PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (292247)

Clipboard (0)
None

Related Articles

1.  Darwin's legacy: the forms, function and sexual diversity of flowers 
Charles Darwin studied floral biology for over 40 years and wrote three major books on plant reproduction. These works have provided the conceptual foundation for understanding floral adaptations that promote cross-fertilization and the mechanisms responsible for evolutionary transitions in reproductive systems. Many of Darwin's insights, gained from careful observations and experiments on diverse angiosperm species, remain remarkably durable today and have stimulated much current research on floral function and the evolution of mating systems. Here I review Darwin's seminal contributions to reproductive biology and provide an overview of the current status of research on several of the main topics to which he devoted considerable effort, including the consequences to fitness of cross- versus self-fertilization, the evolution and function of stylar polymorphisms, the adaptive significance of heteranthery, the origins of dioecy and related gender polymorphisms, and the transition from animal pollination to wind pollination. Post-Darwinian perspectives on floral function now recognize the importance of pollen dispersal and male outcrossed siring success in shaping floral adaptation. This has helped to link work on pollination biology and mating systems, two subfields of reproductive biology that remained largely isolated during much of the twentieth century despite Darwin's efforts towards integration.
doi:10.1098/rstb.2009.0212
PMCID: PMC2838255  PMID: 20047864
adaptation; Charles Darwin; flowers; pollination; mating
2.  Earthworm genomes, genes and proteins: the (re)discovery of Darwin's worms 
Small incremental biological change, winnowed by natural selection over geological time scales to produce large consequences, was Darwin's singular insight that revolutionized the life sciences. His publications after 1859, including the ‘earthworm book’, were all written to amplify and support the evolutionary theory presented in the Origin. Darwin was unable to provide a physical basis for the inheritance of favoured traits because of the absence of genetic knowledge that much later led to the ‘modern synthesis’. Mistaken though he was in advocating systemic ‘gemmules’ as agents of inheritance, Darwin was perceptive in seeking to underpin his core vision with concrete factors that both determine the nature of a trait in one generation and convey it to subsequent generations. This brief review evaluates the molecular genetic literature on earthworms published during the last decade, and casts light on the specific aspects of earthworm evolutionary biology that more or less engaged Darwin: (i) biogeography, (ii) species diversity, (iii) local adaptations and (iv) sensitivity. We predict that the current understanding will deepen with the announcement of a draft earthworm genome in Darwin's bicentenary year, 2009. Subsequently, the earthworm may be elevated from the status of a soil sentinel to that elusive entity, an ecologically relevant genetic model organism.
doi:10.1098/rspb.2008.1510
PMCID: PMC2664377  PMID: 19129111
Darwin; earthworms; evolution; genotypes; biogeography; transcriptomics
3.  Darwinian evolution in the light of genomics 
Nucleic Acids Research  2009;37(4):1011-1034.
Comparative genomics and systems biology offer unprecedented opportunities for testing central tenets of evolutionary biology formulated by Darwin in the Origin of Species in 1859 and expanded in the Modern Synthesis 100 years later. Evolutionary-genomic studies show that natural selection is only one of the forces that shape genome evolution and is not quantitatively dominant, whereas non-adaptive processes are much more prominent than previously suspected. Major contributions of horizontal gene transfer and diverse selfish genetic elements to genome evolution undermine the Tree of Life concept. An adequate depiction of evolution requires the more complex concept of a network or ‘forest’ of life. There is no consistent tendency of evolution towards increased genomic complexity, and when complexity increases, this appears to be a non-adaptive consequence of evolution under weak purifying selection rather than an adaptation. Several universals of genome evolution were discovered including the invariant distributions of evolutionary rates among orthologous genes from diverse genomes and of paralogous gene family sizes, and the negative correlation between gene expression level and sequence evolution rate. Simple, non-adaptive models of evolution explain some of these universals, suggesting that a new synthesis of evolutionary biology might become feasible in a not so remote future.
