PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1075510)

Clipboard (0)
None

Related Articles

1.  Dysfunctional interferon-α production by peripheral plasmacytoid dendritic cells upon Toll-like receptor-9 stimulation in patients with systemic lupus erythematosus 
Background
It is well known that interferon (IFN)-α is important to the pathogenesis of systemic lupus erythematosus (SLE). However, several reports have indicated that the number of IFN-α producing cells are decreased or that their function is defective in patients with SLE. We studied the function of plasmacytoid dendritic cells (pDCs) under persistent stimulation of Toll-like receptor (TLR)9 via a TLR9 ligand (CpG ODN2216) or SLE serum.
Methods
The concentrations of IFN-α were determined in serum and culture supernatant of peripheral blood mononuclear cells (PBMCs) from SLE patients and healthy controls after stimulation with CpG ODN2216 or SLE serum. The numbers of circulating pDCs were analyzed by fluoresence-activated cell sorting analysis. pDCs were treated with CpG ODN2216 and SLE serum repeatedly, and levels of produced IFN-α were measured. The expression of IFN-α signature genes and inhibitory molecules of TLR signaling were examined in PBMCs from SLE patients and healthy control individuals.
Results
Although there was no significant difference in serum concentration of IFN-α and number of circulating pDCs between SLE patients and healthy control individuals, the IFN-α producing capacity of PBMCs was significantly reduced in SLE patients. Interestingly, the degree which TLR9 ligand-induced IFN-α production in SLE PBMCs was inversely correlated with the SLE serum-induced production of IFN-α in healthy PMBCs. Because repeated stimulation pDCs with TLR9 ligands showed decreased level of IFN-α production, continuous TLR9 stimulation may lead to decreased production of IFN-α in SLE PBMCs. In addition, PBMCs isolated from SLE patients exhibited higher expression of IFN-α signature genes and inhibitory molecules of TLR signaling, indicating that these cells had already undergone IFN-α stimulation and had become desensitized to TLR signaling.
Conclusion
We suggest that the persistent presence of endogenous IFN-α inducing factors induces TLR tolerance in pDCs of SLE patients, leading to impaired production of IFN-α.
doi:10.1186/ar2382
PMCID: PMC2453773  PMID: 18321389
2.  Safety, Tolerability, and Immunogenicity of Interferons 
Pharmaceuticals  2010;3(4):1162-1186.
Interferons (IFNs) are class II cytokines that are key components of the innate immune response to virus infection. Three IFN sub-families, type I, II, and III IFNs have been identified in man, Recombinant analogues of type I IFNs, in particular IFNα2 and IFNβ1, have found wide application for the treatment of chronic viral hepatitis and remitting relapsing multiple sclerosis respectively. Type II IFN, or IFN gamma, is used principally for the treatment of chronic granulomatous disease, while the recently discovered type III IFNs, also known as IFN lambda or IL-28/29, are currently being evaluated for the treatment of chronic viral hepatitis. IFNs are in general well tolerated and the most common adverse events observed with IFNα or IFNβ therapy are “flu-like” symptoms such as fever, headache, chills, and myalgia. Prolonged treatment is associated with more serious adverse events including leucopenia, thrombocytopenia, increased hepatic transaminases, and neuropsychiatric effects. Type I IFNs bind to high-affinity cell surface receptors, composed of two transmembrane polypeptides IFNAR1 and IFNAR2, resulting in activation of the Janus kinases Jak1 and Tyk2, phosphorylation and activation of the latent cytoplasmic signal transducers and activators of transcription (STAT1) and STAT2, formation of a transcription complex together with IRF9, and activation of a specific set of genes that encode the effector molecules responsible for mediating the biological activities of type I IFNs. Systemic administration of type I IFN results in activation of IFN receptors present on essentially all types of nucleated cells, including neurons and hematopoietic stem cells, in addition to target cells. This may well explain the wide spectrum of IFN associated toxicities. Recent reports suggest that certain polymorphisms in type I IFN signaling molecules are associated with IFN-induced neutropenia and thrombocytopenia in patients with chronic hepatitis C. IFNγ binds to a cell-surface receptor composed of two transmembrane polypeptides IFGR1 and IFGR2 resulting in activation of the Janus kinases Jak1 and Jak2, phosphorylation of STAT1, formation of STAT1 homodimers, and activation of a specific set of genes that encode the effector molecules responsible for mediating its biological activity. In common with type I IFNs, IFNγ receptors are ubiquitous and a number of the genes activated by IFNγ are also activated by type I IFNs that may well account for a spectrum of toxicities similar to that associated with type I IFNs including “flu-like” symptoms, neutropenia, thrombocytopenia, and increased hepatic transaminases. Although type III IFNs share the major components of the signal transduction pathway and activate a similar set of IFN-stimulated genes (ISGs) as type I IFNs, distribution of the IFNλ receptor is restricted to certain cell types suggesting that IFNλ therapy may be associated with a reduced spectrum of toxicities relative to type I or type II IFNs. Repeated administration of recombinant IFNs can cause in a break in immune tolerance to self-antigens in some patients resulting in the production of neutralizing antibodies (NABs) to the recombinant protein homologue. Appearance of NABs is associated with reduced pharmacokinetics, pharmacodynamics, and a reduced clinical response. The lack of cross-neutralization of IFNβ by anti-IFNα NABs and vice versa, undoubtedly accounts for the apparent lack of toxicity associated with the presence of anti-IFN NABs with the exception of relatively mild infusion/injection reactions.
doi:10.3390/ph3041162
PMCID: PMC4034027
cytokines; interferons; interleukins; innate immunity; Toll-like receptors
3.  Type-1 interferons contribute to oxygen glucose deprivation induced neuro-inflammation in BE(2)M17 human neuroblastoma cells 
Background
Hypoxic-ischaemic injuries such as stroke and traumatic brain injury exhibit features of a distinct neuro-inflammatory response in the hours and days post-injury. Microglial activation, elevated pro-inflammatory cytokines and macrophage infiltration contribute to core tissue damage and contribute to secondary injury within a region termed the penumbra. Type-1 interferons (IFNs) are a super-family of pleiotropic cytokines that regulate pro-inflammatory gene transcription via the classical Jak/Stat pathway; however their role in hypoxia-ischaemia and central nervous system neuro-inflammation remains unknown. Using an in vitro approach, this study investigated the role of type-1 IFN signalling in an inflammatory setting induced by oxygen glucose deprivation (OGD).
Methods
Human BE(2)M17 neuroblastoma cells or cells expressing a type-1 interferon-α receptor 1 (IFNAR1) shRNA or negative control shRNA knockdown construct were subjected to 4.5 h OGD and a time-course reperfusion period (0 to 24 h). Q-PCR was used to evaluate IFNα, IFNβ, IL-1β, IL-6 and TNF-α cytokine expression levels. Phosphorylation of signal transducers and activators of transcription (STAT)-1, STAT-3 and cleavage of caspase-3 was detected by western blot analysis. Post-OGD cellular viability was measured using a MTT assay.
Results
Elevated IFNα and IFNβ expression was detected during reperfusion post-OGD in parental M17 cells. This correlated with enhanced phosphorylation of STAT-1, a downstream type-1 IFN signalling mediator. Significantly, ablation of type-1 IFN signalling, through IFNAR1 knockdown, reduced IFNα, IFNβ, IL-6 and TNF-α expression in response to OGD. In addition, MTT assay confirmed the IFNAR1 knockdown cells were protected against OGD compared to negative control cells with reduced pro-apoptotic cleaved caspase-3 levels.
Conclusions
This study confirms a role for type-1 IFN signalling in the neuro-inflammatory response following OGD in vitro and suggests its modulation through therapeutic blockade of IFNAR1 may be beneficial in reducing hypoxia-induced neuro-inflammation.
doi:10.1186/1742-2094-11-43
PMCID: PMC3995960  PMID: 24602263
Type-1 interferon; Neuro-inflammation; Hypoxia-ischaemia; Cytokines; JAK-Stat
4.  Elevated Serum Levels of Interferon-Regulated Chemokines Are Biomarkers for Active Human Systemic Lupus Erythematosus 
PLoS Medicine  2006;3(12):e491.
