Search tips
Search criteria

Results 1-25 (680768)

Clipboard (0)

Related Articles

1.  A Novel Artificial MicroRNA Expressing AAV Vector for Phospholamban Silencing in Cardiomyocytes Improves Ca2+ Uptake into the Sarcoplasmic Reticulum 
PLoS ONE  2014;9(3):e92188.
In failing rat hearts, post-transcriptonal inhibition of phospholamban (PLB) expression by AAV9 vector-mediated cardiac delivery of short hairpin RNAs directed against PLB (shPLBr) improves both impaired SERCA2a controlled Ca2+ cycling and contractile dysfunction. Cardiac delivery of shPLB, however, was reported to cause cardiac toxicity in canines. Thus we developed a new AAV vector, scAAV6-amiR155-PLBr, expressing a novel engineered artificial microRNA (amiR155-PLBr) directed against PLB under control of a heart-specific hybrid promoter. Its PLB silencing efficiency and safety were compared with those of an AAV vector expressing shPLBr (scAAV6-shPLBr) from an ubiquitously active U6 promoter. Investigations were carried out in cultured neonatal rat cardiomyocytes (CM) over a period of 14 days. Compared to shPLBr, amiR155-PLBr was expressed at a significantly lower level, resulting in delayed and less pronounced PLB silencing. Despite decreased knockdown efficiency of scAAV6-amiR155-PLBr, a similar increase of the SERCA2a-catalyzed Ca2+ uptake into sarcoplasmic reticulum (SR) vesicles was observed for both the shPLBr and amiR155-PLBr vectors. Proteomic analysis confirmed PLB silencing of both therapeutic vectors and revealed that shPLBr, but not the amiR155-PLBr vector, increased the proinflammatory proteins STAT3, STAT1 and activated STAT1 phosphorylation at the key amino acid residue Tyr701. Quantitative RT-PCR analysis detected alterations in the expression of several cardiac microRNAs after treatment of CM with scAAV6-shPLBr and scAAV6-amiR155-PLBr, as well as after treatment with its related amiR155- and shRNAs-expressing control AAV vectors. The results demonstrate that scAAV6-amiR155-PLBr is capable of enhancing the Ca2+ transport function of the cardiac SR PLB/SERCA2a system as efficiently as scAAV6-shPLBr while offering a superior safety profile.
PMCID: PMC3966758  PMID: 24670775
2.  Phospholamban Mutants Compete with Wild Type for SERCA Binding in Living Cells 
We have used fluorescent fusion proteins stably expressed in HEK cells to detect directly the interaction between the sarcoplasmic reticulum Ca-ATPase (SERCA) and phospholamban (PLB) in living cells, in order to design PLB mutants for gene therapy. Ca2+ cycling in muscle cells depends strongly on SERCA. Heart failure (HF), which contributes to 12% of US deaths, typically exhibits decreased SERCA activity, and several potential therapies for HF aim to increase SERCA activity. We are investigating the use of LOF-PLB mutants (PLBM) as gene therapy vectors to increase SERCA activity. Active SERCA1a and WT-PLB, tagged at their N termini with fluorescent proteins (CFP and YFP), were coexpressed in stable HEK cell lines, and fluorescence resonance energy transfer (FRET) was used to detect their interaction directly. Phosphorylation of PLB, induced by forskolin, caused an increase in FRET from CFP-SERCA to YFP-PLB, indicating that SERCA inhibition can be relieved without dissociation of the complex. This suggests that a LOF mutant might bind to SERCA with sufficient affinity to complete effectively with WT-PLB, thus relieving SERCA inhibition. Therefore, we transiently expressed a series of PLBM in the CFP-SERCA/YFP-PLB cell line, and found decreased FRET, implying competition between PLBM and WT-PLB for binding to SERCA. These results establish this FRET assay as a rapid and quantitative means of screening PLBM for optimization of gene therapy to activate SERCA, as needed for gene therapy in HF.
PMCID: PMC3324857  PMID: 22405774
SERCA; PLB; HEK; FRET; Competition
3.  SERCA2a gene therapy restores microRNA-1 expression in heart failure via an Akt/FoxO3A-dependent pathway 
European Heart Journal  2012;33(9):1067-1075.
Impaired myocardial sarcoplasmic reticulum calcium ATPase 2a (SERCA2a) activity is a hallmark of failing hearts, and SERCA2a gene therapy improves cardiac function in animals and patients with heart failure (HF). Deregulation of microRNAs has been demonstrated in HF pathophysiology. We studied the effects of therapeutic AAV9.SERCA2a gene therapy on cardiac miRNome expression and focused on regulation, expression, and function of miR-1 in reverse remodelled failing hearts.
