Search tips
Search criteria

Results 1-25 (1727009)

Clipboard (0)

Related Articles

1.  Upregulation of SQSTM1/p62 contributes to nickel-induced malignant transformation of human bronchial epithelial cells 
Autophagy  2016;12(10):1687-1703.
Chronic lung inflammation is accepted as being associated with the development of lung cancer caused by nickel exposure. Therefore, identifying the molecular mechanisms that lead to a nickel-induced sustained inflammatory microenvironment that causes transformation of human bronchial epithelial cells is of high significance. In the current studies, we identified SQSTM1/p62 as a novel nickel-upregulated protein that is important for nickel-induced inflammatory TNF expression, subsequently resulting in transformation of human bronchial epithelial cells. We found that nickel exposure induced SQSTM1 protein upregulation in human lung epithelial cells in vitro and in mouse lung tissues in vivo. The SQSTM1 upregulation was also observed in human lung squamous cell carcinoma. Further studies revealed that the knockdown of SQSTM1 expression dramatically inhibited transformation of human lung epithelial cells upon chronic nickel exposure, whereas ectopic expression of SQSTM1 promoted such transformation. Mechanistic studies showed that the SQSTM1 upregulation by nickel was the compromised result of upregulating SQSTM1 mRNA transcription and promoting SQSTM1 protein degradation. We demonstrated that nickel-initiated SQSTM1 protein degradation is mediated by macroautophagy/autophagy via an MTOR-ULK1-BECN1 axis, whereas RELA is important for SQSTM1 transcriptional upregulation following nickel exposure. Furthermore, SQSTM1 upregulation exhibited its promotion of nickel-induced cell transformation through exerting an impetus for nickel-induced inflammatory TNF mRNA stability. Consistently, the MTOR-ULK1-BECN1 autophagic cascade acted as an inhibitory effect on nickel-induced TNF expression and cell transformation. Collectively, our results demonstrate a novel SQSTM1 regulatory network that promotes a nickel-induced tumorigenic effect in human bronchial epithelial cells, which is negatively controlled by an autophagic cascade following nickel exposure.
PMCID: PMC5079680  PMID: 27467530
autophagy; malignant transformation; nickel; RELA; SQSTM1/p62
2.  Dengue Virus Inhibition of Autophagic Flux and Dependency of Viral Replication on Proteasomal Degradation of the Autophagy Receptor p62 
Journal of Virology  2015;89(15):8026-8041.
Autophagic flux involves formation of autophagosomes and their degradation by lysosomes. Autophagy can either promote or restrict viral replication. In the case of Dengue virus (DENV), several studies report that autophagy supports the viral replication cycle, and describe an increase of autophagic vesicles (AVs) following infection. However, it is unknown how autophagic flux is altered to result in increased AVs. To address this question and gain insight into the role of autophagy during DENV infection, we established an unbiased, image-based flow cytometry approach to quantify autophagic flux under normal growth conditions and in response to activation by nutrient deprivation or the mTOR inhibitor Torin1. We found that DENV induced an initial activation of autophagic flux, followed by inhibition of general and specific autophagy. Early after infection, basal and activated autophagic flux was enhanced. However, during established replication, basal and Torin1-activated autophagic flux was blocked, while autophagic flux activated by nutrient deprivation was reduced, indicating a block to AV formation and reduced AV degradation capacity. During late infection AV levels increased as a result of inefficient fusion of autophagosomes with lysosomes. In addition, endolysosomal trafficking was suppressed, while lysosomal activities were increased. We further determined that DENV infection progressively reduced levels of the autophagy receptor SQSTM1/p62 via proteasomal degradation. Importantly, stable overexpression of p62 significantly suppressed DENV replication, suggesting a novel role for p62 as a viral restriction factor. Overall, our findings indicate that in the course of DENV infection, autophagy shifts from a supporting to an antiviral role, which is countered by DENV.
IMPORTANCE Autophagic flux is a dynamic process starting with the formation of autophagosomes and ending with their degradation after fusion with lysosomes. Autophagy impacts the replication cycle of many viruses. However, thus far the dynamics of autophagy in case of Dengue virus (DENV) infections has not been systematically quantified. Therefore, we used high-content, imaging-based flow cytometry to quantify autophagic flux and endolysosomal trafficking in response to DENV infection. We report that DENV induced an initial activation of autophagic flux, followed by inhibition of general and specific autophagy. Further, lysosomal activity was increased, but endolysosomal trafficking was suppressed confirming the block of autophagic flux. Importantly, we provide evidence that p62, an autophagy receptor, restrict DENV replication and was specifically depleted in DENV-infected cells via increased proteasomal degradation. These results suggest that during DENV infection autophagy shifts from a proviral to an antiviral cellular process, which is counteracted by the virus.
PMCID: PMC4505648  PMID: 26018155
3.  Sqstm1–GFP knock-in mice reveal dynamic actions of Sqstm1 during autophagy and under stress conditions in living cells 
Journal of Cell Science  2015;128(23):4453-4461.
Sqstm1 serves as a signaling hub and receptor for selective autophagy. Consequently, dysregulation of Sqstm1 causes imbalances in signaling pathways and disrupts proteostasis, thereby contributing to the development of human diseases. Environmental stresses influence the level of Sqstm1 by altering its expression and/or autophagic degradation, and also changes the localization of Sqstm1, making it difficult to elucidate the actions and roles of this protein. In this study, we developed knock-in mice expressing Sqstm1 fused to GFP (Sqstm1-GFPKI/+). Using these Sqstm1-GFPKI/+ mice, we revealed for the first time the dynamics of endogenous Sqstm1 in living cells. Sqstm1–GFP was translocated to a restricted area of LC3-positive structures, which primarily correspond to the inside of autophagosomes, and then degraded. Moreover, exposure to arsenite induced expression of Sqstm1–GFP, followed by accumulation of the fusion protein in large aggregates that were degraded by autophagy. Furthermore, suppression of autophagy in Sqstm1-GFPKI/+ mouse livers caused accumulation of Sqstm1–GFP and formation of GFP-positive aggregate structures, leading to severe hepatic failure. These results indicate that Sqstm1-GFPKI/+ mice are a useful tool for analyzing Sqstm1 in living cells and intact animals.
Highlighted Article: We have developed Sqstm1-GFP knock-in mice, which are useful for elucidating the molecular mechanisms of cellular events, including autophagy, and various diseases in which Sqstm1 plays a role.
PMCID: PMC4712822  PMID: 26483381
Sqstm1; Autophagy; Selective autophagy; Nrf2; Knock-in mice
4.  Autophagic flux, supported by toll-like receptor 2 activity, defends against the carcinogenesis of hepatocellular carcinoma 
Autophagy  2012;8(12):1859-1861.