Background
Systemic lupus erythematosus (SLE) is a serious systemic autoimmune disorder that affects multiple organ systems and is characterized by unpredictable flares of disease. Recent evidence indicates a role for type I interferon (IFN) in SLE pathogenesis; however, the downstream effects of IFN pathway activation are not well understood. Here we test the hypothesis that type I IFN-regulated proteins are present in the serum of SLE patients and correlate with disease activity.
Methods and Findings
We performed a comprehensive survey of the serologic proteome in human SLE and identified dysregulated levels of 30 cytokines, chemokines, growth factors, and soluble receptors. Particularly striking was the highly coordinated up-regulation of 12 inflammatory and/or homeostatic chemokines, molecules that direct the movement of leukocytes in the body. Most of the identified chemokines were inducible by type I IFN, and their levels correlated strongly with clinical and laboratory measures of disease activity.
Conclusions
These data suggest that severely disrupted chemokine gradients may contribute to the systemic autoimmunity observed in human SLE. Furthermore, the levels of serum chemokines may serve as convenient biomarkers for disease activity in lupus.
A comprehensive survey of the serologic proteome in human SLE suggests that severely disrupted chemokine gradients may contribute to the systemic autoimmunity observed.
Editors' Summary
Background.
The term “lupus,” meaning wolf in Latin, is often used as an abbreviation for the disease systemic lupus erythematosus (SLE). The name may have been given because some people with SLE have a rash that slightly resembles a wolf's face. The condition affects around 50 to 100 people per 100,000, and is much more common in women than men. SLE is a complicated disease that comes about when antibodies inappropriately attack the body's own connective tissues, although it is not known why this happens. Symptoms vary between different people; the disease may get better and then worse, without explanation; and can affect many different organs including the skin, joints, kidneys, blood cells, and brain and nervous system. SLE is difficult for doctors to diagnose. Although the disease cannot be cured, patients who are diagnosed with SLE can be treated for their symptoms, and the right management can slow progress of the disease. One area of SLE research focuses on finding “molecular markers” (e.g., proteins or other compounds) that could be tested for in the blood. Researchers hope this would help doctors to more accurately diagnose SLE initially, and then also help to track progress in a patient's condition.
Why Was This Study Done?
“Gene expression” is a term meaning the process by which a gene's DNA sequence is converted into the structures and functions of a cell. These investigators had found in previous studies that certain genes were more “highly expressed” in the blood cells of patients with SLE. Some of these genes were already known to be regulated by interferons (a group of proteins, produced by certain blood cells, that are important in helping to defend against viral infections). The investigators performing this study wanted to understand more clearly the role of interferon in SLE and to see whether the genes that are more highly expressed in patients with SLE go on to produce higher levels of protein, which might then provide useful markers for monitoring the condition.
What Did the Researchers Do and Find?
This research project was a “case-control” study, in which the researchers compared the levels of certain proteins in the blood of people who had SLE with the levels in people who did not have the condition. Thirty people were recruited as cases, from a group of patients with SLE who have been under evaluation at Johns Hopkins School of Medicine since 1987. Fifteen controls were recruited from a group of healthy people of similar age and sex as the patients with SLE; everyone involved in the study gave their consent to take part. Blood samples were taken from each individual, and the serum (liquid component of blood) was separated out. The serum levels of 160 different blood proteins were then measured. When comparing levels of blood proteins between the groups, the researchers found that 30 specific proteins were present at higher or lower levels in the SLE-affected patients. Many of these proteins are cytokines, which are regulated by interferons and are involved in the process of “signaling” within the immune system. A few proteins were found at lower levels. Levels of the interferon-regulated proteins were, on average, seen at higher levels in people whose condition was more severe.
What Do These Findings Mean?
These results suggest that patients with SLE are likely to have a very different pattern of regulation of certain proteins within the blood, particularly the proteins involved in signaling within the immune system. The authors propose that these proteins may be involved in the progression of the disease. There is also the possibility that some of these proteins may prove useful in diagnostic tests, or in tests for monitoring how the disease progresses. However, before any such tests could be used in clinical practice, they would need to be further developed and then thoroughly tested in clinical trials.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0030491
Patient information from the UK National Health Service on systemic lupus erythematosus
Patient handout from the US National Institutes of Health
MedlinePLUS encyclopedia entry on lupus
Information on lupus from the UK Arthritis Research Campaign
doi:10.1371/journal.pmed.0030491
PMCID: PMC1702557  PMID: 17177599
5.  Influenza A Virus Inhibits Type I IFN Signaling via NF-κB-Dependent Induction of SOCS-3 Expression 
PLoS Pathogens  2008;4(11):e1000196.
The type I interferon (IFN) system is a first line of defense against viral infections. Viruses have developed various mechanisms to counteract this response. So far, the interferon antagonistic activity of influenza A viruses was mainly observed on the level of IFNβ gene induction via action of the viral non-structural protein 1 (NS1). Here we present data indicating that influenza A viruses not only suppress IFNβ gene induction but also inhibit type I IFN signaling through a mechanism involving induction of the suppressor of cytokine signaling-3 (SOCS-3) protein. Our study was based on the observation that in cells that were infected with influenza A virus and subsequently stimulated with IFNα/β, phosphorylation of the signal transducer and activator of transcription protein 1 (STAT1) was strongly reduced. This impaired STAT1 activation was not due to the action of viral proteins but rather appeared to be induced by accumulation of viral 5′ triphosphate RNA in the cell. SOCS proteins are potent endogenous inhibitors of Janus kinase (JAK)/STAT signaling. Closer examination revealed that SOCS-3 but not SOCS-1 mRNA levels increase in an RNA- and nuclear factor kappa B (NF-κB)-dependent but type I IFN-independent manner early in the viral replication cycle. This direct viral induction of SOCS-3 mRNA and protein expression appears to be relevant for suppression of the antiviral response since in SOCS-3 deficient cells a sustained phosphorylation of STAT1 correlated with elevated expression of type I IFN-dependent genes. As a consequence, progeny virus titers were reduced in SOCS-3 deficient cells or in cells were SOCS-3 expression was knocked-down by siRNA. These data provide the first evidence that influenza A viruses suppress type I IFN signaling on the level of JAK/STAT activation. The inhibitory effect is at least in part due to the induction of SOCS-3 gene expression, which results in an impaired antiviral response.
Author Summary
The type I interferon (IFN) system is one of the most powerful innate defenses against viral pathogens. Most RNA viruses are sensitive to the action of type I IFN. Therefore, these pathogens have evolved strategies to evade this response. For example, influenza viruses express a viral protein, the non-structural protein 1 (NS1), that suppresses production of IFNβ by lowering cellular sensitivity to viral nucleic acid as a pathogen pattern. Here we present data indicating that influenza A viruses are not only capable of suppressing production of the IFNβ gene but also inhibit action of this antiviral cytokine on cells. This occurs by viral induction of a cellular protein, the suppressor of cytokine signaling (SOCS)-3, a potent endogenous inhibitor of IFN signaling. This is a novel mechanism by which influenza viruses inhibit the antiviral response of the host and paves the path to efficient virus replication. This may be especially relevant for influenza viruses that induce high cytokine responses (cytokine burst), such as highly pathogenic avian influenza viruses of the H5N1 subtype. Induction of SOCS-3 expression would allow efficient replication despite high IFN and cytokine levels.
doi:10.1371/journal.ppat.1000196
PMCID: PMC2572141  PMID: 18989459
6.  Elevated signal transducers and activators of transcription 1 correlates with increased C-C motif chemokine ligand 2 and C-X-C motif chemokine 10 levels in peripheral blood of patients with systemic lupus erythematosus 
Introduction
The present study examines the levels of recently reported biomarkers, adenosine deaminase acting on RNA (ADAR), C-C motif chemokine ligand 2 (CCL2), C-X-C motif chemokine 10 (CXCL10), signal transducers and activators of transcription 1 (STAT1), and miR-146a in systemic lupus erythematosus (SLE) patients over multiple visits.
Methods
Peripheral blood leukocytes were collected from 65 healthy donors and 103 SLE patients, 60 of whom had samples from 2 or more visits. Total RNA was isolated and analyzed for the expression of mRNA and microRNA using Taqman real time PCR assays. Relative expression of I-IFN signature genes, chemokines, and miR-146a were determined by the ΔΔCT method. Results were correlated with clinical data and analyzed by Wilcoxon/Kruskal-Wallis test and Fisher’s exact test.
