PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1165313)

Clipboard (0)
None

Related Articles

1.  Airway Smooth Muscle Hypercontractility in Asthma 
Journal of Allergy  2013;2013:185971.
In recent years, asthma has been defined primarily as an inflammatory disorder with emphasis on inflammation being the principle underlying pathophysiological characteristic driving airway obstruction and remodelling. Morphological abnormalities of asthmatic airway smooth muscle (ASM), the primary structure responsible for airway obstruction seen in asthma, have long been described, but surprisingly, until recently, relatively small number of studies investigated whether asthmatic ASM was also fundamentally different in its functional properties. Evidence from recent studies done on single ASM cells and on ASM-impregnated gel cultures have shown that asthmatic ASM is intrinsically hypercontractile. Several elements of the ASM contraction apparatus in asthmatics and in animal models of asthma have been found to be different from nonasthmatics. These differences include some regulatory contractile proteins and also some components of both the calcium-dependent and calcium-independent contraction signalling pathways. Furthermore, oxidative stress was also found to be heightened in asthmatic ASM and contributes to hypercontractility. Understanding the abnormalities and mechanisms driving asthmatic ASM hypercontractility provides a great potential for the development of new targeted drugs, other than the conventional current anti-inflammatory and bronchodilator therapies, to address the desperate unmet need especially in patients with severe and persistent asthma.
doi:10.1155/2013/185971
PMCID: PMC3613096  PMID: 23577039
2.  Glutathione Redox Control of Asthma: From Molecular Mechanisms to Therapeutic Opportunities 
Antioxidants & Redox Signaling  2012;17(2):375-408.
Abstract
Asthma is a chronic inflammatory disorder of the airways associated with airway hyper-responsiveness and airflow limitation in response to specific triggers. Whereas inflammation is important for tissue regeneration and wound healing, the profound and sustained inflammatory response associated with asthma may result in airway remodeling that involves smooth muscle hypertrophy, epithelial goblet-cell hyperplasia, and permanent deposition of airway extracellular matrix proteins. Although the specific mechanisms responsible for asthma are still being unraveled, free radicals such as reactive oxygen species and reactive nitrogen species are important mediators of airway tissue damage that are increased in subjects with asthma. There is also a growing body of literature implicating disturbances in oxidation/reduction (redox) reactions and impaired antioxidant defenses as a risk factor for asthma development and asthma severity. Ultimately, these redox-related perturbations result in a vicious cycle of airway inflammation and injury that is not always amenable to current asthma therapy, particularly in cases of severe asthma. This review will discuss disruptions of redox signaling and control in asthma with a focus on the thiol, glutathione, and reduced (thiol) form (GSH). First, GSH synthesis, GSH distribution, and GSH function and homeostasis are discussed. We then review the literature related to GSH redox balance in health and asthma, with an emphasis on human studies. Finally, therapeutic opportunities to restore the GSH redox balance in subjects with asthma are discussed. Antioxid. Redox Signal. 17, 375–408.
I. Introduction and Conceptual Framework
II. Glutathione Synthesis
III. Distribution of Glutathione in the Body
IV. Glutathione Function and Homeostasis
A. Glutathione as a cysteine reservoir
B. Xenobiotic conjugation and detoxification
C. Free radical scavenging
D. Maintenance of thiol equilibrium
E. Protein S-glutathionylation
F. Regulation of cell surface proteins
G. Protection against nitrosative stress from RNS
V. Glutathione Redox Balance in Health
A. Intracellular glutathione redox status
B. Plasma glutathione redox status
C. Epithelial lining fluid glutathione redox status
VI. Glutathione Redox Balance in Asthma
A. Airway glutathione concentrations in asthma, measured invasively
B. Airway glutathione concentrations in asthma, measured noninvasively
C. Systemic glutathione concentrations in asthma
D. Glutathione redox balance in asthma: Effect of corticosteroids
VII. Other Glutathione-Related Proteins and Redox Systems in Asthma
A. Glutathione peroxidases
B. Glutathione reductases
C. Glutathione-S-transferases
D. Nitrosoglutathione
E. Thioredoxins
F. Glutaredoxins
G. Peroxiredoxins
VIII. Physiological and Biological Implications of Altered Glutathione Redox Balance in Asthma
IX. Altered Glutathione Redox Balance in Asthma: Therapeutic Opportunities
A. Glutathione and glutathione-ethyl esters
B. Cysteine precursors
C. Dietary interventions
1. Selenium
2. Whey protein
3. Sulfur amino acids
4. B vitamins
5. Glutamine and glycine
X. Clinical Implications and Future Directions
doi:10.1089/ars.2011.4198
PMCID: PMC3353819  PMID: 22304503
3.  Altered CD38/Cyclic ADP-Ribose Signaling Contributes to the Asthmatic Phenotype 
Journal of Allergy  2012;2012:289468.
CD38 is a transmembrane glycoprotein expressed in airway smooth muscle cells. The enzymatic activity of CD38 generates cyclic ADP-ribose from β-NAD. Cyclic ADP-ribose mobilizes intracellular calcium during activation of airway smooth muscle cells by G-protein-coupled receptors through activation of ryanodine receptor channels in the sarcoplasmic reticulum. Inflammatory cytokines that are implicated in asthma upregulate CD38 expression and increase the calcium responses to contractile agonists in airway smooth muscle cells. The augmented intracellular calcium responses following cytokine exposure of airway smooth muscle cells are inhibited by an antagonist of cyclic ADP-ribose. Airway smooth muscle cells from CD38 knockout mice exhibit attenuated intracellular calcium responses to agonists, and these mice have reduced airway response to inhaled methacholine. CD38 also contributes to airway hyperresponsiveness as shown in mouse models of allergen or cytokine-induced inflammatory airway disease. In airway smooth muscle cells obtained from asthmatics, the cytokine-induced CD38 expression is significantly enhanced compared to expression in cells from nonasthmatics. This differential induction of CD38 expression in asthmatic airway smooth muscle cells stems from increased activation of MAP kinases and transcription through NF-κB, and altered post-transcriptional regulation through microRNAs. We propose that increased capacity for CD38 signaling in airway smooth muscle in asthma contributes to airway hyperresponsiveness.