Methods and results
We studied a chronic post-myocardial infarction HF model treated with AAV9.SERCA2a gene therapy. Heart failure resulted in a strong deregulation of the cardiac miRNome. miR-1 expression was decreased in failing hearts, but normalized in reverse remodelled hearts after AAV9.SERCA2a gene delivery. Increased Akt activation in cultured cardiomyocytes led to phosphorylation of FoxO3A and subsequent exclusion from the nucleus, resulting in miR-1 gene silencing. In vitro SERCA2a expression also rescued miR-1 in failing cardiomyocytes, whereas SERCA2a inhibition reduced miR-1 levels. In vivo, Akt and FoxO3A were highly phosphorylated in failing hearts, but reversed to normal by AAV9.SERCA2a, leading to cardiac miR-1 restoration. Likewise, enhanced sodium–calcium exchanger 1 (NCX1) expression during HF was normalized by SERCA2a gene therapy. Validation experiments identified NCX1 as a novel functional miR-1 target.
SERCA2a gene therapy of failing hearts restores miR-1 expression by an Akt/FoxO3A-dependent pathway, which is associated with normalized NCX1 expression and improved cardiac function.
PMCID: PMC3341631  PMID: 22362515
FoxO3A; Gene therapy; Heart failure; MicroRNA-1; SERCA2a; NCX1
4.  Long-Term Robust Myocardial Transduction of the Dog Heart from a Peripheral Vein by Adeno-Associated Virus Serotype-8 
Human Gene Therapy  2013;24(6):584-594.
Molecular intervention using noninvasive myocardial gene transfer holds great promise for treating heart diseases. Robust cardiac transduction from peripheral vein injection has been achieved in rodents using adeno-associated virus (AAV) serotype-9 (AAV-9). However, a similar approach has failed to transduce the heart in dogs, a commonly used large animal model for heart diseases. To develop an effective noninvasive method to deliver exogenous genes to the dog heart, we employed an AAV-8 vector that expresses human placental alkaline phosphatase reporter gene under the transcriptional regulation of the Rous sarcoma virus promoter. Vectors were delivered to three neonatal dogs at the doses of 1.35×1014, 7.14×1014, and 9.06×1014 viral genome particles/kg body weight via the jugular vein. Transduction efficiency and overall safety were evaluated at 1.5, 2.5, and 12 months postinjection. AAV delivery was well tolerated and dog growth was normal. Blood chemistry and internal organ histology were unremarkable. Widespread skeletal muscle transduction was observed in all dogs without T-cell infiltration. Encouragingly, whole heart myocardial transduction was achieved in two dogs that received higher doses and cardiac expression lasted for at least 1 year. In summary, peripheral vein AAV-8 injection may represent a simple heart gene transfer method in large mammals. Further optimization of this gene delivery strategy may open the door for a readily applicable gene therapy method to treat many heart diseases.
Pan and colleagues administer, via the jugular vein, adeno-associated virus serotype 8 (AAV8) vector expressing a human placental alkaline phosphatase reporter gene under the control of the Rous sarcoma virus promoter to three neonatal dogs at doses of 1.35 × 1014, 7.14 × 1014, and 9.06 × 1014 viral genome particles/kg body weight. Using this approach, they observe widespread skeletal muscle transduction in all dogs without T cell infiltration. Interestingly, whole heart myocardial transduction was achieved in the two dogs that received the highest doses, and this expression lasted for at least 1 year.
PMCID: PMC3689160  PMID: 23551085
5.  Rapid, widespread transduction of the murine myocardium using self-complementary Adeno-associated virus 
Adeno-associated virus (AAV) has shown great promise as a gene transfer vector. However, the incubation time needed to attain significant levels of gene expression is often too long for some clinical applications. Self-complementary AAV (scAAV) enters the cell as double stranded DNA, eliminating the step of second-strand synthesis, proven to be the rate-limiting step for gene expression of single-stranded AAV (ssAAV). The aim of this study was to compare the efficiency of these two types of AAV vectors in the murine myocardium. Four day old CD-1 mice were injected with either of the two AAV constructs, both expressing GFP and packaged into the AAV1 capsid. The animals were held for 4, 6, 11 or 21 days, after which they were euthanized and their hearts were excised. Serial sections of the myocardial tissue were used for real-time PCR quantification of AAV genome copies and for confocal microscopy. Although we observed similar numbers of AAV genomes at each of the different time points present in both the scAAV and the ssAAV infected hearts, microscopic analysis showed expression of GFP as early as 4 days in animals injected with the scAAV, while little or no expression was observed with the ssAAV constructs until day 11. AAV transduction of murine myocardium is therefore significantly enhanced using scAAV constructs.
PMCID: PMC2222599  PMID: 18070352
6.  Increased myocardial SERCA expression in early type 2 diabetes mellitus is insulin dependent: In vivo and in vitro data 
Calcium (Ca2+) handling proteins are known to play a pivotal role in the pathophysiology of cardiomyopathy. However little is known about early changes in the diabetic heart and the impact of insulin treatment (Ins).