Results
Levels of ADAR, CCL2, CXCL10, and STAT1 in SLE were significantly elevated compared with the healthy controls (P <0.0001). ADAR, CCL2, and CXCL10 showed significant correlation with IFN score in both healthy donors (P <0.0033) and SLE patients (P <0.0001). In SLE patients, miR-146a level was not significantly different from healthy controls nor correlated to the IFN score. Two STAT1 populations were identified: a low STAT1 and a high STAT1 group. High STAT1 patient visits displayed higher (P ≤0.0020) levels of CCL2 and CXCL10 than the low STAT1 patient visits. STAT1 levels correlated with IFN score in low STAT1 group but not in high STAT1 group. More importantly, high STAT1 levels appeared as an enhancer of CCL2 and CXCL10 as indicated by the significantly stronger correlation of CCL2 and CXCL10 with IFN score in high STAT1 patient visits relative to low STAT1 patient visits.
Conclusion
Our data indicate a novel role for STAT1 in the pathogenesis of SLE as an expression enhancer of CCL2 and CXCL10 in SLE patients with high levels of STAT1. Future study is needed to examine the exact role of STAT1 in the etiology of SLE.
doi:10.1186/ar4448
PMCID: PMC3978614  PMID: 24451065
7.  Plasma levels of galectin-3-binding protein reflect type I interferon activity and are increased in patients with systemic lupus erythematosus 
Lupus Science & Medicine  2014;1(1):e000026.
Objective
Simple measures of type I interferon (IFN) activity constitute highly attractive biomarkers in systemic lupus erythematosus (SLE). We explore galectin-3-binding protein (G3BP) as a novel measure of type I IFN activity and serum/plasma biomarker in large independent cohorts of patients with SLE and controls.
Methods
Serum and plasma G3BP concentrations were quantified using ELISA. Type I IFN activity was assessed by Mx1 reporter gene expression assays and correlated to serum G3BP concentrations (SLE-IFN-α, n=26 and healthy controls (HCs), n=10). Plasma G3BP concentrations in the SLE-Denmark (DK) (n=70) and SLE-Sweden (SE) (n=68) cohorts were compared with the HC-DK (n=47) and HC-SE (n=50) cohorts and patients with systemic sclerosis (n=111). In 15 patients with SLE, serum G3BP in consecutive samples was correlated to disease activity. Correlation analysis between G3BP, clinical parameters including disease activity in the four SLE cohorts was performed.
Results
G3BP concentrations correlated significantly with the IFN-α reporter gene assay (r=0.56, p=0.0005) and with IFN-α gene expression scores (r=0.54, p=0.0002). Plasma concentrations were significantly increased in the SLE-DK and SLE-SE cohorts compared with HCs and patients with systemic sclerosis (p<0.0001 and p=0.0009). G3BP concentrations correlated with disease activity measures in the SLE-DK- and SLE-IFN-α cohorts (p=0.0004 and p=0.05) but not in the SLE-SE cohort (p=0.98). Markedly temporal variation was observed in G3BP levels in the consecutive SLE-samples and was significantly associated with changes in disease activity (r=0.44, p=0.014).
Conclusions
G3BP plasma levels reflect type I IFN activity and are increased in SLE. Associations with disease activity or clinical manifestations are uncertain. This study highlights G3BP as a convenient measure of type I IFN-dependent gene activation.
doi:10.1136/lupus-2014-000026
PMCID: PMC4246916  PMID: 25452879
Systemic Lupus Erythematosus; Systemic Sclerosis; Interferon; Lupus Nephritis; Autoantibodies
8.  Functional Crosstalk between Type I and II Interferon through the Regulated Expression of STAT1 
PLoS Biology  2010;8(4):e1000361.
Small "priming" quantities of type I interferon enhance cellular responses to type II interferon by maintaining basal levels of STAT1, explaining the observed crosstalk between these two cytokines.
Autocrine priming of cells by small quantities of constitutively produced type I interferon (IFN) is a well-known phenomenon. In the absence of type I IFN priming, cells display attenuated responses to other cytokines, such as anti-viral protection in response to IFNγ. This phenomenon was proposed to be because IFNα/β receptor1 (IFNAR1) is a component of the IFNγ receptor (IFNGR), but our new data are more consistent with a previously proposed model indicating that regulated expression of STAT1 may also play a critical role in the priming process. Initially, we noticed that DNA binding activity of STAT1 was attenuated in c-Jun−/− fibroblasts because they expressed lower levels of STAT1 than wild-type cells. However, expression of STAT1 was rescued by culturing c-Jun−/− fibroblasts in media conditioned by wild-type fibroblasts suggesting they secreted a STAT1-inducing factor. The STAT1-inducing factor in fibroblast-conditioned media was IFNβ, as it was inhibited by antibodies to IFNAR1, or when IFNβ expression was knocked down in wild-type cells. IFNAR1−/− fibroblasts, which cannot respond to this priming, also expressed reduced levels of STAT1, which correlated with their poor responses to IFNγ. The lack of priming in IFNAR1−/− fibroblasts was compensated by over-expression of STAT1, which rescued molecular responses to IFNγ and restored the ability of IFNγ to induce protective anti-viral immunity. This study provides a comprehensive description of the molecular events involved in priming by type I IFN. Adding to the previous working model that proposed an interaction between type I and II IFN receptors, our work and that of others demonstrates that type I IFN primes IFNγ-mediated immune responses by regulating expression of STAT1. This may also explain how type I IFN can additionally prime cells to respond to a range of other cytokines that use STAT1 (e.g., IL-6, M-CSF, IL-10) and suggests a potential mechanism for the changing levels of STAT1 expression observed during viral infection.
Author Summary
Cells of the immune system release interferons (IFNs) in response to pathogens or tumor cells; these proteins signal to other immune cells to initiate the body's defense mechanisms. The two classes of IFNs—types I and II—have different receptors and distinct effects on the cells; however, there is “crosstalk” between them. In particular, small quantities of type I IFN can “prime” cells to produce a robust response to type II IFN. In this paper, we provide evidence to explain the molecular basis of this crosstalk. We show that continuous expression of the transcriptional activator c-Jun is responsible for producing basal, priming levels of a type I IFN; this signals to immune cells with the type I IFN receptor (IFNAR1) to maintain expression of STAT1 inside these cells. STAT1 is a key factor for immune cell responses to type II IFN. Thus, signaling by low levels of type I IFN primes the cells with sufficient STAT1 to respond robustly to a subsequent type II IFN signal. This work provides an alternative explanation of the priming phenomenon to a previous proposal that the ligand-bound type I receptor, IFNAR1, acts as a component of the type II IFN receptor.
doi:10.1371/journal.pbio.1000361
PMCID: PMC2860501  PMID: 20436908
9.  Systemic Sclerosis and Lupus 
Arthritis and rheumatism  2010;62(2):589-598.
Objective
To investigate peripheral blood (PB) cell transcript profiles of systemic sclerosis (SSc) and its subtypes in direct comparison with systemic lupus erythematosus (SLE).
Methods
We investigated PB cell samples from 74 SSc patients, 21 healthy controls, and 17 SLE patients using Illumina Human Ref-8 BeadChips and quantitative polymerase chain reaction confirmation. None of the study participants were receiving immunosuppressive agents other than low-dose steroids and hydroxychloroquine. In addition to conventional statistical and modular analysis, a composite score for the interferon (IFN)–inducible genes was calculated. Within the group of patients with SSc, the correlation of the IFN score with the serologic and clinical subtypes was investigated, as were single-nucleotide polymorphisms in a selected number of IFN pathway genes.
Results
Many of the most prominently overexpressed genes in SSc and SLE were IFN-inducible genes. Forty-three of 47 overexpressed IFN-inducible genes in SSc (91%) were similarly altered in SLE. The IFN score was highest in the SLE patients, followed by the SSc patients, and then the controls. The difference in IFN score among all 3 groups was statistically significant (P < 0.001 for all 3 comparisons). SSc and SLE PB cell samples showed striking parallels to our previously reported SSc skin transcripts in regard to the IFN-inducible gene expression pattern. In SSc, the presence of antitopoisomerase and anti–U1 RNP antibodies and lymphopenia correlated with the higher IFN scores (P = 0.005, P = 0.001, and P = 0.004, respectively); a missense mutation in IFNAR2 was significantly associated with the IFN score.
