathway.
PMCID: PMC3585035  PMID: 23469297
17.  Dengue Virus Activates Membrane TRAIL Relocalization and IFN-α Production by Human Plasmacytoid Dendritic Cells In Vitro and In Vivo 
Dengue displays a broad spectrum of clinical manifestations that may vary from asymptomatic to severe and even fatal features. Plasma leakage/hemorrhages can be caused by a cytokine storm induced by monocytes and dendritic cells during dengue virus (DENV) replication. Plasmacytoid dendritic cells (pDCs) are innate immune cells and in response to virus exposure secrete IFN-α and express membrane TRAIL (mTRAIL). We aimed to characterize pDC activation in dengue patients and their function under DENV-2 stimulation in vitro.
Methods & Findings
Flow cytometry analysis (FCA) revealed that pDCs of mild dengue patients exhibit significantly higher frequencies of mTRAIL compared to severe cases or healthy controls. Plasma levels of IFN-α and soluble TRAIL are increased in mild compared to severe dengue patients, positively correlating with pDC activation. FCA experiments showed that in vitro exposure to DENV-2 induced mTRAIL expression on pDC. Furthermore, three dimension microscopy highlighted that TRAIL was relocalized from intracellular compartment to plasma membrane. Chloroquine treatment inhibited DENV-2-induced mTRAIL relocalization and IFN-α production by pDC. Endosomal viral degradation blockade by chloroquine allowed viral antigens detection inside pDCs. All those data are in favor of endocytosis pathway activation by DENV-2 in pDC. Coculture of pDC/DENV-2-infected monocytes revealed a dramatic decrease of antigen detection by FCA. This viral antigens reduction in monocytes was also observed after exogenous IFN-α treatment. Thus, pDC effect on viral load reduction was mainly dependent on IFN-α production
This investigation characterizes, during DENV-2 infection, activation of pDCs in vivo and their antiviral role in vitro. Thus, we propose TRAIL-expressing pDCs may have an important role in the outcome of disease.
Author Summary
Dengue is an important endemic tropical disease to which there are no specific therapeutics or approved vaccines. Currently several aspects of pathophysiology remain incompletely understood. A crucial cellular population for viral infections, the plasmacytoid dendritic cells (pDCs) was analyzed in this study. The authors found an in vivo association between the activation state of pDCs and the disease outcome. Membrane TNF-related apoptosis inducing ligand (TRAIL) expressing pDCs, representing activated pDCs, were found in higher frequency in milder cases of dengue than severe cases or healthy individuals. Detection of antiviral cytokine interferon-alpha (IFN-α) and soluble TRAIL positively correlated with pDC activation. Dengue virus (DENV) serotype-2 was able to directly activate pDCs in vitro. Under DENV stimulation TRAIL was relocalized from intracellular to pDC plasma membrane and IFN-α was highly produced. The authors suggest an endocytosis-dependent pathway for DENV-induced pDC activation. It is also highlighted here a role for exogenous IFN-α and pDCs in reducing viral replication in monocytes, one of DENV main target cells. These findings may contribute in the future to the establishment of good prognostic immune responses together with clinical manifestations/warning signs.
PMCID: PMC3675005  PMID: 23755314
18.  Beta2-Adrenoceptor Stimulation Suppresses TLR9-Dependent IFNA1 Secretion in Human Peripheral Blood Mononuclear Cells 
PLoS ONE  2013;8(5):e65024.
IFNA1 (interferon alpha) is a key cytokine regulating the activity of numerous immune cells. Plasmacytoid dendritic cells (pDCs) as natural interferon-producing cells play critical roles as sensors of pathogens and link innate to adaptive immunity. CpG motifs within DNA sequences activating toll-like receptor 9 (TLR9) are the main stimuli eliciting IFNA1 secretion from pDCs. Adrenergic substances are capable of differentially modulating the response from various immune cells. Hence, the aim of this study was to examine how adrenoceptor stimulation influences TLR9-induced IFNA1 secretion from human pDCs.
PBMCs generated from human whole blood and pDCs enriched from buffy coats were stimulated with LPS and CpG-ODN 2336 in the presence or absence of epinephrine and different adrenoceptor antagonists. Secretion of TNF and IFNA1 was measured by ELISA. Flow cytometry was used to determine efficacy of pDC enrichment and adrenoceptor expression of PBMC subsets. The influence of modified IFNA1 secretion on NK cell activity was evaluated using a colorimetric tumor cell lysis assay.
TLR9-induced IFNA1 secretion as well as TLR4-induced TNF secretion from PBMCs was dose-dependently attenuated by coincubation with epinephrine. Combination with different specific adrenoceptor antagonists revealed that this effect was mediated by the adrenoceptor β2 (ADRB2). Since flow cytometric analysis could exclude the presence of ADRB2 on pDCs, highly enriched pDCs lacked any visible impact of adrenoceptor stimulation on TLR9-induced IFNA1 release. Combination of pDCs with PBMCs restored the effect, even when they were separated by a permeable membrane. Suppression of TLR9-mediated IFNA1 secretion from PBMCs by adrenoceptor stimulation reduced the lytic activity of NK cells on K562 tumor cells.
