PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1045143)

Clipboard (0)
None

Related Articles

1.  Inhibition of p38-MAPK alters SRC coactivation and estrogen receptor phosphorylation 
Cancer Biology & Therapy  2012;13(11):1026-1033.
The p38 mitogen activated protein kinase pathway (MAPK) is known to promote cell survival, endocrine therapy resistance and hormone independent breast cancer cell proliferation. Therefore, we utilized the novel p38 inhibitor RWJ67657 to investigate the relevance of targeting this pathway in the ER+ breast cancer cell line MCF-7. Our results show that RWJ67657 inhibits both basal and estrogen stimulated phosphorylation of p38α, resulting in decreased activation of the downstream p38α targets hsp27 and MAPAPK. Furthermore, inhibition of p38α by RWJ67657 blocks clonogenic survival of MCF-7 cells with little effect on non-cancerous breast epithelial cells. Even though p38α is known to phosphorylate ERα at residue within ER’s hinge region at Thr311, resulting in increased ERα transcriptional activation, our results suggest RWJ67657 inhibits the p38α-induced activation of ER by targeting both the AF-1 and AF-2 activation domains within ERα. We further show that RWJ67657 decreases the transcriptional activity of the ER coactivators SRC-1, SRC-2 and SRC-3. Taken together, our results strongly suggest that in addition to phosphorylating Thr311 within ERα, p38α indirectly activates the ER by phosphorylation and stimulation of the known ERα coactivators, SRC-1, -2 and-3. Overall, our data underscore the therapeutic potential of targeting the p38 MAPK pathway in the treatment of ER+ breast cancer.
doi:10.4161/cbt.20992
PMCID: PMC3461809  PMID: 22825349
p38; mitogen-activated protein kinase; estrogen receptor; breast cancer; SRC; drug discovery
2.  Inhibition of p38 mitogen-activated protein kinase alters microRNA expression and reverses epithelial-to-mesenchymal transition 
International Journal of Oncology  2013;42(4):1139-1150.
Acquired chemoresistance and epithelial-to-mesenchymal transition (EMT) are hallmarks of cancer progression and of increasing clinical relevance. We investigated the role of miRNA and p38 mitogen-activated protein kinase (MAPK) signaling in the progression of breast cancer to a drug-resistant and mesenchymal phenotype. We demonstrate that acquired death receptor resistance results in increased hormone-independent tumorigenesis compared to hormone-sensitive parental cells. Utilizing global miRNA gene expression profiling, we identified miRNA alterations associated with the development of death receptor resistance and EMT progression. We further investigated the role of p38 MAPK in this process, showing dose-dependent inactivation of p38 by its inhibitor RWJ67657 and decreased downstream ATF and NF-κB signaling. Pharmacological inhibition of p38 also decreased chemoresistant cancer tumor growth in xenograft animal models. Interestingly, inhibition of p38 partially reversed the EMT changes found in this cell system, as illustrated by decreased gene expression of the EMT markers Twist, Snail, Slug and ZEB and protein and mRNA levels of Twist, a known EMT promoter, concomitant with decreased N-cadherin protein. RWJ67657 treatment also altered the expression of several miRNAs known to promote therapeutic resistance, including miR-200, miR-303, miR-302, miR-199 and miR-328. Taken together, our results demonstrate the roles of multiple microRNAs and p38 signaling in the progression of cancer and demonstrate the therapeutic potential of targeting the p38 MAPK pathway for reversing EMT in an advanced tumor phenotype.
doi:10.3892/ijo.2013.1814
PMCID: PMC3622654  PMID: 23403951
p38 mitogen-activated protein kinase; epithelial-tomesenchymal transition; breast cancer; drug discovery
3.  Effects of RWJ 67657, a p38 mitogen activated protein kinase (MAPK) inhibitor, on the production of inflammatory mediators by rheumatoid synovial fibroblasts 
Annals of the Rheumatic Diseases  2004;63(11):1453-1459.
Objective: To investigate the effect of the p38 mitogen activated protein kinase (MAPK) inhibitor RWJ 67657 on inflammatory mediator production by rheumatoid synovial fibroblasts (RSF).
Methods: RSF were pretreated with RWJ 67657 and stimulated with TNFα and/or IL-1ß. Protein levels and mRNA expression of MMP-1, MMP-3, TIMP-1, IL-6, and IL-8 were determined, as was mRNA expression of COX-2 and ADAMTS-4.
Results: MMP-3 production was significantly inhibited at 1 µM RWJ 67657 and MMP-1 production at 10 µM, while TIMP-1 production was not inhibited. Inhibition of IL-6 and IL-8 protein production was seen at 0.1 µM RWJ 67657. Expression profiles of mRNA were in accordance with protein production. Inhibition of COX-2 mRNA expression occurred at 0.01 µM RWJ 67657.
Conclusions: RWJ 67657 inhibits major proinflammatory mediator production in stimulated RSF at pharmacologically relevant concentrations. These findings could have important relevance for the treatment of rheumatoid arthritis.
doi:10.1136/ard.2003.013011
PMCID: PMC1754789  PMID: 15479895
4.  Strong inhibition of TNF-α production and inhibition of IL-8 and COX-2 mRNA expression in monocyte-derived macrophages by RWJ 67657, a p38 mitogen-activated protein kinase (MAPK) inhibitor 
Arthritis Research & Therapy  2004;6(4):R384-R392.