doi:10.1155/2012/289468
PMCID: PMC3508580  PMID: 23213344
4.  Chronic intermittent hypoxia increases rat sternohyoid muscle NADPH oxidase expression with attendant modest oxidative stress 
Chronic intermittent hypoxia (CIH) causes upper airway muscle dysfunction. We hypothesized that the superoxide generating NADPH oxidase (NOX) is upregulated in CIH-exposed muscle causing oxidative stress. Adult male Wistar rats were exposed to intermittent hypoxia (5% O2 at the nadir for 90 s followed by 210 s of normoxia), for 8 h per day for 14 days. The effect of CIH exposure on the expression of NOX subunits, total myosin and 4-hydroxynonenal (4-HNE) protein adducts in sternohyoid muscle was determined by western blotting and densitometry. Sternohyoid protein free thiol and carbonyl group contents were determined by 1D electrophoresis using specific fluorophore probes. Aconitase and glutathione reductase activities were measured as indices of oxidative stress. HIF-1α content and key oxidative and glycolytic enzyme activities were determined. Contractile properties of sternohyoid muscle were determined ex vivo in the absence and presence of apocynin (putative NOX inhibitor). We observed an increase in NOX 2 and p47 phox expression in CIH-exposed sternohyoid muscle with decreased aconitase and glutathione reductase activities. There was no evidence, however, of increased lipid peroxidation or protein oxidation in CIH-exposed muscle. CIH exposure did not affect sternohyoid HIF-1α content or aldolase, lactate dehydrogenase, or glyceraldehyde-3-phosphate dehydrogenase activities. Citrate synthase activity was also unaffected by CIH exposure. Apocynin significantly increased sternohyoid force and power. We conclude that CIH exposure upregulates NOX expression in rat sternohyoid muscle with concomitant modest oxidative stress but it does not result in a HIF-1α-dependent increase in glycolytic enzyme activity. Constitutive NOX activity decreases sternohyoid force and power. Our results implicate NOX-dependent reactive oxygen species in CIH-induced upper airway muscle dysfunction which likely relates to redox modulation of key regulatory proteins in excitation-contraction coupling.
doi:10.3389/fphys.2015.00015
PMCID: PMC4311627  PMID: 25688214
apocynin; intermittent hypoxia; NADPH oxidase; oxidative stress; respiratory muscle; sternohyoid; sleep apnea; upper airway
5.  No evidence for altered intracellular calcium-handling in airway smooth muscle cells from human subjects with asthma 
Background
Asthma is characterized by airway hyper-responsiveness and variable airflow obstruction, in part as a consequence of hyper-contractile airway smooth muscle, which persists in primary cell culture. One potential mechanism for this hyper-contractility is abnormal intracellular Ca2+ handling.
Methods
We sought to compare intracellular Ca2+ handling in airway smooth muscle cells from subjects with asthma compared to non-asthmatic controls by measuring: i) bradykinin-stimulated changes in inositol 1,4,5-trisphosphate (IP3) accumulation and intracellular Ca2+ concentration, ii) sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) expression, iii) mechanisms of cytoplasmic Ca2+ clearance assessed following instantaneous flash photolytic release of Ca2+ into the cytoplasm.
Results
We found no differences in airway smooth muscle cell basal intracellular Ca2+ concentrations, bradykinin-stimulated IP3 accumulation or intracellular Ca2+ responses. Quantification of SERCA2 mRNA or protein expression levels revealed no differences in ASM cells obtained from subjects with asthma compared to non-asthmatic controls. We did not identify differences in intracellular calcium kinetics assessed by flash photolysis and calcium uncaging independent of agonist-activation with or without SERCA inhibition. However, we did observe some correlations in subjects with asthma between lung function and the different cellular measurements of intracellular Ca2+ handling, with poorer lung function related to increased rate of recovery following flash photolytic elevation of cytoplasmic Ca2+ concentration.
Conclusions
Taken together, the experimental results reported in this study do not demonstrate major fundamental differences in Ca2+ handling between airway smooth muscle cells from non-asthmatic and asthmatic subjects. Therefore, increased contraction of airway smooth muscle cells derived from asthmatic subjects cannot be fully explained by altered Ca2+ homeostasis.
doi:10.1186/s12890-015-0009-z
PMCID: PMC4349477  PMID: 25880173
Asthma; Airway smooth muscle; Calcium; Sarco/endoplasmic reticulum Ca2+ ATPase type 2 (SERCA2); Inositol 1,4,5-trisphosphate
6.  Role of Abl in airway hyperresponsiveness and airway remodeling 
Respiratory Research  2013;14(1):105.
Background
Asthma is a chronic disease that is characterized by airway hyperresponsiveness and airway remodeling. The underlying mechanisms that mediate the pathological processes are not fully understood. Abl is a non-receptor protein tyrosine kinase that has a role in the regulation of smooth muscle contraction and smooth muscle cell proliferation in vitro. The role of Abl in airway hyperresponsiveness and airway remodeling in vivo is largely unknown.
Methods
To evaluate the role of Abl in asthma pathology, we assessed the expression of Abl in airway tissues from the ovalbumin sensitized and challenged mouse model, and human asthmatic airway smooth muscle cells. In addition, we generated conditional knockout mice in which Abl expression in smooth muscle was disrupted, and then evaluated the effects of Abl conditional knockout on airway resistance, smooth muscle mass, cell proliferation, IL-13 and CCL2 in the mouse model of asthma. Furthermore, we determined the effects of the Abl pharmacological inhibitors imatinib and GNF-5 on these processes in the animal model of asthma.
Results
The expression of Abl was upregulated in airway tissues of the animal model of asthma and in airway smooth muscle cells of patients with severe asthma. Conditional knockout of Abl attenuated airway resistance, smooth muscle mass and staining of proliferating cell nuclear antigen in the airway of mice sensitized and challenged with ovalbumin. Interestingly, conditional knockout of Abl did not affect the levels of IL-13 and CCL2 in bronchoalveolar lavage fluid of animals treated with ovalbumin. However, treatment with imatinib and GNF-5 inhibited the ovalbumin-induced increase in IL-13 and CCL2 as well as airway resistance and smooth muscle growth in animals.