doi:10.1093/nar/gkp089
PMCID: PMC2651812  PMID: 19213802
4.  Evolution of microbes and viruses: a paradigm shift in evolutionary biology? 
When Charles Darwin formulated the central principles of evolutionary biology in the Origin of Species in 1859 and the architects of the Modern Synthesis integrated these principles with population genetics almost a century later, the principal if not the sole objects of evolutionary biology were multicellular eukaryotes, primarily animals and plants. Before the advent of efficient gene sequencing, all attempts to extend evolutionary studies to bacteria have been futile. Sequencing of the rRNA genes in thousands of microbes allowed the construction of the three- domain “ribosomal Tree of Life” that was widely thought to have resolved the evolutionary relationships between the cellular life forms. However, subsequent massive sequencing of numerous, complete microbial genomes revealed novel evolutionary phenomena, the most fundamental of these being: (1) pervasive horizontal gene transfer (HGT), in large part mediated by viruses and plasmids, that shapes the genomes of archaea and bacteria and call for a radical revision (if not abandonment) of the Tree of Life concept, (2) Lamarckian-type inheritance that appears to be critical for antivirus defense and other forms of adaptation in prokaryotes, and (3) evolution of evolvability, i.e., dedicated mechanisms for evolution such as vehicles for HGT and stress-induced mutagenesis systems. In the non-cellular part of the microbial world, phylogenomics and metagenomics of viruses and related selfish genetic elements revealed enormous genetic and molecular diversity and extremely high abundance of viruses that come across as the dominant biological entities on earth. Furthermore, the perennial arms race between viruses and their hosts is one of the defining factors of evolution. Thus, microbial phylogenomics adds new dimensions to the fundamental picture of evolution even as the principle of descent with modification discovered by Darwin and the laws of population genetics remain at the core of evolutionary biology.
doi:10.3389/fcimb.2012.00119
PMCID: PMC3440604  PMID: 22993722
Darwin; modern synthesis; comparative genomics; tree of life; horizontal gene transfer
5.  Hybrid fitness, adaptation and evolutionary diversification: lessons learned from Louisiana Irises 
Heredity  2011;108(3):159-166.
Estimates of hybrid fitness have been used as either a platform for testing the potential role of natural hybridization in the evolution of species and species complexes or, alternatively, as a rationale for dismissing hybridization events as being of any evolutionary significance. From the time of Darwin's publication of The Origin, through the neo-Darwinian synthesis, to the present day, the observation of variability in hybrid fitness has remained a challenge for some models of speciation. Yet, Darwin and others have reported the elevated fitness of hybrid genotypes under certain environmental conditions. In modern scientific terminology, this observation reflects the fact that hybrid genotypes can demonstrate genotype × environment interactions. In the current review, we illustrate the development of one plant species complex, namely the Louisiana Irises, into a ‘model system' for investigating hybrid fitness and the role of genetic exchange in adaptive evolution and diversification. In particular, we will argue that a multitude of approaches, involving both experimental and natural environments, and incorporating both manipulative analyses and surveys of natural populations, are necessary to adequately test for the evolutionary significance of introgressive hybridization. An appreciation of the variability of hybrid fitness leads to the conclusion that certain genetic signatures reflect adaptive evolution. Furthermore, tests of the frequency of allopatric versus sympatric/parapatric divergence (that is, divergence with ongoing gene flow) support hybrid genotypes as a mechanism of evolutionary diversification in numerous species complexes.
doi:10.1038/hdy.2011.65
PMCID: PMC3282389  PMID: 21792222
natural hybridization; habitat selection; hybrid fitness
6.  The Origin at 150: is a new evolutionary synthesis in sight? 
Trends in genetics : TIG  2009;25(11):473-475.
The 200th anniversary of Darwin and the 150th jubilee of the Origin of Species prompt a new look at evolutionary biology. The 1959 Origin centennial was marked by the consolidation of the Modern Synthesis. The edifice of the Modern Synthesis has crumbled, apparently, beyond repair. The hallmark of the Darwinian discourse of 2009 is the plurality of evolutionary processes and patterns. Nevertheless, glimpses of a new synthesis might be discernible in emerging universals of evolution.
doi:10.1016/j.tig.2009.09.007
PMCID: PMC2784144  PMID: 19836100
7.  The ‘root-brain’ hypothesis of Charles and Francis Darwin 
Plant Signaling & Behavior  2009;4(12):1121-1127.
This year celebrates the 200th aniversary of the birth of Charles Darwin, best known for his theory of evolution summarized in On the Origin of Species. Less well known is that, in the second half of his life, Darwin’s major scientific focus turned towards plants. He wrote several books on plants, the next-to-last of which, The Power of Movement of Plants, published together with his son Francis, opened plants to a new view. Here we amplify the final sentence of this book in which the Darwins proposed that: “It is hardly an exaggeration to say that the tip of the radicle thus endowed [with sensitivity] and having the power of directing the movements of the adjoining parts, acts like the brain of one of the lower animals; the brain being seated within the anterior end of the body, receiving impressions from the sense-organs, and directing the several movements.” This sentence conveys two important messages: first, that the root apex may be considered to be a ‘brain-like’ organ endowed with a sensitivity which controls its navigation through soil; second, that the root apex represents the anterior end of the plant body. In this article, we discuss both these statements.