Conclusion
SLE and SSc fit within the same spectrum of IFN-mediated diseases. A subset of SSc patients shows a “lupus-like” high IFN-inducible gene expression pattern that correlates with the presence of antitopoisomerase and anti–U1 RNP antibodies.
doi:10.1002/art.27224
PMCID: PMC2879587  PMID: 20112391
10.  Cell-Specific Type I IFN Signatures in Autoimmunity and Viral Infection: What Makes the Difference? 
PLoS ONE  2013;8(12):e83776.
Gene expression profiling of peripheral blood mononuclear cells (PBMCs) has revealed a crucial role for type I interferon (IFN) in the pathogenesis of systemic lupus erythematosus (SLE). However, it is unclear how particular leucocyte subsets contribute to the overall type I IFN signature of PBMCs and whole blood samples.Furthermore, a detailed analysis describing the differences in the IFN signature in autoimmune diseases from that observed after viral infection has not been performed to date. Therefore, in this study, the transcriptional responses in peripheral T helper cells (CD4+) and monocyte subsets (CD16− inflammatory and CD16+ resident monocytes) isolated from patients with SLE, healthy donors (ND) immunised with the yellow fever vaccine YFV-17Dand untreated controls were compared by global gene expression profiling.It was striking that all of the transcripts that were regulated in response to viral exposure were also found to be differentially regulated in SLE, albeit with markedly lower fold-change values. In addition to this common IFN signature, a pathogenic IFN-associated gene signature was detected in the CD4+ T cells and monocytes from the lupus patients. IL-10, IL-9 and IL-15-mediated JAK/STAT signalling was shown to be involved in the pathological amplification of IFN responses observed in SLE. Type I IFN signatures identified were successfully applied for the monitoring of interferon responses in PBMCs of an independent cohort of SLE patients and virus-infected individuals. Moreover, these cell-type specific gene signatures allowed a correct classification of PBMCs independent from their heterogenic cellular composition. In conclusion, our data show for the first time that monocytes and CD4 cells are sensitive biosensors to monitor type I interferon response signatures in autoimmunity and viral infection and how these transriptional responses are modulated in a cell- and disease-specific manner.
doi:10.1371/journal.pone.0083776
PMCID: PMC3877094  PMID: 24391825
11.  Exhausted Cytotoxic Control of Epstein-Barr Virus in Human Lupus 
PLoS Pathogens  2011;7(10):e1002328.
Systemic Lupus Erythematosus (SLE) pathology has long been associated with an increased Epstein-Barr Virus (EBV) seropositivity, viremia and cross-reactive serum antibodies specific for both virus and self. It has therefore been postulated that EBV triggers SLE immunopathology, although the mechanism remains elusive. Here, we investigate whether frequent peaks of EBV viral load in SLE patients are a consequence of dysfunctional anti-EBV CD8+ T cell responses. Both inactive and active SLE patients (n = 76 and 42, respectively), have significantly elevated EBV viral loads (P = 0.003 and 0.002, respectively) compared to age- and sex-matched healthy controls (n = 29). Interestingly, less EBV-specific CD8+ T cells are able to secrete multiple cytokines (IFN-γ, TNF-α, IL-2 and MIP-1β) in inactive and active SLE patients compared to controls (P = 0.0003 and 0.0084, respectively). Moreover, EBV-specific CD8+ T cells are also less cytotoxic in SLE patients than in controls (CD107a expression: P = 0.0009, Granzyme B release: P = 0.0001). Importantly, cytomegalovirus (CMV)-specific responses were not found significantly altered in SLE patients. Furthermore, we demonstrate that EBV-specific CD8+ T cell impairment is a consequence of their Programmed Death 1 (PD-1) receptor up-regulation, as blocking this pathway reverses the dysfunctional phenotype. Finally, prospective monitoring of lupus patients revealed that disease flares precede EBV reactivation. In conclusion, EBV-specific CD8+ T cell responses in SLE patients are functionally impaired, but EBV reactivation appears to be an aggravating consequence rather than a cause of SLE immunopathology. We therefore propose that autoimmune B cell activation during flares drives frequent EBV reactivation, which contributes in a vicious circle to the perpetuation of immune activation in SLE patients.
Author Summary
Systemic Lupus Erythematosus (SLE) has been associated with Epstein-Barr Virus (EBV) infection for decades, however the mechanistic links have remained elusive. Most human adults are infected by EBV and carry the virus for life without clinical symptoms. However, for unknown reasons EBV induces infectious mononucleosis in some individuals, during which cross-reactive antibodies specific for both virus and self have been detected. Interestingly, such cross-reactive antibodies are also frequently found in SLE patients. Since, EBV seropositivity and viremia are more frequent in SLE patients than in healthy individuals, it has been postulated that EBV trigger autoimmunity. Here we show that SLE patients are indeed less capable of controlling EBV viremia, since their EBV-specific CD8+ T cells have diminished capacity to secrete effector molecules (e.g. cytokines and chemokines) and to kill EBV-infected targets as a consequence of their Programmed Death 1 (PD-1) receptor up-regulation. Longitudinal studies further reveal that disease flares precede EBV viremia. Thus, contrary to expectations, EBV reactivation appears to be an aggravating consequence, rather than a cause, of SLE immunopathology. Our results pave the way for immunological interventions that restore the host-EBV balance, which may result in decreased levels of aggravating cross-reactive antibodies and ultimately be beneficial to SLE patients.
doi:10.1371/journal.ppat.1002328
PMCID: PMC3197610  PMID: 22028659
12.  IRF5 activation in monocytes of SLE patients is triggered by circulating autoantigens independent of type I IFN 
Arthritis and Rheumatism  2012;64(3):788-798.
Objective
Genetic variants of interferon regulatory factor 5 (IRF5) are associated with susceptibility to systemic lupus erythematosus (SLE). IRF5 regulates the expression of proinflammatory cytokines and type I interferons (IFN) believed to be involved in SLE pathogenesis. The aim of this study was to determine the activation status of IRF5 by assessing its nuclear localization in immune cells of SLE patients and healthy donors, and to identify SLE triggers of IRF5 activation.
Methods
IRF5 nuclear localization in subpopulations of peripheral blood mononuclear cells (PBMC) from 14 genotyped SLE patients and 11 healthy controls was assessed using imaging flow cytometry. IRF5 activation and function were examined after ex vivo stimulation of healthy donor monocytes with SLE serum or components of SLE serum. Cellular localization was determined by ImageStream and cytokine expression by Q-PCR and ELISA.
Results
IRF5 was activated in a cell type-specific manner; monocytes of SLE patients had constitutively elevated levels of nuclear IRF5 compared to NK and T cells. SLE serum was identified as a trigger for IRF5 nuclear accumulation; however, neither IFNα nor SLE immune complexes could induce nuclear localization. Instead, autoantigens comprised of apoptotic/necrotic material triggered IRF5 nuclear accumulation in monocytes. Production of cytokines IFNα, TNFα and IL6 in monocytes stimulated with SLE serum or autoantigens was distinct yet correlated with the kinetics of IRF5 nuclear localization.
Conclusion
This study provides the first formal proof that IRF5 activation is altered in monocytes of SLE patients that is in part contributed by the SLE blood environment.
doi:10.1002/art.33395
PMCID: PMC3288585  PMID: 21968701
13.  Preferential Binding to Elk-1 by SLE-Associated IL10 Risk Allele Upregulates IL10 Expression 
PLoS Genetics  2013;9(10):e1003870.