In inflammatory processes, the p38 mitogen-activated protein kinase (MAPK) signal transduction route regulates production and expression of cytokines and other inflammatory mediators. Tumor necrosis factor α (TNF-α) is a pivotal cytokine in rheumatoid arthritis and its production in macrophages is under control of the p38 MAPK route. Inhibition of the p38 MAPK route may inhibit production not only of TNF-α, but also of other inflammatory mediators produced by macrophages, and indirectly of inflammatory mediators by other cells induced by TNF-α stimulation. Here we investigate the effects of RWJ 67657, a p38 MAPK inhibitor, on mRNA expression and protein production of TNF-α and other inflammatory mediators, in monocyte-derived macrophages. A strong inhibition of TNF-α was seen at pharmacologically relevant concentrations of RWJ 67657, but also inhibition of mRNA expression of IL-1β, IL-8, and cyclooxygenase-2 was shown. Furthermore, it was shown that monocyte-derived macrophages have a high constitutive production of matrix metalloproteinase 9, which is not affected by p38 MAPK inhibition. The results presented here may have important implications for the treatment of rheumatoid arthritis.
doi:10.1186/ar1204
PMCID: PMC464924  PMID: 15225374
COX-2; matrix metalloproteinase; monocyte-derived macrophage; p38 MAPK inhibitor; TNF-α
5.  Differential influence of p38 mitogen activated protein kinase (MAPK) inhibition on acute phase protein synthesis in human hepatoma cell lines 
Annals of the Rheumatic Diseases  2005;65(7):929-935.
Background
Inhibition of intracellular signal transduction is considered to be an interesting target for treatment in inflammation. p38 MAPK inhibitors, especially, have been developed and are now in phase II clinical trials for rheumatoid arthritis (RA).
Objective
To investigate the influence of p38 MAPK inhibition on acute phase protein (APP) production, which is dependent on both JAK/STAT and p38 MAPK pathways.
Methods
The effects of p38 MAPK inhibition on APP production and mRNA expression in four human hepatoma cell lines was investigated, after stimulation with interleukin (IL)6 and/or IL1β or tumour necrosis factor α.
Results
Two out of four cell lines produced C reactive protein (CRP), especially after combined IL6 and IL1β stimulation. CRP production was significantly inhibited by the p38 MAPK specific inhibitor RWJ 67657 at 1 μmol/l, which is pharmacologically relevant. Fibrinogen production was also inhibited at 1 μmol/l in all cell lines. Serum amyloid A (SAA) was produced in all four lines. In contrast with CRP, SAA production was not inhibited by RWJ 67657 at 1 μmol/l.
Conclusion
Production and mRNA expression of CRP and fibrinogen, but not SAA production and mRNA expression, were significantly inhibited by p38 MAPK specific inhibitor in hepatoma cell lines. For p38 MAPK inhibitor treatment in RA SAA might be a better marker of disease activity than CRP and fibrinogen, because SAA is not directly affected by p38 MAPK inhibition.
doi:10.1136/ard.2005.043232
PMCID: PMC1798216  PMID: 16269426
C reactive protein; p38 MAPK; serum amyloid A; hepatoma cells; acute phase protein
6.  Human p38 mitogen-activated protein kinase inhibitor drugs inhibit Plasmodium falciparum replication 
Experimental parasitology  2011;128(2):170-175.
We recently demonstrated that human p38 mitogen-activated protein kinase (MAPK) inhibitors reduced in vitro and in vivo replication of the protozoan parasites Toxoplasma gondii and Encephalitozoon cuniculi. In this study, we assessed the efficacy of five p38 MAPK inhibitors to block the replication of Plasmodium falciparum in human erythrocytes cultured ex vivo and demonstrate that the pyridinylimidazole RWJ67657 and the pyrrolobenzimidazole RWJ68198 reduced Plasmodium falciparum replication, yielded trophozoites that were greatly diminished in size at 24 h, and that these two agents interfered with stage differentiation. Interestingly, the chloroquine-resistant strain W2 was significantly more sensitive to these drugs than was the chloroquine-sensitive strain HB3. These results suggest that pyridinylimidazoles and pyrrolobenzimidazoles designed to inhibit human p38 MAPK activation can be developed to treat malaria.
doi:10.1016/j.exppara.2011.02.016
PMCID: PMC3076546  PMID: 21338604
indole-5-carboxamide; mitogen-activated protein kinase; Plasmodium falciparum; pyridinylimidazole; pyrrolobenzimidazole
7.  In Vitro Activities of RWJ-54428 (MC-02,479) against Multiresistant Gram-Positive Bacteria 
RWJ-54428 (MC-02,479) is a new cephalosporin with a high level of activity against gram-positive bacteria. In a broth microdilution susceptibility test against methicillin-resistant Staphylococcus aureus (MRSA), RWJ-54428 was as active as vancomycin, with an MIC at which 90% of isolates are inhibited (MIC90) of 2 μg/ml. For coagulase-negative staphylococci, RWJ-54428 was 32 times more active than imipenem, with an MIC90 of 2 μg/ml. RWJ-54428 was active against S. aureus, Staphylococcus epidermidis, and Staphylococcus haemolyticus isolates with reduced susceptibility to glycopeptides (RWJ-54428 MIC range, ≤0.0625 to 1 μg/ml). RWJ-54428 was eight times more potent than methicillin and cefotaxime against methicillin-susceptible S. aureus (MIC90, 0.5 μg/ml). For ampicillin-susceptible Enterococcus faecalis (including vancomycin-resistant and high-level aminoglycoside-resistant strains), RWJ-54428 had an MIC90 of 0.125 μg/ml. RWJ-54428 was also active against Enterococcus faecium, including vancomycin-, gentamicin-, and ciprofloxacin-resistant strains. The potency against enterococci correlated with ampicillin susceptibility; RWJ-54428 MICs ranged between ≤0.0625 and 1 μg/ml for ampicillin-susceptible strains and 0.125 and 8 μg/ml for ampicillin-resistant strains. RWJ-54428 was more active than penicillin G and cefotaxime against penicillin-resistant, -intermediate, and -susceptible strains of Streptococcus pneumoniae (MIC90s, 0.25, 0.125, and ≤0.0625 μg/ml, respectively). RWJ-54428 was only marginally active against most gram-negative bacteria; however, significant activity was observed against Haemophilus influenzae and Moraxella catarrhalis (MIC90s, 0.25 and 0.5 μg/ml, respectively). This survey of the susceptibilities of more than 1,000 multidrug-resistant gram-positive isolates to RWJ-54428 indicates that this new cephalosporin has the potential to be useful in the treatment of infections due to gram-positive bacteria, including strains resistant to currently available antimicrobials.
doi:10.1128/AAC.45.5.1422-1430.2001
PMCID: PMC90483  PMID: 11302805
8.  Time course of angiopoietin-2 release during experimental human endotoxemia and sepsis 
Critical Care  2009;13(3):R64.