PMCID: PMC2819436  PMID: 20514226
auxin; cognition; plant neurobiology; plant tropisms; roots; sensory biology; signaling
8.  Darwin's goldmine is still open: variation and selection run the world 
The scientific contribution of Darwin, still agonized in many religious circles, has now been recognized and celebrated by scientists from various disciplines. However, in recent years, several evolutionists have criticized Darwin as outdated, arguing that “Darwinism,” assimilated to the “tree of life,” cannot explain microbial evolution, or else was not operating in early life evolution. These critics either confuse “Darwinism” and old versions of “neo-Darwinism” or misunderstand the role of gene transfers in evolution. The core of Darwin explanation of evolution (variation/selection) remains necessary and sufficient to decipher the history of life. The enormous diversity of mechanisms underlying variations has been successfully interpreted by evolutionists in this framework and has considerably enriched the corpus of evolutionary biology without the necessity to kill the father. However, it remains for evolutionists to acknowledge interactions between cells and viruses (unknown for Darwin) as a major driving force in life evolution.
doi:10.3389/fcimb.2012.00106
PMCID: PMC3417645  PMID: 22919695
evolutionary synthesis; variation; natural selection; lateral gene transfer; Darwinian threshold; viruses
9.  Hybridization, ecological races and the nature of species: empirical evidence for the ease of speciation 
Species are generally viewed by evolutionists as ‘real’ distinct entities in nature, making speciation appear difficult. Charles Darwin had originally promoted a very different uniformitarian view that biological species were continuous with ‘varieties’ below the level of species and became distinguishable from them only when divergent natural selection led to gaps in the distribution of morphology. This Darwinian view on species came under immediate attack, and the consensus among evolutionary biologists today appears to side more with the ideas of Ernst Mayr and Theodosius Dobzhansky, who argued 70 years ago that Darwin was wrong about species. Here, I show how recent genetic studies of supposedly well-behaved animals, such as insects and vertebrates, including our own species, have supported the existence of the Darwinian continuum between varieties and species. Below the level of species, there are well-defined ecological races, while above the level of species, hybridization still occurs, and may often lead to introgression and, sometimes, hybrid speciation. This continuum is evident, not only across vast geographical regions, but also locally in sympatry. The existence of this continuum provides good evidence for gradual evolution of species from ecological races and biotypes, to hybridizing species and, ultimately, to species that no longer cross. Continuity between varieties and species not only provides an excellent argument against creationism, but also gives insight into the process of speciation. The lack of a hiatus between species and ecological races suggests that speciation may occur, perhaps frequently, in sympatry, and the abundant intermediate stages suggest that it is happening all around us. Speciation is easy!
doi:10.1098/rstb.2008.0081
PMCID: PMC2607318  PMID: 18579473
hybridization; speciation; species concepts
10.  Charles Darwin's Reception in Germany and What Followed 
PLoS Biology  2009;7(7):e1000162.
150 years ago, Heinrich Bronn provided in the first German translation of Charles Darwin's Origin of Species a rather liberal interpretation, even adding his own view of Darwin's ideas in an additional 15th chapter. Ernst Haeckel widely popularized his view of Darwinian evolution based on his reading of this translation. This was long seen - probably incorrectly - as the intellectual root of social Darwinism in Germany.
doi:10.1371/journal.pbio.1000162
PMCID: PMC2709432
11.  Darwin's Galápagos finches in modern biology 
One of the classic examples of adaptive radiation under natural selection is the evolution of 15 closely related species of Darwin's finches (Passeriformes), whose primary diversity lies in the size and shape of their beaks. Since Charles Darwin and other members of the Beagle expedition collected these birds on the Galápagos Islands in 1835 and introduced them to science, they have been the subjects of intense research. Many biology textbooks use Darwin's finches to illustrate a variety of topics of evolutionary theory, such as speciation, natural selection and niche partitioning. Today, as this Theme Issue illustrates, Darwin's finches continue to be a very valuable source of biological discovery. Certain advantages of studying this group allow further breakthroughs in our understanding of changes in recent island biodiversity, mechanisms of speciation and hybridization, evolution of cognitive behaviours, principles of beak/jaw biomechanics as well as the underlying developmental genetic mechanisms in generating morphological diversity. Our objective was to bring together some of the key workers in the field of ecology and evolutionary biology who study Darwin's finches or whose studies were inspired by research on Darwin's finches. Insights provided by papers collected in this Theme Issue will be of interest to a wide audience.