Conclusions
These results suggest that the altered expression of Abl in airway smooth muscle may play a critical role in the development of airway hyperresponsiveness and airway remodeling in asthma. Our findings support the concept that Abl may be a novel target for the development of new therapy to treat asthma.
doi:10.1186/1465-9921-14-105
PMCID: PMC3852349  PMID: 24112389
Airway hyperresponsiveness; Airway remodeling; Tyrosine kinase; Airway smooth muscle
7.  The laminin β1-competing peptide YIGSR induces a hypercontractile, hypoproliferative airway smooth muscle phenotype in an animal model of allergic asthma 
Respiratory Research  2010;11(1):170.
Background
Fibroproliferative airway remodelling, including increased airway smooth muscle (ASM) mass and contractility, contributes to airway hyperresponsiveness in asthma. In vitro studies have shown that maturation of ASM cells to a (hyper)contractile phenotype is dependent on laminin, which can be inhibited by the laminin-competing peptide Tyr-Ile-Gly-Ser-Arg (YIGSR). The role of laminins in ASM remodelling in chronic asthma in vivo, however, has not yet been established.
Methods
Using an established guinea pig model of allergic asthma, we investigated the effects of topical treatment of the airways with YIGSR on features of airway remodelling induced by repeated allergen challenge, including ASM hyperplasia and hypercontractility, inflammation and fibrosis. Human ASM cells were used to investigate the direct effects of YIGSR on ASM proliferation in vitro.
Results
Topical administration of YIGSR attenuated allergen-induced ASM hyperplasia and pulmonary expression of the proliferative marker proliferating cell nuclear antigen (PCNA). Treatment with YIGSR also increased both the expression of sm-MHC and ASM contractility in saline- and allergen-challenged animals; this suggests that treatment with the laminin-competing peptide YIGSR mimics rather than inhibits laminin function in vivo. In addition, treatment with YIGSR increased allergen-induced fibrosis and submucosal eosinophilia. Immobilized YIGSR concentration-dependently reduced PDGF-induced proliferation of cultured ASM to a similar extent as laminin-coated culture plates. Notably, the effects of both immobilized YIGSR and laminin were antagonized by soluble YIGSR.
Conclusion
These results indicate that the laminin-competing peptide YIGSR promotes a contractile, hypoproliferative ASM phenotype in vivo, an effect that appears to be linked to the microenvironment in which the cells are exposed to the peptide.
doi:10.1186/1465-9921-11-170
PMCID: PMC3013082  PMID: 21129174
8.  Airway Smooth Muscle Sensitivity to Methacholine in Precision-Cut Lung Slices (PCLS) from Ovalbumin-induced Asthmatic Mice 
Asthma is a chronic inflammatory disease characterized by airway hyperresponsiveness (AHR) and reversible airway obstruction. Methacholine (MCh) is widely used in broncho-provocation test to evaluate airway resistance. For experimental investigation, ovalbumin-induced sensitization is frequently used in rodents (Ova-asthma). However, albeit the inflammatory histology and AHR in vivo, it remains unclear whether the MCh sensitivity of airway smooth muscle isolated from Ova-asthma is persistently changed. In this study, the contractions of airways in precision-cut lung slices (PCLS) from control, Ova-asthma, and IL-13 overexpressed transgenic mice (IL-13TG) were compared by analyzing the airway lumen space (AW). The airway resistance in vivo was measured using plethysmograph. AHR and increased inflammatory cells in BAL fluid were confirmed in Ova-asthma and IL-13TG mice. In the PCLS from all three groups, MCh concentration-dependent narrowing of airway lumen (ΔAW) was observed. In contrast to the AHR in vivo, the EC50 of MCh for ΔAW from Ova-asthma and IL-13TG were not different from control, indicating unchanged sensitivity to MCh. Although the AW recovery upon MCh-washout showed sluggish tendency in Ova-asthma, the change was also statistically insignificant. Membrane depolarization-induced ΔAW by 60 mM K+ (60K-contraction) was larger in IL-13TG than control, whereas 60K-contraction of Ova-asthma was unaffected. Furthermore, serotonin-induced ΔAW of Ova-asthma was smaller than control and IL-13TG. Taken together, the AHR in Ova-asthma and IL-13TG are not reflected in the contractility of isolated airways from PCLS. The AHR of the model animals seems to require intrinsic agonists or inflammatory microenvironment that is washable during tissue preparation.
doi:10.4196/kjpp.2015.19.1.65
PMCID: PMC4297764  PMID: 25605999
Airway; Asthma; Lung slice; Smooth muscle
9.  Antigen-induced airway hyperresponsiveness and obstruction is related to caveolin-1 expression in airway smooth muscle in a guinea pig asthma model 
Background
Caveolin-1 is a fundamental signalling scaffold protein involved in contraction; however, the role of caveolin-1 in airway responsiveness remains unclear. We evaluated the relationship between caveolin-1 expression in airway smooth muscle (ASM) and antigen-induced airway responsiveness and obstruction in a guinea pig asthma model.
Methods
Airway obstruction in sensitised guinea pigs, induced by antigenic (ovalbumin) challenges administered every 10 days, was measured. Antigen-induced responsiveness to histamine and the expression of caveolin-1 and cavin 1, 2 and 3 were evaluated at the third ovalbumin challenge. The control group received saline solution instead of ovalbumin.
Results
After the first challenge, antigen exposure induced a transient airway obstruction and airway hyperresponsiveness, high levels of IL-4 and IL-5 in lung and airway globet cells proliferation at the third antigenic challenge. Caveolin-1 mRNA levels in total lung decreased in the experimental group compared with controls. Flow cytometric analysis of ASM from the experimental group showed a high number of cells expressing caveolin-1 compared with controls. This increase was confirmed by western blot. Airway obstruction and hyperresponsiveness correlated with the degree of increased caveolin-1 expression in ASM cells (P < 0.05; r = 0.69 and −0.52, respectively). The expression of cavins 1, 2 and 3 in ASM also increased in the experimental group compared to controls. Immunohistochemical findings reveal that differences in ASM caveolin-1 were not evident between groups. Nevertheless, a marked decrease in caveolin-1 and caspase 3 was observed in the pulmonary vascular smooth muscle of asthma model compared with controls. Histological analysis did not reveal differences in smooth muscles mass or subepithelial fibrosis levels in airways between groups. However, an enlargement of smooth muscle mass was observed in the pulmonary microvessels of experimental animals. This enlargement did not induce changes in pulmonary or systemic arterial pressures.
