Search tips
Search criteria

Results 1-25 (520988)

Clipboard (0)

Related Articles

1.  Suppression of NF-κB-mediated β-defensin gene expression in the mammalian airway by the Bordetella type III secretion system 
Cellular microbiology  2005;7(4):489-497.
Expression of innate immune genes such as β-defensins is induced in airway epithelium by bacterial components via activation of NF-κB. We show here that live Gram-negative bacteria can similarly stimulate this pathway, resulting in upregulation of the β-defensin tracheal antimicrobial peptide (TAP) in primary cultures of bovine tracheal epithelial cells (TECs), by a Toll-like receptor 4 (TLR4)-mediated pathway. The Gram-negative airway pathogen Bordetella bronchiseptica possesses a type III secretion system previously suggested to inhibit the nuclear translocation of NF-κB in a cell line by immunohistochemistry. We therefore hypothesized that this pathogen might interfere in the innate immune response of the epithelium. Exposure of TECs to wild-type B. bronchiseptica suppressed the activation of NF-κB and the subsequent induction of TAP mRNA levels, whereas a type III secretion-defective strain did not. These results suggest a mechanism for bacterial evasion of the innate immune response in the airway, which could allow for the observed persistent colonization of this pathogen.
PMCID: PMC2111170  PMID: 15760449
2.  Host Defense Peptides in the Oral Cavity and the Lung: Similarities and Differences 
Journal of dental research  2008;87(10):915-927.
Peptides with broad-spectrum antimicrobial activity are found in the mucosal surfaces at many sites in the body, including the airway, the oral cavity, and the digestive tract. Based on their in vitro antimicrobial and other immunomodulatory activities, these host defense peptides have been proposed to play an important role in the innate defense against pathogenic microbial colonization. The genes that encode these peptides are up-regulated by pathogens, further supporting their role in innate immune defense. However, the differences in the local microbial environments between the generally sterile airway and the highly colonized oral cavity suggest a more complex role for these peptides in innate immunity. For example, β-defensin genes are induced in the airway by all bacteria and Toll-like receptor (TLR) agonists primarily through an NF-κB-mediated pathway. In contrast, the same genes are induced in the gingival epithelium by only a subset of bacteria and TLR ligands, via different pathways. Furthermore, the environments into which the peptides are secreted—specifically saliva, gingival crevicular fluid, and airway surface fluid—differ greatly and can effect their respective activities in host defense. In this review, we examine the differences and similarities between host defense peptides in the oral cavity and the airway, to gain a better understanding of their contributions to immunity.
PMCID: PMC2730219  PMID: 18809744
defensin; cathelicidin; innate immunity; antimicrobial peptide; host-pathogen interaction
3.  Airway Epithelial Expression of Toll-like Receptor 5 is Down-regulated in Healthy Smokers and Smokers with Chronic Obstructive Pulmonary Disease 
The toll-like receptors (TLRs) are important components of the respiratory epithelium host innate defense, enabling the airway surface to recognize and respond to a variety of insults in inhaled air. Based on the knowledge that smokers are more susceptible to pulmonary infection and that the airway epithelium of smokers with chronic obstructive pulmonary disease (COPD) is characterized by bacterial colonization and acute exacerbation of airway infections, we assessed whether smoking alters expression of TLRs in human small airway epithelium, the primary site of smoking-induced disease. Microarrays were used to survey the TLR family gene expression in small airway (10th–12th order) epithelium from healthy nonsmokers (n=60), healthy smokers (n=73) and smokers with COPD (n=36). Using the criteria of detection call of present in ≥50%, 6 of 10 TLRs (1, 2, 3, 4, 5 and 8) were expressed. Compared to nonsmokers, the most striking change was for TLR5, which was down-regulated in healthy smokers (1.4-fold, p<10−10) and smokers with COPD (1.6-fold, p<10−11). TaqMan RT-PCR confirmed these observations. Bronchial biopsy immunofluorescence studies showed that TLR5 was expressed mainly on the apical side of the epithelium and was decreased in healthy smokers and smokers with COPD. In vitro, the level of TLR5 downstream genes, IL-6 and IL-8, were highly induced by flagellin in TLR5 high-expressing cells compared to TLR5 low-expressing cells. In the context that TLR5 functions to recognize pathogens and activate innate immune responses, the smoking-induced down-regulation of TLR5 may contribute to smoking-related susceptibility to airway infection, at least for flagellated bacteria.
PMCID: PMC3579667  PMID: 22855713
4.  Beyond inflammation: airway epithelial cells are at the interface of innate and adaptive immunity 
Current opinion in immunology  2007;19(6):711-720.