doi:10.1098/rstb.2009.0321
PMCID: PMC2830240  PMID: 20194163
Darwin's finches; evolution; speciation; adaptive radiation
12.  A darwinian perspective: right premises, questionable conclusion. A commentary on Niall Shanks and Rebecca Pyles' "Evolution and medicine: the long reach of "Dr. Darwin"" 
As Dobzhansky wrote, nothing in biology makes sense outside the context of the evolutionary theory, and this truth has not been sufficiently explored yet by medicine. We comment on Shanks and Pyles' recently published paper, Evolution and medicine: the long reach of "Dr. Darwin", and discuss some recent advancements in the application of evolutionary theory to carcinogenesis. However, we disagree with Shanks and Pyles about the usefulness of animal experiments in predicting human hazards. Based on the darwinian observation of inter-species and inter-individual variation in all biological functions, Shanks and Pyles suggest that animal experiments cannot be used to identify hazards to human health. We claim that while the activity of enzymes may vary among individuals and among species, this does not indicate that critical events in disease processes occurring after exposure to hazardous agents differ qualitatively between animal models and humans. In addition, the goal is to avoid human disease whenever possible and with the means that are available at a given point in time. Epidemics of cancer could have been prevented if experimental data had been used to reduce human exposures or ban carcinogenic chemicals. We discuss examples.
doi:10.1186/1747-5341-3-6
PMCID: PMC2265736  PMID: 18269763
13.  Is Lamarckian evolution relevant to medicine? 
BMC Medical Genetics  2010;11:73.
Background
200 years have now passed since Darwin was born and scientists around the world are celebrating this important anniversary of the birth of an evolutionary visionary. However, the theories of his colleague Lamarck are treated with considerably less acclaim. These theories centre on the tendency for complexity to increase in organisms over time and the direct transmission of phenotypic traits from parents to offspring.
Discussion
Lamarckian concepts, long thought of no relevance to modern evolutionary theory, are enjoying a quiet resurgence with the increasing complexity of epigenetic theories of inheritance. There is evidence that epigenetic alterations, including DNA methylation and histone modifications, are transmitted transgenerationally, thus providing a potential mechanism for environmental influences to be passed from parents to offspring: Lamarckian evolution. Furthermore, evidence is accumulating that epigenetics plays an important role in many common medical conditions.
Summary
Epigenetics allows the peaceful co-existence of Darwinian and Lamarckian evolution. Further efforts should be exerted on studying the mechanisms by which this occurs so that public health measures can be undertaken to reverse or prevent epigenetic changes important in disease susceptibility. Perhaps in 2059 we will be celebrating the anniversary of both Darwin and Lamarck.
doi:10.1186/1471-2350-11-73
PMCID: PMC2876149  PMID: 20465829
14.  Epigenetics and the Evolution of Darwin’s Finches 
Genome Biology and Evolution  2014;6(8):1972-1989.
The prevailing theory for the molecular basis of evolution involves genetic mutations that ultimately generate the heritable phenotypic variation on which natural selection acts. However, epigenetic transgenerational inheritance of phenotypic variation may also play an important role in evolutionary change. A growing number of studies have demonstrated the presence of epigenetic inheritance in a variety of different organisms that can persist for hundreds of generations. The possibility that epigenetic changes can accumulate over longer periods of evolutionary time has seldom been tested empirically. This study was designed to compare epigenetic changes among several closely related species of Darwin’s finches, a well-known example of adaptive radiation. Erythrocyte DNA was obtained from five species of sympatric Darwin’s finches that vary in phylogenetic relatedness. Genome-wide alterations in genetic mutations using copy number variation (CNV) were compared with epigenetic alterations associated with differential DNA methylation regions (epimutations). Epimutations were more common than genetic CNV mutations among the five species; furthermore, the number of epimutations increased monotonically with phylogenetic distance. Interestingly, the number of genetic CNV mutations did not consistently increase with phylogenetic distance. The number, chromosomal locations, regional clustering, and lack of overlap of epimutations and genetic mutations suggest that epigenetic changes are distinct and that they correlate with the evolutionary history of Darwin’s finches. The potential functional significance of the epimutations was explored by comparing their locations on the genome to the location of evolutionarily important genes and cellular pathways in birds. Specific epimutations were associated with genes related to the bone morphogenic protein, toll receptor, and melanogenesis signaling pathways. Species-specific epimutations were significantly overrepresented in these pathways. As environmental factors are known to result in heritable changes in the epigenome, it is possible that epigenetic changes contribute to the molecular basis of the evolution of Darwin’s finches.