Conclusions
Our data suggest that caveolin-1 expression in ASM has a crucial role in the development of antigen-induced airway obstruction and hyperresponsiveness in a guinea pig asthma model. In addition, the asthma model in guinea pigs appears to induce a contractile smooth muscle phenotype in the airways and a proliferative smooth muscle phenotype in pulmonary vessels.
doi:10.1186/s13601-015-0058-7
PMCID: PMC4431535  PMID: 25977751
Airway hyperresponsiveness; Airway obstruction; Airway smooth muscle; Asthma; caspase 3; Caveolin-1; Cavin; Pulmonary arterial smooth muscle
10.  IQGAP1-dependent scaffold suppresses RhoA and inhibits airway smooth muscle contraction 
The Journal of Clinical Investigation  2014;124(11):4895-4898.
The intracellular scaffold protein IQGAP1 supports protein complexes in conjunction with numerous binding partners involved in multiple cellular processes. Here, we determined that IQGAP1 modulates airway smooth muscle contractility. Compared with WT controls, at baseline as well as after immune sensitization and challenge, Iqgap1–/– mice had higher airway responsiveness. Tracheal rings from Iqgap1–/– mice generated greater agonist-induced contractile force, even after removal of the epithelium. RhoA, a regulator of airway smooth muscle contractility, was activated in airway smooth muscle lysates from Iqgap1–/– mice. Likewise, knockdown of IQGAP1 in primary human airway smooth muscle cells increased RhoA activity. Immunoprecipitation studies indicated that IQGAP1 binds to both RhoA and p190A-RhoGAP, a GTPase-activating protein that normally inhibits RhoA activation. Proximity ligation assays in primary airway human smooth muscle cells and mouse tracheal sections revealed colocalization of p190A-RhoGAP and RhoA; however, these proteins did not colocalize in IQGAP1 knockdown cells or in Iqgap1–/– trachea. Compared with healthy controls, human subjects with asthma had decreased IQGAP1 expression in airway biopsies. Together, these data demonstrate that IQGAP1 acts as a scaffold that colocalizes p190A-RhoGAP and RhoA, inactivating RhoA and suppressing airway smooth muscle contraction. Furthermore, our results suggest that IQGAP1 has the potential to modulate airway contraction severity in acute asthma.
doi:10.1172/JCI76658
PMCID: PMC4347230  PMID: 25271629
11.  Myosin, Transgelin, and Myosin Light Chain Kinase 
Rationale: Airway smooth muscle (SM) of patients with asthma exhibits a greater velocity of shortening (Vmax) than that of normal subjects, and this is thought to contribute to airway hyperresponsiveness. A greater Vmax can result from increased myosin activation. This has been reported in sensitized human airway SM and in models of asthma. A faster Vmax can also result from the expression of specific contractile proteins that promote faster cross-bridge cycling. This possibility has never been addressed in asthma.
Objectives: We tested the hypothesis that the expression of genes coding for SM contractile proteins is altered in asthmatic airways and contributes to their increased Vmax.
Methods: We quantified the expression of several genes that code for SM contractile proteins in mild allergic asthmatic and control human airway endobronchial biopsies. The function of these contractile proteins was tested using the in vitro motility assay.
Measurements and Main Results: We observed an increased expression of the fast myosin heavy chain isoform, transgelin, and myosin light chain kinase in patients with asthma. Immunohistochemistry demonstrated the expression of these genes at the protein level. To address the functional significance of this overexpression, we purified tracheal myosin from the hyperresponsive Fisher rats, which also overexpress the fast myosin heavy chain isoform as compared with the normoresponsive Lewis rats, and found a faster rate of actin filament propulsion. Conversely, transgelin did not alter the rate of actin filament propulsion.
Conclusions: Selective overexpression of airway smooth muscle genes in asthmatic airways leads to increased Vmax, thus contributing to the airway hyperresponsiveness observed in asthma.
doi:10.1164/rccm.200609-1367OC
PMCID: PMC2633053  PMID: 19011151
asthma; airway hyperresponsiveness; gene expression; smooth muscle; myosin
12.  Selective stimulation of IL-4 receptor on smooth muscle induces airway hyperresponsiveness in mice 
IL-4Rα expression on airway smooth muscle cells is sufficient for the development of airway hyperresponsiveness.
Production of the cytokines IL-4 and IL-13 is increased in both human asthma and mouse asthma models, and Stat6 activation by the common IL-4/IL-13R drives most mouse model pathophysiology, including airway hyperresponsiveness (AHR). However, the precise cellular mechanisms through which IL-4Rα induces AHR remain unclear. Overzealous bronchial smooth muscle constriction is thought to underlie AHR in human asthma, but the smooth muscle contribution to AHR has never been directly assessed. Furthermore, differences in mouse versus human airway anatomy and observations that selective IL-13 stimulation of Stat6 in airway epithelium induces murine AHR raise questions about the importance of direct IL-4R effects on smooth muscle in murine asthma models and the relevance of these models to human asthma. Using transgenic mice in which smooth muscle is the only cell type that expresses or fails to express IL-4Rα, we demonstrate that direct smooth muscle activation by IL-4, IL-13, or allergen is sufficient but not necessary to induce AHR. Five genes known to promote smooth muscle migration, proliferation, and contractility are activated by IL-13 in smooth muscle in vivo. These observations demonstrate that IL-4Rα promotes AHR through multiple mechanisms and provide a model for testing smooth muscle–directed asthma therapeutics.
doi:10.1084/jem.20100023
PMCID: PMC3135339  PMID: 21464224
13.  The airway smooth muscle CCR3/CCL11 axis is inhibited by mast cells 
Allergy  2008;63(9):1148-1155.