Hepatocellular carcinoma (HCC), the most common primary malignant liver tumor, is the third leading cause of cancer deaths. The pathogenesis of HCC is closely associated with chronic liver inflammation fired by a variety of stimulates such as virus infection and metabolic stress. Recent work indicates that autophagy, a homeostatic self-degradation process, which decides cell survival or death upon stress, acts as an effector machinery of immune systems in defending microbial invasion and carcinogenesis. SQSTM1 is a selective target and receptor of autophagy, and the protein content of SQSTM1 reflects the level of autophagic flux in cells. Through degrading SQSTM1, decreasing SQSTM1 aggregates, and therefore interrupting the positive feedback between SQSTM1 aggregates and ROS production, autophagy plays a protective role against hepatocellular carcinoma. Indeed, our studies indicate that toll-like receptor 2 (TLR2)-mediated immune activities in the genotoxic carcinogen diethylnitrosamine (DEN)-injured liver tissue provide essential nutrient stimulates to induce intracellular senescence, which can ensure the activation and maturation of autophagy in liver cells. Loss of TLR2-mediated immune activity and senescence leads to the attenuation of autophagic flux, which cannot eliminate SQSTM1 aggregates, ROS accumulation, and DNA damage, and facilitates the development and progression of HCC.
PMCID: PMC3541305  PMID: 22996042
DEN; SQSTM1; autophagic flux; hepatocellular carcinoma; immune network; senescence; toll-like receptor 2
5.  Ampelopsin-induced autophagy protects breast cancer cells from apoptosis through Akt-mTOR pathway via endoplasmic reticulum stress 
Cancer Science  2014;105(10):1279-1287.
Our previous study has shown that ampelopsin (AMP), a flavonol mainly found in Ampelopsis grossedentata, could induce cell death in human breast cancer cells via reactive oxygen species generation and endoplasmic reticulum (ER) stress pathway. Here, we examined whether autophagy is activated in AMP-treated breast cancer cells and, if so, sought to find the exact role and underlying molecular profile of autophagy in AMP-induced cell death. Our results showed that AMP treatment activated autophagy in MDA-MB-231 and MCF-7 breast cancer cells, as evidenced by the accumulation of autophagosomes, an increase of microtubule-associated protein 1 light chain 3 beta-2 (LC3B-II) and the conversion of LC3B-I to LC3B-II, the degradation of the selective autophagic target p62/SQSTM1, and the formation of green fluorescent protein (GFP)-LC3 puncta. Blockage of autophagy augmented AMP-induced cell death, suggesting that autophagy has cytoprotective effects. Meanwhile, AMP treatment suppressed Akt-mammalian target of rapamycin (mTOR) pathway as evidenced by dose- and time-dependent decrease of the phosphorylation of Akt, mTOR and ribosomal protein S6 kinase (p70S6K), whereas Akt activator insulin-like growth factor-1 (IGF-1) pretreatment partially restored Akt-mTOR pathway inhibited by AMP and decreased AMP-inuduced autophagy, signifying that AMP activated autophagy via inhibition of the Akt-mTOR pathway. Additionally, blocking ER stress not only reduced autophagy induction, but also alleviated inhibition of the Akt-mTOR pathway induced by AMP, suggesting that activation of ER stress was involved in induction of autophagy and inhibition of the Akt-mTOR pathway. Taken together, these findings indicate that AMP induces protective autophagy in human breast cancer cells through Akt-mTOR pathway via ER stress.
PMCID: PMC4462353  PMID: 25088800
Ampelopsin; autophagy; breast cancer; endoplasmic reticulum stress; mammalian target of rapamycin
6.  Targeting SQSTM1/p62 Induces Cargo Loading Failure and Converts Autophagy to Apoptosis via NBK/Bik 
Molecular and Cellular Biology  2014;34(18):3435-3449.
In selective autophagy, the adaptor protein SQSTM1/p62 plays a critical role in recognizing/loading cargo (e.g., malfolded proteins) into autophagosomes for lysosomal degradation. Here we report that whereas SQSTM1/p62 levels fluctuated in a time-dependent manner during autophagy, inhibition or knockdown of Cdk9/cyclin T1 transcriptionally downregulated SQSTM1/p62 but did not affect autophagic flux. These interventions, or short hairpin RNA (shRNA) directly targeting SQSTM1/p62, resulted in cargo loading failure and inefficient autophagy, phenomena recently described for Huntington's disease neurons. These events led to the accumulation of the BH3-only protein NBK/Bik on endoplasmic reticulum (ER) membranes, most likely by blocking loading and autophagic degradation of NBK/Bik, culminating in apoptosis. Whereas NBK/Bik upregulation was further enhanced by disruption of distal autophagic events (e.g., autophagosome maturation) by chloroquine (CQ) or Lamp2 shRNA, it was substantially diminished by inhibition of autophagy initiation (e.g., genetically by shRNA targeting Ulk1, beclin-1, or Atg5 or pharmacologically by 3-methyladenine [3-MA] or spautin-1), arguing that NBK/Bik accumulation stems from inefficient autophagy. Finally, NBK/Bik knockdown markedly attenuated apoptosis in vitro and in vivo. Together, these findings identify novel cross talk between autophagy and apoptosis, wherein targeting SQSTM1/p62 converts cytoprotective autophagy to an inefficient form due to cargo loading failure, leading to NBK/Bik accumulation, which triggers apoptosis.
PMCID: PMC4135623  PMID: 25002530
7.  A Role for the Chaperone Complex BAG3-HSPB8 in Actin Dynamics, Spindle Orientation and Proper Chromosome Segregation during Mitosis 
PLoS Genetics  2015;11(10):e1005582.
The co-chaperone BAG3, in complex with the heat shock protein HSPB8, plays a role in protein quality control during mechanical strain. It is part of a multichaperone complex that senses damaged cytoskeletal proteins and orchestrates their seclusion and/or degradation by selective autophagy. Here we describe a novel role for the BAG3-HSPB8 complex in mitosis, a process involving profound changes in cell tension homeostasis. BAG3 is hyperphosphorylated at mitotic entry and localizes to centrosomal regions. BAG3 regulates, in an HSPB8-dependent manner, the timely congression of chromosomes to the metaphase plate by influencing the three-dimensional positioning of the mitotic spindle. Depletion of BAG3 caused defects in cell rounding at metaphase and dramatic blebbing of the cortex associated with abnormal spindle rotations. Similar defects were observed upon silencing of the autophagic receptor p62/SQSTM1 that contributes to BAG3-mediated selective autophagy pathway. Mitotic cells depleted of BAG3, HSPB8 or p62/SQSTM1 exhibited disorganized actin-rich retraction fibres, which are proposed to guide spindle orientation. Proper spindle positioning was rescued in BAG3-depleted cells upon addition of the lectin concanavalin A, which restores cortex rigidity. Together, our findings suggest the existence of a so-far unrecognized quality control mechanism involving BAG3, HSPB8 and p62/SQSTM1 for accurate remodelling of actin-based mitotic structures that guide spindle orientation.
Author Summary
Small heat shock proteins (sHSP/HSPB) form a diverse family of ATP-independent chaperones. Some of them protect the proteome against aggregation during stress and others regulate normal biological processes through ill-defined mechanisms. Interactions between HSPB proteins and elements of the cytoskeleton are increasingly linked to their implication in human degenerative diseases and cancer. For instance, a multichaperone complex containing HSPB8 and its co-chaperone BAG3 would maintain muscle cell integrity by promoting the autophagic clearance of damaged components within F-actin structures. Selective autophagy is a targeted protein degradation mechanism for elimination of damaged organelles and proteins. It may also regulate removal of signaling proteins from their functionally relevant sites during intense remodeling of the cytoskeleton, as it occurs during mitosis. Here, we report a novel role for HSPB8 and BAG3 during mitosis in mammalian cells that involves the autophagic receptor p62/SQSTM1. We show that a reduction of any protein within the HSPB8-BAG3-p62/SQSTM signaling axis similarly impairs mitotic progression and chromosome segregation by affecting orientation of the mitotic spindle and assembly of mitotic-specific actin structures. Our findings establish a unique role for HSPB8 in a novel function of BAG3 in mitotic cell division and genome stability, through effect on remodeling of the actin cytoskeleton.