doi:10.1093/gbe/evu158
PMCID: PMC4159007  PMID: 25062919
epimutations; DNA methylation; copy number variation; phylogeny; adaptive radiation; BMP; toll; melanogenesis
15.  Formal Darwinism, the individual-as-maximizing-agent analogy and bet-hedging 
The central argument of The origin of species was that mechanical processes (inheritance of features and the differential reproduction they cause) can give rise to the appearance of design. The 'mechanical processes' are now mathematically represented by the dynamic systems of population genetics, and the appearance of design by optimization and game theory in which the individual plays the part of the maximizing agent. Establishing a precise individual-as-maximizing-agent (IMA) analogy for a population-genetics system justifies optimization approaches, and so provides a modern formal representation of the core of Darwinism. It is a hitherto unnoticed implication of recent population-genetics models that, contrary to a decades-long consensus, an IMA analogy can be found in models with stochastic environments (subject to a convexity assumption), in which individuals maximize expected reproductive value. The key is that the total reproductive value of a species must be considered as constant, so therefore reproductive value should always be calculated in relative terms. This result removes a major obstacle from the theoretical challenge to find a unifying framework which establishes the IMA analogy for all of Darwinian biology, including as special cases inclusive fitness, evolutionarily stable strategies, evolutionary life-history theory, age-structured models and sex ratio theory. This would provide a formal, mathematical justification of fruitful and widespread but 'intentional' terms in evolutionary biology, such as 'selfish', 'altruism' and 'conflict'.
doi:10.1098/rspb.1999.0708
PMCID: PMC1689909
16.  Life, Information, Entropy, and Time 
Complexity  2007;13(1):14-50.
Attempts to understand how information content can be included in an accounting of the energy flux of the biosphere have led to the conclusion that, in information transmission, one component, the semantic content, or “the meaning of the message,” adds no thermodynamic burden over and above costs arising from coding, transmission and translation. In biology, semantic content has two major roles. For all life forms, the message of the genotype encoded in DNA specifies the phenotype, and hence the organism that is tested against the real world through the mechanisms of Darwinian evolution. For human beings, communication through language and similar abstractions provides an additional supra-phenotypic vehicle for semantic inheritance, which supports the cultural heritages around which civilizations revolve. The following three postulates provide the basis for discussion of a number of themes that demonstrate some important consequences. (i) Information transmission through either pathway has thermodynamic components associated with data storage and transmission. (ii) The semantic content adds no additional thermodynamic cost. (iii) For all semantic exchange, meaning is accessible only through translation and interpretation, and has a value only in context. (1) For both pathways of semantic inheritance, translational and copying machineries are imperfect. As a consequence both pathways are subject to mutation and to evolutionary pressure by selection. Recognition of semantic content as a common component allows an understanding of the relationship between genes and memes, and a reformulation of Universal Darwinism. (2) The emergent properties of life are dependent on a processing of semantic content. The translational steps allow amplification in complexity through combinatorial possibilities in space and time. Amplification depends on the increased potential for complexity opened by 3D interaction specificity of proteins, and on the selection of useful variants by evolution. The initial interpretational steps include protein synthesis, molecular recognition, and catalytic potential that facilitate structural and functional roles. Combinatorial possibilities are extended through interactions of increasing complexity in the temporal dimension. (3) All living things show a behavior that indicates awareness of time, or chronognosis. The ∼4 billion years of biological evolution have given rise to forms with increasing sophistication in sensory adaptation. This has been linked to the development of an increasing chronognostic range, and an associated increase in combinatorial complexity. (4) Development of a modern human phenotype and the ability to communicate through language, led to the development of archival storage, and invention of the basic skills, institutions and mechanisms that allowed the evolution of modern civilizations. Combinatorial amplification at the supra-phenotypical level arose from the invention of syntax, grammar, numbers, and the subsequent developments of abstraction in writing, algorithms, etc. The translational machineries of the human mind, the “mutation” of ideas therein, and the “conversations” of our social intercourse, have allowed a limited set of symbolic descriptors to evolve into an exponentially expanding semantic heritage. (5) The three postulates above open interesting epistemological questions. An understanding of topics such dualism, the élan vital, the status of hypothesis in science, memetics, the nature of consciousness, the role of semantic processing in the survival of societies, and Popper's three worlds, require recognition of an insubstantial component. By recognizing a necessary linkage between semantic content and a physical machinery, we can bring these perennial problems into the framework of a realistic philosophy. It is suggested, following Popper, that the ∼4 billion years of evolution of the biosphere represents an exploration of the nature of reality at the physicochemical level, which, together with the conscious extension of this exploration through science and culture, provides a firm epistemological underpinning for such a philosophy.