It has become increasingly clear that airway epithelial cells are central participants in innate and adaptive immune responses as well as mucosal inflammation. Epithelial cells produce antimicrobial host defense molecules, proinflammatory cytokines and chemokines in response to activation via pathogen recognition receptors. Recruitment of immune cells including dendritic cells, T cells and B cells into the proximity of epithelium results in the enhancement of adaptive immunity through interactions with epithelial cells. Newly identified epithelial-derived cytokines, including TSLP, IL-33 and BAFF, help to shape the local accumulation and activation of Th2 responses and B cell immunoglobulin production. Epithelial cells are also downstream targets of molecules that activate IL-13R and EGFR and are responsible for mucus production in both protective immune responses and allergic airway inflammatory diseases. Improved understanding of epithelial immune and inflammatory responses will hopefully suggest new strategies for therapeutic intervention.
PMCID: PMC2196222  PMID: 17928212
5.  Inhibition of Toll-Like Receptor 2-Mediated Interleukin-8 Production in Cystic Fibrosis Airway Epithelial Cells via the α7-Nicotinic Acetylcholine Receptor 
Mediators of Inflammation  2010;2010:423241.
Cystic Fibrosis (CF) is an inherited disorder characterised by chronic inflammation of the airways. The lung manifestations of CF include colonization with Pseudomonas aeruginosa and Staphylococcus aureus leading to neutrophil-dominated airway inflammation and tissue damage. Inflammation in the CF lung is initiated by microbial components which activate the innate immune response via Toll-like receptors (TLRs), increasing airway epithelial cell production of proinflammatory mediators such as the neutrophil chemokine interleukin-8 (IL-8). Thus modulation of TLR function represents a therapeutic approach for CF. Nicotine is a naturally occurring plant alkaloid. Although it is negatively associated with cigarette smoking and cardiovascular damage, nicotine also has anti-inflammatory properties. Here we investigate the inhibitory capacity of nicotine against TLR2- and TLR4-induced IL-8 production by CFTE29o- airway epithelial cells, determine the role of α7-nAChR (nicotinic acetylcholine receptor) in these events, and provide data to support the potential use of safe nicotine analogues as anti-inflammatories for CF.
PMCID: PMC2850130  PMID: 20379354
6.  Tweaking Innate Immunity: the Promise of Innate Immunologicals As Anti-infectives 
New and exciting insights into the importance of the innate immune system are revolutionizing our understanding of immune defense against infections, pathogenesis, and the treatment and prevention of infectious diseases. The innate immune system uses multiple families of germline-encoded pattern recognition receptors (PRRs) to detect infection and trigger a variety of antimicrobial defense mechanisms. PRRs are evolutionarily highly conserved and serve to detect infection by recognizing pathogen-associated molecular patterns that are unique to microorganisms and essential for their survival. Toll-like receptors (TLRs) are transmembrane signalling receptors that activate gene expression programs that result in the production of proinflammatory cytokines and chemokines, type I interferons and antimicrobial factors. Furthermore, TLR activation facilitates and guides activation of adaptive immune responses through the activation of dendritic cells. TLRs are localized on the cell surface and in endosomal/lysosomal compartments, where they detect bacterial and viral infections. In contrast, nucleotide-binding oligomerization domain proteins and RNA helicases are located in the cell cytoplasm, where they serve as intracellular PRRs to detect cytoplasmic infections, particularly viruses. Due to their ability to enhance innate immune responses, novel strategies to use ligands, synthetic agonists or antagonists of PRRs (also known as ‘innate immunologicals’) can be used as stand-alone agents to provide immediate protection or treatment against bacterial, viral or parasitic infections. Furthermore, the newly appreciated importance of innate immunity in initiating and shaping adaptive immune responses is contributing to our understanding of vaccine adjuvants and promises to lead to improved next-generation vaccines.
PMCID: PMC2095083  PMID: 18382644
Anti-infectives; CpG DNA; Innate immunity; Microbicide; NOD1; NOD2; Pathogen-associated molecular patterns; Pattern recognition receptors; RNA helicases; Toll-like receptors; Vaccine adjuvant
7.  Toll-like receptor and antimicrobial peptide expression in the bovine endometrium 
The endometrium is commonly infected with bacteria leading to severe disease of the uterus in cattle and humans. The endometrial epithelium is the first line of defence for this mucosal surface against bacteria and Toll-like receptors (TLRs) are a critical component of the innate immune system for detection of pathogen associated molecular patterns (PAMPs). Antimicrobial peptides, acute phase proteins and Mucin-1 (MUC-1) also provide non-specific defences against microbes on mucosal surfaces. The present study examined the expression of innate immune defences in the bovine endometrium and tested the hypothesis that endometrial epithelial cells express functional receptors of the TLR family and the non-specific effector molecules for defence against bacteria.