Immunoregulatory cytokine interleukin-10 (IL-10) is elevated in sera from patients with systemic lupus erythematosus (SLE) correlating with disease activity. The established association of IL10 with SLE and other autoimmune diseases led us to fine map causal variant(s) and to explore underlying mechanisms. We assessed 19 tag SNPs, covering the IL10 gene cluster including IL19, IL20 and IL24, for association with SLE in 15,533 case and control subjects from four ancestries. The previously reported IL10 variant, rs3024505 located at 1 kb downstream of IL10, exhibited the strongest association signal and was confirmed for association with SLE in European American (EA) (P = 2.7×10−8, OR = 1.30), but not in non-EA ancestries. SNP imputation conducted in EA dataset identified three additional SLE-associated SNPs tagged by rs3024505 (rs3122605, rs3024493 and rs3024495 located at 9.2 kb upstream, intron 3 and 4 of IL10, respectively), and SLE-risk alleles of these SNPs were dose-dependently associated with elevated levels of IL10 mRNA in PBMCs and circulating IL-10 protein in SLE patients and controls. Using nuclear extracts of peripheral blood cells from SLE patients for electrophoretic mobility shift assays, we identified specific binding of transcription factor Elk-1 to oligodeoxynucleotides containing the risk (G) allele of rs3122605, suggesting rs3122605 as the most likely causal variant regulating IL10 expression. Elk-1 is known to be activated by phosphorylation and nuclear localization to induce transcription. Of interest, phosphorylated Elk-1 (p-Elk-1) detected only in nuclear extracts of SLE PBMCs appeared to increase with disease activity. Co-expression levels of p-Elk-1 and IL-10 were elevated in SLE T, B cells and monocytes, associated with increased disease activity in SLE B cells, and were best downregulated by ERK inhibitor. Taken together, our data suggest that preferential binding of activated Elk-1 to the IL10 rs3122605-G allele upregulates IL10 expression and confers increased risk for SLE in European Americans.
Author Summary
Systemic lupus erythematosus (SLE), a debilitating autoimmune disease characterized by the production of pathogenic autoantibodies, has a strong genetic basis. Variants of the IL10 gene, which encodes cytokine interleukin-10 (IL-10) with known function of promoting B cell hyperactivity and autoantibody production, are associated with SLE and other autoimmune diseases, and serum IL-10 levels are elevated in SLE patients correlating with increased disease activity. In this study, to discover SLE-predisposing causal variant(s), we assessed variants within the genomic region containing IL10 and its gene family member IL19, IL20 and IL24 for association with SLE in case and control subjects from diverse ancestries. We identified SLE-associated SNP rs3122605 located at 9.2 kb upstream of IL10 as the most likely causal variant in subjects of European ancestry. The SLE-risk allele of rs3122605 was dose-dependently associated with elevated IL10 expression at both mRNA and protein levels in peripheral blood samples from SLE patients and controls, which could be explained, at least in part, by its preferential binding to Elk-1, a transcription factor activated in B cells during active disease of SLE patients. Elk-1-mediated IL-10 overexpression could be downregulated by inhibiting activation of mitogen-activated protein kinases, suggesting a potential therapeutic target for SLE.
doi:10.1371/journal.pgen.1003870
PMCID: PMC3794920  PMID: 24130510
14.  Interferon-lambda1 induces peripheral blood mononuclear cell-derived chemokines secretion in patients with systemic lupus erythematosus: its correlation with disease activity 
Introduction
Systemic lupus erythematosus (SLE) is an autoimmune disease involving multiple organ systems. Previous studies have suggested that interferon-lambda 1 (IFN-λ1), a type III interferon, plays an immunomodulatory role. In this study we investigated its role in SLE, including its correlation with disease activity, organ disorder and production of chemokines.
Methods
We determined levels of IFN-λ1 mRNA in peripheral blood mononuclear cells (PBMC) and serum protein levels in patients with SLE using real-time polymerase chain reaction (real-time PCR) and enzyme-linked immunoassay (ELISA). Further, we detected the concentration of IFN-inducible protein-10 (IP-10), monokine induced by IFN-γ (MIG) and interleukin-8 (IL-8) secreted by PBMC under the stimulation of IFN-λ1 using ELISA.
Results
IFN-λ1 mRNA and serum protein levels were higher in patients with SLE compared with healthy controls. Patients with active disease showed higher IFN-λ1 mRNA and serum protein levels compared with those with inactive disease as well. Serum IFN-λ1 levels were positively correlated with Systemic Lupus Erythematosus Disease Activity Index (SLEDAI), anti-dsDNA antibody, C-reactive protein (CRP) and negatively correlated with complement 3. Serum IFN-λ1 levels were higher in SLE patients with renal involvement and arthritis compared with patients without the above-mentioned manifestations. IFN-λ1 with different concentrations displayed different effects on the secretion of the chemokines IP-10, MIG and IL-8.
Conclusions
These findings indicate that IFN-λ1 is probably involved in the renal disorder and arthritis progression of SLE and associated with disease activity. Moreover, it probably plays an important role in the pathogenesis of SLE by stimulating secretion of the chemokines IP-10, MIG and IL-8. Thus, IFN-λ1 may provide a novel research target for the pathogenesis and therapy of SLE.
doi:10.1186/ar3363
PMCID: PMC3218903  PMID: 21679442
15.  Type I interferon signature is high in lupus and neuromyelitis optica but low in multiple sclerosis 
Objective
Neuromyelitis optica (NMO) is characterized by selective inflammation of the spinal cord and optic nerves but is distinct from multiple sclerosis (MS). Interferon (IFN)-β mitigates disease activity in MS, but is controversial in NMO, with a few reports of disease worsening after IFN-β therapy in this highly active disease. In systemic lupus erythematosus (SLE), IFNs adversely affect disease activity. This study examines for the first time whether serum IFN-α/β activity and IFN-β-induced responses in peripheral blood mononuclear cells (MNC) are abnormally elevated in NMO, as they are in SLE, but contrast to low levels in MS.
Methods
Serum type I IFN-α/β activity was measured by a previously validated bioassay of 3 IFN-stimulated genes (RT-PCR sensitivity, 0.1 U/ml) rather than ELISA, which has lower sensitivity and specificity for measuring serum IFNs. IFN responses in PBMNC were assessed by in vitro IFN-β-induced activation of phospho-tyrosine-STAT1 and phospho-serine-STAT1 transcription factors, and MxA proteins using Western blots.
Results
Serum IFN-α/β activity was highest in SLE patients, followed by healthy subjects and NMO, but was surprisingly low in therapy-naïve MS. In functional assays in vitro, IFN-β-induced high levels of P-S-STAT1 in NMO and SLE, but not in MS and controls. IFN-β-induced MxA protein levels were elevated in NMO and SLE compared to MS.
Conclusions
Serum IFN activity and IFN-β-induced responses in PBMNC are elevated in SLE and NMO patients versus MS. This argues for similarities in pathophysiology between NMO and SLE and provides an explanation for IFN-induced disease worsening in NMO.
doi:10.1016/j.jns.2011.09.032
PMCID: PMC3910514  PMID: 22036215
NMO; MS; SLE; Interferon; STAT1; MxA
16.  Influenza Virus Non-Structural Protein 1 (NS1) Disrupts Interferon Signaling 
PLoS ONE  2010;5(11):e13927.
Type I interferons (IFNs) function as the first line of defense against viral infections by modulating cell growth, establishing an antiviral state and influencing the activation of various immune cells. Viruses such as influenza have developed mechanisms to evade this defense mechanism and during infection with influenza A viruses, the non-structural protein 1 (NS1) encoded by the virus genome suppresses induction of IFNs-α/β. Here we show that expression of avian H5N1 NS1 in HeLa cells leads to a block in IFN signaling. H5N1 NS1 reduces IFN-inducible tyrosine phosphorylation of STAT1, STAT2 and STAT3 and inhibits the nuclear translocation of phospho-STAT2 and the formation of IFN-inducible STAT1:1-, STAT1:3- and STAT3:3- DNA complexes. Inhibition of IFN-inducible STAT signaling by NS1 in HeLa cells is, in part, a consequence of NS1-mediated inhibition of expression of the IFN receptor subunit, IFNAR1. In support of this NS1-mediated inhibition, we observed a reduction in expression of ifnar1 in ex vivo human non-tumor lung tissues infected with H5N1 and H1N1 viruses. Moreover, H1N1 and H5N1 virus infection of human monocyte-derived macrophages led to inhibition of both ifnar1 and ifnar2 expression. In addition, NS1 expression induces up-regulation of the JAK/STAT inhibitors, SOCS1 and SOCS3. By contrast, treatment of ex vivo human lung tissues with IFN-α results in the up-regulation of a number of IFN-stimulated genes and inhibits both H5N1 and H1N1 virus replication. The data suggest that NS1 can directly interfere with IFN signaling to enhance viral replication, but that treatment with IFN can nevertheless override these inhibitory effects to block H5N1 and H1N1 virus infections.
doi:10.1371/journal.pone.0013927
PMCID: PMC2978095  PMID: 21085662
17.  Association of Endogenous Anti–Interferon-α Autoantibodies With Decreased Interferon-Pathway and Disease Activity in Patients With Systemic Lupus Erythematosus 
Arthritis and rheumatism  2011;63(8):2407-2415.