doi:10.1002/cplx.20180
PMCID: PMC2577055  PMID: 18978960
DNA; genotype; evolution; chronognosis; semantic content; Popper; evolutionary epistemology; memes
17.  Evolution in Revolution 
Biological evolution represents one of the most successful, but also controversial scientific concepts. Ever since Charles Darwin formulated his version of evolution via natural selection, biological sciences experienced explosive development and progress. First of all, although Darwin could not explain how traits of organisms, selected via natural selection, are inherited and passed down along generations; his theory stimulated research in this respect and resulted in the establishment of genetics and still later in the discovery of DNA and genome sequencing some hundred years after his evolutionary theory. Nevertheless, there are several weaknesses in classical Darwinian as well as Neodarwinian gene-centric views of biological evolution. The most serious drawback is its narrow focus: the modern evolutionary synthesis, as formulated in the 20th Century, is based on the concept of gene and on the mathematical/statistical analysis of populations. While Neodarwinism is still generally considered a valid theory of biological evolution, its narrow focus and incompatibility with several new findings and discoveries calls for its update and/or transformation. Either it will be replaced with an updated version or, if not flexible enough, it will be replaced by a new theory. In his book “Evolution — A New View from the 21st Century,”1 James A. Shapiro discusses these problems as well as newly emerging results which are changing our understanding of biological evolution. This new book joins a row of several other recent books highlighting the same issues.2–13
doi:10.4161/cib.4.5.17702
PMCID: PMC3204118
18.  Rhizome of life, catastrophes, sequence exchanges, gene creations, and giant viruses: how microbial genomics challenges Darwin 
Darwin's theory about the evolution of species has been the object of considerable dispute. In this review, we have described seven key principles in Darwin's book The Origin of Species and tried to present how genomics challenge each of these concepts and improve our knowledge about evolution. Darwin believed that species evolution consists on a positive directional selection ensuring the “survival of the fittest.” The most developed state of the species is characterized by increasing complexity. Darwin proposed the theory of “descent with modification” according to which all species evolve from a single common ancestor through a gradual process of small modification of their vertical inheritance. Finally, the process of evolution can be depicted in the form of a tree. However, microbial genomics showed that evolution is better described as the “biological changes over time.” The mode of change is not unidirectional and does not necessarily favors advantageous mutations to increase fitness it is rather subject to random selection as a result of catastrophic stochastic processes. Complexity is not necessarily the completion of development: several complex organisms have gone extinct and many microbes including bacteria with intracellular lifestyle have streamlined highly effective genomes. Genomes evolve through large events of gene deletions, duplications, insertions, and genomes rearrangements rather than a gradual adaptative process. Genomes are dynamic and chimeric entities with gene repertoires that result from vertical and horizontal acquisitions as well as de novo gene creation. The chimeric character of microbial genomes excludes the possibility of finding a single common ancestor for all the genes recorded currently. Genomes are collections of genes with different evolutionary histories that cannot be represented by a single tree of life (TOL). A forest, a network or a rhizome of life may be more accurate to represent evolutionary relationships among species.
doi:10.3389/fcimb.2012.00113
PMCID: PMC3428605  PMID: 22973559
catastrophes; Darwin; gene creation; giant viruses; micorbial genomics; rhizome of life; sequence exchange
19.  Insights into the evolution of Darwin’s finches from comparative analysis of the Geospiza magnirostris genome sequence 
BMC Genomics  2013;14:95.
Background
A classical example of repeated speciation coupled with ecological diversification is the evolution of 14 closely related species of Darwin’s (Galápagos) finches (Thraupidae, Passeriformes). Their adaptive radiation in the Galápagos archipelago took place in the last 2–3 million years and some of the molecular mechanisms that led to their diversification are now being elucidated. Here we report evolutionary analyses of genome of the large ground finch, Geospiza magnirostris.
Results
13,291 protein-coding genes were predicted from a 991.0 Mb G. magnirostris genome assembly. We then defined gene orthology relationships and constructed whole genome alignments between the G. magnirostris and other vertebrate genomes. We estimate that 15% of genomic sequence is functionally constrained between G. magnirostris and zebra finch. Genic evolutionary rate comparisons indicate that similar selective pressures acted along the G. magnirostris and zebra finch lineages suggesting that historical effective population size values have been similar in both lineages. 21 otherwise highly conserved genes were identified that each show evidence for positive selection on amino acid changes in the Darwin's finch lineage. Two of these genes (Igf2r and Pou1f1) have been implicated in beak morphology changes in Darwin’s finches. Five of 47 genes showing evidence of positive selection in early passerine evolution have cilia related functions, and may be examples of adaptively evolving reproductive proteins.