Introduction
Endothelial activation leading to vascular barrier breakdown denotes a devastating event in sepsis. Angiopoietin (Ang)-2, a circulating antagonistic ligand of the endothelial specific Tie2 receptor, is rapidly released from Weibel-Palade and has been identified as a non-redundant gatekeeper of endothelial activation. We aimed to study: the time course of Ang-2 release during human experimental endotoxemia; the association of Ang-2 with soluble adhesion molecules and inflammatory cytokines; and the early time course of Ang-2 release during sepsis in critically ill patients.
Methods
In 22 healthy volunteers during a 24-hour period after a single intravenous injection of lipopolysaccharide (LPS; 4 ng/kg) the following measurement were taken by immuno luminometric assay (ILMA), ELISA, and bead-based multiplex technology: circulating Ang-1, Ang-2, soluble Tie2 receptor, the inflammatory molecules TNF-alpha, IL-6, IL-8 and C-reactive protein, and the soluble endothelial adhesion molecules inter-cellular adhesion molecule-1 (ICAM-1), E-selectin, and P-selectin. A single oral dose of placebo or the p38 mitogen activated protein (MAP) kinase inhibitor drug, RWJ-67657, was administered 30 minutes before the endotoxin infusion. In addition, the course of circulating Ang-2 was analyzed in 21 septic patients at intensive care unit (ICU) admission and after 24 and 72 hours, respectively.
Results
During endotoxemia, circulating Ang-2 levels were significantly elevated, reaching peak levels 4.5 hours after LPS infusion. Ang-2 exhibited a kinetic profile similar to early pro-inflammatory cytokines TNF-alpha, IL-6, and IL-8. Ang-2 levels peaked prior to soluble endothelial-specific adhesion molecules. Finally, Ang-2 correlated with TNF-alpha levels (r = 0.61, P = 0.003), soluble E-selectin levels (r = 0.64, P < 0.002), and the heart rate/mean arterial pressure index (r = 0.75, P < 0.0001). In septic patients, Ang-2 increased in non-survivors only, and was significantly higher compared with survivors at baseline, 24 hours, and 72 hours.
Conclusions
LPS is a triggering factor for Ang-2 release in men. Circulating Ang-2 appears in the systemic circulation during experimental human endotoxemia in a distinctive temporal sequence and correlates with TNF-alpha and E-selectin levels. In addition, not only higher baseline Ang-2 concentrations, but also a persistent increase in Ang-2 during the early course identifies septic patients with unfavorable outcome.
doi:10.1186/cc7866
PMCID: PMC2717419  PMID: 19416526
9.  Comparison of the Activities of Zanamivir, Oseltamivir, and RWJ-270201 against Clinical Isolates of Influenza Virus and Neuraminidase Inhibitor-Resistant Variants 
Antimicrobial Agents and Chemotherapy  2001;45(12):3403-3408.
RWJ-270201 is a novel cyclopentane inhibitor of influenza A and B virus neuraminidases (NAs). We compared the ability of RWJ-270201 to inhibit NA activity of clinical influenza isolates and viruses with defined resistance mutations with that of zanamivir and oseltamivir carboxylate. In NA inhibition assays with influenza A viruses, the median 50% inhibitory concentration (IC50) of RWJ-270201 (approximately 0.34 nM) was comparable to that of oseltamivir carboxylate (0.45 nM) but lower than that of zanamivir (0.95 nM). For influenza B virus isolates, the IC50 of RWJ-270201 (1.36 nM) was comparable to that of zanamivir (2.7 nM) and less than that of oseltamivir carboxylate (8.5 nM). A zanamivir-resistant variant bearing a Glu119-to-Gly (Glu119→Gly) or Glu119→Ala substitution in an NA (N2) remained susceptible to RWJ-270201 and oseltamivir carboxylate. However, a zanamivir-selected variant with an Arg292→Lys substitution in an NA (N2) showed a moderate level of resistance to RWJ-270201 (IC50 = 30 nM) and zanamivir (IC50 = 20 nM) and a high level of resistance to oseltamivir carboxylate (IC50 > 3,000 nM). The zanamivir-resistant influenza B virus variant bearing an Arg152→Lys substitution was resistant to each NA inhibitor (IC50 = 100 to 750 nM). The oseltamivir-selected variant (N1) with the His274→Tyr substitution exhibited resistance to oseltamivir carboxylate (IC50 = 400 nM) and to RWJ-270201 (IC50 = 40 nM) but retained full susceptibility to zanamivir (IC50 = 1.5 nM). Thus, drug-resistant variants with substitutions in framework residues 119 or 274 can retain susceptibility to other NA inhibitors, whereas replacement of functional residue 152 or 292 leads to variable levels of cross-resistance. We conclude that RWJ-270201 is a potent inhibitor of NAs of wild-type and some zanamivir-resistant or oseltamivir-resistant influenza A and B virus variants.
doi:10.1128/AAC.45.12.3403-3408.2001
PMCID: PMC90844  PMID: 11709315
10.  Comparison of Efficacies of RWJ-270201, Zanamivir, and Oseltamivir against H5N1, H9N2, and Other Avian Influenza Viruses 
Antimicrobial Agents and Chemotherapy  2001;45(10):2723-2732.