Zucker Diabetic Fatty rats treated with or without insulin (ZDF ± Ins, n = 13) and lean littermates (controls, n = 7) were sacrificed at the age of 19 weeks. ZDF + Ins (n = 6) were treated with insulin for the last 6 weeks of life. Gene expression of Ca2+ ATPase in the cardiac sarcoplasmatic reticulum (SERCA2a, further abbreviated as SERCA) and phospholamban (PLB) were determined by northern blotting. Ca2+ transport of the sarcoplasmatic reticulum (SR) was assessed by oxalate-facilitated 45Ca-uptake in left ventricular homogenates. In addition, isolated neonatal cardiomyocytes were stimulated in cell culture with insulin, glucose or triiodthyronine (T3, positive control). mRNA expression of SERCA and PLB were measured by Taqman PCR. Furthermore, effects of insulin treatment on force of contraction and relaxation were evaluated by cardiomyocytes grown in a three-dimensional collagen matrix (engineered heart tissue, EHT) stimulated for 5 days by insulin. By western blot phosphorylations status of Akt was determed and the influence of wortmannin.
SERCA levels increased in both ZDF and ZDF + Ins compared to control (control 100 ± 6.2 vs. ZDF 152 ± 26.6* vs. ZDF + Ins 212 ± 18.5*# % of control, *p < 0.05 vs. control, #p < 0.05 vs. ZDF) whereas PLB was significantly decreased in ZDF and ZDF + Ins (control 100 ± 2.8 vs. ZDF 76.3 ± 13.5* vs. ZDF + Ins 79.4 ± 12.9* % of control, *p < 0.05 vs control). The increase in the SERCA/PLB ratio in ZDF and ZDF ± Ins was accompanied by enhanced Ca2+ uptake to the SR (control 1.58 ± 0.1 vs. ZDF 1.85 ± 0.06* vs. ZDF + Ins 2.03 ± 0.1* μg/mg/min, *p < 0.05 vs. control). Interestingly, there was a significant correlation between Ca2+ uptake and SERCA2a expression. As shown by in-vitro experiments, the effect of insulin on SERCA2a mRNA expression seemed to have a direct effect on cardiomyocytes. Furthermore, long-term treatment of engineered heart tissue with insulin increased the SERCA/PLB ratio and accelerated relaxation time. Akt was significantly phosphorylated by insulin. This effect could be abolished by wortmannin.
The current data demonstrate that early type 2 diabetes is associated with an increase in the SERCA/PLB ratio and that insulin directly stimulates SERCA expression and relaxation velocity. These results underline the important role of insulin and calcium handling proteins in the cardiac adaptation process of type 2 diabetes mellitus contributing to cardiac remodeling and show the important role of PI3-kinase-Akt-SERCA2a signaling cascade.
PMCID: PMC3447673  PMID: 22621761
Diabetic heart; Insulin; SERCA expression; Relaxation velocity
7.  Role of the vector genome and underlying factor IX mutation in immune responses to AAV gene therapy for hemophilia B 
Self-complementary adeno-associated virus (scAAV) vectors have become a desirable vector for therapeutic gene transfer due to their ability to produce greater levels of transgene than single-stranded AAV (ssAAV). However, recent reports have suggested that scAAV vectors are more immunogenic than ssAAV. In this study, we investigated the effects of a self-complementary genome during gene therapy with a therapeutic protein, human factor IX (hF.IX).
Hemophilia B mice were injected intramuscularly with ss or scAAV1 vectors expressing hF.IX. The outcome of gene transfer was assessed, including transgene expression as well as antibody and CD8+ T cell responses to hF.IX.
Self-complementary AAV1 vectors induced similar antibody responses (which eliminated systemic hF.IX expression) but stronger CD8+ T cell responses to hF.IX relative to ssAAV1 in mice with F9 gene deletion. As a result, hF.IX-expressing muscle fibers were effectively eliminated in scAAV-treated mice. In contrast, mice with F9 nonsense mutation (late stop codon) lacked antibody or T cell responses, thus showing long-term expression regardless of the vector genome.
The nature of the AAV genome can impact the CD8+ T cell response to the therapeutic transgene product. In mice with endogenous hF.IX expression, however, this enhanced immunogenicity did not break tolerance to hF.IX, suggesting that the underlying mutation is a more important risk factor for transgene-specific immunity than the molecular form of the AAV genome.