Conclusions
These results provide insights into past evolutionary processes that have shaped G. magnirostris genes and its genome, and provide the necessary foundation upon which to build population genomics resources that will shed light on more contemporaneous adaptive and non-adaptive processes that have contributed to the evolution of the Darwin’s finches.
doi:10.1186/1471-2164-14-95
PMCID: PMC3575239  PMID: 23402223
Genomics; Evolution; Darwin’s finches; Large ground finch; Geospiza magnirostris
20.  Hamiltonian inclusive fitness: a fitter fitness concept 
Biology Letters  2013;9(6):20130335.
In 1963–1964 W. D. Hamilton introduced the concept of inclusive fitness, the only significant elaboration of Darwinian fitness since the nineteenth century. I discuss the origin of the modern fitness concept, providing context for Hamilton's discovery of inclusive fitness in relation to the puzzle of altruism. While fitness conceptually originates with Darwin, the term itself stems from Spencer and crystallized quantitatively in the early twentieth century. Hamiltonian inclusive fitness, with Price's reformulation, provided the solution to Darwin's ‘special difficulty’—the evolution of caste polymorphism and sterility in social insects. Hamilton further explored the roles of inclusive fitness and reciprocation to tackle Darwin's other difficulty, the evolution of human altruism. The heuristically powerful inclusive fitness concept ramified over the past 50 years: the number and diversity of ‘offspring ideas’ that it has engendered render it a fitter fitness concept, one that Darwin would have appreciated.
doi:10.1098/rsbl.2013.0335
PMCID: PMC3871333  PMID: 24132089
Darwinian fitness; inclusive fitness; Hamilton's rule; kin selection; social evolution; altruism
21.  Integration of populations and differentiation of species 
The New phytologist  2004;161(1):59-69.
Summary
The framework for modern studies of speciation was established as part of the Neo-Darwinian synthesis of the early twentieth century. Here we evaluate this framework in the light of recent empirical and theoretical studies. Evidence from experimental studies of selection, quantitative genetic studies of species’ differences, and the molecular evolution of ‘isolation’ genes, all agree that directional selection is the primary cause of speciation, as initially proposed by Darwin. Likewise, as suggested by Dobzhansky and Mayr, gene flow does hold species together, but probably more by facilitating the spread of beneficial mutants and associated hitchhiking events than by homogenizing neutral loci. Reproductive barriers are important as well in that they preserve adaptations, but as has been stressed by botanists for close to a century, they rarely protect the entire genome from gene flow in recently diverged species. Contrary to early views, it is now clear that speciation can occur in the presence of gene flow. However, recent theory does support the long-held view that population structure and small population size may increase speciation rates, but only under special conditions and not because of the increased efficacy of drift as suggested by earlier authors. Rather, low levels of migration among small populations facilitates the rapid accumulation of beneficial mutations that indirectly cause hybrid incompatibilities.
doi:10.1046/j.1469-8137.2003.00933.x
PMCID: PMC2601656  PMID: 19079640
gene flow; introgression; population size; population subdivision; reproductive isolation; selection; selective sweep; speciation
22.  Modularity, comparative cognition and human uniqueness 
Darwin's claim ‘that the difference in mind between man and the higher animals … is certainly one of degree and not of kind’ is at the core of the comparative study of cognition. Recent research provides unprecedented support for Darwin's claim as well as new reasons to question it, stimulating new theories of human cognitive uniqueness. This article compares and evaluates approaches to such theories. Some prominent theories propose sweeping domain-general characterizations of the difference in cognitive capabilities and/or mechanisms between adult humans and other animals. Dual-process theories for some cognitive domains propose that adult human cognition shares simple basic processes with that of other animals while additionally including slower-developing and more explicit uniquely human processes. These theories are consistent with a modular account of cognition and the ‘core knowledge’ account of children's cognitive development. A complementary proposal is that human infants have unique social and/or cognitive adaptations for uniquely human learning. A view of human cognitive architecture as a mosaic of unique and species-general modular and domain-general processes together with a focus on uniquely human developmental mechanisms is consistent with modern evolutionary-developmental biology and suggests new questions for comparative research.