The orally administered neuraminidase (NA) inhibitor RWJ-270201 was tested in parallel with zanamivir and oseltamivir against a panel of avian influenza viruses for inhibition of NA activity and replication in tissue culture. The agents were then tested for protection of mice against lethal H5N1 and H9N2 virus infection. In vitro, RWJ-270201 was highly effective against all nine NA subtypes. NA inhibition by RWJ-270201 (50% inhibitory concentration, 0.9 to 4.3 nM) was superior to that by zanamivir and oseltamivir carboxylate. RWJ-270201 inhibited the replication of avian influenza viruses of both Eurasian and American lineages in MDCK cells (50% effective concentration, 0.5 to 11.8 μM). Mice given 10 mg of RWJ-270201 per kg of body weight per day were completely protected against lethal challenge with influenza A/Hong Kong/156/97 (H5N1) and A/quail/Hong Kong/G1/97 (H9N2) viruses. Both RWJ-270201 and oseltamivir significantly reduced virus titers in mouse lungs at daily dosages of 1.0 and 10 mg/kg and prevented the spread of virus to the brain. When treatment began 48 h after exposure to H5N1 virus, 10 mg of RWJ-270201/kg/day protected 50% of mice from death. These results suggest that RWJ-270201 is at least as effective as either zanamivir or oseltamivir against avian influenza viruses and may be of potential clinical use for treatment of emerging influenza viruses that may be transmitted from birds to humans.
doi:10.1128/AAC.45.10.2723-2732.2001
PMCID: PMC90723  PMID: 11557461
11.  In Vivo Activity of the Pyrrolopyrazolyl-Substituted Oxazolidinone RWJ-416457▿  
RWJ-416457 is an investigational pyrrolopyrazolyl-substituted oxazolidinone with activity against antibiotic-susceptible and -resistant gram-positive pathogens. Efficacies of RWJ-416457, linezolid, and vancomycin against methicillin-susceptible Staphylococcus aureus (MSSA) and community-associated methicillin-resistant S. aureus (CA-MRSA) in murine skin and systemic infections were compared, as were efficacies against Streptococcus pneumoniae in a lower respiratory infection. In staphylococcal systemic infections, RWJ-416457 was equipotent with to twofold more potent than linezolid, with 50% effective dose values ranging from 1.5 to 5 mg/kg of body weight/day. RWJ-416457 was two- to fourfold less potent than vancomycin against MSSA but up to fourfold more potent than vancomycin against CA-MRSA. In MSSA and CA-MRSA skin infections, RWJ-416457 demonstrated an efficacy similar to that of linezolid, reducing CFU/g skin approximately 1.0 log10 at all doses tested; vancomycin yielded greater reductions than the oxazolidinones, with decreases in CFU/g skin of 3 log10 (MSSA) and 2 log10 (CA-MRSA). In the pneumococcal model, RWJ-416457 was two- to fourfold more potent than linezolid. The free-drug area under the concentration-time curves at 24 h (fAUC24) were similar for RWJ-416457 and linezolid. The half-life of RWJ-416457 was up to threefold longer than that of linezolid for all routes of administration. The fAUC24/MIC ratio, the pharmacodynamic parameter considered predictive of oxazolidinone efficacy, was approximately twofold greater for RWJ-416457 than for linezolid. Since the fAUC values were similar for both compounds, the higher fAUC/MIC ratios of RWJ-416457 appear to result from its greater in vitro potency. These results demonstrate that RWJ-416457 is a promising new oxazolidinone with efficacy in S. aureus or S. pneumoniae mouse infection models.
doi:10.1128/AAC.00833-08
PMCID: PMC2681548  PMID: 19273686
12.  Cyclopentane Neuraminidase Inhibitors with Potent In Vitro Anti-Influenza Virus Activities 
A novel series of cyclopentane derivatives have been found to exhibit potent and selective inhibitory effects on influenza virus neuraminidase. These compounds, designated RWJ-270201, BCX-1827, BCX-1898, and BCX-1923, were tested in parallel with zanamivir and oseltamivir carboxylate against a spectrum of influenza A (H1N1, H3N2, and H5N1) and influenza B viruses in MDCK cells. Inhibition of viral cytopathic effect ascertained visually and by neutral red dye uptake was used, with 50% effective (virus-inhibitory) concentrations (EC50) determined. Against the H1N1 viruses A/Bayern/07/95, A/Beijing/262/95, A/PR/8/34, and A/Texas/36/91, EC50s (determined by neutral red assay) of the novel compounds were ≤1.5 μM. Twelve strains of H3N2 and two strains of avian H5N1 viruses were inhibited at <0.3 μM. Influenza B/Beijing/184/93 and B/Harbin/07/94 viruses were inhibited at <0.2 μM, with three other B virus strains inhibited at 0.8 to 8 μM. The novel inhibitors were comparable in potency to (or slightly more potent than) zanamivir and oseltamivir carboxylate. No cytotoxicity was seen with the compounds at concentrations of ≤1 mM in cell proliferation assays. The antiviral activity of RWJ-270201, chosen for clinical development, was studied in greater detail. Its potency and that of oseltamivir carboxylate decreased with increasing multiplicity of virus infection. Time-of-addition studies indicated that treatment with either compound needed to begin 0 to 12 h after virus exposure for optimal activity. Exposure of cells to RWJ-270201 caused most of the virus to remain cell associated, with extracellular virus decreasing in a concentration-dependent manner. This is consistent with its effect as a neuraminidase inhibitor. RWJ-270201 shows promise in the treatment of human influenza virus infections.
doi:10.1128/AAC.45.3.743-748.2001
PMCID: PMC90367  PMID: 11181354
13.  Comparison of the Anti-Influenza Virus Activity of RWJ-270201 with Those of Oseltamivir and Zanamivir 
We have recently reported an influenza virus neuraminidase inhibitor, RWJ-270201 (BCX-1812), a novel cyclopentane derivative discovered through structure-based drug design. In this paper, we compare the potency of three compounds, RWJ-270201, oseltamivir, and zanamivir, against neuraminidase enzymes from various subtypes of influenza. RWJ-270201 effectively inhibited all tested influenza A and influenza B neuraminidases in vitro, with 50% inhibitory concentrations of 0.09 to 1.4 nM for influenza A neuraminidases and 0.6 to 11 nM for influenza B neuraminidases. These values were comparable to or lower than those for oseltamivir carboxylate (GS4071) and zanamivir (GG167). RWJ-270201 demonstrated excellent selectivity (>10,000-fold) for influenza virus neuraminidase over mammalian, bacterial, or other viral neuraminidases. Oral administration of a dosage of 1 mg/kg of body weight/day of RWJ-270201 for 5 days (beginning 4 h preinfection) showed efficacy in the murine model of influenza virus infection as determined by lethality and weight loss protection. RWJ-270201 administered intranasally at 0.01 mg/kg/day in the murine influenza model demonstrated complete protection against lethality, whereas oseltamivir carboxylate and zanamivir at the same dose demonstrated only partial protection. In the delayed-treatment murine influenza model, oral administration of a 10-mg/kg/day dose of RWJ-270201 or oseltamivir (GS4104, a prodrug of GS4071) at 24 h postinfection showed significant protection against lethality (P < 0.001 versus control). However, when the treatment was delayed for 48 h, no significant protection was observed in either drug group. No drug-related toxicity was observed in mice receiving 100 mg/kg/day of RWJ-270201 for 5 days. These efficacy and safety profiles justify further consideration of RWJ-270201 for the treatment and prevention of human influenza.