PMCID: PMC3904690  PMID: 24460861
AAV; Gene therapy; Hemophilia B; Factor IX; Immune response
8.  Terminal differentiation of cardiac and skeletal myocytes induces permissivity to AAV transduction by relieving inhibition imposed by DNA damage response proteins 
Gene therapy vectors based on the adeno-associated virus (AAV) are extremely efficient for gene transfer into post-mitotic cells of heart, muscle, brain and retina. The reason for their exquisite tropism for these cells has long remained elusive. Here, we show that upon terminal differentiation, cardiac and skeletal myocytes downregulate proteins of the DNA damage response (DDR) and that this markedly induces permissivity to AAV transduction. We observed that expression of members of the MRN complex (Mre11, Rad50, Nbs1), which bind the incoming AAV genomes, faded in cardiomyocytes at approximately two weeks after birth, as well as upon myoblast differentiation in vitro; in both cases, withdrawal of the cells from the cell cycle coincided with increased AAV permissivity. Treatment of proliferating cells with siRNAs against the MRN proteins, or with microRNA-24, which is normally upregulated upon terminal differentiation and negatively controls the Nbs1 levels, significantly increased permissivity to AAV transduction. Consistently, delivery of these small RNAs to the juvenile liver concomitant with AAV markedly improved in vivo hepatocyte transduction. Collectively, these findings support the conclusion that cellular DDR proteins inhibit AAV transduction and that terminal cell differentiation relieves this restriction.
PMCID: PMC3493462  PMID: 22850678
adeno-associated virus; DNA repair; gene therapy; miR-24; MRN; permissivity
9.  Limitations of Encapsidation of Recombinant Self-Complementary Adeno-Associated Viral Genomes in Different Serotype Capsids and Their Quantitation 
Human Gene Therapy Methods  2012;23(4):225-233.
We previously reported that self-complementary adeno-associated virus (scAAV) type 2 genomes of up to 3.3 kb can be successfully encapsidated into AAV2 serotype capsids. Here we report that such oversized AAV2 genomes fail to undergo packaging in other AAV serotype capsids, such as AAV1, AAV3, AAV6, and AAV8, as determined by Southern blot analyses of the vector genomes, although hybridization signals on quantitative DNA slot-blots could still be obtained. Recently, it has been reported that quantitative real-time PCR assays may result in substantial differences in determining titers of scAAV vectors depending on the distance between the primer sets and the terminal hairpin structure in the scAAV genomes. We also observed that the vector titers determined by the standard DNA slot-blot assays were highly dependent on the specific probe being used, with probes hybridizing to the ends of viral genomes being significantly overrepresented compared with the probes hybridizing close to the middle of the viral genomes. These differences among various probes were not observed using Southern blot assays. This overestimation of titer is a systemic error during scAAV genome quantification, regardless of viral genome sequences and capsid serotypes. Furthermore, different serotypes capsid and modification of capsid sequence may affect the ability of packaging intact, full-length AAV genomes. Although the discrepancy is modest with wild-type serotype capsid and short viral genomes, the measured titer could be as much as fivefold different with capsid mutant vectors and large genomes. Thus, based on our data, we suggest that Southern blot analyses should be performed routinely to more accurately determine the titers of recombinant AAV vectors. At the very least, the use of probes/primers hybridizing close to the mutant inverted terminal repeat in scAAV genomes is recommended to avoid possible overestimation of vector titers.
Wang and colleagues report that 3.3 kb self-complementary (sc) AAV2 genomes fail to undergo packaging into AAV serotype capsids other than AAV2. Serotypes tested include AAV1, AAV3, AAV6, and AAV8. The authors also address the issue of qPCR titering assays leading to overestimation of scAAV vector titers and suggest Southern blot analyses as a more accurate and reliable titering method.
PMCID: PMC4015078  PMID: 22966785
10.  Relative Affinity of Calcium Pump Isoforms for Phospholamban Quantified by Fluorescence Resonance Energy Transfer 
Journal of molecular biology  2010;402(1):210-216.
To investigate regulation of SERCA1a and SERCA2a calcium pump isoforms by phospholamban (PLB), the proteins were fused to fluorescent protein tags and their interactions were quantified by fluorescence resonance energy transfer (FRET) in live cells. For both SERCA1a or SERCA2a, FRET to PLB increased with increasing protein expression level to a maximum value corresponding to a probe separation distance of 64 angstroms. The data indicate the respective regulatory complexes assume the same overall quaternary conformation. However, FRET measurements also revealed that PLB has a 50% higher apparent affinity for SERCA1a relative to SERCA2a. The results suggest that despite structural similarities of the respective regulatory complexes, there is preferential binding of PLB to SERCA1a over SERCA2a. This apparent selectivity may have implications for biochemical studies in which SERCA1a is used as a substitute for SERCA2a. It may also be an important strategic consideration for therapeutic overexpression of SERCA isoforms in cardiac muscle.
PMCID: PMC2935190  PMID: 20643144
phospholamban; SERCA1a; SERCA2a; calcium ATPase; affinity; FRET; calcium handling; membrane proteins
11.  Accurate quantitation of phospholamban phosphorylation by immunoblot 
Analytical Biochemistry  2012;425(1):68-75.