PMCID: PMC4619738  PMID: 26496431
8.  Selective autophagy regulates T cell activation 
Autophagy  2012;8(11):1690-1692.
T cells are essential for defense of the host against invading pathogens. Antigen activation of the T cell receptor (TCR) is required for generation of an adaptive immune response. Several groups have observed that blocking autophagy augments T cell activation, but the molecular basis of this finding has remained elusive. The adaptor protein BCL10 transmits activating signals from the TCR to NFKB1-RELA/NFκB, a transcription factor that is critical for T cell proliferation and function. We recently reported that a TCR-dependent autophagy mechanism selectively targets and degrades BCL10. We found that BCL10 autophagy requires BCL10 K63-polyubiquitination and subsequent binding to the autophagy adaptor SQSTM1/p62. Blocking either one of these processes inhibits BCL10 degradation. Protecting BCL10 from autophagic degradation, either by pharmacological or genetic inhibition of autophagy, results in increased activation of NFKB1-RELA. By demonstrating the mechanism of autophagic uptake and degradation of BCL10, our study has revealed a key mechanism by which selective autophagy controls T cell activation. Here, we discuss the implications of our findings and explore possible directions for future research.
PMCID: PMC3494603  PMID: 22874554
Bcl10; LC3; NF-kappaB; SQSTM1; T cell; TCR; p62; proteasome; signal transduction; ubiquitin
9.  Association of FKBP51 with Priming of Autophagy Pathways and Mediation of Antidepressant Treatment Response: Evidence in Cells, Mice, and Humans 
PLoS Medicine  2014;11(11):e1001755.
Theo Rein and colleagues examine the role of FKBP51 in the actions of antidepressants, with a particular focus on pathways of autophagy.
Please see later in the article for the Editors' Summary
FK506 binding protein 51 (FKBP51) is an Hsp90 co-chaperone and regulator of the glucocorticoid receptor, and consequently of stress physiology. Clinical studies suggest a genetic link between FKBP51 and antidepressant response in mood disorders; however, the underlying mechanisms remain elusive. The objective of this study was to elucidate the role of FKBP51 in the actions of antidepressants, with a particular focus on pathways of autophagy.
Methods and Findings
Established cell lines, primary neural cells, human blood cells of healthy individuals and patients with depression, and mice were treated with antidepressants. Mice were tested for several neuroendocrine and behavioral parameters. Protein interactions and autophagic pathway activity were mainly evaluated by co-immunoprecipitation and Western blots. We first show that the effects of acute antidepressant treatment on behavior are abolished in FKBP51 knockout (51KO) mice. Autophagic markers, such as the autophagy initiator Beclin1, were increased following acute antidepressant treatment in brains from wild-type, but not 51KO, animals. FKBP51 binds to Beclin1, changes decisive protein interactions and phosphorylation of Beclin1, and triggers autophagic pathways. Antidepressants and FKBP51 exhibited synergistic effects on these pathways. Using chronic social defeat as a depression-relevant stress model in combination with chronic paroxetine (PAR) treatment revealed that the stress response, as well as the effects of antidepressants on behavior and autophagic markers, depends on FKBP51. In human blood cells of healthy individuals, FKBP51 levels correlated with the potential of antidepressants to induce autophagic pathways.
Importantly, the clinical antidepressant response of patients with depression (n = 51) could be predicted by the antidepressant response of autophagic markers in patient-derived peripheral blood lymphocytes cultivated and treated ex vivo (Beclin1/amitriptyline: r = 0.572, p = 0.003; Beclin1/PAR: r = 0.569, p = 0.004; Beclin1/fluoxetine: r = 0.454, p = 0.026; pAkt/amitriptyline: r = −0.416, p = 0.006; pAkt/PAR: r = −0.355, p = 0.021; LC3B-II/PAR: r = 0.453, p = 0.02), as well as by the lymphocytic expression levels of FKBP51 (r = 0.631, p<0.0001), pAkt (r = −0.515, p = 0.003), and Beclin1 (r = 0.521, p = 0.002) at admission. Limitations of the study include the use of male mice only and the relatively low number of patients for protein analyses.
To our knowledge, these findings provide the first evidence for the molecular mechanism of FKBP51 in priming autophagic pathways; this process is linked to the potency of at least some antidepressants. These newly discovered functions of FKBP51 also provide novel predictive markers for treatment outcome, consistent with physiological and potential clinical relevance.
Please see later in the article for the Editors' Summary
Editors' Summary
Everyone feels miserable sometimes, but about one in six people will have an episode of clinical depression during their lifetime. For people who are clinically depressed, overwhelming feelings of sadness, anxiety, and hopelessness can last for months or years. Affected individuals lose interest in activities they used to enjoy, they sometimes have physical symptoms such as disturbed sleep, and they may contemplate suicide. Clinicians diagnose depression and determine its severity using questionnaires (“depression rating scales”) that explore the patient's feelings and symptoms. Mild depression is often treated with talking therapies (psychotherapy) such as cognitive behavioral therapy, which helps people change negative ways of thinking. For more severe depression, patients are also usually prescribed an antidepressant, most commonly a “selective serotonin reuptake inhibitor” such as paroxetine or a tricyclic antidepressant such as amitriptyline.
Why Was This Study Done?
Unfortunately, antidepressants don't work for more than half of patients. Moreover, because it is unclear how antidepressants work, it is not possible to predict which patients will respond to which antidepressants. Thus, matching patient to drug can be a lengthy, sometimes unsuccessful, process. Here, the researchers use several approaches to test the hypothesis that a protein called FK506 binding protein 51 (FKBP51) is involved in the actions of antidepressants and to investigate whether the ability of both FKBP51 and antidepressants to regulate a process called autophagy underlies the impact of FKBP51 on antidepressant responses. FKBP51 is a regulator of stress physiology, which is connected to the development and treatment of depression; genetic studies have suggested a link between FKBP51 expression and the antidepressant response rate. Some antidepressants are known to alter the initial steps in the autophagy pathway, a multistep process that maintains the integrity of cells through regulated degradation and recycling of cellular components; however, the potential synergistic role of FKBP51 and antidepressants in regulating pathways of autophagy are unknown.
What Did the Researchers Do and Find?