We provide insights into the underlying mechanisms of the interrelation between immune responses and pharmacological agents widely used in clinical practice. Our results have implications for the future treatment of human patients, in which the endogenous immune response plays a pivotal role, such as during viral infections, inflammatory diseases and cancers.
PMCID: PMC3665595  PMID: 23724117
19.  Inhibition of Toll-Like Receptor 7- and 9-Mediated Alpha/Beta Interferon Production in Human Plasmacytoid Dendritic Cells by Respiratory Syncytial Virus and Measles Virus 
Journal of Virology  2005;79(9):5507-5515.
Human plasmacytoid dendritic cells (PDC) are key sentinels alerting both innate and adaptive immune responses through production of huge amounts of alpha/beta interferon (IFN). IFN induction in PDC is triggered by outside-in signal transduction pathways through Toll-like receptor 7 (TLR7) and TLR9 as well as by recognition of cytosolic virus-specific patterns. TLR7 and TLR9 ligands include single-stranded RNA and CpG-rich DNA, respectively, as well as synthetic derivatives thereof which are being evaluated as therapeutic immune modulators promoting Th1 immune responses. Here, we identify the first viruses able to block IFN production by PDC. Both TLR-dependent and -independent IFN responses are abolished in human PDC infected with clinical isolates of respiratory syncytial virus (RSV), RSV strain A2, and measles virus Schwarz, in contrast to RSV strain Long, which we previously identified as a potent IFN inducer in human PDC (Hornung et al., J. Immunol. 173:5935-5943, 2004). Notably, IFN synthesis of PDC activated by the TLR7 and TLR9 agonists resiquimod (R848) and CpG oligodeoxynucleotide 2216 is switched off by subsequent infection by RSV A2 and measles virus. The capacity of RSV and measles virus of human PDC to shut down IFN production should contribute to the characteristic features of these viruses, such as Th2-biased immune pathology, immune suppression, and superinfection.
PMCID: PMC1082779  PMID: 15827165
20.  Functional Limitations of Plasmacytoid Dendritic Cells Limit Type I Interferon, T Cell Responses and Virus Control in Early Life 
PLoS ONE  2013;8(12):e85302.
Infant mortality from viral infection remains a major global health concern: viruses causing acute infections in immunologically mature hosts often follow a more severe course in early life, with prolonged or persistent viral replication. Similarly, the WE strain of lymphocytic choriomeningitis virus (LCMV-WE) causes acute self-limiting infection in adult mice but follows a protracted course in infant animals, in which LCMV-specific CD8+ T cells fail to expand and control infection. By disrupting type I IFNs signaling in adult mice or providing IFN-α supplementation to infant mice, we show here that the impaired early life T cell responses and viral control result from limited early type I IFN responses. We postulated that plasmacytoid dendritic cells (pDC), which have been identified as one major source of immediate-early IFN-I, may not exert adult-like function in vivo in the early life microenvironment. We tested this hypothesis by studying pDC functions in vivo during LCMV infection and identified a coordinated downregulation of infant pDC maturation, activation and function: despite an adult-like in vitro activation capacity of infant pDCs, the expression of the E2-2 pDC master regulator (and of critical downstream antiviral genes such as MyD88, TLR7/TLR9, NF-κB, IRF7 and IRF8) is downregulated in vivo at baseline and during LCMV infection. A similar pattern was observed in response to ssRNA polyU, a model ligand of the TLR7 viral sensor. This suggests that the limited T cell-mediated defense against early life viral infections is largely attributable to / regulated by infant pDC responses and provides incentives for novel strategies to supplement or stimulate immediate-early IFN-α responses.
PMCID: PMC3871569  PMID: 24376875
21.  HIV-1 gp120 impairs the induction of B cell responses by TLR9-activated plasmacytoid dendritic cells 
Plasmacytoid dendritic cells (pDCs) play a central role in innate and adaptive immune responses to viral infections, including human immunodeficiency virus type 1 (HIV-1). pDCs produce substantial quantities of type I interferon (IFN) and proinflammatory cytokines upon stimulation via Toll-like receptors (TLRs), specifically TLR7 or TLR9. The HIV-1 envelope glycoproteins (Env), exemplified by the gp120 monomer, are the focus of vaccines aimed at inducing B cell responses. We have studied how the interactions of gp120 with various receptors on human pDCs affect the activation of these cells via TLR9, and their subsequent ability to stimulate B cells. We observed that IFN-α production by pDCs in response to TLR9, but not TLR7 stimulation, was reduced by exposure to gp120. Specifically, gp120 inhibited the CpG-induced maturation of pDCs and their expression of TNF-α, IL-6, TLR9, IRF-7 and B cell-activating factor of the TNF family (BAFF). Receptor-blocking and cross-linking studies showed that these inhibitory effects of gp120 were mediated by interactions with CD4 and MCLRs, but not with the chemokine receptors CCR5 and CXCR4. Of note is that gp120 inhibited the activation of B cells by TLR9-stimulated pDCs. Taken together, our data show that HIV-1 gp120 impairs pDC functions, including activation of B cell responses, and imply that TLR9 ligands may not be good adjuvants to use in combination with Env vaccines.