Objective
Numerous observations implicate interferon-α (IFNα) in the pathophysiology of systemic lupus erythematosus (SLE); however, the potential impact of endogenous anti-IFNα autoantibodies (AIAAs) on IFN-pathway and disease activity is unclear. The aim of this study was to characterize IFN-pathway activity and the serologic and clinical profiles of AIAA-positive patients with SLE.
Methods
Sera obtained from patients with SLE (n = 49), patients with rheumatoid arthritis (n = 25), and healthy control subjects (n = 25) were examined for the presence of AIAAs, using a biosensor immunoassay. Serum type I IFN bioactivity and the ability of AIAA-positive sera to neutralize IFNα activity were determined using U937 cells. Levels of IFN-regulated gene expression in peripheral blood were determined by microarray, and serum levels of BAFF, IFN-inducible chemokines, and other autoantibodies were measured using immunoassays.
Results
AIAAs were detected in 27% of the serum samples from patients with SLE, using a biosensor immunoassay. Unsupervised hierarchical clustering analysis identified 2 subgroups of patients, IFNlow and IFNhigh, that differed in the levels of serum type I IFN bioactivity, IFN-regulated gene expression, BAFF, anti-ribosomal P, and anti-chromatin autoantibodies, and in AIAA status. The majority of AIAA-positive patients had significantly lower levels of serum type I IFN bioactivity, reduced downstream IFN-pathway activity, and lower disease activity compared with the IFNhigh patients. AIAA-positive sera were able to effectively neutralize type I IFN activity in vitro.
Conclusion
Patients with SLE commonly harbor AIAAs. AIAA-positive patients have lower levels of serum type I IFN bioactivity and evidence for reduced downstream IFN-pathway and disease activity. AIAAs may influence the clinical course in SLE by blunting the effects produced by IFNα.
doi:10.1002/art.30399
PMCID: PMC4028124  PMID: 21506093
18.  SLE Monocytes are Less Responsive to IL-10 in the Presence of Immune Complexes 
Arthritis and rheumatism  2011;63(1):212-218.
Objective
Systemic lupus erythematosus (SLE) is a systemic inflammatory disease characterized by autoantibody production and immune complex deposition. Interleukin-10 (IL-10), predominantly an anti-inflammatory cytokine, is paradoxically elevated in SLE patients. We hypothesize that the anti-inflammatory function of IL-10 is impaired in monocytes from SLE patients who are chronically exposed to immune complexes.
Methods
CD14+ monocytes were isolated from healthy donors and SLE patients with all experiments done in pairs. Cultured CD14+ cells were treated with heat-aggregated human IgG (HIg 325 μg/ml) in the presence or absence of IL-10 (20 ng/ml). To study gene expression, RNA was extracted 3 hours after treatment. To study cytokine production, supernatants were harvested after 8 hours. To study IL-10 signaling, cell lysates were obtained from CD14+ cells treated with HIg (325 μg/ml) for 1 hour followed by IL-10 (20 ng/ml) treatment for 10 minutes. Western blot was used to assess STAT3 phosphorylation.
Results
SLE monocytes produced more TNFα and IL-6 than control cells when stimulated with HIg. IL-10 had less suppressive effect on HIg-induced TNFα and IL-6 production in SLE monocytes, although IL-10 receptor expression was similar in SLE and control monocytes. HIg suppressed IL-10R expression and altered IL-10 signaling in control monocytes. Like SLE monocytes, IFNα-primed control monocytes stimulated with HIg were also less responsive to IL-10.
Conclusion
HIg and IFNα modulate IL-10 function. In SLE monocytes, which are considered IFNα-primed and chronically exposed to immune complexes, responses to IL-10 are abnormal, limiting the anti-inflammatory effect of this cytokine.
doi:10.1002/art.30083
PMCID: PMC3014998  PMID: 20954190
19.  Multidimensional Single Cell Based STAT Phosphorylation Profiling Identifies a Novel Biosignature for Evaluation of Systemic Lupus Erythematosus Activity 
PLoS ONE  2011;6(7):e21671.
Introduction
Dysregulated cytokine action on immune cells plays an important role in the initiation and progress of systemic lupus erythematosus (SLE), a complex autoimmune disease. Comprehensively quantifying basal STATs phosphorylation and their signaling response to cytokines should help us to better understand the etiology of SLE.
Methods
Phospho-specific flow cytometry was used to measure the basal STAT signaling activation in three immune cell types of peripheral-blood mononuclear cells from 20 lupus patients, 9 rheumatoid arthritis (RA) patients and 13 healthy donors (HDs). A panel of 27 cytokines, including inflammatory cytokines, was measured with Bio-Plex™ Human Cytokine Assays. Serum Prolactin levels were measured with an immunoradiometric assay. STAT signaling responses to inflammatory cytokines (interferon α [IFNα], IFNγ, interleukin 2 [IL2], IL6, and IL10) were also monitored.
Results
We observed the basal activation of STAT3 in SLE T cells and monocytes, and the basal activation of STAT5 in SLE T cells and B cells. The SLE samples clustered into two main groups, which were associated with the SLE Disease Activity Index 2000, their erythrocyte sedimentation rate, and their hydroxychloroquine use. The phosphorylation of STAT5 in B cells was associated with cytokines IL2, granulocyte colony-stimulating factor (G-CSF), and IFNγ, whereas serum prolactin affected STAT5 activation in T cells. The responses of STAT1, STAT3, and STAT5 to IFNα were greatly reduced in SLE T cells, B cells, and monocytes, except for the STAT1 response to IFNα in monocytes. The response of STAT3 to IL6 was reduced in SLE T cells.
Conclusions
The basal activation of STATs signaling and reduced response to cytokines may be helpful us to identify the activity and severity of SLE.
doi:10.1371/journal.pone.0021671
PMCID: PMC3142107  PMID: 21799742
20.  DEFICIENCY OF THE TYPE I INTERFERON RECEPTOR PROTECTS MICE FROM EXPERIMENTAL LUPUS 
Arthritis and rheumatism  2007;56(11):3770-3783.
Objective
Systemic lupus erythematosus (SLE) is diagnosed by a spectrum of clinical manifestations and autoantibodies associated with abnormal expression of Type I interferon (IFN-I) stimulated genes (ISGs). The role of IFN-I in the pathogenesis of SLE remains uncertain, partly due to the lack of suitable animal models. The objective of this study was to examine the role of IFN-I signaling in the pathogenesis of murine lupus induced by 2, 6, 10, 14 tetramethylpentadecane (TMPD).
Methods
129Sv IFN-I receptor deficient (IFNAR−/−) and control 129Sv mice were treated i.p. with TMPD. The expression of ISGs was measured by real-time PCR. Autoantibody production was evaluated by immunofluorescence and ELISA. Proteinuria and renal glomerular cellularity were measured and renal immune complexes were examined by immunofluorescence.
Results
Increased ISG expression was seen in peripheral blood of TMPD-treated wild type but not IFNAR−/− mice. TMPD did not induce lupus-specific autoantibodies (anti-nRNP/Sm, -dsDNA) in IFNAR−/− mice, whereas 129Sv controls developed these specificities. Although glomerular immune complexes were present in IFNAR−/− mice, proteinuria and glomerular hypercellularity did not develop, unlike TMPD-treated controls. Thus, consistent with the association of increased ISG expression with lupus-specific autoantibodies, and nephritis in humans, these clinical and serological manifestations were strongly dependent on IFNAR signaling in TMPD-treated mice.
Conclusion
Signaling via the IFNAR is central to the pathogenesis of autoantibodies and glomerulonephritis in TMPD-lupus, consistent with a similar role in human SLE. TMPD-lupus is the first animal model shown to recapitulate the interferon signature in peripheral blood.
doi:10.1002/art.23023
PMCID: PMC2909118  PMID: 17968932
21.  Hydroxychloroquine is associated with impaired interferon-alpha and tumor necrosis factor-alpha production by plasmacytoid dendritic cells in systemic lupus erythematosus 
Arthritis Research & Therapy  2012;14(3):R155.