Bovine endometrial tissue and purified populations of primary epithelial and stromal cells were examined using RT-PCR for gene expression of TLRs, antimicrobial peptides and MUC-1. Functional responses were tested by evaluating the secretion of prostaglandin E2 and acute phase proteins when cells were treated with bacterial PAMPs such as bacterial lipopolysaccharide (LPS) and lipoproteins.
The endometrium expressed TLRs 1 to 10, whilst purified populations of epithelial cells expressed TLRs 1 to 7 and 9, and stromal cells expressed TLRs 1 to 4, 6, 7, 9 and 10. The TLRs appear to be functional as epithelial cells secreted prostaglandin E2 in response to bacterial PAMPs. In addition, the epithelial cells expressed antimicrobial peptides, such as Tracheal and Lingual Antimicrobial Peptides (TAP and LAP) and MUC-1, which were upregulated when the cells were treated with LPS. However, the epithelial cells did not express appreciable amounts of the acute phase proteins haptoglobin or serum amyloid A.
Epithelial cells have an essential role in the orchestration of innate immune defence of the bovine endometrium and are likely to be the key to prevention of endometrial infection with bacteria.
PMCID: PMC2627908  PMID: 19017375
8.  Epithelial Uptake of Flagella Initiates Proinflammatory Signaling 
PLoS ONE  2013;8(3):e59932.
The airway epithelium serves multiple roles in the defense of the lung. Not only does it act as a physical barrier, it acts as a distal extension of the innate immune system. We investigated the role of the airway epithelium in the interaction with flagella, an important virulence factor of the pathogen Pseudomonas aeruginosa, a cause of ventilator associated pneumonia and significant morbidity and mortality in patients with cystic fibrosis. Flagella were required for transmigration across polarized airway epithelial cells and this was a direct consequence of motility, and not a signaling effect. Purified flagella did not alter the barrier properties of the epithelium but were observed to be rapidly endocytosed inside epithelial cells. Neither flagella nor intact P. aeruginosa stimulated epithelial inflammasome signaling. Flagella-dependent signaling required dynamin-based uptake as well as TLR5 and primarily led to the induction of proinflammatory (Tnf, Il6) as well as neutrophil (Cxcl1, Cxcl2, Ccl3) and macrophage (Ccl20) chemokines. Although flagella are important in invasion across the epithelial barrier their shedding in the airway lumen results in epithelial uptake and signaling that has a major role in the initial recruitment of immune cells in the lung.
PMCID: PMC3603936  PMID: 23527288
9.  TLR4 signalling in pulmonary stromal cells is critical for inflammation and immunity in the airways 
Respiratory Research  2011;12(1):125.
Inflammation of the airways, which is often associated with life-threatening infection by Gram-negative bacteria or presence of endotoxin in the bioaerosol, is still a major cause of severe airway diseases. Moreover, inhaled endotoxin may play an important role in the development and progression of airway inflammation in asthma. Pathologic changes induced by endotoxin inhalation include bronchospasm, airflow obstruction, recruitment of inflammatory cells, injury of the alveolar epithelium, and disruption of pulmonary capillary integrity leading to protein rich fluid leak in the alveolar space. Mammalian Toll-like receptors (TLRs) are important signalling receptors in innate host defense. Among these receptors, TLR4 plays a critical role in the response to endotoxin.
Lungs are a complex compartmentalized organ with separate barriers, namely the alveolar-capillary barrier, the microvascular endothelium, and the alveolar epithelium. An emerging theme in the field of lung immunology is that structural cells (SCs) of the airways such as epithelial cells (ECs), endothelial cells, fibroblasts and other stromal cells produce activating cytokines that determine the quantity and quality of the lung immune response. This review focuses on the role of TLR4 in the innate and adaptive immune functions of the pulmonary SCs.
PMCID: PMC3189122  PMID: 21943186
Airway diseases; dendritic cells; epithelial cell; pulmonary stromal cells; TLR4
10.  Stage-specific innate immune recognition of Aspergillus fumigatus and modulation by echinocandin drugs 
The pulmonary innate immune system clears inhaled A spergillus fumigatus conidia (spores) from terminal airways. Failure to control conidial germination in immune compromised hosts can result in hyphal tissue invasion and fatal disease. Insight into the molecular recognition of A. fumigatus by host leukocytes indicates that the innate immune system exploits obligate changes in fungal cell wall composition that occur at the first stage of germination, conidial swelling. Germinating spores activate at least two host signal transduction pathways. Surface exposure of fungal β-(1,3) glucan, a polysaccharide constituent of the fungal cell wall, triggers dectin-1 signaling by host phagocytes. Spore germination leads to the induction of Toll-like receptor (TLR) signaling as well. This stage-specific recognition mechanism focuses host antifungal responses on cells with the potential for tissue invasion and may serve to limit potentially deleterious effects of inflammation in space and time. Fungal β-(1,3) glucan not only activates host innate immune responses but also represents the target of echinocandin drugs. The activity of echinocandin drugs has largely been understood on the basis of pharmacologic growth inhibition of yeast and moulds, resulting in lysis of yeast cells and stunting of dysmorphic hyphae. The recognition that fungal β-1,3 glucan activates dectin-1 signaling suggests that echinocandin drugs may exert immune modulatory effects by altering innate immune responses to drug-treated fungal cells, a view supported by recent data from studies on C. albicans, A. fumigatus, and non-Aspergillus moulds.