doi:10.1128/AAC.45.4.1162-1167.2001
PMCID: PMC90439  PMID: 11257030
14.  In Vitro Activity of Cephalosporin RWJ-54428 (MC-02479) against Multidrug-Resistant Gram-Positive Cocci 
RWJ-54428 (MC-02479) is a novel cephalosporin that binds to penicillin-binding protein (PBP) PBP 2′ (PBP 2a) of methicillin-resistant staphylococci. Its in vitro activity was assessed against 472 gram-positive cocci, largely selected as epidemiologically unrelated isolates with multidrug resistance. The MIC at which 50% of isolates are inhibited (MIC50) and MIC90 of RWJ-54428 for methicillin-resistant Staphylococcus aureus (MRSA) were 1 and 2 μg/ml, respectively, whereas they were 0.5 and 0.5 μg/ml, respectively, for methicillin-susceptible S. aureus. The MIC50 and MIC90 were 1 and 4 μg/ml, respectively, for methicillin-resistant coagulase-negative staphylococci (MRCoNS), whereas they were 0.25 and 1 μg/ml, respectively, for methicillin-susceptible isolates. The highest MICs for MRSA and MRCoNS isolates were 2 and 4 μg/ml, respectively. The MIC50 and MIC90 of RWJ-54428 for Enterococcus faecalis were 0.5 and 1 μg/ml, respectively, but they were 4 and 8 μg/ml, respectively, for Enterococcus faecium. For penicillin-susceptible, -intermediate, and -resistant pneumococci, the MIC90s of RWJ-54428 were 0.03, 0.25, and 0.5 μg/ml, respectively, with the highest MIC for a pneumococcus being 1 μg/ml, recorded for a strain for which penicillin and cefotaxime MICs were 8 and 4 μg/ml. MICs for Lancefield group A, B, C, and G streptococci were ≤0.008 μg/ml; those for viridans group streptococci, including isolates not susceptible to penicillin, were from 0.015 to 0.5 μg/ml. RWJ-54428 did not select resistant mutants of MRSA or enterococci in challenge experiments and has the potential to be useful for the treatment of infections caused by gram-positive cocci.
doi:10.1128/AAC.46.2.321-326.2002
PMCID: PMC127043  PMID: 11796337
15.  Population analysis of the pharmacokinetics and pharmacodynamics of RWJ-270201 (BCX-1812) in treating experimental influenza A and B virus in healthy volunteers 
AAPS PharmSci  2002;4(4):29-38.
Objective
Our objective was to assess the pharmacokinetics and pharmacodynamics of RWJ-270201 (BCX-1812), an oral neuraminidase inibitor for the treatment of influenza A and B virus in healthy volunteers.
Methods
This was a double-blind, randomized, placebocontrolled, parallel group study. A total of 80 adult male and female subjects were enrolled for the influenza A challenge study. This was a 5arm study (100 mg/qd, 200 mg/qd, 200 mg/bid, 400 mg/qd, and placebo). In the challenge B virus model, 60 subjects were enrolled for a 3-arm study (800 mg on Day 1 followed by 400 mg on Days 2–5; 800 mg on Days 1–5; and placebo). The pharmacokinetics of RWJ-270201 (BCX-1812) were characterized with the use of a population approach and were described by a 2-compartmental model with first-order absorption and elimination. The pharmacodynamic data, mean log viral titers, were described with the use of an empirical equation relating the viral growth and the effect of drug on changes in viral titers.
Results
Pharmacokinetic analyses show that weight was the most significant covariate for all estimated pharmacokinetic parameters. The pharmacodynamic data, mean log viral titers showed a decrease in viral titers with increase in plasma exposure. The decrease in viral titer started to occur 12 hours following the drug dosing, and viral suppression lasted 72 hours to 96 hours. The exposures associated with a 50% decrease in viral titers were 1089 ng-h/mL and 1898 ng-h/mL, respectively.
Conclusions
A PK/PD model was well utilized to characterize the effect of RWJ-270201 (BCX-1812) on the influenza A and B virus. The results from this model showed that both the loading dose and the standard dose regimens are efficacious against A and B virus.
RWJ-270201 (BCX-1812) is under clinical development for the treatment of influenza A and B infections in adult and high-risk populations. It is a potent and selective inhibitor of both influenza A and B virus neuraminidases and inhibits the viral cleavage of sialic acid from cell surface glycoproteins and glycolipids. Consequently, RWJ-270201 (BCX-1812) prevents infection by stopping the release of newly formed virus from the surface of infected cells and preventing viral spread across the mucous lining of the respiratory tract. It therefore represents an attractive agent for antiviral therapy.