Introduction
Plasmacytoid dendritic cells (pDCs) constitutively express two members of the Toll-like receptor (TLR) family, TLR-9 and TLR-7, through which they can be stimulated to produce high levels of interferon (IFN)-α, a key mediator of the pathogenesis of systemic lupus erythematosus (SLE). Given the known efficacy of hydroxychloroquine (HCQ) in the treatment of SLE, we examined its ability to inhibit such pDC function in vivo.
Methods
Peripheral blood mononuclear cells (PBMCs) from SLE subjects treated or not with HCQ and from healthy controls were stimulated with the TLR-9 agonist, CpG oligodeoxynucleotides (CpG-A ODN)-2216, and the TLR-7 agonist, imiquimod. The proportion of monocytes, B cells, myeloid dendritic cells, pDCs, and natural killer (NK) cells producing IFN-α and tumor necrosis factor alpha (TNF-α) was then analyzed by multiparameter flow cytometry.
Results
After TLR-9/7 stimulation in both SLE and healthy subjects, significant production of IFN-α and TNF-α was only observed in pDCs. TLR-7 and TLR-9 induced IFN-α and TNF-α production by pDCs from subjects with SLE was decreased relative to that found in controls (TLR-9/IFN-α, P < 0.0001; TLR-9/TNF-α P < 0.0001; TLR-7/TNF-α P = 0.01). TLR-9 and TLR-7 induced IFN-α and TNF-α production by pDCs was severely impaired in 36% (TLR-9) and 33% (TLR-7) of SLE subjects. In almost all cases, these subjects were being treated with HCQ (HCQ vs. no HCQ: impaired TLR-9/IFN-α, P = 0.0003; impaired TLR-7/IFN-α, P = 0.07; impaired TLR-9/TNF-α, P < 0.009; impaired TLR-7/TNF-α, P < 0.01).
Conclusions
Treatment with HCQ is associated with impaired ability of pDCs from subjects with SLE to produce IFN-α and TNF-α upon stimulation with TLR-9 and TLR-7 agonists.
doi:10.1186/ar3895
PMCID: PMC3446541  PMID: 22734582
22.  Division of labor by dual feedback regulators controls JAK2/STAT5 signaling over broad ligand range 
Quantitative analysis of time-resolved data in primary erythroid progenitor cells reveals that a dual negative transcriptional feedback mechanism underlies the ability of STAT5 to respond to the broad spectrum of physiologically relevant Epo concentrations.
A mathematical dual feedback model of the Epo-induced JAK2/STAT5 signaling pathway was calibrated with extensive time-resolved quantitative data sets from immunoblotting, mass spectrometry and qRT–PCR experiments in primary erythroid progenitor cells.We show that the amount of nuclear phosphorylated STAT5 integrated for 60 min post Epo stimulation directly correlates with the fraction of surviving cells 24 h later.CIS and SOCS3 were identified as the most relevant transcriptional feedback regulators of JAK2/STAT5 signaling in primary erythroid progenitor cells. Applying the model, we revealed that CIS-mediated inhibitory effects are most important at low ligand concentrations, whereas SOCS3 inhibition is more effective at high ligand doses.The distinct modes of inhibition of CIS and SOCS3 at various Epo concentrations provide a strategy for achieving control of JAK2/STAT5 signaling over the entire range of physiological Epo concentrations.
Cells interpret information encoded by extracellular stimuli through the activation of intracellular signaling networks and translate this information into cellular decisions. A prime example for a system that is exposed to extremely variable ligand concentrations is the erythroid lineage. The key regulator Erythropoietin (Epo) facilitates continuous renewal of erythrocytes at low basal levels but also secures compensation in case of, e.g., blood loss through an up to 1000-fold increase in hormone concentration. The Epo receptor (EpoR) is expressed on erythroid progenitor cells at the colony forming unit erythroid (CFU-E) stage. Stimulation of these cells with Epo leads to rapid but transient activation of receptor and JAK2 phosphorylation followed by phosphorylation of the latent transcription factor STAT5. Although STAT5 is known to be an essential regulator of survival and differentiation of erythroid progenitor cells, a quantitative link between the dynamic properties of STAT5 signaling and survival decisions remained unknown. STAT5-mediated responses in CFU-E cells are modulated by multiple attenuation mechanisms that operate on different time scales. Fast-acting mechanisms such as depletion of Epo by rapid receptor turnover and recruitment of the phosphatase SHP-1 control the initial signal amplitude at the receptor level. Transcriptional feedback regulators such as suppressor of cytokine signaling (SOCS) family members CIS and SOCS3 operate at a slower time scale. Despite the ample knowledge of the individual components involved, only little is known about the specific contributions of these regulators in controlling dynamic properties of STAT5 in response to a broad range of input signals. Therefore, dynamic pathway modeling is required to understand the complex regulatory network of feedback regulators.
To address these questions, we established a dual negative feedback model of JAK2/STAT5 signaling in primary erythroid progenitor cells isolated from mouse fetal livers. We provide a large data set of JAK2/STAT5 signaling dynamics employing quantitative immunoblotting, mass spectrometry and quantitative RT–PCR measured under different perturbation conditions to calibrate our model (Figure 3). The structure of our model was constructed to comprise the minimal number of parameters necessary to explain the data. Thereby, we aimed at a model with fully identifiable parameters that are essential to obtain high predictive power. Parameter identifiability was analyzed by the profile likelihood approach. Applying this method, we could establish a dual negative feedback model of JAK2-STAT5 signaling with structurally and in most cases practically identifiable parameters.
A major bottle-neck in combining signal transduction events with cellular phenotypes is the discrepancy in the time scale and stimuli concentrations that are applied in the different experiments. The sensitivity of biochemical assays to determine phosphorylation events within minutes or hours after stimulation is usually lower than the threshold of sensitivity in assays to determine the physiological response after one or more days. Facilitated by the model, we were able to compute the integrated response of JAK2/STAT5 signaling components for experimentally unaddressable Epo concentrations. Our results demonstrate that the integrated response of pSTAT5 in the nucleus accurately correlates with the experimentally determined survival of CFU-E cells. This provides a quantitative link of the dependency of primary CFU-E cells on pSTAT5 activation dynamics. By correlation analysis, we could identify the early signaling phase (⩽1 h) of STAT5 to be the most predictive for the fraction of surviving cells, which was determined ∼24 h later. Thus, we hypothesize that as a general principle in apoptotic decisions, ligand concentrations translated into kinetic-encoded information of early signaling events downstream of receptors can be predictive for survival decisions 24 h later.
After the first hour of stimulation, it is important to constrain signaling to a residual steady-state level. Constitutive phosphorylation of the JAK2/STAT5 pathway has a crucial role in the onset of polycythemia vera (PV), a disease associated with Epo-independent erythroid differentiation. The two identified transcriptional feedback proteins, CIS and SOCS3, are responsible for adjusting the phosphorylation level of STAT5 after 1 h of stimulation. Since the Epo input signal can vary over a broad range of ligand concentrations, we asked how CIS and SOCS3 can facilitate control of STAT5 long-term phosphorylation levels over the entire physiological relevant hormone concentrations. By using model simulations, we revealed that the two feedbacks are most effective at different Epo concentration ranges. Predicted by our mathematical model, the major role of CIS in modulating STAT5 phosphorylation levels is at low, basal Epo concentrations, whereas SOCS3 is essential to control the STAT5 phosphorylation levels at high Epo doses (Figure 6). As a potential molecular mechanism of this dose-dependent inhibitory effect, we could identify the quantity of pJAK2 relative to pEpoR that increases with higher Epo concentrations. Since SOCS3 can inhibit JAK2 directly via its KIR domain to attenuate downstream STAT5 activation, SOCS3 becomes more effective with the relative increase of JAK2 activation. Hence, CIS and SOCS3 act in a concerted manner to ensure tight regulation of STAT5 responses over the broad physiological range of Epo concentrations.
In summary, our mathematical approach provided new insights into the specific function of feedback regulation in STAT5-mediated life or death decisions of primary erythroid cells. We dissected the roles of the transcriptionally induced proteins CIS and SOCS3 that operate as dual feedback with divided function thereby facilitating the control of STAT5 activation levels over the entire range of physiological Epo concentrations. The detailed understanding of the molecular processes and control distribution of Epo-induced JAK/STAT signaling can be further applied to gain insights into alterations promoting malignant hematopoietic diseases.