PMCID: PMC3808522  PMID: 18608931
aspergillus; dectin; innate immunity; echinocandin; toll-like receptor; fungus
11.  The Role of Airway Epithelial Cells in Response to Mycobacteria Infection 
Airway epithelial cells (AECs) are part of the frontline defense against infection of pathogens by providing both a physical barrier and immunological function. The role of AECs in the innate and adaptive immune responses, through the production of antimicrobial molecules and proinflammatory factors against a variety of pathogens, has been well established. Tuberculosis (TB), a contagious disease primarily affecting the lungs, is caused by the infection of various strains of mycobacteria. In response to mycobacteria infection, epithelial expression of Toll-like receptors and surfactant proteins plays the most prominent roles in the recognition and binding of the pathogen, as well as the initiation of the immune response. Moreover, the antimicrobial substances, proinflammatory factors secreted by AECs, composed a major part of the innate immune response and mediation of adaptive immunity against the pathogen. Thus, a better understanding of the role and mechanism of AECs in response to mycobacteria will provide insight into the relationship of epithelial cells and lung immunocytes against TB, which may facilitate our understanding of the pathogenesis and immunological mechanism of pulmonary tuberculosis disease.
PMCID: PMC3337601  PMID: 22570668
12.  Expression of select immune genes (surfactant proteins A and D, sheep beta defensin 1, and toll-like receptor 4) by respiratory epithelia is developmentally regulated in the preterm neonatal lamb 
Preterm infants experience enhanced susceptibility and severity to respiratory syncytial virus (RSV) infection. Terminal airway epithelium is an important site of RSV infection and the extent of local innate immune gene expression is poorly understood. In this study, expression of surfactant proteins A and D (SP-AD), sheep beta defensin 1 (SBD1), and toll-like receptor 4 (TLR4) mRNA were determined in whole lung homogenates from lambs. SP-AD and TLR4 mRNA expression increased (p<0.05) from late gestation to term birth. In addition, gene expression of LCM-retrieved type II pneumocytes (CD208+), adjacent epithelium (CD208−) and bronchial epithelium demonstrated that bronchiole-alveolar junction epithelium (combined CD208+/−) had significant (p<0.05) developmental increases in SP-AD, SBD1 and TLR4 mRNA, whereas CD208+ cells had statistically significant increases only with SP-A mRNA. Using immunofluorescence, SP-AD antigen distribution and intensity were also greater with developmental age. These studies show reduced SBD1, SP-AD, and TLR4 expression in the preterm lung and this may underlie enhanced RSV susceptibility.
PMCID: PMC2791064  PMID: 16510184
Antimicrobial peptide; Beta-defensin; Lung; Preterm infant; Sheep; Surfactant protein; Toll-like receptor
13.  Expression of antimicrobial neutrophil defensins in epithelial cells of active inflammatory bowel disease mucosa 
Journal of Clinical Pathology  2002;55(4):298-304.
Background/Aims: The normal intestinal epithelium is increasingly being recognised as an important component of the mucosal innate protection against microorganisms. Human neutrophil defensins 1–3 (HNP 1–3) and lysozyme are components of the systemic innate immunity. The aim of this study was to investigate the expression of HNP 1–3 and lysozyme in normal and active inflammatory bowel disease (IBD) mucosa.
Methods: Mucosal tissue sections were studied by immunohistochemistry using antibodies to neutrophil defensins 1–3 and lysozyme. Extracts of purified intestinal epithelial cells were used for immunoblotting studies and antimicrobial activity against the phoP negative strain of Salmonella typhimurium.
Results: Surface epithelial cells strongly immunoreactive for neutrophil defensins and lysozyme were seen in active ulcerative colitis and Crohn's disease (but not normal or inactive IBD) mucosal samples. Many of these cells coexpressed both of the antimicrobial proteins. Immunoblotting studies confirmed the expression of neutrophil defensins in extracts of purified ulcerative colitis epithelial cells, which also demonstrated antimicrobial activity.