doi:10.1208/ps040422
PMCID: PMC2751311  PMID: 12645994
Population; pharmacokinetics and pharmacodynamics; Influenza virus; RWJ-270201
16.  In Vivo Influenza Virus-Inhibitory Effects of the Cyclopentane Neuraminidase Inhibitor RWJ-270201 
The cyclopentane influenza virus neuraminidase inhibitor RWJ-270201 was evaluated against influenza A/NWS/33 (H1N1), A/Shangdong/09/93 (H3N2), A/Victoria/3/75 (H3N2), and B/Hong Kong/05/72 virus infections in mice. Treatment was by oral gavage twice daily for 5 days beginning 4 h pre-virus exposure. The influenza virus inhibitor oseltamivir was run in parallel, and ribavirin was included in studies with the A/Shangdong and B/Hong Kong viruses. RWJ-270201 was inhibitory to all infections using doses as low as 1 mg/kg/day. Oseltamivir was generally up to 10-fold less effective than RWJ-270201. Ribavirin was also inhibitory but was less tolerated by the mice at the 75-mg/kg/day dose used. Disease-inhibitory effects included prevention of death, lessening of decline of arterial oxygen saturation, inhibition of lung consolidation, and reduction in lung virus titers. RWJ-270201 and oseltamivir, at doses of 10 and 1 mg/kg/day each, were compared with regard to their effects on daily lung parameters in influenza A/Shangdong/09/93 virus-infected mice. Maximum virus titer inhibition was seen on day 1, with RWJ-270201 exhibiting the greater inhibitory effect, a titer reduction of >104 cell culture 50% infective doses (CCID50)/g. By day 8, the lung virus titers in mice treated with RWJ-270201 had declined to 101.2 CCID50/g, whereas titers from oseltamivir-treated animals were >103 CCID50/g. Mean lung consolidation was also higher in the oseltamivir-treated animals on day 8. Both neuraminidase inhibitors were well tolerated by the mice. RWJ-270201 was nontoxic at doses as high as 1,000 mg/kg/day. These data indicate potential for the oral use of RWJ-270201 in the treatment of influenza virus infections in humans.
doi:10.1128/AAC.45.3.749-757.2001
PMCID: PMC90368  PMID: 11181355
17.  The novel antiepileptic agent RWJ-333369-A, but not its analog RWJ-333369, reduces regional cerebral edema without affecting neurobehavioral outcome or cell death following experimental traumatic brain injury 
Purpose
To evaluate the therapeutic efficacy of two antiepileptic compounds, RWJ-333369 and RWJ-333369-A in a well-established experimental model of lateral fluid percussion (FP) traumatic brain injury (TBI) in the rat.
Methods
Anethestized Male Sprague-Dawley rats (n = 227) were subjected to lateral FP brain injury or sham-injury. Animals were randomized to receive treatment with RWJ-333369 (60 mg/kg, p.o.) or its analog RWJ-333369-A (60 mg/kg, p.o.), or vehicle (equal volume) at 15 minutes, 4, 8, and 24 hours post-injury. In Study I, animals were assessed at 48 hours for acute motor and cognitive function and then sacrificed to evaluate regional cerebral edema. In Study II, animals were evaluated post-injury for motor function at 48 hours and weekly thereafter from 1 to 4 weeks. Post-traumatic learning ability was assessed 4 weeks post-injury, followed by evaluation of hemispheric tissue loss.
Results
In Study I, no improvement in acute memory or motor function was observed following administration of either RWJ-333369 or RWJ-333369-A in brain-injured animals compared to vehicle-treated, brain-injured animals. However, brain-injured animals receiving treatment with RWJ-333369-A had a significant reduction in post-traumatic cerebral edema in both injured and contralateral hippocampus compared to brain-injured, vehicle-treated controls (p < 0.05). In Study II, treatment with either compound did not result in any improvement of neuromotor function, learning ability or change in lesion volume following brain injury.
Conclusions
These results indicate that the novel antiepileptic compound RWJ-333369-A reduces post-traumatic hippocampal edema without affecting neurobehavioral or histological outcome. It remains unclear whether this small effect on hippocampal edema is related to the ability of this compound to attenuate seizure activity.
PMCID: PMC2377455  PMID: 17726266
Antiepileptic drugs (AEDs); brain swelling; head injury; neuroprotetion; post-traumatic epilepsy
18.  Pharmacodynamics of RWJ-54428 against Staphylococcus aureus, Streptococcus pneumoniae, and Enterococcus faecalis in a Neutropenic Mouse Thigh Infection Model▿  
RWJ-54428 (also known as MC-02,479) is a new cephalosporin with promising activity against gram-positive bacteria. The pharmacodynamics (PDs) of RWJ-54428 against Staphylococcus aureus, Streptococcus pneumoniae, and Enterococcus faecalis were studied in a neutropenic mouse thigh infection model. The RWJ-54428 MICs ranged from 0.25 to 1 mg/liter. Mice with ca. 106 CFU/thigh at the initiation of therapy were treated intraperitoneally with RWJ-54428 at doses that ranged from 3 to 1,200 mg/kg of body weight/day (in 2, 3, 4, 6, or 12 divided doses) for 24 h. The maximal reductions in bacterial counts in thigh tissues at 24 h for the methicillin-resistant S. aureus, penicillin-resistant S. pneumoniae, and E. faecalis strains were −2.8, −3.8, and −1.7 log10 CFU/thigh, respectively. The percentage of a 24-h dosing interval that the unbound serum RWJ-54428 concentrations exceeded the MIC (fT>MIC) was the pharmacokinetic (PK)-PD parameter that best described the efficacy of RWJ-54428. The fT>MICs for a bacteriostatic effect (no net change in the numbers of CFU/thigh over 24 h) ranged from 14 to 20% for staphylococci and streptococci; for maximal reductions in the numbers of CFU/thigh, the fT>MICs ranged from 22 to 36% for these strains. For E. faecalis, the ranges of fT>MICs for static and maximal effects were 30 to 46% and 55 to 60%, respectively. These data show that treatment with RWJ-54428 results in marked antibacterial effects in vivo, with the PK-PD parameters for efficacy being comparable to those for the efficacy of penicillins and carbapenems active against staphylococci and pneumococci.
doi:10.1128/AAC.00776-07
PMCID: PMC2223871  PMID: 17954697
19.  Antifungal Properties and Target Evaluation of Three Putative Bacterial Histidine Kinase Inhibitors 
Histidine protein kinases have been explored as potential antibacterial drug targets. The recent identification of two-component histidine kinases in fungi has led us to investigate the antifungal properties of three bacterial histidine kinase inhibitors (RWJ-49815, RWJ-49968, and RWJ-61907). All three compounds were found to inhibit growth of the Saccharomyces cerevisiae and Candida albicans strains, with MICs ranging from 1 to 20 μg/ml. However, deletion of SLN1, the only histidine kinase in S. cerevisiae, did not alter drug efficacy. In vitro kinase assays were performed by using the Sln1 histidine kinase purified from bacteria as a fusion protein to glutathione S-transferase. RWJ-49815 and RWJ-49968 inhibited kinase a 50% inhibitory concentration of 10 μM, whereas RWJ-61907 failed to inhibit at concentrations up to 100 μM. Based on these results, we conclude that these compounds have antifungal properties; however, their mode of action appears to be independent of histidine kinase inhibition.