Background
Airway smooth muscle hyperplasia is a feature of asthma, and increases with disease severity. CCR3-mediated recruitment of airway smooth muscle progenitors towards the airway smooth muscle bundle has been proposed as one possible mechanism involved in airway smooth muscle hyperplasia. Mast cells are microlocalized to the airway smooth muscle bundle and whether mast cells influence CCR3-mediated migration is uncertain.
Methods
We examined the expression of CCR3 by primary cultures of airway smooth muscle cells from asthmatics and nonasthmatics. CCR3 function was examined using intracellular calcium measurements, chemotaxis, wound healing, cell proliferation and survival assays. We investigated the recovery and function of both recombinant and airway smooth muscle-derived CCL11 (eotaxin) after co-culture with β-tryptase and human lung mast cells.
Results
Airway smooth muscle expressed CCR3. Airway smooth muscle CCR3 activation by CCL11 mediated intracellular calcium elevation, concentration-dependent migration and wound healing, but had no effect on proliferation or survival. Co-culture with β-tryptase or mast cells degraded recombinant and airway smooth muscle-derived CCL11, and β-tryptase inhibited CCL11-mediated airway smooth muscle migration.
Conclusions
CCL11 mediates airway smooth muscle migration. However co-culture with β-tryptase or mast cells degraded recombinant and airway smooth muscle-derived CCL11 and inhibited CCL11-mediated airway smooth muscle migration. Therefore these findings cast doubt on the importance of the CCL11/CCR3 axis in the development of airway smooth muscle hyperplasia in asthma.
doi:10.1111/j.1398-9995.2008.01684.x
PMCID: PMC3992370  PMID: 18699931
airway smooth muscle; asthma; CCL11; CCR3; mast cells
14.  Pathology of asthma 
Asthma is a serious health and socioeconomic issue all over the world, affecting more than 300 million individuals. The disease is considered as an inflammatory disease in the airway, leading to airway hyperresponsiveness, obstruction, mucus hyper-production and airway wall remodeling. The presence of airway inflammation in asthmatic patients has been found in the nineteenth century. As the information in patients with asthma increase, paradigm change in immunology and molecular biology have resulted in an extensive evaluation of inflammatory cells and mediators involved in the pathophysiology of asthma. Moreover, it is recognized that airway remodeling into detail, characterized by thickening of the airway wall, can be profound consequences on the mechanics of airway narrowing and contribute to the chronic progression of the disease. Epithelial to mesenchymal transition plays an important role in airway remodeling. These epithelial and mesenchymal cells cause persistence of the inflammatory infiltration and induce histological changes in the airway wall, increasing thickness of the basement membrane, collagen deposition and smooth muscle hypertrophy and hyperplasia. Resulting of airway inflammation, airway remodeling leads to the airway wall thickening and induces increased airway smooth muscle mass, which generate asthmatic symptoms. Asthma is classically recognized as the typical Th2 disease, with increased IgE levels and eosinophilic inflammation in the airway. Emerging Th2 cytokines modulates the airway inflammation, which induces airway remodeling. Biological agents, which have specific molecular targets for these Th2 cytokines, are available and clinical trials for asthma are ongoing. However, the relatively simple paradigm has been doubted because of the realization that strategies designed to suppress Th2 function are not effective enough for all patients in the clinical trials. In the future, it is required to understand more details for phenotypes of asthma.
doi:10.3389/fmicb.2013.00263
PMCID: PMC3768124  PMID: 24032029
asthma; remodeling; epithelial to mesenchymal transition; Th2 cells; cytokines; Th17 cells; Th9 cell
15.  Airway TGFβ1 and oxidant stress in children with severe asthma: Association with airflow limitation 
Background
Transforming growth factor beta-1 (TGFβ1) is thought to play a role in airway remodeling in asthma. TGFβ1 expression may be mediated by an excessive burden of reactive oxygen species and oxidant stress.
Objective
Given the profound airway oxidant stress we have previously observed in children with severe asthma, we sought to: 1) quantify TGFβ1 protein and mRNA gene expression in the airways of children with mild-to-moderate and severe atopic asthma; and to 2) determine the relationship of airway TGFβ1 concentrations to oxidant burden (i.e., lipid peroxidation), Th2-mediated eosinophilic inflammation, and airflow limitation.
Methods
Bronchoalveolar lavage fluid was collected from 68 atopic children with asthma (severe asthma, n = 28) and 12 atopic adult controls. Airway TGFβ1 expression and activation were assessed in relation to airway IL-13, 8-isoprostane, and malondialdehyde concentrations. The relationship of airway TGFβ1 expression to airflow limitation in children with asthma was also assessed.
Results
Children with severe asthma had higher total airway concentrations of TGFβ1 that were associated with increased protein and mRNA expression of TGFβ1 in airway macrophages and an increase in the lipid peroxidation biomarkers 8-isoprostanes and malondialdehyde. TGFβ1 activation was also greater in children with severe asthma and was associated with higher airway 8-isoprostane, malondialdehyde and IL-13 concentrations. Total airway TGFβ1 concentrations were further associated with airflow limitation.
Conclusions
Children with severe asthma have increased airway TGFβ1 expression and activation associated with an increased airway oxidant burden. Oxidant stress may mediate the effects of TGFβ1 and promote airway remodeling in children with severe asthma.