The researchers first treated wild-type mice and FKBP51 knockout mice (genetically altered animals that make no FKBP51) with an acute dose of antidepressant and compared their behavior in a forced swim test, an assay that measures the action of antidepressants in mice by determining how long the mice struggle or float inertly when placed in deep water. As expected, acute antidepressant treatment increased the time that wild-type mice spent struggling. However, this effect of antidepressant treatment was greatly attenuated in the FKBP51 knockout mice. Moreover, the levels of several autophagy markers increased in the brains of wild-type mice following antidepressant treatment but not in the brains of FKBP51 knockout mice. Next, using “chronic social defeat stress” to model the “endophenotype” of depression (a combination of physiological, hormonal, and behavioral traits seen in people with depression) in mice, the researchers showed that the stress response and the effect of chronic antidepressants on behavior and on autophagic markers all depend on FKBP51. Using cell-based assays, the researchers showed that antidepressants and FKBP51 had synergistic (interactive) effects on the autophagic pathway and that, in human blood cells, FKBP51 levels correlated with the potential of antidepressants to induce autophagic pathways. Finally, the researchers report that the clinical response to antidepressant treatment in 51 patients with depression was associated with the response of autophagic markers in their peripheral blood lymphocytes to antidepressant treatment in test tubes, and that the expression levels of FKBP51 and autophagy markers in patient lymphocytes at admission were associated with subsequent clinical responses to antidepressants.
What Do These Findings Mean?
These findings suggest that the protein FKBP51 is required for the effects of both acute and chronic treatment with some antidepressants on behavior and on autophagic pathways in mice. These findings also reveal an association between antidepressant treatment responses in patients and both the expression levels of FKBP51 and autophagy markers in lymphocytes at admission and the response of autophagic markers to antidepressant treatment in patient lymphocytes. The accuracy of these findings is limited by the small number of clinical samples available for analysis, by the use of only male mice in the animal experiments, and by the inability of animal models of depression to fully replicate the human condition. Nevertheless, these findings identify the early stages of autophagy as potential targets for the development of new antidepressants and identify several potential biomarkers that might, after further clinical validation, help clinicians predict antidepressant efficacy in patients with depression.
Additional Information
Please access these websites via the online version of this summary at
The US National Institute of Mental Health provides information on all aspects of depression (in English and Spanish), including information on antidepressants
The UK National Health Service Choices website provides detailed information about depression and about antidepressants; it also provides personal stories about depression
The UK charity Mind provides information on depression, including some personal stories about depression
More personal stories about depression are available from
MedlinePlus provides links to other resources about depression
Wikipedia has a page on autophagy (note that Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
The patients included in this study were all enrolled in the Munich Antidepressant Response Signature project, which aims to identify gene variants and biomarkers that predict treatment outcomes with antidepressants
PMCID: PMC4227651  PMID: 25386878
10.  Rapamycin and Chloroquine: The In Vitro and In Vivo Effects of Autophagy-Modifying Drugs Show Promising Results in Valosin Containing Protein Multisystem Proteinopathy 
PLoS ONE  2015;10(4):e0122888.
Mutations in the valosin containing protein (VCP) gene cause hereditary Inclusion body myopathy (hIBM) associated with Paget disease of bone (PDB), frontotemporal dementia (FTD), more recently termed multisystem proteinopathy (MSP). Affected individuals exhibit scapular winging and die from progressive muscle weakness, and cardiac and respiratory failure, typically in their 40s to 50s. Histologically, patients show the presence of rimmed vacuoles and TAR DNA-binding protein 43 (TDP-43)-positive large ubiquitinated inclusion bodies in the muscles. We have generated a VCPR155H/+ mouse model which recapitulates the disease phenotype and impaired autophagy typically observed in patients with VCP disease. Autophagy-modifying agents, such as rapamycin and chloroquine, at pharmacological doses have previously shown to alter the autophagic flux. Herein, we report results of administration of rapamycin, a specific inhibitor of the mechanistic target of rapamycin (mTOR) signaling pathway, and chloroquine, a lysosomal inhibitor which reverses autophagy by accumulating in lysosomes, responsible for blocking autophagy in 20-month old VCPR155H/+ mice. Rapamycin-treated mice demonstrated significant improvement in muscle performance, quadriceps histological analysis, and rescue of ubiquitin, and TDP-43 pathology and defective autophagy as indicated by decreased protein expression levels of LC3-I/II, p62/SQSTM1, optineurin and inhibiting the mTORC1 substrates. Conversely, chloroquine-treated VCPR155H/+ mice revealed progressive muscle weakness, cytoplasmic accumulation of TDP-43, ubiquitin-positive inclusion bodies and increased LC3-I/II, p62/SQSTM1, and optineurin expression levels. Our in vitro patient myoblasts studies treated with rapamycin demonstrated an overall improvement in the autophagy markers. Targeting the mTOR pathway ameliorates an increasing list of disorders, and these findings suggest that VCP disease and related neurodegenerative multisystem proteinopathies can now be included as disorders that can potentially be ameliorated by rapalogs.
PMCID: PMC4401571  PMID: 25884947
11.  Promoting Autophagic Clearance: Viable Therapeutic Targets in Alzheimer’s Disease 
Neurotherapeutics  2014;12(1):94-108.
Many neurodegenerative disorders are characterized by the aberrant accumulation of aggregate-prone proteins. Alzheimer’s disease (AD) is associated with the buildup of β-amyloid peptides and tau, which aggregate into extracellular plaques and neurofibrillary tangles, respectively. Multiple studies have linked dysfunctional intracellular degradation mechanisms with AD pathogenesis. One such pathway is the autophagy–lysosomal system, which involves the delivery of large protein aggregates/inclusions and organelles to lysosomes through the formation, trafficking, and degradation of double-membrane structures known as autophagosomes. Converging data suggest that promoting autophagic degradation, either by inducing autophagosome formation or enhancing lysosomal digestion, provides viable therapeutic strategies. In this review, we discuss compounds that can augment autophagic clearance and may ameliorate disease-related pathology in cell and mouse models of AD. Canonical autophagy induction is associated with multiple signaling cascades; on the one hand, the best characterized is mammalian target of rapamycin (mTOR). Accordingly, multiple mTOR-dependent and mTOR-independent drugs that stimulate autophagy have been tested in preclinical models. On the other hand, there is a growing list of drugs that can enhance the later stages of autophagic flux by stabilizing microtubule-mediated trafficking, promoting lysosomal fusion, or bolstering lysosomal enzyme function. Although altering the different stages of autophagy provides many potential targets for AD therapeutic interventions, it is important to consider how autophagy drugs might also disturb the delicate balance between autophagosome formation and lysosomal degradation.
Electronic supplementary material
The online version of this article (doi:10.1007/s13311-014-0320-z) contains supplementary material, which is available to authorized users.
PMCID: PMC4322072  PMID: 25421002
Autophagy; Alzheimer’s disease; Neurodegeneration; Therapeutics; Tau; Amyloid (Aβ); Flux; Lysosomes
12.  A plastic SQSTM1/p62-dependent autophagic reserve maintains proteostasis and determines proteasome inhibitor susceptibility in multiple myeloma cells 
Autophagy  2015;11(7):1161-1178.