Conclusion: HNP 1–3 and lysozyme are expressed in surface enterocytes of mucosa with active IBD and they may play an important role in intestinal host defence against luminal microorganisms.
PMCID: PMC1769631  PMID: 11919217
innate immunity; antimicrobial peptides; defensins; lysozyme
14.  IL-13 dampens human airway epithelial innate immunity through induction of IL-1 receptor–associated kinase M 
Impaired airway mucosal immunity can contribute to increased respiratory tract infections in asthmatic patients, but the involved molecular mechanisms have not been fully clarified. Airway epithelial cells serve as the first line of respiratory mucosal defense to eliminate inhaled pathogens through various mechanisms, including Toll-like receptor (TLR) pathways. Our previous studies suggest that impaired TLR2 function in TH2 cytokine–exposed airways might decrease immune responses to pathogens and subsequently exacerbate allergic inflammation. IL-1 receptor–associated kinase M (IRAK-M) negatively regulates TLR signaling. However, IRAK-M expression in airway epithelium from asthmatic patients and its functions under a TH2 cytokine milieu remain unclear.
We sought to evaluate the role of IRAK-M in IL-13–inhibited TLR2 signaling in human airway epithelial cells. Methods: We examined IRAK-M protein expression in epithelia from asthmatic patients versus that in normal airway epithelia. Moreover, IRAK-M regulation and function in modulating innate immunity (eg, TLR2 signaling) were investigated in cultured human airway epithelial cells with or without IL-13 stimulation.
IRAK-M protein levels were increased in asthmatic airway epithelium. Furthermore, in primary human airway epithelial cells, IL-13 consistently upregulated IRAK-M expression, largely through activation of phosphoinositide 3-kinase pathway. Specifically, phosphoinositide 3-kinase activation led to c-Jun binding to human IRAK-M gene promoter and IRAK-M upregulation. Functionally, IL-13–induced IRAK-M suppressed airway epithelial TLR2 signaling activation (eg, TLR2 and human β-defensin 2), partly through inhibiting activation of nuclear factor κB.
Our data indicate that epithelial IRAK-M overexpression in TH2 cytokine–exposed airways inhibits TLR2 signaling, providing a novel mechanism for the increased susceptibility of infections in asthmatic patients.
PMCID: PMC3348857  PMID: 22154382
IL-13; IL-1 receptor–associated kinase M; Toll-like receptor 2; airway epithelial cells
15.  Local Delivery of CpG Oligodeoxynucleotides Induces Rapid Changes in the Genital Mucosa and Inhibits Replication, but Not Entry, of Herpes Simplex Virus Type 2 
Journal of Virology  2003;77(16):8948-8956.
Mucosal surfaces are the entry sites for the vast majority of infectious pathogens and provide the first line of defense against infection. In addition to the epithelial barrier, the innate immune system plays a key role in recognizing and rapidly responding to invading pathogens via innate receptors, such as Toll-like receptors (TLR). Bacterial CpG DNA, a potent activator of innate immunity, is recognized by TLR9. Here, we confirm that local mucosal, but not systemic, delivery of CpG oligodeoxynucleotides (ODN) to the genital tract protects mice from a subsequent lethal vaginal herpes simplex virus type 2 (HSV-2) challenge. Since these effects were so local in action, we examined the genital mucosa. Local delivery of CpG ODN induced rapid proliferation and thickening of the genital epithelium and caused significant recruitment of inflammatory cells to the submucosa. Local CpG ODN treatment also resulted in inhibition of HSV-2 replication but had no effect on HSV-2 entry into the genital mucosa. CpG ODN-induced protection against HSV-2 was not associated with early increases in gamma interferon (IFN-γ) secretion in the genital tract, and CpG ODN-treated IFN-γ−/− mice were protected from subsequent challenge with a lethal dose of HSV-2. Treatment of human HEK-293 cells transfected with murine TLR9 showed that the antiviral activity of CpG ODN was mediated through TLR9. These studies suggest that local induction of mucosal innate immunity can provide protection against sexually transmitted infections, such as HSV-2 or possibly human immunodeficiency virus, at the mucosal surfaces.
PMCID: PMC167233  PMID: 12885911
16.  Perspectives on the etiology of chronic rhinosinusitis 
Purpose of review
This article reviews recent insights surrounding the etiology and pathogenesis of chronic rhinosinusitis. In particular, we highlight the increasing recognition of host-mediated mechanisms in driving mucosal inflammation.