PMCID: PMC89346  PMID: 10390225
20.  RWJ-270201 (BCX-1812): a novel neuraminidase inhibitor for influenza. 
The influenza virus neuraminidase (NA) is important in the pathogenesis of infection and, thus, is an attractive target for agents used in the treatment and prophylaxis of influenza. This article describes preclinical and early clinical data related to RWJ-270201 (BCX-1812), a novel, orally active NA inhibitor that was rationally designed for having potent and selective activity against influenza A and B viruses. RWJ-270201 is a unique NA inhibitor with a cyclopentane ring structure and high selectivity for the influenza NA. RWJ-270201 has efficacy comparable to or better than earlier NA inhibitors against a wide range of influenza A and B isolates, including recently emerged and avian strains, both in vitro and in a lethal murine model of influenza. Based on the high selectivity and efficacy of RWJ-270201 against both type A and B influenza strains in preclinical studies as well as murine pharmacodynamic studies supporting the potential for once-daily administration, clinical trials were initiated in order to determine the tolerability and antiviral activity of RWJ-270201 in humans. To date, clinical studies have indicated that RWJ-270201 is well tolerated and has antiviral activity in human experimental influenza models when administered orally once daily.
doi:10.1098/rstb.2001.1004
PMCID: PMC1088568  PMID: 11779391
21.  GPR30 as an initiator of tamoxifen resistance in hormone-dependent breast cancer 
Breast Cancer Research : BCR  2013;15(6):R114.
Introduction
Tamoxifen is widely used to treat hormone-dependent breast cancer, but its therapeutic benefit is limited by the development of drug resistance. Here, we investigated the role of estrogen G-protein coupled receptor 30 (GPR30) on Tamoxifen resistance in breast cancer.
Methods
Primary tumors (PTs) of breast cancer and corresponding metastases (MTs) were used to evaluate the expression of GPR30 and epidermal growth factor receptor (EGFR) immunohistochemically. Tamoxifen-resistant (TAM-R) subclones derived from parent MCF-7 cells were used to investigate the role of GPR30 in the development of tamoxifen resistance, using MTT assay, western blot, RT-PCR, immunofluorescence, ELISA and flow cytometry. TAM-R xenografts were established to assess anti-tumor effects of combination therapy with GPR30 antagonist G15 plus 4-hydroxytamoxifen (Tam), using tumor volume measurement and Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL).
Results
In 53 human breast cancer specimens, GPR30 expression in MTs increased compared to matched PTs; in MTs, the expression patterns of GPR30 and EGFR were closely related. Compared to parent MCF-7 cells, TAM-R cells had greater growth responses to 17β-estradiol (E2), GPR30 agonist G1 and Tam, and significantly higher activation of Mitogen-activated protein (MAP) kinases; but this increased activity was abolished by G15 or AG1478. In TAM-R cells, GPR30 cell-surface translocation facilitated crosstalk with EGFR, and reduced cAMP generation, attenuating inhibition of EGFR signaling. Combination therapy both promoted apoptosis in TAM-R cells and decreased drug-resistant tumor progression.
Conclusions
Long-term endocrine treatment facilitates the translocation of GPR30 to cell surfaces, which interferes with the EGFR signaling pathway; GPR30 also attenuates the inhibition of MAP kinases. These factors contribute to tamoxifen resistance development in breast cancer. Combination therapy with GPR30 inhibitors and tamoxifen may provide a new therapeutic option for drug-resistant breast cancer.
doi:10.1186/bcr3581
PMCID: PMC3978564  PMID: 24289103
22.  Phosphorylated p-70S6K predicts tamoxifen resistance in postmenopausal breast cancer patients randomized between adjuvant tamoxifen versus no systemic treatment 
Introduction
Activation of the phosphatidylinositol-3-kinase (PI3K) and/or mitogen-activated protein kinase (MAPK) pathways results in anti-estrogen resistance in vitro, but a biomarker with clinical validity to predict intrinsic resistance has not been identified. In metastatic breast cancer patients with previous exposure to endocrine therapy, the addition of a mammalian target of rapamycine (mTOR) inhibitor has been shown to be beneficial. Whether or not patients on adjuvant endocrine treatment might benefit from these drugs is currently unclear. A biomarker that predicts intrinsic resistance could potentially be used as companion diagnostic in this setting. We tested the clinical validity of different downstream-activated proteins in the PI3K and/or MAPK pathways to predict intrinsic tamoxifen resistance in postmenopausal primary breast cancer patients.
Methods
We recollected primary tumor tissue from patients who participated in a randomized trial of adjuvant tamoxifen (1–3 years) versus observation. After constructing a tissue micro-array, cores from 563 estrogen receptor α positive were immunostained for p-AKT(Thr308), p-AKT(Ser473), p-mTOR, p-p706SK and p-ERK1/2. Cox proportional hazard models for recurrence free interval were used to assess hazard ratios and interactions between these markers and tamoxifen treatment efficacy.
Results
Interactions were identified between tamoxifen and p-AKT(Thr308), p-mTOR, p-p70S6K and p-ERK1/2. Applying a conservative level of significance, p-p70S6K remained significantly associated with tamoxifen resistance. Patients with p-p70S6K negative tumors derived significant benefit from tamoxifen (HR 0.24, P < 0.0001), while patients whose tumor did express p-p70S6K did not (HR = 1.02, P =0.95), P for interaction 0.004. In systemically untreated breast cancer patients, p-p70S6K was associated with a decreased risk for recurrence.