PMCID: PMC3504132  PMID: 23100517
plasmacytoid dendritic cells; B cells; gp120; Toll-like receptor
22.  Epstein-Barr Virus Promotes Interferon-α Production by Plasmacytoid Dendritic Cells 
Arthritis and rheumatism  2010;62(6):1693-1701.
Epstein-Barr virus (EBV) infection has been linked to systemic lupus erythematosus (SLE) as demonstrated by the presence of increased seroprevalence and elevated viral loads, but the mechanism of this linkage has not been elucidated. Increased IFN-α levels and signatures, associated with innate immune responses, have been found in patients with SLE. Plasmacytoid dendritic cells (pDC) are innate immune cells that mediate viral immunity by producing large quantities of interferon alpha (IFN-α), but the role they play during infection with EBV remains unclear. To address this issue, we investigated the ability of EBV to promote IFN-α production by pDC in healthy subjects.
Human pDC were sorted and cultured in the presence of EBV, EBV small RNA (EBER), and EBV double-stranded DNA (dsDNA). IFN-α production by pDC was measured by enzyme-linked immunosorbent assay (ELISA), with activation of these cells measured by flow cytometry.
We demonstrate that EBV DNA and RNA promote IFN-α production by human pDC through engagement of Toll-like receptor (TLR) 9 and TLR7, respectively, with initial viral recognition by pDC mediated by binding to major histocompatibility (MHC) class II molecules.
These data demonstrate that MHC class II-specific engagement by virus and subsequent viral nucleic acid recognition mediates IFN-α production by pDC. Our results suggest that elevated levels of IFN-α found in lupus patients may be a result of aberrantly controlled chronic viral infection.
PMCID: PMC2885535  PMID: 20178121
23.  Innate Sensing of HIV-Infected Cells 
PLoS Pathogens  2011;7(2):e1001284.
Cell-free HIV-1 virions are poor stimulators of type I interferon (IFN) production. We examined here how HIV-infected cells are recognized by plasmacytoid dendritic cells (pDCs) and by other cells. We show that infected lymphocytes are more potent inducers of IFN than virions. There are target cell-type differences in the recognition of infected lymphocytes. In primary pDCs and pDC-like cells, recognition occurs in large part through TLR7, as demonstrated by the use of inhibitors and by TLR7 silencing. Donor cells expressing replication-defective viruses, carrying mutated reverse transcriptase, integrase or nucleocapsid proteins induced IFN production by target cells as potently as wild-type virus. In contrast, Env-deleted or fusion defective HIV-1 mutants were less efficient, suggesting that in addition to TLR7, cytoplasmic cellular sensors may also mediate sensing of infected cells. Furthermore, in a model of TLR7-negative cells, we demonstrate that the IRF3 pathway, through a process requiring access of incoming viral material to the cytoplasm, allows sensing of HIV-infected lymphocytes. Therefore, detection of HIV-infected lymphocytes occurs through both endosomal and cytoplasmic pathways. Characterization of the mechanisms of innate recognition of HIV-infected cells allows a better understanding of the pathogenic and exacerbated immunologic events associated with HIV infection.
Author Summary
AIDS is characterized by a hyperactivation of the immune system. Innate and inflammatory responses, associated with an exacerbated production of cytokines like type I interferons (IFN) and of chemokines, deregulate the normal functioning of T lymphocytes and other cells. The events that trigger this inappropriate activation remain poorly understood. Plasmacytoid dendritic cells (pDCs) normally produce IFN when they encounter viruses. Here we examined how HIV-infected cells are recognized by pDCs, as well as by other immune and non-immune cells. We show that viruses transmitted via cell-to-cell contacts are more potent inducers of IFN than cell-free viral particles. In pDCs, recognition occurs in large part through TLR7, a cellular receptor detecting viral genetic materials after capture in intracellular vesicles. Donor cells expressing replication-defective viruses are also able to trigger IFN production by target cells. We further show that in TLR7-negative, non-hematopoietic cells an additional cytoplasmic pathway allows sensing of HIV-infected lymphocytes. Therefore, detection of HIV-infected lymphocytes occurs at different intracellular localizations, and does not require ongoing viral replication. Characterization of the mechanisms of innate HIV-1 recognition allows a better understanding of the pathology of HIV infection, and has consequences for the design of vaccine strategies.