doi:10.1016/j.jaci.2011.11.037
PMCID: PMC3268912  PMID: 22206775
Airway remodeling; Asthma; Children; Lung function; Oxidant stress; Transforming growth factor beta-1
16.  Effects of nebulized ketamine on allergen-induced airway hyperresponsiveness and inflammation in actively sensitized Brown-Norway rats 
Since airway hyperresponsiveness (AHR) and allergic inflammatory changes are regarded as the primary manifestations of asthma, the main goals of asthma treatment are to decrease inflammation and maximize bronchodilation. These goals can be achieved with aerosol therapy. Intravenous administration of the anesthetic, ketamine, has been shown to trigger bronchial smooth muscle relaxation. Furthermore, increasing evidence suggests that the anti-inflammatory properties of ketamine may protect against lung injury. However, ketamine inhalation might yield the same or better results at higher airway and lower ketamine plasma concentrations for the treatment of asthma. Here, we studied the effect of ketamine inhalation on bronchial hyperresponsiveness and airway inflammation in a Brown-Norway rat model of ovalbumin(OVA)-induced allergic asthma. Animals were actively sensitized by subcutaneous injection of OVA and challenged by repeated intermittent (thrice weekly) exposure to aerosolized OVA for two weeks. Before challenge, the sensitizened rats received inhalation of aerosol of phosphate-buffered saline (PBS) or aerosol of ketamine or injection of ketamine respectivity. Airway reactivity to acetylcholine (Ach) was measured in vivo, and various inflammatory markers, including Th2 cytokines in bronchoalveolar lavage fluid (BALF), as well as induciable nitric oxide synthase (iNOS) and nitric oxide (NO) in lungs were examined. Our results revealed that delivery of aerosolized ketamine using an ultrasonic nebulizer markedly suppressed allergen-mediated airway hyperreactivity, airway inflammation and airway inflammatory cell infiltration into the BALF, and significantly decreased the levels of interleukin-4 (IL-4) in the BALF and expression of iNOS and the concentration of NO in the inflamed airways from OVA-treated rats. These findings collectively indicate that nebulized ketamine attenuated many of the central components of inflammatory changes and AHR in OVA-provoked experimental asthma, potentially providing a new therapeutic approach against asthma.
doi:10.1186/1476-9255-4-10
PMCID: PMC1876456  PMID: 17480224
17.  Mast Cells Promote Airway Smooth Muscle Cell Differentiation via Autocrine Up-Regulation of TGF-β11 
Asthma is a major cause of morbidity and mortality worldwide. It is characterized by airway dysfunction and inflammation. A key determinant of the asthma phenotype is infiltration of airway smooth muscle bundles by activated mast cells. We hypothesized that interactions between these cells promotes airway smooth muscle differentiation into a more contractile phenotype. In vitro coculture of human airway smooth muscle cells with β-tryptase, or mast cells with or without IgE/anti-IgE activation, increased airway smooth muscle-derived TGF-β1 secretion, α-smooth muscle actin expression and agonist-provoked contraction. This promotion to a more contractile phenotype was inhibited by both the serine protease inhibitor leupeptin and TGF-β1 neutralization, suggesting that the observed airway smooth muscle differentiation was driven by the autocrine release of TGF-β1 in response to activation by mast cell β-tryptase. Importantly, in vivo we found that in bronchial mucosal biopsies from asthmatics the intensity of α-smooth muscle actin expression was strongly related to the number of mast cells within or adjacent to an airway smooth muscle bundle. These findings suggest that mast cell localization in the airway smooth muscle bundle promotes airway smooth muscle cell differentiation into a more contractile phenotype, thus contributing to the disordered airway physiology that characterizes asthma.
PMCID: PMC3992381  PMID: 18802103
18.  Expression of IL-4 Receptor alpha on smooth muscle cells is not necessary for development of experimental allergic asthma 
Background
Airflow in the lungs of patients with allergic asthma is impaired by excessive mucus production and airway smooth muscle contractions. Elevated levels of the cytokines IL-4 and IL-13 are associated with this pathology. In vitro studies have suggested that IL-4 receptor alpha (IL-4Rα) signalling on smooth muscle cells is critical for airway inflammation and airway hyperresponsiveness.
Objective
In order to define the contribution of IL-4 and IL-13 to the onset of asthmatic pathology the role of their key receptor IL-4Rα in smooth muscle cells was examined in vivo.
Methods
By using transgenic SMC-MHCcreIL-4Rα−/lox mice deficient for IL-4Rα in smooth muscle cells, in vivo effects of impaired IL-4Rα signalling in smooth muscle cells on the outcome of asthmatic disease were investigated for the first time. Allergic asthma was introduced in mice by repeated sensitisation with ovalbumin/aluminium hydroxide on days 0, 7 and 14 followed by intranasal allergen challenge on days 21–23. Mice were investigated for the presence of airway hyperresponsiveness, airway inflammation, allergen specific antibody production, Th2 type cytokine responses and lung pathology.
Results
Airway hyperresponsiveness, airway inflammation, mucus production, Th2 cytokine production and specific antibody responses were unaffected in SMC-MHCcreIL-4Rα−/lox mice when compared to control animals.
Conclusion
The impairment of IL-4Rα on smooth muscle cells had no effect on major aetiological markers of allergic asthma. These findings suggest that IL-4Rα responsiveness in airway smooth muscle cells during the early phase of allergic asthma is not, as suggested, necessary for the outcome of the disease.
Clinical Implications
Therapies targeting the IL-4Rα might have no direct effect on smooth muscle cells in an allergic asthma response.
doi:10.1016/j.jaci.2010.04.028
PMCID: PMC2917502  PMID: 20579713
Smooth muscle cell; Allergy; Asthma; Cytokine Receptors; IL-4; IL-13; gene-deficient mice
19.  NADPH Oxidases in Vascular Pathology 
Antioxidants & Redox Signaling  2014;20(17):2794-2814.
Abstract
Significance: Reactive oxygen species (ROS) play a critical role in vascular disease. While there are many possible sources of ROS, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases play a central role. They are a source of “kindling radicals,” which affect other enzymes, such as nitric oxide synthase endothelial nitric oxide synthase or xanthine oxidase. This is important, as risk factors for atherosclerosis (hypertension, diabetes, hypercholesterolemia, and smoking) regulate the expression and activity of NADPH oxidases in the vessel wall. Recent Advances: There are seven isoforms in mammals: Nox1, Nox2, Nox3, Nox4, Nox5, Duox1 and Duox2. Nox1, Nox2, Nox4, and Nox5 are expressed in endothelium, vascular smooth muscle cells, fibroblasts, or perivascular adipocytes. Other homologues have not been found or are expressed at very low levels; their roles have not been established. Nox1/Nox2 promote the development of endothelial dysfunction, hypertension, and inflammation. Nox4 may have a role in protecting the vasculature during stress; however, when its activity is increased, it may be detrimental. Calcium-dependent Nox5 has been implicated in oxidative damage in human atherosclerosis. Critical Issues: NADPH oxidase-derived ROS play a role in vascular pathology as well as in the maintenance of normal physiological vascular function. We also discuss recently elucidated mechanisms such as the role of NADPH oxidases in vascular protection, vascular inflammation, pulmonary hypertension, tumor angiogenesis, and central nervous system regulation of vascular function and hypertension. Future Directions: Understanding the role of individual oxidases and interactions between homologues in vascular disease is critical for efficient pharmacological regulation of vascular NADPH oxidases in both the laboratory and clinical practice. Antioxid. Redox Signal. 20, 2794–2814.
doi:10.1089/ars.2013.5607
PMCID: PMC4026218  PMID: 24180474
20.  Inhibition of Aldose Reductase Prevents Experimental Allergic Airway Inflammation in Mice 
PLoS ONE  2009;4(8):e6535.