We have developed a quantitative immunoblot method to measure the mole fraction of phospholamban (PLB) phosphorylated at Ser16 (Xp) in biological samples. In cardiomyocytes, PLB phosphorylation activates the sarcoplasmic reticulum calcium ATPase (SERCA), which reduces cytoplasmic Ca++ to relax the heart during diastole. Unphosphorylated PLB (uPLB) inhibits SERCA at low [Ca++] and phosphorylated PLB (pPLB) is less inhibitory, so myocardial physiology and pathology depend critically on Xp. Current methods of Xp determination by immunoblot provide moderate precision but poor accuracy. We have solved this problem using purified uPLB and pPLB standards, produced by solid-phase peptide synthesis. In each assay, a pair of blots is performed with identical standards and unknowns, using antibodies partially selective for uPLB and pPLB, respectively. When performed on mixtures of uPLB and pPLB, the assay measures both total PLB (tPLB) and Xp with accuracy of 96% or better. We assayed pig cardiac SR and found that Xp varied widely among four animals, from 0.08 to 0.38, but there was remarkably little variation in the ratios of Xp/tPLB and uPLB/SERCA, suggesting that PLB phosphorylation is tuned to maintain homeostasis in SERCA regulation.
PMCID: PMC3338889  PMID: 22369895
Phospholamban; phosphorylation; SERCA; heart failure; western blot; XpPhospholamban phosphorylation and heart disease
12.  Immunosuppression Decreases Inflammation and Increases AAV6-hSERCA2a-Mediated SERCA2a Expression 
Human Gene Therapy  2012;23(7):722-732.
The calcium pump SERCA2a (sarcoplasmic reticulum calcium ATPase 2a), which plays a central role in cardiac contraction, shows decreased expression in heart failure (HF). Increasing SERCA2a expression in HF models improves cardiac function. We used direct cardiac delivery of adeno-associated virus encoding human SERCA2a (AAV6-hSERCA2a) in HF and normal canine models to study safety, efficacy, and the effects of immunosuppression. Tachycardic-paced dogs received left ventricle (LV) wall injection of AAV6-hSERCA2a or solvent. Pacing continued postinjection for 2 or 6 weeks, until euthanasia. Tissue/serum samples were analyzed for hSERCA2a expression (Western blot) and immune responses (histology and AAV6-neutralizing antibodies). Nonpaced dogs received AAV6-hSERCA2a and were analyzed at 12 weeks; a parallel cohort received AAV-hSERCA2a and immunosuppression. AAV-mediated cardiac expression of hSERCA2a peaked at 2 weeks and then declined (to ∼50%; p<0.03, 6 vs. 2 weeks). LV end diastolic and end systolic diameters decreased in 6-week dogs treated with AAV6-hSERCA2a (p<0.05) whereas LV diameters increased in control dogs. Dogs receiving AAV6-hSERCA2a developed neutralizing antibodies (titer ≥1:120) and cardiac cellular infiltration. Immunosuppression dramatically reduced immune responses (reduced inflammation and neutralizing antibody titers <1:20), and maintained hSERCA2a expression. Thus cardiac injection of AAV6-hSERCA2a promotes local hSERCA2a expression and improves cardiac function. However, the hSERCA2a protein level is reduced by host immune responses. Immunosuppression alleviates immune responses and sustains transgene expression, and may be an important adjuvant for clinical gene therapy trials.
Zhu and colleagues employ direct cardiac delivery of adeno-associated virus encoding the human calcium pump SERCA2a (AAV6-hSERCA2a) in heart failure and normal canine models in order to study the safety and efficacy of the approach as well as the effects of concomitant immunosuppressant treatment. Tachycardic-paced dogs injected with AAV6-hSERCA2a via the left ventricle wall displayed hSERCA2a expression and improved cardiac function, although hSERCA2a protein levels were reduced by host immune responses. Immunosuppression dramatically reduced inflammation and neutralizing antibody titers while maintaining hSERCA2a expression.
PMCID: PMC3404422  PMID: 22482463
13.  AAV-Mediated Knock-Down of HRC Exacerbates Transverse Aorta Constriction-Induced Heart Failure 
PLoS ONE  2012;7(8):e43282.
Histidine-rich calcium binding protein (HRC) is located in the lumen of sarcoplasmic reticulum (SR) that binds to both triadin (TRN) and SERCA affecting Ca2+ cycling in the SR. Chronic overexpression of HRC that may disrupt intracellular Ca2+ homeostasis is implicated in pathogenesis of cardiac hypertrophy. Ablation of HRC showed relatively normal phenotypes under basal condition, but exhibited a significantly increased susceptibility to isoproterenol-induced cardiac hypertrophy. In the present study, we characterized the functions of HRC related to Ca2+ cycling and pathogenesis of cardiac hypertrophy using the in vitro siRNA- and the in vivo adeno-associated virus (AAV)-mediated HRC knock-down (KD) systems, respectively.