Multiple myeloma (MM) is the paradigmatic proteasome inhibitor (PI) responsive cancer, but many patients fail to respond. An attractive target to enhance sensitivity is (macro)autophagy, recently found essential to bone marrow plasma cells, the normal counterpart of MM. Here, integrating proteomics with hypothesis-driven strategies, we identified the autophagic cargo receptor and adapter protein, SQSTM1/p62 as an essential component of an autophagic reserve that not only synergizes with the proteasome to maintain proteostasis, but also mediates a plastic adaptive response to PIs, and faithfully reports on inherent PI sensitivity. Lentiviral engineering revealed that SQSTM1 is essential for MM cell survival and affords specific PI protection. Under basal conditions, SQSTM1-dependent autophagy alleviates the degradative burden on the proteasome by constitutively disposing of substantial amounts of ubiquitinated proteins. Indeed, its inhibition or stimulation greatly sensitized to, or protected from, PI-induced protein aggregation and cell death. Moreover, under proteasome stress, myeloma cells selectively enhanced SQSTM1 de novo expression and reset its vast endogenous interactome, diverting SQSTM1 from signaling partners to maximize its association with ubiquitinated proteins. Saturation of such autophagic reserve, as indicated by intracellular accumulation of undigested SQSTM1-positive aggregates, specifically discriminated patient-derived myelomas inherently susceptible to PIs from primarily resistant ones. These aggregates correlated with accumulation of the endoplasmic reticulum, which comparative proteomics identified as the main cell compartment targeted by autophagy in MM. Altogether, the data integrate autophagy into our previously established proteasome load-versus-capacity model, and reveal SQSTM1 aggregation as a faithful marker of defective proteostasis, defining a novel prognostic and therapeutic framework for MM.
PMCID: PMC4590585  PMID: 26043024
aggregate; autophagy; bortezomib; endoplasmic reticulum; multiple myeloma; p62; plasma cells; proteasome; proteasome inhibitors; proteostasis; SQSTM1; ubiquitin
13.  Lysosomal-Associated Protein Multispanning Transmembrane 5 Gene (LAPTM5) Is Associated with Spontaneous Regression of Neuroblastomas 
PLoS ONE  2009;4(9):e7099.
Neuroblastoma (NB) is the most frequently occurring solid tumor in children, and shows heterogeneous clinical behavior. Favorable tumors, which are usually detected by mass screening based on increased levels of catecholamines in urine, regress spontaneously via programmed cell death (PCD) or mature through differentiation into benign ganglioneuroma (GN). In contrast, advanced-type NB tumors often grow aggressively, despite intensive chemotherapy. Understanding the molecular mechanisms of PCD during spontaneous regression in favorable NB tumors, as well as identifying genes with a pro-death role, is a matter of urgency for developing novel approaches to the treatment of advanced-type NB tumors.
Principal Findings
We found that the expression of lysosomal associated protein multispanning transmembrane 5 (LAPTM5) was usually down-regulated due to DNA methylation in an NB cell-specific manner, but up-regulated in degenerating NB cells within locally regressing areas of favorable tumors detected by mass-screening. Experiments in vitro showed that not only a restoration of its expression but also the accumulation of LAPTM5 protein, was required to induce non-apoptotic cell death with autophagic vacuoles and lysosomal destabilization with lysosomal-membrane permeabilization (LMP) in a caspase-independent manner. While autophagy is a membrane-trafficking pathway to degrade the proteins in lysosomes, the LAPTM5-mediated lysosomal destabilization with LMP leads to an interruption of autophagic flux, resulting in the accumulation of immature autophagic vacuoles, p62/SQSTM1, and ubiqitinated proteins as substrates of autophagic degradation. In addition, ubiquitin-positive inclusion bodies appeared in degenerating NB cells.
We propose a novel molecular mechanism for PCD with the accumulation of autophagic vacuoles due to LAPTM5-mediated lysosomal destabilization. LAPTM5-induced cell death is lysosomal cell death with impaired autophagy, not cell death by autophagy, so-called autophagic cell death. Thus LAPTM5-mediated PCD is closely associated with the spontaneous regression of NBs and opens new avenues for exploring innovative clinical interventions for this tumor.
PMCID: PMC2746316  PMID: 19787053
14.  Autophagy Induction by Endothelial-Monocyte Activating Polypeptide II Contributes to the Inhibition of Malignant Biological Behaviors by the Combination of EMAP II with Rapamycin in Human Glioblastoma 
This study aims to investigate the effect of endothelial-monocyte activating polypeptide II (EMAP II) on human glioblastoma (GBM) cells and glioblastoma stem cells (GSCs) as well as its possible mechanisms. In this study, EMAP II inhibited the cell viability and decreased the mitochondrial membrane potential in human GBM cells and GSCs, and autophagy inhibitor 3-methyl adenine (3-MA) blocked these effects. Autophagic vacuoles were formed in these cells after EMAP II treatment and this phenomenon was blocked by 3-MA. In addition, the up-regulation of microtubule-associated protein-1 light chain-3 (LC3)-II and the down-regulation of autophagic degraded substrate p62/SQSTM1 caused by EMAP II were observed. Cells treated with EMAP-II inhibited the PI3K/Akt/mTOR signal pathway, and PI3K/Akt agonist insulin-like growth factor-1 (IGF-1) blocked the effect of EMAP II on the expression of LC3-II and p62/SQSTM1. Cells exposed to EMAP-II experienced mitophagy and ER stress. Furthermore, the inhibition of cell proliferation, migration and invasion of GBM cells and GSCs were more remarkable by the combination of EMAP II and rapamycin than either agent alone in vitro and in vivo. The current study demonstrated that the cytotoxicity of EMAP II in human GBM cells and GSCs was induced by autophagy, accompanied by the inhibition of PI3K/Akt/mTOR signal pathway, mitophagy and ER stress. The combination of EMAP II with rapamycin demonstrated the inhibitory effect on the malignant biological behaviors of human GBM cells and GSCs in vitro and in vivo.
PMCID: PMC4664732  PMID: 26648842
EMAP II; autophagy; PI3K/Akt/mTOR; mitophagy; ER stress; rapamycin
15.  Activation of Focal Adhesion Kinase by Salmonella Suppresses Autophagy via an Akt/mTOR Signaling Pathway and Promotes Bacterial Survival in Macrophages 
PLoS Pathogens  2014;10(6):e1004159.
Autophagy has emerged as an important antimicrobial host defense mechanism that not only orchestrates the systemic immune response, but also functions in a cell autonomous manner to directly eliminate invading pathogens. Pathogenic bacteria such as Salmonella have evolved adaptations to protect themselves from autophagic elimination. Here we show that signaling through the non-receptor tyrosine kinase focal adhesion kinase (FAK) is actively manipulated by the Salmonella SPI-2 system in macrophages to promote intracellular survival. In wild-type macrophages, FAK is recruited to the surface of the Salmonella-containing vacuole (SCV), leading to amplified signaling through the Akt-mTOR axis and inhibition of the autophagic response. In FAK-deficient macrophages, Akt/mTOR signaling is attenuated and autophagic capture of intracellular bacteria is enhanced, resulting in reduced bacterial survival. We further demonstrate that enhanced autophagy in FAK−/− macrophages requires the activity of Atg5 and ULK1 in a process that is distinct from LC3-assisted phagocytosis (LAP). In vivo, selective knockout of FAK in macrophages resulted in more rapid clearance of bacteria from tissues after oral infection with S. typhimurium. Clearance was correlated with reduced infiltration of inflammatory cell types into infected tissues and reduced tissue damage. Together, these data demonstrate that FAK is specifically targeted by S. typhimurium as a novel means of suppressing autophagy in macrophages, thereby enhancing their intracellular survival.