Background
The bronchial asthma, a clinical complication of persistent inflammation of the airway and subsequent airway hyper-responsiveness, is a leading cause of morbidity and mortality in critically ill patients. Several studies have shown that oxidative stress plays a key role in initiation as well as amplification of inflammation in airways. However, still there are no good anti-oxidant strategies available for therapeutic intervention in asthma pathogenesis. Most recent studies suggest that polyol pathway enzyme, aldose reductase (AR), contributes to the pathogenesis of oxidative stress–induced inflammation by affecting the NF-κB-dependent expression of cytokines and chemokines and therefore inhibitors of AR could be anti-inflammatory. Since inhibitors of AR have already gone through phase-III clinical studies for diabetic complications and found to be safe, our hypothesis is that AR inhibitors could be novel therapeutic drugs for the prevention and treatment of asthma. Hence, we investigated the efficacy of AR inhibition in the prevention of allergic responses to a common natural airborne allergen, ragweed pollen that leads to airway inflammation and hyper-responsiveness in a murine model of asthma.
Methods and Findings
Primary Human Small Airway Epithelial Cells (SAEC) were used to investigate the in vitro effects of AR inhibition on ragweed pollen extract (RWE)-induced cytotoxic and inflammatory signals. Our results indicate that inhibition of AR prevents RWE -induced apoptotic cell death as measured by annexin-v staining, increase in the activation of NF-κB and expression of inflammatory markers such as inducible nitric oxide synthase (iNOS), cycloxygenase (COX)-2, Prostaglandin (PG) E2, IL-6 and IL-8. Further, BALB/c mice were sensitized with endotoxin-free RWE in the absence and presence of AR inhibitor and followed by evaluation of perivascular and peribronchial inflammation, mucin production, eosinophils infiltration and airway hyperresponsiveness. Our results indicate that inhibition of AR prevents airway inflammation and production of inflammatory cytokines, accumulation of eosinophils in airways and sub-epithelial regions, mucin production in the bronchoalveolar lavage fluid and airway hyperresponsiveness in mice.
Conclusions
These results suggest that airway inflammation due to allergic response to RWE, which subsequently activates oxidative stress-induced expression of inflammatory cytokines via NF-κB-dependent mechanism, could be prevented by AR inhibitors. Therefore, inhibition of AR could have clinical implications, especially for the treatment of airway inflammation, a major cause of asthma pathogenesis.
doi:10.1371/journal.pone.0006535
PMCID: PMC2717330  PMID: 19657391
21.  Induction and regulation of matrix metalloproteinase-12in human airway smooth muscle cells 
Respiratory Research  2005;6(1):148.
Background
The elastolytic enzyme matrix metalloproteinase (MMP)-12 has been implicated in the development of airway inflammation and remodeling. We investigated whether human airway smooth muscle cells could express and secrete MMP-12, thereby participating in the pathogenesis of airway inflammatory diseases.
Methods
Laser capture microdissection was used to collect smooth muscle cells from human bronchial biopsy sections. MMP-12 mRNA expression was analysed by quantitative real-time RT-PCR. MMP-12 protein expression and secretion from cultured primary airway smooth muscle cells was further analysed by Western blot. MMP-12 protein localization in bronchial tissue sections was detected by immunohistochemistry. MMP-12 activity was determined by zymography. The TransAM AP-1 family kit was used to measure c-Jun activation and nuclear binding. Analysis of variance was used to determine statistical significance.
Results
We provide evidence that MMP-12 mRNA and protein are expressed by in-situ human airway smooth muscle cells obtained from bronchial biopsies of normal volunteers, and of patients with asthma, COPD and chronic cough. The pro-inflammatory cytokine, interleukin (IL)-1β, induced a >100-fold increase in MMP-12 gene expression and a >10-fold enhancement in MMP-12 activity of primary airway smooth muscle cell cultures. Selective inhibitors of extracellular signal-regulated kinase, c-Jun N-terminal kinase and phosphatidylinositol 3-kinase reduced the activity of IL-1β on MMP-12, indicating a role for these kinases in IL-1β-induced induction and release of MMP-12. IL-1β-induced MMP-12 activity and gene expression was down-regulated by the corticosteroid dexamethasone but up-regulated by the inflammatory cytokine tumour necrosis factor (TNF)-α through enhancing activator protein-1 activation by IL-1β. Transforming growth factor-β had no significant effect on MMP-12 induction.
Conclusion
Our findings indicate that human airway smooth muscle cells express and secrete MMP-12 that is up-regulated by IL-1β and TNF-α. Bronchial smooth muscle cells may be an important source of elastolytic activity, thereby participating in remodeling in airway diseases such as COPD and chronic asthma.
doi:10.1186/1465-9921-6-148
PMCID: PMC1363355  PMID: 16359550
22.  Overexpression of endothelial nitric oxide synthase suppresses features of allergic asthma in mice 
Respiratory Research  2006;7(1):58.
Background
Asthma is associated with airway hyperresponsiveness and enhanced T-cell number/activity on one hand and increased levels of exhaled nitric oxide (NO) with expression of inducible NO synthase (iNOS) on the other hand. These findings are in paradox, as NO also relaxes airway smooth muscle and has immunosuppressive properties. The exact role of the endothelial NOS (eNOS) isoform in asthma is still unknown. We hypothezised that a delicate regulation in the production of NO and its bioactive forms by eNOS might be the key to the pathogenesis of asthma.