Recent findings
Published differences between epithelium from patients with chronic rhinosinusitis and normal controls can be classified into several broad categories. Alterations are reported in the various components of the epithelial innate immune system including epithelial-expressed pattern-recognition receptors (PRRs) and the levels of antimicrobial innate immune effector molecules. Other studies demonstrate differences in the proteins involved in maintaining epithelial barrier integrity. Finally, recent studies show in chronic rhinosinusitis that epithelial-derived cytokines, chemokines and inducible surface proteins are involved in recruiting and activating cells of the adaptive immune system.
The sinonasal epithelium provides a mechanical and innate immune barrier to a diverse array of environmental agents. This barrier also plays a key role in regulating the acquired mucosal immune response in the nose. Recent studies suggest that defects in this barrier may foster development of chronic sinonasal inflammation in response to environmental agents, and pathogenic or commensal organisms. The ability to dissect and analyze defects in the inflammatory response in rhinosinusitis may help identify novel targets for drug development.
PMCID: PMC3092705  PMID: 19966566
acquired immunity; barrier dysfunction; epithelium; inflammation; innate immunity; rhinosinusitis
17.  Toll-like receptors 2, 3 and 4 and thymic stromal lymphopoietin expression in fatal asthma 
Airway inflammation in asthma involves innate immune responses. Toll-like receptors (TLRs) and thymic stromal lymphopoietin (TSLP) are thought to be involved in airway inflammation, but their expression in asthmatics’ both large and small airways has not been investigated.
To analyze the expression of TLR2, TLR3, TLR4 and TSLP in large and small airways of asthmatics and compare their expression in smoking and nonsmoking asthmatics; to investigate whether TLR expression is associated with eosinophilic or neutrophilic airway inflammation and with Mycoplasma pneumoniae and Chlamydophila pneumoniae infection.
Using immunohistochemistry and image analysis, we investigated TLR2, TLR3, TLR4 and TSLP expression in large and small airways of 24 victims of fatal asthma, FA, (13 nonsmokers, 11 smokers) and 9 deceased control subjects (DCtrl). TLRs were also measured in 18 mild asthmatics (MA) and 12 healthy controls (HCtrl). Mycoplasma pneumoniae and Chlamydophila pneumoniae in autopsy lung tissue was analyzed using real-time polymerase chain reaction. Airway eosinophils and neutrophils were measured in all subjects.
Fatal asthma patients had higher TLR2 in the epithelial and outer layers of large and small airways compared with DCtrls. Smoking asthmatics had lower TLR2 levels in the inner and outer layers of the small airways than nonsmoking asthmatics. TSLP was increased in the epithelial and outer layers of the large airways of FA. FA patients had greater TLR3 expression in the outer layer of large airways and greater TLR4 expression in the outer layer of small airways. Eosinophilic airway inflammation was associated with TLR expression in the epithelium of FA. No bacterial DNA was detected in FA or DCtrls. MA and HCtrls had only a small difference in TLR3 expression.
Conclusions and Clinical Relevance
Increased expression of TLR 2, 3 and 4 and TSLP in fatal asthma may contribute to the acute inflammation surrounding asthma deaths.
PMCID: PMC3459227  PMID: 22994343
lung; innate immunity; immunohistochemistry
18.  Characterization of Toll-like receptors in primary lung epithelial cells: strong impact of the TLR3 ligand poly(I:C) on the regulation of Toll-like receptors, adaptor proteins and inflammatory response 
Bacterial and viral exacerbations play a crucial role in a variety of lung diseases including COPD or asthma. Since the lung epithelium is a major source of various inflammatory mediators that affect the immune response, we analyzed the inflammatory reaction of primary lung epithelial cells to different microbial molecules that are recognized by Toll-like receptors (TLR).
The effects of TLR ligands on primary small airway epithelial cells were analyzed in detail with respect to cytokine, chemokine and matrix metalloproteinase secretion. In addition, the regulation of the expression of TLRs and their adaptor proteins in small airway epithelial cells was investigated.
Our data demonstrate that poly(I:C), a synthetic analog of viral dsRNA, mediated the strongest proinflammatory effects among the tested ligands, including an increased secretion of IL-6, IL-8, TNF-α, GM-CSF, GRO-α, TARC, MCP-1, MIP-3α, RANTES, IFN-β, IP-10 and ITAC as well as an increased release of MMP-1, MMP-8, MMP-9, MMP-10 and MMP-13. Furthermore, our data show that poly(I:C) as well as type-1 and type-2 cytokines have a pronounced effect on the expression of TLRs and molecules involved in TLR signaling in small airway epithelial cells. Poly(I:C) induced an elevated expression of TLR1, TLR2 and TLR3 and increased the gene expression of the general TLR adaptor MyD88 and IRAK-2. Simultaneously, poly(I:C) decreased the expression of TLR5, TLR6 and TOLLIP.