Author Summary
Salmonella enterica is a food- and water-borne pathogen that has evolved closely with vertebrate hosts. Two medically relevant serovars include S. typhimurium, which causes gastroenteritis and S. typhi, which is the causative agent of typhoid fever. Host cells can utilize a process called autophagy, normally involved in the elimination of defective proteins and organelles, to capture and degrade intracellular pathogens. Enteric Salmonella express numerous virulence factors that enable the bacterium to subvert host defense mechanisms. Here we report that Salmonella specifically activates the host molecule focal adhesion kinase (FAK) in macrophages, triggering a signaling cascade that suppresses the autophagic elimination of intracellular bacteria. A key regulator of autophagy in mammalian cells is the target of rapamycin, mTOR, which transmits inhibitory signals that downregulate the autophagic response. We show that Salmonella-induced FAK activation leads to the Akt-dependent activation of mTOR, thereby repressing autophagic signaling. Inhibition of autophagy results in increased bacterial survival, while in FAK-deficient cells, autophagy is enhanced and intracellular Salmonella are eliminated. We also show that in mice lacking macrophage-specific FAK, animals were less susceptible to oral Salmonella infection. Together, these data identify FAK as a novel regulator of autophagy in macrophages with broad implications for host survival.
PMCID: PMC4047085  PMID: 24901456
16.  Agent-based modeling of autophagy reveals emergent regulatory behavior of spatio-temporal autophagy dynamics 
Autophagy is a vesicle-mediated pathway for lysosomal degradation, essential under basal and stressed conditions. Various cellular components, including specific proteins, protein aggregates, organelles and intracellular pathogens, are targets for autophagic degradation. Thereby, autophagy controls numerous vital physiological and pathophysiological functions, including cell signaling, differentiation, turnover of cellular components and pathogen defense. Moreover, autophagy enables the cell to recycle cellular components to metabolic substrates, thereby permitting prolonged survival under low nutrient conditions. Due to the multi-faceted roles for autophagy in maintaining cellular and organismal homeostasis and responding to diverse stresses, malfunction of autophagy contributes to both chronic and acute pathologies.
We applied a systems biology approach to improve the understanding of this complex cellular process of autophagy. All autophagy pathway vesicle activities, i.e. creation, movement, fusion and degradation, are highly dynamic, temporally and spatially, and under various forms of regulation. We therefore developed an agent-based model (ABM) to represent individual components of the autophagy pathway, subcellular vesicle dynamics and metabolic feedback with the cellular environment, thereby providing a framework to investigate spatio-temporal aspects of autophagy regulation and dynamic behavior. The rules defining our ABM were derived from literature and from high-resolution images of autophagy markers under basal and activated conditions. Key model parameters were fit with an iterative method using a genetic algorithm and a predefined fitness function. From this approach, we found that accurate prediction of spatio-temporal behavior required increasing model complexity by implementing functional integration of autophagy with the cellular nutrient state. The resulting model is able to reproduce short-term autophagic flux measurements (up to 3 hours) under basal and activated autophagy conditions, and to measure the degree of cell-to-cell variability. Moreover, we experimentally confirmed two model predictions, namely (i) peri-nuclear concentration of autophagosomes and (ii) inhibitory lysosomal feedback on mTOR signaling.
Agent-based modeling represents a novel approach to investigate autophagy dynamics, function and dysfunction with high biological realism. Our model accurately recapitulates short-term behavior and cell-to-cell variability under basal and activated conditions of autophagy. Further, this approach also allows investigation of long-term behaviors emerging from biologically-relevant alterations to vesicle trafficking and metabolic state.
Electronic supplementary material
The online version of this article (doi:10.1186/s12964-014-0056-8) contains supplementary material, which is available to authorized users.
PMCID: PMC4172826  PMID: 25214434
Agent-based modeling; Autophagy; Autophagic flux; Cell-to-cell variability; Systems biology; Computational biology; mTOR; Lysosomes
17.  Inhibitory Effect of mTOR Activator MHY1485 on Autophagy: Suppression of Lysosomal Fusion 
PLoS ONE  2012;7(8):e43418.
Autophagy is a major degradative process responsible for the disposal of cytoplasmic proteins and dysfunctional organelles via the lysosomal pathway. During the autophagic process, cells form double-membraned vesicles called autophagosomes that sequester disposable materials in the cytoplasm and finally fuse with lysosomes. In the present study, we investigated the inhibition of autophagy by a synthesized compound, MHY1485, in a culture system by using Ac2F rat hepatocytes. Autophagic flux was measured to evaluate the autophagic activity. Autophagosomes were visualized in Ac2F cells transfected with AdGFP-LC3 by live-cell confocal microscopy. In addition, activity of mTOR, a major regulatory protein of autophagy, was assessed by western blot and docking simulation using AutoDock 4.2. In the result, treatment with MHY1485 suppressed the basal autophagic flux, and this inhibitory effect was clearly confirmed in cells under starvation, a strong physiological inducer of autophagy. The levels of p62 and beclin-1 did not show significant change after treatment with MHY1485. Decreased co-localization of autophagosomes and lysosomes in confocal microscopic images revealed the inhibitory effect of MHY1485 on lysosomal fusion during starvation-induced autophagy. These effects of MHY1485 led to the accumulation of LC3II and enlargement of the autophagosomes in a dose- and time- dependent manner. Furthermore, MHY1485 induced mTOR activation and correspondingly showed a higher docking score than PP242, a well-known ATP-competitive mTOR inhibitor, in docking simulation. In conclusion, MHY1485 has an inhibitory effect on the autophagic process by inhibition of fusion between autophagosomes and lysosomes leading to the accumulation of LC3II protein and enlarged autophagosomes. MHY1485 also induces mTOR activity, providing a possibility for another regulatory mechanism of autophagy by the MHY compound. The significance of this study is the finding of a novel inhibitor of autophagy with an mTOR activating effect.
PMCID: PMC3425474  PMID: 22927967
18.  Expression of the autophagy substrate SQSTM1/p62 is restored during prolonged starvation depending on transcriptional upregulation and autophagy-derived amino acids 
Autophagy  2014;10(3):431-441.
SQSTM1/p62 (sequestosome 1) is a multifunctional signaling molecule, involved in a variety of cellular pathways. SQSTM1 is one of the best-known autophagic substrates, and is therefore widely used as an indicator of autophagic degradation. Here we report that the expression level of SQSTM1 can be restored during prolonged starvation. Upon starvation, SQSTM1 is initially degraded by autophagy. However, SQSTM1 is restored back to basal levels during prolonged starvation in mouse embryonic fibroblasts and HepG2 cells, but not in HeLa and HEK293 cells. Restoration of SQSTM1 depends on its transcriptional upregulation, which is triggered by amino acid starvation. Furthermore, amino acids derived from the autophagy–lysosome pathway are used for de novo synthesis of SQSTM1 under starvation conditions. The restoration of SQSTM1 is independent of reactivation of MTORC1 (mechanistic target of rapamycin complex 1). These results suggest that the expression level of SQSTM1 in starved cells is determined by at least 3 factors: autophagic degradation, transcriptional upregulation, and availability of lysosomal-derived amino acids. The results of this study also indicate that the expression level of SQSTM1 does not always inversely correlate with autophagic activity.