Methodology/Principal Findings
AAV-mediated HRC-KD system was used with or without C57BL/6 mouse model of transverse aortic constriction-induced failing heart (TAC-FH) to examine whether HRC-KD could enhance cardiac function in failing heart (FH). Initially we expected that HRC-KD could elicit cardiac functional recovery in failing heart (FH), since predesigned siRNA-mediated HRC-KD enhanced Ca2+ cycling and increased activities of RyR2 and SERCA2 without change in SR Ca2+ load in neonatal rat ventricular cells (NRVCs) and HL-1 cells. However, AAV9-mediated HRC-KD in TAC-FH was associated with decreased fractional shortening and increased cardiac fibrosis compared with control. We found that phospho-RyR2, phospho-CaMKII, phospho-p38 MAPK, and phospho-PLB were significantly upregulated by HRC-KD in TAC-FH. A significantly increased level of cleaved caspase-3, a cardiac cell death marker was also found, consistent with the result of TUNEL assay.
Increased Ca2+ leak and cytosolic Ca2+ concentration due to a partial KD of HRC could enhance activity of CaMKII and phosphorylation of p38 MAPK, causing the mitochondrial death pathway observed in TAC-FH. Our results present evidence that down-regulation of HRC could deteriorate cardiac function in TAC-FH through perturbed SR-mediated Ca2+ cycling.
PMCID: PMC3429470  PMID: 22952658
14.  Self-complementary AAV Virus (scAAV) Safe and Long-term Gene Transfer in the Trabecular Meshwork of Living Rats and Monkeys 
In this paper, the authors identify a modified adeno-associated viral (AAV) vector, self-complementary AAV (scAAV) that, in contrast to the conventional AAV, transduces the trabecular meshwork of living rats and monkeys. scAAV confers long-term expression to the trabecular meshwork (>3.5 months in rats and >2.35 years in monkeys) without clinical adverse effects.
AAV vectors produce stable transgene expression and elicit low immune response in many tissues. AAVs have been the vectors of choice for gene therapy for the eye, in particular the retina. scAAVs are modified AAVs that bypass the required second-strand DNA synthesis to achieve transcription of the transgene. The goal was to investigate the ability of AAV vectors to induce long-term, safe delivery of transgenes to the trabecular meshwork of living animals.
Single doses of AAV2.GFP and AAV2.RGD.GFP/Ad5.LacZ were injected intracamerally (IC) into rats (n = 28 eyes). A single dose of scAAV.GFP was IC-injected into rats (n = 72 eyes) and cynomolgus monkeys (n = 3). GFP expression was evaluated by fluorescence, immunohistochemistry, and noninvasive gonioscopy. Intraocular pressure (IOP) was measured with calibrated tonometer (rats) and Goldmann tonometer (monkeys). Differential expression of scAAV-infected human trabecular meshwork cells (HTM) was determined by microarrays. Humoral and cell-mediated immune responses were evaluated by ELISA and peripheral blood proliferation assays.
No GFP transduction was observed on the anterior segment tissues of AAV-injected rats up to 27 days after injection. In contrast, scAAV2 transduced the trabecular meshwork very efficiently, with a fast onset (4 days). Eyes remained clear and no adverse effects were observed. Transgene expression lasted >3.5 months in rats and >2.35 years in monkeys.
The scAAV viral vector provides prolonged and safe transduction in the trabecular meshwork of rats and monkeys. The stable expression and safe properties of this vector could facilitate the development of trabecular meshwork drugs for gene therapy for glaucoma.
PMCID: PMC2869048  PMID: 19684004
15.  Cellular toxicity following application of adeno-associated viral vector-mediated RNA interference in the nervous system 
BMC Neuroscience  2010;11:20.
After a spinal cord lesion, axon regeneration is inhibited by the presence of a diversity of inhibitory molecules in the lesion environment. At and around the lesion site myelin-associated inhibitors, chondroitin sulfate proteoglycans (CSPGs) and several axon guidance molecules, including all members of the secreted (class 3) Semaphorins, are expressed. Interfering with multiple inhibitory signals could potentially enhance the previously reported beneficial effects of blocking single molecules. RNA interference (RNAi) is a tool that can be used to simultaneously silence expression of multiple genes. In this study we aimed to employ adeno-associated virus (AAV) mediated expression of short hairpin RNAs (shRNAs) to target all Semaphorin class 3 signaling by knocking down its receptors, Neuropilin 1 (Npn-1) and Neuropilin 2 (Npn-2).