Poly(I:C), an analog of viral dsRNA and a TLR3 ligand, triggers a strong inflammatory response in small airway epithelial cells that is likely to contribute to viral exacerbations of pulmonary diseases like asthma or COPD. The pronounced effects of poly(I:C) on the expression of Toll-like receptors and molecules involved in TLR signaling is assumed to influence the immune response of the lung epithelium to viral and bacterial infections. Likewise, the regulation of TLR expression by type-1 and type-2 cytokines is important considering the impact of exogenous and endogenous TLR ligands on Th1 or Th2 driven pulmonary inflammations like COPD or asthma, respectively.
PMCID: PMC1315317  PMID: 16316467
19.  Barrier function of airway tract epithelium 
Tissue Barriers  2013;1(4):e24997.
Airway epithelium contributes significantly to the barrier function of airway tract. Mucociliary escalator, intercellular apical junctional complexes which regulate paracellular permeability and antimicrobial peptides secreted by the airway epithelial cells are the three primary components of barrier function of airway tract. These three components act cooperatively to clear inhaled pathogens, allergens and particulate matter without inducing inflammation and maintain tissue homeostasis. Therefore impairment of one or more of these essential components of barrier function may increase susceptibility to infection and promote exaggerated and prolonged innate immune responses to environmental factors including allergens and pathogens resulting in chronic inflammation. Here we review the regulation of components of barrier function with respect to chronic airways diseases.
PMCID: PMC3783221  PMID: 24665407
mucociliary clearance; antimicrobial peptides; COPD; asthma; airway epithelium; tight junctions
20.  Respiratory Epithelial Cells Convert Inactive Vitamin D to its Active Form 
The role of vitamin D in innate immunity is increasingly recognized. Recent work has identified a number of tissues that express the enzyme 1α-hydroxylase and are able to activate vitamin D. This locally produced vitamin D is believed to have important immunomodulatory effects. In this paper we show that primary lung epithelial cells express high baseline levels of activating 1α-hydroxylase and low levels of inactivating 24-hydroxylase. The result of this enzyme expression is that airway epithelial cells constitutively convert inactive 25-dihydroxyvitamin D3 to the active 1,25-dihydroxyvitamin D3. Active vitamin D that is generated by lung epithelium leads to increased expression of vitamin D regulated genes with important innate immune functions. These include the cathelicidin antimicrobial peptide gene and the TLR co-receptor CD14. Double stranded RNA increases the expression of 1α-hydroxylase, augments the production of active vitamin D, and synergizes with vitamin D to increase expression of cathelicidin. In contrast to induction of the anti-microbial peptide, vitamin D attenuates dsRNA induced expression of the NF-κB driven gene IL-8. We conclude that primary epithelial cells generate active vitamin D, which then influences the expression of vitamin D driven genes that play a major role in host defense. Furthermore the presence of vitamin D alters induction of antimicrobial peptides and inflammatory cytokines in response to viruses. These observations suggest a novel mechanism by which local conversion of inactive to active vitamin D alters immune function in the lung.
PMCID: PMC2596683  PMID: 18981129
Human; Lung; Gene Regulation; Viral; Inflammation
21.  Ambient ozone and pulmonary innate immunity 
Immunologic research  2011;49(0):173-191.
Ambient ozone is a criteria air pollutant that impacts both human morbidity and mortality. The effect of ozone inhalation includes both toxicity to lung tissue and alteration of the host immunologic response. The innate immune system facilitates immediate recognition of both foreign pathogens and tissue damage. Emerging evidence supports that ozone can modify the host innate immune response and that this response to inhaled ozone is dependent on genes of innate immunity. Improved understanding of the complex interaction between environmental ozone and host innate immunity will provide fundamental insight into the pathogenesis of inflammatory airways disease. We review the current evidence supporting that environmental ozone inhalation: (1) modifies cell types required for intact innate immunity, (2) is partially dependent on genes of innate immunity, (3) primes pulmonary innate immune responses to LPS, and (4) contributes to innate-adaptive immune system cross-talk.
PMCID: PMC3747041  PMID: 21132467
environmental; toll-like receptor; TLR4; CD44; hyaluronan; asthma; genetic; gene x environment
22.  Innate Immune Responses and Chronic Obstructive Pulmonary Disease 
Innate immune responses appear to be partially responsible for maintaining inflammation and tissue destruction in chronic obstructive pulmonary disease. In the early stages of the disease in smokers, the airways are bombarded with large quantities of particulate material, and activation of phagocytic cells results in the release of many of the mediators believed to remodel the airways. Ironically, failure of the innate immune defense system, either by inherited deficiency or as a result of chronic smoke inhalation, is likely to result in increased susceptibility to infectious disease and exacerbations of chronic obstructive pulmonary disease. It is well known that deficiencies in the production of collectins, pentraxins, and complement can lead to increased infections, and several studies indicate that deficiency in one or another innate defense component is associated with increased exacerbations. Corticosteroids reduce exacerbations in part because of their ability to boost the production of innate host-defense molecules. Therapeutic approaches that stimulate the generation of antimicrobial molecules in the lungs might be able to reduce disease exacerbations.