PMCID: PMC4077882  PMID: 24394643
SQSTM1/p62; amino acid; transcription
19.  PML-RARα enhances constitutive autophagic activity through inhibiting the Akt/mTOR pathway 
Autophagy  2011;7(10):1132-1144.
Autophagy is a highly conserved, closely regulated homeostatic cellular activity that allows for the bulk degradation of long-lived proteins and cytoplasmic organelles. Its roles in cancer initiation and progression and in determining the response of tumor cells to anticancer therapy are complicated, and only limited investigation has been conducted on the potential significance of autophagy in the pathogenesis and therapeutic response of acute myeloid leukemia. Here we demonstrate that the inducible or transfected expression of the acute promyelocytic leukemia (APL)-specific PML-RARα, but not PLZF-RARα or NPM-RARα, fusion protein upregulates constitutive autophagy activation in leukemic and nonleukemic cells, as evaluated by hallmarks for autophagy including transmission electron microscopy. The significant increase in autophagic activity is also found in the leukemic cells-infiltrated bone marrow and spleen from PML-RARα-transplanted leukemic mice. The autophagy inhibitor 3-methyladenine significantly abrogates the autophagic events upregulated by PML-RARα, while the autophagic flux assay reveals that the fusion protein induces autophagy by increasing the on-rate of autophagic sequestration. Furthermore, this modulation of autophagy by PML-RARα is possibly mediated by a decreased activation of the Akt/mTOR pathway. Finally, we also show that autophagy contributes to the anti-apoptotic function of the PML-RARα protein. Given the critical role of the PML-RARα oncoprotein in APL pathogenesis, this study suggests an important role of autophagy in the development and treatment of this disease.
PMCID: PMC3210306  PMID: 21673516
autophagy; acute promyelocytic leukemia (APL); PML-RARα; mTOR; apoptosis
20.  The TRIB3-SQSTM1 interaction mediates metabolic stress-promoted tumorigenesis and progression via suppressing autophagic and proteasomal degradation 
Autophagy  2015;11(10):1929-1931.
Cancer and diabetes are 2 multifactorial chronic diseases with tremendous impact on health worldwide. Metabolic risk factors play a critical role in fueling a wide range of cancers, but with undefined mechanisms. We recently reported that TRIB3, a stress-induced protein, mediates a reciprocal antagonism between autophagic and proteasomal degradation systems and connects insulin-IGF1 to malignant promotion. We found that several human cancer tissues express higher TRIB3 and phosphorylated IRS1 (insulin receptor substrate 1), which correlates negatively with patient prognosis. Silencing of TRIB3 not only restores insulin-IGF1-suppressed autophagic flux, but also attenuates tumor growth and metastasis. TRIB3 physically interacts with the autophagic receptor SQSTM1, and this interaction hinders the binding of SQSTM1 to LC3 and ubiquitinated proteins, leading to SQSTM1 accumulation and clearance inhibition of ubiquitinated proteins. Interrupting the TRIB3-SQSTM1 interaction with an α-helical peptide derived from SQSTM1 attenuates tumor growth and metastasis through activating autophagic flux. Our findings indicate that TRIB3 links insulin-IGF1 to cancer development and progression through interacting with SQSTM1. Thus, interrupting the TRIB3-SQSTM1 interaction may provide a potential strategy against cancers in patients with diabetes.
PMCID: PMC4824605  PMID: 26301314
α-helical peptide; diabetes; metastasis; protein-protein interactions; tumorigenesis
21.  MTOR-independent, autophagic enhancer trehalose prolongs motor neuron survival and ameliorates the autophagic flux defect in a mouse model of amyotrophic lateral sclerosis 
Autophagy  2014;10(4):588-602.
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder caused by selective motor neuron degeneration. Abnormal protein aggregation and impaired protein degradation pathways may contribute to the disease pathogenesis. Although it has been reported that autophagy is altered in patients and animal model of ALS, little is known about the role of autophagy in motor neuron degeneration in this disease. Our previous study shows that rapamycin, an MTOR-dependent autophagic activator, accelerates disease progression in the SOD1G93A mouse model of ALS. In the present report, we have assessed the role of the MTOR-independent autophagic pathway in ALS by determining the effect of the MTOR-independent autophagic inducer trehalose on disease onset and progression, and on motor neuron degeneration in SOD1G93A mice. We have found that trehalose significantly delays disease onset prolongs life span, and reduces motor neuron loss in the spinal cord of SOD1G93A mice. Most importantly, we have documented that trehalose decreases SOD1 and SQSTM1/p62 aggregation, reduces ubiquitinated protein accumulation, and improves autophagic flux in the motor neurons of SOD1G93A mice. Moreover, we have demonstrated that trehalose can reduce skeletal muscle denervation, protect mitochondria, and inhibit the proapoptotic pathway in SOD1G93A mice. Collectively, our study indicated that the MTOR-independent autophagic inducer trehalose is neuroprotective in the ALS model and autophagosome-lysosome fusion is a possible therapeutic target for the treatment of ALS.
PMCID: PMC4091147  PMID: 24441414
amyotrophic lateral sclerosis; Cu/Zn superoxide dismutase 1; autophagy; trehalose; autophagosome-lysosome fusion
22.  Defining and measuring autophagosome flux—concept and reality 
Autophagy  2014;10(11):2087-2096.
The autophagic system is involved in both bulk degradation of primarily long-lived cytoplasmic proteins as well as in selective degradation of cytoplasmic organelles. Autophagic flux is often defined as a measure of autophagic degradation activity, and a number of methods are currently utilized to assess autophagic flux. However, despite major advances in measuring various molecular aspects of the autophagic machinery, we remain less able to express autophagic flux in a highly sensitive, robust, and well-quantifiable manner. Here, we describe a conceptual framework for defining and measuring autophagosome flux at the single-cell level. The concept discussed here is based on the theoretical framework of metabolic control analysis, which distinguishes between the pathway along which there is a flow of material and the quantitative measure of this flow. By treating the autophagic system as a multistep pathway with each step characterized by a particular rate, we are able to provide a single-cell fluorescence live-cell imaging-based approach that describes the accurate assessment of the complete autophagosome pool size, the autophagosome flux, and the transition time required to turn over the intracellular autophagosome pool. In doing so, this perspective provides clarity on whether the system is at steady state or in a transient state moving towards a new steady state. It is hoped that this theoretical account of quantitatively measuring autophagosome flux may contribute towards a new direction in the field of autophagy, a standardized approach that allows the establishment of systematic flux databases of clinically relevant cell and tissue types that serve as important model systems for human pathologies.
PMCID: PMC4502790  PMID: 25484088
CMA, chaperone-mediated autophagy; GFP, green fluorescent protein; J, flux; LC3, microtubule-associated protein 1 light chain 3; nA, number of autophagosomes; τ, transition time; TEM, transmission electron microscopy
23.  Regulation of Autophagic Activation by Rta of Epstein-Barr Virus via the Extracellular Signal-Regulated Kinase Pathway 
Journal of Virology  2014;88(20):12133-12145.