Conclusions
Patients whose tumor expresses p-p70S6K, as a marker of downstream PI3K and/or MAPK pathway activation, have a favorable prognosis, but do not benefit from adjuvant tamoxifen. A potential benefit from inhibitors of the PI3K/Akt/mTOR pathway in these patients needs to be further explored.
doi:10.1186/bcr3598
PMCID: PMC3979131  PMID: 24447434
23.  RWJ-54428 (MC-02,479), a New Cephalosporin with High Affinity for Penicillin-Binding Proteins, Including PBP 2a, and Stability to Staphylococcal Beta-Lactamases 
RWJ-54428 (MC-02,479) is a new cephalosporin active against gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). The potency of this new cephalosporin against MRSA is related to a high affinity for penicillin-binding protein 2a (PBP 2a), as assessed in a competition assay using biotinylated ampicillin as the reporter molecule. RWJ-54428 had high activity against MRSA strains COL and 67-0 (MIC of 1 μg/ml) and also showed affinity for PBP 2a, with a 50% inhibitory concentration (IC50) of 0.7 μg/ml. RWJ-54428 also displayed excellent affinity for PBP 5 from Enterococcus hirae R40, with an IC50 of 0.8 μg/ml and a MIC of 0.5 μg/ml. The affinity of RWJ-54428 for PBPs of β-lactam-susceptible S. aureus (MSSA), enterococci (E. hirae), and Streptococcus pneumoniae showed that the good affinity of RWJ-54428 for MRSA PBP 2a and E. hirae PBP 5 does not compromise its binding to susceptible PBPs. RWJ-54428 showed stability to hydrolysis by purified type A β-lactamase isolated from S. aureus PC1. In addition, RWJ-54428 displayed low MICs against strains of S. aureus bearing the four classes of staphylococcal β-lactamases, including β-lactamase hyperproducers. The frequency of isolation of resistant mutants to RWJ-54428 from MRSA strains was very low. In summary, RWJ-54428 has high affinity to multiple PBPs and is stable to β-lactamase, properties that may explain our inability to find resistance by standard methods. These data are consistent with its excellent activity against β-lactam-resistant gram-positive bacteria.
doi:10.1128/AAC.47.2.658-664.2003
PMCID: PMC151748  PMID: 12543674
24.  Oncogenic HER2Δ16 suppresses miR-15a/16 and deregulates BCL-2 to promote endocrine resistance of breast tumors 
Carcinogenesis  2010;31(12):2049-2057.
Tamoxifen is the most commonly prescribed therapy for patients with estrogen receptor (ER)α-positive breast tumors. Tumor resistance to tamoxifen remains a serious clinical problem especially in patients with tumors that also overexpress human epidermal growth factor receptor 2 (HER2). Current preclinical models of HER2 overexpression fail to recapitulate the clinical spectrum of endocrine resistance associated with HER2/ER-positive tumors. Here, we show that ectopic expression of a clinically important oncogenic isoform of HER2, HER2Δ16, which is expressed in >30% of ER-positive breast tumors, promotes tamoxifen resistance and estrogen independence of MCF-7 xenografts. MCF-7/HER2Δ16 cells evade tamoxifen through upregulation of BCL-2, whereas mediated suppression of BCL-2 expression or treatment of MCF-7/HER2Δ16 cells with the BCL-2 family pharmacological inhibitor ABT-737 restores tamoxifen sensitivity. Tamoxifen-resistant MCF-7/HER2Δ16 cells upregulate BCL-2 protein levels in response to suppressed ERα signaling mediated by estrogen withdrawal, tamoxifen treatment or fulvestrant treatment. In addition, HER2Δ16 expression results in suppression of BCL-2-targeting microRNAs miR-15a and miR-16. Reintroduction of miR-15a/16 reduced tamoxifen-induced BCL-2 expression and sensitized MCF-7/HER2Δ16 to tamoxifen. Conversely, inhibition of miR-15a/16 in tamoxifen-sensitive cells activated BCL-2 expression and promoted tamoxifen resistance. Our results suggest that HER2Δ16 expression promotes endocrine-resistant HER2/ERα-positive breast tumors and in contrast to wild-type HER2, preclinical models of HER2Δ16 overexpression recapitulate multiple phenotypes of endocrine-resistant human breast tumors. The mechanism of HER2Δ16 therapeutic evasion, involving tamoxifen-induced upregulation of BCL-2 and suppression of miR-15a/16, provides a template for unique therapeutic interventions combining tamoxifen with modulation of microRNAs and/or ABT-737-mediated BCL-2 inhibition and apoptosis.
doi:10.1093/carcin/bgq192
PMCID: PMC2994280  PMID: 20876285
25.  In Vivo Antibacterial Activity of RWJ-54428, a New Cephalosporin with Activity against Gram-Positive Bacteria 
RWJ-54428 (MC-02,479) is a new cephalosporin with activity against resistant gram-positive organisms, including methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, and penicillin-resistant Streptococcus pneumoniae. The in vivo efficacy of RWJ-54428 was evaluated against gram-positive bacteria in four mouse models of infection. RWJ-54428 was effective in vivo against methicillin-susceptible and -resistant S. aureus in a mouse model of sepsis, with 50% effective doses being similar to those of vancomycin. In a single-dose neutropenic mouse thigh model of infection, RWJ-54428 at 30 mg/kg of body weight showed activity similar to that of vancomycin at 30 mg/kg against a strain of methicillin-resistant S. aureus. RWJ-54428 also showed a prolonged in vivo postantibiotic effect in this model. In a mouse model of pneumonia due to a penicillin-susceptible strain of Streptococcus pneumoniae, RWJ-54428 displayed efficacy and potency superior to those of penicillin G and cefotaxime. In a mouse model of pyelonephritis due to Enterococcus faecalis, RWJ-54428 had bactericidal effects similar to those of vancomycin and ampicillin, but at two- to threefold lower total daily doses. These studies show that RWJ-54428 is active in experimental mouse models of infection against gram-positive organisms, including strains resistant to earlier cephalosporins and penicillin G.
doi:10.1128/AAC.47.1.43-47.2003
PMCID: PMC149000  PMID: 12499167

Results 1-25 (1045143)