PMCID: PMC2713325  PMID: 16267360
acute phase responses; corticosteroids; exacerbations; inflammation; opsonins
23.  Roles of epidermal growth factor receptor activation in epithelial cell repair and mucin production in airway epithelium 
Thorax  2004;59(11):992-996.
The epithelial cells lining the airways serve protective functions. The "barrier function" of the epithelium protects the individual from damage by inhaled irritants. The epithelium produces mucins which become hydrated and form a viscoelastic gel which spreads over the epithelial surface. In healthy individuals inhaled foreign materials become entrapped in the mucus and are cleared by mucociliary transport and by coughing. In many chronic inflammatory airway diseases, however, excessive mucus is produced and is inadequately cleared, leading to mucous obstruction and infection. At present there is no specific treatment for hypersecretion. However, the discovery that an epidermal growth factor receptor (EGFR) cascade is involved in mucin production by a wide variety of stimuli suggests that blockade may provide specific treatment for hypersecretory diseases. EGFR pathways have also been implicated in the repair of damaged airway epithelium. The roles of EGFR in airway epithelial cell hypersecretion and epithelial damage and repair are reviewed and future potential treatments are suggested.
PMCID: PMC1746853  PMID: 15516478
24.  Induction of triggering receptor expressed on myeloid cells (TREM-1) in airway epithelial cells by 1,25(OH)2 vitamin D3 
Innate Immunity  2011;18(2):250-257.
The airway epithelium plays a role in host defense through the binding of innate immune receptors, which leads to the activation of inflammatory mediators, including antimicrobial peptides. The active form of vitamin D, 1,25(OH)2D3, induces the expression of the antimicrobial peptide LL-37 in both myeloid cells and airway epithelial cells (AEC). Here, we demonstrate that mRNA encoding triggering receptor expressed on myeloid cells (TREM)-1 was induced up to 12-fold by 1,25(OH)2D3 in normal human bronchial epithelial (NHBE) cells and in well-differentiated cultures of six airway epithelial cell lines from patients with cystic fibrosis (CF) and healthy individuals. TREM-2 and DAP12 were also expressed in airway cultures, but not induced by vitamin D. Induction occurs through a vitamin D response element identified in its proximal promoter region, and was regulated by PU.1 expressed in the AEC. Activation of TREM-1 by a cross-linking antibody led to an induction of both human β-defensin-2 and tumor necrosis factor (TNF)-α mRNA, demonstrating its functionality in these cells. Our results expand on the role played by the airway epithelium in innate immunity and suggest that vitamin D can modulate the innate immune defense of the airway epithelium, and could potentially be developed as an adjunctive therapy for airway infections.
PMCID: PMC3179813  PMID: 21690199
Respiratory; vitamin D; cathelicidin; cystic fibrosis
25.  ROS generated by pollen NADPH oxidase provide a signal that augments antigen-induced allergic airway inflammation 
Journal of Clinical Investigation  2005;115(8):2169-2179.
Pollen exposure induces allergic airway inflammation in sensitized subjects. The role of antigenic pollen proteins in the induction of allergic airway inflammation is well characterized, but the contribution of other constituents in pollen grains to this process is unknown. Here we show that pollen grains and their extracts contain intrinsic NADPH oxidases. The pollen NADPH oxidases rapidly increased the levels of ROS in lung epithelium as well as the amount of oxidized glutathione (GSSG) and 4-hydroxynonenal (4-HNE) in airway-lining fluid. These oxidases, as well as products of oxidative stress (such as GSSG and 4-HNE) generated by these enzymes, induced neutrophil recruitment to the airways independent of the adaptive immune response. Removal of pollen NADPH oxidase activity from the challenge material reduced antigen-induced allergic airway inflammation, the number of mucin-containing cells in airway epithelium, and antigen-specific IgE levels in sensitized mice. Furthermore, challenge with Amb a 1, the major antigen in ragweed pollen extract that does not possess NADPH oxidase activity, induced low-grade allergic airway inflammation. Addition of GSSG or 4-HNE to Amb a 1 challenge material boosted allergic airway inflammation. We propose that oxidative stress generated by pollen NADPH oxidases (signal 1) augments allergic airway inflammation induced by pollen antigen (signal 2).
PMCID: PMC1180538  PMID: 16075057

Results 1-25 (520988)