Autophagy is an intracellular degradation pathway that provides a host defense mechanism against intracellular pathogens. However, many viruses exploit this mechanism to promote their replication. This study shows that lytic induction of Epstein-Barr virus (EBV) increases the membrane-bound form of LC3 (LC3-II) and LC3-containing punctate structures in EBV-positive cells. Transfecting 293T cells with a plasmid that expresses Rta also induces autophagy, revealing that Rta is responsible for autophagic activation. The activation involves Atg5, a key component of autophagy, but not the mTOR pathway. The expression of Rta also activates the transcription of the genes that participate in the formation of autophagosomes, including LC3A, LC3B, and ATG9B genes, as well as those that are involved in the regulation of autophagy, including the genes TNF, IRGM, and TRAIL. Additionally, treatment with U0126 inhibits the Rta-induced autophagy and the expression of autophagy genes, indicating that the autophagic activation is caused by the activation of extracellular signal-regulated kinase (ERK) signaling by Rta. Finally, the inhibition of autophagic activity by an autophagy inhibitor, 3-methyladenine, or Atg5 small interfering RNA, reduces the expression of EBV lytic proteins and the production of viral particles, revealing that autophagy is critical to EBV lytic progression. This investigation reveals how an EBV-encoded transcription factor promotes autophagy to affect viral lytic development.
Autophagy is a cellular process that degrades and recycles nutrients under stress conditions to promote cell survival. Although autophagy commonly serves as a defense mechanism against viral infection, many viruses exploit this mechanism to promote their replication. This study finds that a transcription factor that is encoded by Epstein-Barr virus (EBV), Rta, activates autophagy, and the inhibition of autophagy reduces the ability of the virus to express viral lytic proteins and to generate progeny. Unlike other virus-encoded proteins that modulate autophagy by interacting with proteins that are involved in the autophagic pathway, Rta activates the transcription of the autophagy-related genes via the ERK pathway. The results of this study reveal how the virus manipulates autophagy to promote its lytic development.
PMCID: PMC4178756  PMID: 25122800
24.  Kaposi's Sarcoma-Associated Herpesvirus Induces Nrf2 Activation in Latently Infected Endothelial Cells through SQSTM1 Phosphorylation and Interaction with Polyubiquitinated Keap1 
Journal of Virology  2014;89(4):2268-2286.
Nuclear factor erythroid 2-related factor 2 (Nrf2), the cellular master regulator of the antioxidant response, dissociates from its inhibitor Keap1 when activated by stress signals and participates in the pathogenesis of viral infections and tumorigenesis. Early during de novo infection of endothelial cells, KSHV induces Nrf2 through an intricate mechanism involving reactive oxygen species (ROS) and prostaglandin E2 (PGE2). When we investigated the Nrf2 activity during latent KSHV infection, we observed increased nuclear serine-40-phosphorylated Nrf2 in human KS lesions compared to that in healthy tissues. Using KSHV long-term-infected endothelial cells (LTC) as a cellular model for KS, we demonstrated that KSHV infection induces Nrf2 constitutively by extending its half-life, increasing its phosphorylation by protein kinase Cζ (PKCζ) via the infection-induced cyclooxygenase-2 (COX-2)/PGE2 axis and inducing its nuclear localization. Nrf2 knockdown in LTC decreased expression of antioxidant genes and genes involved in KS pathogenesis such as the NAD(P)H quinone oxidase 1 (NQO1), gamma glutamylcysteine synthase heavy unit (γGCSH), the cysteine transporter (xCT), interleukin 6 (IL-6), and vascular endothelial growth factor A (VEGF-A) genes. Nrf2 activation was independent of oxidative stress but dependent on the autophagic protein sequestosome-1 (SQSTM1; p62). SQSTM1 levels were elevated in LTC, a consequence of protein accumulation due to decreased autophagy and Nrf2-mediated transcriptional activation. SQSTM1 was phosphorylated on serine-351 and -403, while Keap1 was polyubiquitinated with lysine-63–ubiquitin chains, modifications known to increase their mutual affinity and interaction, leading to Keap1 degradation and Nrf2 activation. The latent KSHV protein Fas-associated death domain-like interleukin-1β-converting enzyme-inhibitory protein (vFLIP) increased SQSTM1 expression and activated Nrf2. Collectively, these results demonstrate that KSHV induces SQSTM1 to constitutively activate Nrf2, which is involved in the regulation of genes participating in KSHV oncogenesis.
IMPORTANCE The transcription factor Nrf2 is activated by stress signals, including viral infection, and responds by activating the transcription of cytoprotective genes. Recently, Nrf2 has been implicated in oncogenesis and was shown to be activated during de novo KSHV infection of endothelial cells through ROS-dependent pathways. The present study was undertaken to determine the mechanism of Nrf2 activation during prolonged latent infection of endothelial cells, using an endothelial cell line latently infected with KSHV. We show that Nrf2 activation was elevated in KSHV latently infected endothelial cells independently of oxidative stress but dependent on the autophagic protein sequestosome-1 (SQSTM1), which was involved in the degradation of the Nrf2 inhibitor Keap1. Furthermore, our results indicated that the KSHV latent protein vFLIP participates in Nrf2 activation. This study suggests that KSHV hijacks the host's autophagic protein SQSTM1 to induce Nrf2 activation, thereby manipulating the infected host gene regulation to promote KS pathogenesis.
PMCID: PMC4338888  PMID: 25505069
25.  Autophagic response in the Rabbit Hemorrhagic Disease, an animal model of virally-induced fulminant hepatic failure 
Veterinary Research  2014;45(1):15.
The Rabbit Hemorrhagic Disease Virus (RHDV) induces a severe disease that fulfils many requirements of an animal model of fulminant hepatic failure. However, a better knowledge of molecular mechanisms contributing to liver damage is required, and it is unknown whether the RHDV induces liver autophagy and how it relates to apoptosis. In this study, we attempted to explore which signalling pathways were involved in the autophagic response induced by the RHDV and to characterize their role in the context of RHDV pathogenesis. Rabbits were infected with 2 × 104 hemmaglutination units of a RHDV isolate. The autophagic response was measured as presence of autophagic vesicles, LC3 staining, conversion of LC3-I to autophagosome-associated LC3-II and changes in expression of beclin-1, UVRAG, Atg5, Atg12, Atg16L1 and p62/SQSTM1. RHDV-triggered autophagy reached a maximum at 24 hours post-infection (hpi) and declined at 30 and 36 hpi. Phosphorylation of mTOR also augmented in early periods of infection and there was an increase in the expression of the endoplasmic reticulum chaperones BiP/GRP78, CHOP and GRP94. Apoptosis, measured as caspase-3 activity and expression of PARP-1, increased significantly at 30 and 36 hpi in parallel to the maximal expression of the RHDV capsid protein VP60. These data indicate that RHDV infection initiates a rapid autophagic response, perhaps in an attempt to protect liver, which associates to ER stress development and is independent from downregulation of the major autophagy suppressor mTOR. As the infection continues and the autophagic response declines, cells begin to exhibit apoptosis.
PMCID: PMC3922607  PMID: 24490870

Results 1-25 (1727009)