Methods
The contribution of eNOS on the development of asthmatic features was examined. We used transgenic mice that overexpress eNOS and measured characteristic features of allergic asthma after sensitisation and challenge of these mice with the allergen ovalbumin.
Results
eNOS overexpression resulted in both increased eNOS activity and NO production in the lungs. Isolated thoracic lymph nodes cells from eNOS overexpressing mice that have been sensitized and challenged with ovalbumin produced significantly less of the cytokines IFN-γ, IL-5 and IL-10. No difference in serum IgE levels could be found. Further, there was a 50% reduction in the number of lymphocytes and eosinophils in the lung lavage fluid of these animals. Finally, airway hyperresponsiveness to methacholine was abolished in eNOS overexpressing mice.
Conclusion
These findings demonstrate that eNOS overexpression attenuates both airway inflammation and airway hyperresponsiveness in a model of allergic asthma. We suggest that a delicate balance in the production of bioactive forms of NO derived from eNOS might be essential in the pathophysiology of asthma.
doi:10.1186/1465-9921-7-58
PMCID: PMC1456969  PMID: 16597326
23.  Bronchoconstriction Induces TGF-β Release and Airway Remodelling in Guinea Pig Lung Slices 
PLoS ONE  2013;8(6):e65580.
Airway remodelling, including smooth muscle remodelling, is a primary cause of airflow limitation in asthma. Recent evidence links bronchoconstriction to airway remodelling in asthma. The mechanisms involved are poorly understood. A possible player is the multifunctional cytokine TGF-β, which plays an important role in airway remodelling. Guinea pig lung slices were used as an in vitro model to investigate mechanisms involved in bronchoconstriction-induced airway remodelling. To address this aim, mechanical effects of bronchoconstricting stimuli on contractile protein expression and TGF-β release were investigated. Lung slices were viable for at least 48 h. Both methacholine and TGF-β1 augmented the expression of contractile proteins (sm-α-actin, sm-myosin, calponin) after 48 h. Confocal fluorescence microscopy showed that increased sm-myosin expression was enhanced in the peripheral airways and the central airways. Mechanistic studies demonstrated that methacholine-induced bronchoconstriction mediated the release of biologically active TGF-β, which caused the increased contractile protein expression, as inhibition of actin polymerization (latrunculin A) or TGF-β receptor kinase (SB431542) prevented the methacholine effects, whereas other bronchoconstricting agents (histamine and KCl) mimicked the effects of methacholine. Collectively, bronchoconstriction promotes the release of TGF-β, which induces airway smooth muscle remodelling. This study shows that lung slices are a useful in vitro model to study mechanisms involved in airway remodelling.
doi:10.1371/journal.pone.0065580
PMCID: PMC3694103  PMID: 23840342
24.  S100A12 and the Airway Smooth Muscle: Beyond Inflammation and Constriction 
Journal of allergy & therapy  2012;3(Suppl 1):S1-007.
Airway inflammation, lung remodeling, and Airway Hyperresponsiveness (AHR) are major features of asthma and Chronic Obstructive Pulmonary Disease (COPD). The inflammatory response to allergens, air pollutants, and other insults is likely to play a key role in promoting structural changes in the lung including the overabundance of Airway Smooth Muscle (ASM) seen in asthmatics. These alterations or remodeling could, in turn, impact the immunmodulatory actions of the ASM, the ASM's contractile properties, and the development of AHR. New evidences suggest that airway inflammation and AHR are not tightly related to each other and that the structural component of the airway, mainly the ASM, is a chief driver of AHR. Members of the S100/calgranulins family have been implicated in the regulation of inflammation and cell apoptosis in various systems. S100A12 is highly expressed in neutrophils and is one of the most abundant proteins in the lungs of patients with asthma or COPD. Studies with genetic engineered mice with smooth muscle cell-targeted expression of human S100A12 revealed that S100A12 reduces airway smooth muscle amounts and dampens airway inflammation and airway hyperreactivity in a model of allergic lung inflammation. Thus, targeting airway smooth muscle for instance through delivery of pro-apoptotic S100A12 could represent an attractive means to promote ASM apoptosis and to reduce ASM abundance in asthmatics.
doi:10.4172/2155-6121.S1-007
PMCID: PMC4431649  PMID: 25984393
25.  CCL2 release by airway smooth muscle is increased in asthma and promotes fibrocyte migration 
Allergy  2014;69(9):1189-1197.
Background
Asthma is characterized by variable airflow obstruction, airway inflammation, airway hyper-responsiveness and airway remodelling. Airway smooth muscle (ASM) hyperplasia is a feature of airway remodelling and contributes to bronchial wall thickening. We sought to investigate the expression levels of chemokines in primary cultures of ASM cells from asthmatics vs healthy controls and to assess whether differentially expressed chemokines (i) promote fibrocyte (FC) migration towards ASM and (ii) are increased in blood from subjects with asthma and in sputum samples from those asthmatics with bronchial wall thickening.
Methods
Chemokine concentrations released by primary ASM were measured by MesoScale Discovery platform. The chemokine most highly expressed by ASM from asthmatics compared with healthy controls was confirmed by ELISA, and expression of its cognate chemokine receptor by FCs was examined by immunofluorescence and flow cytometry. The role of this chemokine in FC migration towards ASM was investigated by chemotaxis assays.
Results
Chemokine (C-C motif) ligand 2 (CCL2) levels were increased in primary ASM supernatants from asthmatics compared with healthy controls. CCR2 was expressed on FCs. Fibrocytes migrated towards recombinant CCL2 and ASM supernatants. These effects were inhibited by CCL2 neutralization. CCL2 levels were increased in blood from asthmatics compared with healthy controls, and sputum CCL2 was increased in asthmatics with bronchial wall thickening.
Conclusions
Airway smooth muscle-derived CCL2 mediates FC migration and potentially contributes to the development of ASM hyperplasia in asthma.
doi:10.1111/all.12444
PMCID: PMC4215601  PMID: 24931417
airway smooth muscle; asthma; chemokine (C-C motif) ligand 2; chemotaxis; fibrocyte

Results 1-25 (1165313)