We have successfully generated shRNAs that knock down Npn-1 and Npn-2 in a neuronal cell line. We detected substantial knockdown of Npn-2 mRNA when AAV5 viral vector particles expressing Npn-2 specific shRNAs were injected in dorsal root ganglia (DRG) of the rat. Unexpectedly however, AAV1-mediated expression of Npn-2 shRNAs and a control shRNA in the red nucleus resulted in an adverse tissue response and neuronal degeneration. The observed toxicity was dose dependent and was not seen with control GFP expressing AAV vectors, implicating the shRNAs as the causative toxic agents.
RNAi is a powerful tool to knock down Semaphorin receptor expression in neuronal cells in vitro and in vivo. However, when shRNAs are expressed at high levels in CNS neurons, they trigger an adverse tissue response leading to neuronal degradation.
PMCID: PMC2841193  PMID: 20167052
16.  Förster Transfer Recovery Reveals That Phospholamban Exchanges Slowly From Pentamers but Rapidly From the SERCA Regulatory Complex 
Circulation research  2007;101(11):1123-1129.
Phospholamban (PLB) or the sarcoplasmic reticulum Ca2+-ATPase (SERCA) were fused to cyan fluorescent protein (CFP) and coexpressed with PLB fused to yellow fluorescent protein (YFP). The expressed fluorescently tagged proteins were imaged using epifluorescence and total internal reflection fluorescence microscopy. YFP fluorescence was selectively bleached by a focused laser beam. CFP fluorescence at the targeted site increased after YFP photobleaching, indicating fluorescence resonance energy transfer between CFP-SERCA/CFP-PLB and YFP-PLB. The increased donor fluorescence relaxed back toward baseline as a result of donor diffusion and exchange of bleached YFP-PLB for unbleached YFP-PLB, which restored fluorescence resonance energy transfer. Requenching of CFP donors, termed Förster transfer recovery (FTR), was quantified as an index of the rate of PLB subunit exchange from the PLB:SERCA and PLB:PLB membrane complexes. PLB subunit exchange from the PLB:SERCA regulatory complex was rapid, showing diffusion-limited FTR (τ=1.4 second). Conversely, PLB:PLB oligomeric complexes were found to be stable on a much longer time scale. Despite free lateral diffusion in the membrane, they showed no FTR over 80 seconds. Mutation of PLB position 40 from isoleucine to alanine (I40A-PLB) did not abolish PLB:PLB energy transfer, but destabilization of the PLB:PLB complex was apparent from an increased FTR rate (τ=8.4 seconds). Oligomers of I40A-PLB were stabilized by oxidative crosslinking of transmembrane cysteines with diamide. We conclude that PLB exchanges rapidly from its regulatory complex with the SERCA pump, whereas subunit exchange from the PLB oligomeric complex is slow and does not occur on the time scale of the cardiac cycle.
PMCID: PMC2590498  PMID: 17975108
phospholamban; SERCA; FRET; TIRF; crosslinking
The cardiac sarcoplasmic reticulum calcium ATPase (SERCA2a) plays a critical role in maintaining the intracellular calcium homeostasis during cardiac contraction and relaxation. It has been well documented over the years that altered expression and activity of SERCA2a can lead to systolic and diastolic dysfunction. The activity of SERCA2a is regulated by two structurally similar proteins, phospholamban (PLB) and sarcolipin (SLN). Although, the relevance of PLB has been extensively studied over the years, the role SLN in cardiac physiology is an emerging field of study. This review focuses on the advances in the understanding of the regulation of SERCA2a by SLN and PLB. In particular, it highlights the similarities and differences between the two proteins and their roles in cardiac patho-physiology.
PMCID: PMC2743185  PMID: 17442337
SERCA2a; sarcolipin; phospholamban; calcium; regulation
18.  Inflammation and Immune Response of Intra-Articular Serotype 2 Adeno-Associated Virus or Adenovirus Vectors in a Large Animal Model 
Arthritis  2012;2012:735472.
Intra-articular gene therapy has potential for the treatment of osteoarthritis and rheumatoid arthritis. To quantify in vitro relative gene transduction, equine chondrocytes and synovial cells were treated with adenovirus vectors (Ad), serotype 2 adeno-associated virus vectors (rAAV2), or self-complementary (sc) AAV2 vectors carrying green fluorescent protein (GFP). Using 6 horses, bilateral metacarpophalangeal joints were injected with Ad, rAAV2, or scAAV2 vectors carrying GFP genes to assess the in vivo joint inflammation and neutralizing antibody (NAb) titer in serum and joint fluid. In vitro, the greater transduction efficiency and sustained gene expression were achieved by scAAV2 compared to rAAV2 in equine chondrocytes and synovial cells. In vivo, AAV2 demonstrated less joint inflammation than Ad, but similar NAb titer. The scAAV2 vectors can induce superior gene transduction than rAAV2 in articular cells, and both rAAV2 and scAAV2 vectors were showed to be safer for intra-articular use than Ad vectors.