PMCID: PMC3040675  PMID: 21379343
24.  Immunoglobulin-like transcript 7 (ILT7) but not bone marrow stromal cell antigen 2 (BST2, aka HM1.24, tetherin or CD317) modulates plasmacytoid dendritic cell function (pDC) in primary human blood leukocytes 
The immunoglobulin-like transcript (ILT) 7 is a surface molecule selectively expressed by human plasmacytoid dendritic cells (pDCs). ILT7 cross-linking suppresses pDC activation and type I interferon (IFN-I) secretion following Toll-like receptors (TLR)7/9 engagement. The bone marrow stromal cell antigen 2 (BST2, aka HM1.24, tetherin or CD317) is expressed by different cell types upon exposure to IFN-I and is a natural ligand for ILT7. Here we show that ILT7 expression decreased spontaneously in pDCs upon in vitro culture, which correlates with pDC differentiation measured as increased side scatter properties and CCR7 expression. TLR7/9 Ligands , as well as HIV, induced BST2 upregulation on all tested cell types except T cells, which required TCR stimulation to respond to TLR9L-induced IFN-I. IFN-γ, IL-4, IL-10 and TNF-α had only marginal effects on BST2 expression in blood leukocytes compared to TLR9L. Pre-incubation with ILT7-crosslinking Ab inhibited IFN-I production in PBMCs treated with TLR7/9L or HIV, whereas BST2 blockade did not affect IFN-I responses even when BST2 upregulation was further boosted with TCR agonists or immunoregulatory cytokines. Our data indicate that BST2-mediated ILT7 cross-linking may act as a homeostatic regulatory mechanism on immature circulating pDC, rather than a negative feedback for activated mature pDCs which have downregulated ILT7.
PMCID: PMC3672947  PMID: 23401591
25.  HIV and HCV Activate the Inflammasome in Monocytes and Macrophages via Endosomal Toll-Like Receptors without Induction of Type 1 Interferon 
PLoS Pathogens  2014;10(5):e1004082.
Innate immune sensing of viral infection results in type I interferon (IFN) production and inflammasome activation. Type I IFNs, primarily IFN-α and IFN-β, are produced by all cell types upon virus infection and promote an antiviral state in surrounding cells by inducing the expression of IFN-stimulated genes. Type I IFN production is mediated by Toll-like receptor (TLR) 3 in HCV infected hepatocytes. Type I IFNs are also produced by plasmacytoid dendritic cells (pDC) after sensing of HIV and HCV through TLR7 in the absence of productive pDC infection. Inflammasomes are multi-protein cytosolic complexes that integrate several pathogen-triggered signaling cascades ultimately leading to caspase-1 activation and generation pro-inflammatory cytokines including interleukin (IL)-18 and IL-1β. Here, we demonstrate that HIV and HCV activate the inflammasome, but not Type I IFN production, in monocytes and macrophages in an infection-independent process that requires clathrin-mediated endocytosis and recognition of the virus by distinct endosomal TLRs. Knockdown of each endosomal TLR in primary monocytes by RNA interference reveals that inflammasome activation in these cells results from HIV sensing by TLR8 and HCV recognition by TLR7. Despite its critical role in type I IFN production by pDCs stimulated with HIV, TLR7 is not required for inflammasome activation by HIV. Similarly, HCV activation of the inflammasome in monocytes does not require TLR3 or its downstream signaling adaptor TICAM-1, while this pathway leads to type I IFN in infected hepatocytes. Monocytes and macrophages do not produce type I IFN upon TLR8 or TLR7 sensing of HIV or HCV, respectively. These findings reveal a novel infection-independent mechanism for chronic viral induction of key anti-viral programs and demonstrate distinct TLR utilization by different cell types for activation of the type I IFN vs. inflammasome pathways of inflammation.
Author Summary
Pathogens are detected by the immune system in multiple ways that initiate responses to control infection. Two systems of first line defense against viruses are 1) the production of Type I interferons and 2) production of the cytokines IL-1β and IL-18 by the inflammasome. Type I interferons promote an antiviral state in the infected host. Inflammasome cytokines induce inflammation, modulate adaptive immune responses, and have direct antiviral effects. While both are produced in response to the chronic human viral infections HIV and HCV, we demonstrate here that inflammasome activation does not require cell infection and that the mechanisms for viral sensing as well as cell types in which sensing occurs are distinct between the two viruses and between the type I interferon vs. inflammasome systems. The relative amount of sensing via these different mechanisms may affect the balance between antiviral and inflammatory responses to chronic infection.
PMCID: PMC4006909  PMID: 24788318

Results 1-25 (1408582)