Cellular signal transduction is governed by multiple feedback mechanisms to elicit robust cellular decisions. The specific contributions of individual feedback regulators, however, remain unclear. Based on extensive time-resolved data sets in primary erythroid progenitor cells, we established a dynamic pathway model to dissect the roles of the two transcriptional negative feedback regulators of the suppressor of cytokine signaling (SOCS) family, CIS and SOCS3, in JAK2/STAT5 signaling. Facilitated by the model, we calculated the STAT5 response for experimentally unobservable Epo concentrations and provide a quantitative link between cell survival and the integrated response of STAT5 in the nucleus. Model predictions show that the two feedbacks CIS and SOCS3 are most effective at different ligand concentration ranges due to their distinct inhibitory mechanisms. This divided function of dual feedback regulation enables control of STAT5 responses for Epo concentrations that can vary 1000-fold in vivo. Our modeling approach reveals dose-dependent feedback control as key property to regulate STAT5-mediated survival decisions over a broad range of ligand concentrations.
doi:10.1038/msb.2011.50
PMCID: PMC3159971  PMID: 21772264
apoptosis; erythropoietin; mathematical modeling; negative feedback; SOCS
23.  MicroRNA-3148 Modulates Allelic Expression of Toll-Like Receptor 7 Variant Associated with Systemic Lupus Erythematosus 
PLoS Genetics  2013;9(2):e1003336.
We previously reported that the G allele of rs3853839 at 3′untranslated region (UTR) of Toll-like receptor 7 (TLR7) was associated with elevated transcript expression and increased risk for systemic lupus erythematosus (SLE) in 9,274 Eastern Asians [P = 6.5×10−10, odds ratio (OR) (95%CI) = 1.27 (1.17–1.36)]. Here, we conducted trans-ancestral fine-mapping in 13,339 subjects including European Americans, African Americans, and Amerindian/Hispanics and confirmed rs3853839 as the only variant within the TLR7-TLR8 region exhibiting consistent and independent association with SLE (Pmeta = 7.5×10−11, OR = 1.24 [1.18–1.34]). The risk G allele was associated with significantly increased levels of TLR7 mRNA and protein in peripheral blood mononuclear cells (PBMCs) and elevated luciferase activity of reporter gene in transfected cells. TLR7 3′UTR sequence bearing the non-risk C allele of rs3853839 matches a predicted binding site of microRNA-3148 (miR-3148), suggesting that this microRNA may regulate TLR7 expression. Indeed, miR-3148 levels were inversely correlated with TLR7 transcript levels in PBMCs from SLE patients and controls (R2 = 0.255, P = 0.001). Overexpression of miR-3148 in HEK-293 cells led to significant dose-dependent decrease in luciferase activity for construct driven by TLR7 3′UTR segment bearing the C allele (P = 0.0003). Compared with the G-allele construct, the C-allele construct showed greater than two-fold reduction of luciferase activity in the presence of miR-3148. Reduced modulation by miR-3148 conferred slower degradation of the risk G-allele containing TLR7 transcripts, resulting in elevated levels of gene products. These data establish rs3853839 of TLR7 as a shared risk variant of SLE in 22,613 subjects of Asian, EA, AA, and Amerindian/Hispanic ancestries (Pmeta = 2.0×10−19, OR = 1.25 [1.20–1.32]), which confers allelic effect on transcript turnover via differential binding to the epigenetic factor miR-3148.
Author Summary
Systemic lupus erythematosus (SLE) is a debilitating autoimmune disease contributed to by excessive innate immune activation involving toll-like receptors (TLRs, particularly TLR7/8/9) and type I interferon (IFN) signaling pathways. TLR7 responds against RNA–containing nuclear antigens and activates IFN-α pathway, playing a pivotal role in the development of SLE. While a genomic duplication of Tlr7 promotes lupus-like disease in the Y-linked autoimmune accelerator (Yaa) murine model, the lack of common copy number variations at TLR7 in humans led us to identify a functional single nucleotide polymorphism (SNP), rs3853839 at 3′ UTR of the TLR7 gene, associated with SLE susceptibility in Eastern Asians. In this study, we fine-mapped the TLR7-TLR8 region and confirmed rs3853839 exhibiting the strongest association with SLE in European Americans, African Americans, and Amerindian/Hispanics. Individuals carrying the risk G allele of rs3853839 exhibited increased TLR7 expression at the both mRNA and protein level and decreased transcript degradation. MicroRNA-3148 (miR-3148) downregulated the expression of non-risk allele (C) containing transcripts preferentially, suggesting a likely mechanism for increased TLR7 levels in risk-allele carriers. This trans-ancestral mapping provides evidence for the global association with SLE risk at rs3853839, which resides in a microRNA–gene regulatory site affecting TLR7 expression.
doi:10.1371/journal.pgen.1003336
PMCID: PMC3585142  PMID: 23468661
24.  Association of IRF5 polymorphisms with activation of the interferon α pathway 
Annals of the rheumatic diseases  2009;69(3):611-617.
Objective
The genetic association of interferon regulatory factor 5 (IRF5) with systemic lupus erythematosus (SLE) susceptibility has been convincingly established. To gain understanding of the effect of IRF5 variation in individuals without SLE, a study was undertaken to examine whether such genetic variation predisposes to activation of the interferon α (IFNα) pathway.
Methods
Using a computer simulated approach, 14 single nucleotide polymorphisms (SNPs) and haplotypes of IRF5 were tested for association with mRNA expression levels of IRF5, IFNα and IFN-inducible genes and chemokines in lymphoblastoid cell lines (LCLs) from individuals of European (CEU), Han Chinese (CHB), Japanese (JPT) and Yoruba Nigerian (YRI) backgrounds. IFN-inducible gene expression was assessed in LCLs from children with SLE in the presence and absence of IFNα stimulation.
Results
The major alleles of IRF5 rs13242262 and rs2280714 were associated with increased IRF5 mRNA expression levels in the CEU, CHB+JPT and YRI samples. The minor allele of IRF5 rs10488631 was associated with increased IRF5, IFNα and IFN-inducible chemokine expression in CEU (pc=0.0005, 0.01 and 0.04, respectively). A haplotype containing these risk alleles of rs13242262, rs10488631 and rs2280714 was associated with increased IRF5, IFNα and IFN-inducible chemokine expression in CEU LCLs. In vitro studies showed specific activation of IFN-inducible genes in LCLs by IFNα.
Conclusions
SNPs of IRF5 in healthy individuals of a number of ethnic groups were associated with increased mRNA expression of IRF5. In European-derived individuals, an IRF5 haplotype was associated with increased IRF5, IFNα and IFN-inducible chemokine expression. Identifying individuals genetically predisposed to increased IFN-inducible gene and chemokine expression may allow early detection of risk for SLE.
doi:10.1136/ard.2009.118315
PMCID: PMC3135414  PMID: 19854706
25.  Development of Potential Pharmacodynamic and Diagnostic Markers for Anti-IFN-α Monoclonal Antibody Trials in Systemic Lupus Erythematosus 
To identify potential pharmacodynamic biomarkers to guide dose selection in clinical trials using anti-interferon-alpha (IFN-α) monoclonal antibody (mAb) therapy for systemic lupus erythematosus (SLE), we used an Affymetrix human genome array platform and identified 110 IFN-α/β-inducible transcripts significantly upregulated in whole blood (WB) of 41 SLE patients. The overexpression of these genes was confirmed prospectively in 54 additional SLE patients and allowed for the categorization of the SLE patients into groups of high, moderate, and weak overexpressers of IFN-α/β-inducible genes. This approach could potentially allow for an accurate assessment of drug target neutralization in early trials of anti-IFN-α mAb therapy for SLE. Furthermore, ex vivo stimulation of healthy donor peripheral blood mononuclear cells with SLE patient serum and subsequent neutralization with anti-IFN-α mAb or anti-IFN-α receptor mAb showed that anti-IFN-α mAb has comparable effects of neutralizing the overexpression of type I IFN-inducible genes as that of anti-IFNAR mAb. These results suggest that IFN-α, and not other members of type I IFN family in SLE patients, is mainly responsible for the induction of type I IFN-inducible genes in WB of SLE patients. Taken together, these data strengthen the view of IFN-α as a therapeutic target for SLE.
doi:10.4061/2009/374312
PMCID: PMC2950308  PMID: 20948567

Results 1-25 (1075510)