doi:10.1098/rstb.2012.0211
PMCID: PMC3427548  PMID: 22927578
cognitive evolution; human uniqueness; modularity; dual process theories
23.  The evolution of extreme altruism and inequality in insect societies 
In eusocial organisms, some individuals specialize in reproduction and others in altruistic helping. The evolution of eusociality is, therefore, also the evolution of remarkable inequality. For example, a colony of honeybees (Apis mellifera) may contain 50 000 females all of whom can lay eggs. But 100 per cent of the females and 99.9 per cent of the males are offspring of the queen. How did such extremes evolve? Phylogenetic analyses show that high relatedness was almost certainly necessary for the origin of eusociality. However, even the highest family levels of kinship are insufficient to cause the extreme inequality seen in e.g. honeybees via ‘voluntary altruism’. ‘Enforced altruism’ is needed, i.e. social pressures that deter individuals from attempting to reproduce. Coercion acts at two stages in an individual's life cycle. Queens are typically larger so larvae can be coerced into developing into workers by being given less food. Workers are coerced into working by ‘policing’, in which workers or the queen eat worker-laid eggs or aggress fertile workers. In some cases, individuals rebel, such as when stingless bee larvae develop into dwarf queens. The incentive to rebel is strong as an individual is the most closely related to its own offspring. However, because individuals gain inclusive fitness by rearing relatives, there is also a strong incentive to ‘acquiesce’ to social coercion. In a queenright honeybee colony, the policing of worker-laid eggs is very effective, which results in most workers working instead of attempting to reproduce. Thus, extreme altruism is due to both kinship and coercion. Altruism is frequently seen as a Darwinian puzzle but was not a puzzle that troubled Darwin. Darwin saw his difficulty in explaining how individuals that did not reproduce could evolve, given that natural selection was based on the accumulation of small heritable changes. The recognition that altruism is an evolutionary puzzle, and the solution was to wait another 100 years for William Hamilton.
doi:10.1098/rstb.2009.0129
PMCID: PMC2781879  PMID: 19805425
eusociality; worker policing; inclusive fitness theory; voluntary altruism; enforced altruism; acquiescence
24.  Darwinian natural selection: its enduring explanatory power 
Evolutionary theory has never had a stronger scientific foundation than it does today. In a short review I hope to portray the deep commitment of today's biologists to Darwinian natural selection and to discoveries made since Darwin's time. In spite of the scientific advances in the century and a half since the publication of On the Origin of Species, Darwin still remains the principal author of modern evolutionary theory. He is one of the greatest contributors of all time to our understanding of nature.
PMCID: PMC3310512  PMID: 22481845
25.  Is evolution Darwinian or/and Lamarckian? 
Biology Direct  2009;4:42.
Background
The year 2009 is the 200th anniversary of the publication of Jean-Bapteste Lamarck's Philosophie Zoologique and the 150th anniversary of Charles Darwin's On the Origin of Species. Lamarck believed that evolution is driven primarily by non-randomly acquired, beneficial phenotypic changes, in particular, those directly affected by the use of organs, which Lamarck believed to be inheritable. In contrast, Darwin assigned a greater importance to random, undirected change that provided material for natural selection.
The concept
The classic Lamarckian scheme appears untenable owing to the non-existence of mechanisms for direct reverse engineering of adaptive phenotypic characters acquired by an individual during its life span into the genome. However, various evolutionary phenomena that came to fore in the last few years, seem to fit a more broadly interpreted (quasi)Lamarckian paradigm. The prokaryotic CRISPR-Cas system of defense against mobile elements seems to function via a bona fide Lamarckian mechanism, namely, by integrating small segments of viral or plasmid DNA into specific loci in the host prokaryote genome and then utilizing the respective transcripts to destroy the cognate mobile element DNA (or RNA). A similar principle seems to be employed in the piRNA branch of RNA interference which is involved in defense against transposable elements in the animal germ line. Horizontal gene transfer (HGT), a dominant evolutionary process, at least, in prokaryotes, appears to be a form of (quasi)Lamarckian inheritance. The rate of HGT and the nature of acquired genes depend on the environment of the recipient organism and, in some cases, the transferred genes confer a selective advantage for growth in that environment, meeting the Lamarckian criteria. Various forms of stress-induced mutagenesis are tightly regulated and comprise a universal adaptive response to environmental stress in cellular life forms. Stress-induced mutagenesis can be construed as a quasi-Lamarckian phenomenon because the induced genomic changes, although random, are triggered by environmental factors and are beneficial to the organism.
Conclusion
Both Darwinian and Lamarckian modalities of evolution appear to be important, and reflect different aspects of the interaction between populations and the environment.
Reviewers
this article was reviewed by Juergen Brosius, Valerian Dolja, and Martijn Huynen. For complete reports, see the Reviewers' reports section.
doi:10.1186/1745-6150-4-42
PMCID: PMC2781790  PMID: 19906303

Results 1-25 (292247)