PMCID: PMC3263587  PMID: 22288012
19.  An animal model of PDH deficiency using AAV8-siRNA vector-mediated knockdown of pyruvate dehydrogenase E1α 
Molecular genetics and metabolism  2010;101(2-3):183-191.
We evaluated the feasibility of self-complementary adeno-associated virus (scAAV) vector-mediated knockdown of the pyruvate dehydrogenase complex using small interfering RNAs directed against the E1α subunit gene (PDHA1). AAV serotype 8 was used to stereotaxically deliver scAAV8-si3-PDHA1-Enhanced Green Fluorescent Protein (knockdown) or scAAV8-EGFP (control) vectors into the right striatum and substantia nigra of rats. Rotational asymmetry was employed to quantify abnormal rotation following neurodegeneration in the nigrostriatal system. By 20 weeks after surgery, the siRNA-injected rats exhibited higher contralateral rotation during the first 10 min following amphetamine administration and lower 90-min total rotations (p≤0.05). Expression of PDC E1α, E1β and E2 subunits in striatum was decreased (p≤0.05) in the siRNA-injected striatum after 14 weeks. By week 25, both PDC activity and expression of E1α were lower (p≤0.05) in siRNA-injected striata compared to controls. E1α expression was associated with PDC activity (R2=0.48; p=0.006) and modestly associated with counterclockwise rotation (R2=0.51;p=0.07). The use of tyrosine-mutant scAAV8 vectors resulted in ~17-fold increase in transduction efficiency of rat striatal neurons in vivo. We conclude that scAAV8-siRNA vector-mediated knockdown of PDC E1α in brain regions typically affected in humans with PDC deficiency results in a reproducible biochemical and clinical phenotype in rats that may be further enhanced with the use of tyrosine-mutant vectors.
PMCID: PMC2950252  PMID: 20685142
PDC, pyruvate dehydrogenase complex; scAAV, self-complementary adeno-associated virus; EGFP, enhanced green fluorescent protein; siRNA, small interfering ribonucleic acid; animal model; rare disease
20.  Induction of Rapid and Highly Efficient Expression of the Human ND4 Complex I Subunit in the Mouse Visual System by Self-complementary Adeno-Associated Virus 
Archives of ophthalmology  2010;128(7):876-883.
To demonstrate the high efficiency and rapidity of allotopic expression of a normal human ND4 subunit of complex I in the vertebrate retina using a self-complementary adeno-associated virus (scAAV) vector for ocular gene delivery to treat acute visual loss in Leber hereditary optic neuropathy (LHON).
The nuclear-encoded human ND4 subunit fused to the P1 isoform of subunit C of adenosine tri-phosphate synthase (ATPc) mitochondrial targeting sequence and FLAG epitope was packaged in scAAV2 capsids or single-stranded (ss) AAV2 capsids. These constructs were injected into the vitreous cavities of mice. The contralateral eyes were injected with scAAV–green fluorescent protein (GFP). One week later, pattern electroretinograms and gene expression of the human ND4 subunit and GFP were evaluated. Quantitative analysis of ND4FLAG-injected eyes was assessed relative to Thy1.2-labeled retinal ganglion cells (RGCs).
Pattern electroretinogram amplitudes remained normal in eyes inoculated with scAAV-ND4FLAG, ssAAV-ND4FLAG, and GFP. Confocal microscopy revealed the typical perinuclear mitochondrial expression of scAAV-ND4FLAG in almost the entire retinal flat mount. In contrast, scAAV-GFP expression was cytoplasmic and nuclear. Relative to Thy1.2-positive RGCs, quantification of scAAV-ND4FLAG–positive RGCs was 91% and that of ssAAV-ND4FLAG–positive RGCs was 51%.
Treatment of acute visual loss due to LHON may be possible with a normal human ND4 subunit gene of complex I, mutated in most cases of LHON, when delivered by an scAAV vector.
Clinical Relevance
Unlike most retinal degenerations that result in slowly progressive loss of vision over many years, LHON due to mutated mitochondrial DNA results in apoplectic, bilateral severe and usually irreversible visual loss. For rescue of acute visual loss in LHON, a highly efficient and rapid gene expression system is required.
PMCID: PMC3431796  PMID: 20625049
21.  AAV-mediated gene therapy for heart failure: enhancing contractility and calcium handling 
F1000Prime Reports  2013;5:27.
Heart failure is a progressive, debilitating disease that is characterized by inadequate contractility of the heart. With an aging population, the incidence and economic burden of managing heart failure are anticipated to increase substantially. Drugs for heart failure only slow its progression and offer no cure. However, results of recent clinical trials using recombinant adeno-associated virus (AAV) gene delivery offer the promise, for the first time, that heart failure can be reversed. The strategy is to improve contractility of cardiac muscle cells by enhancing their ability to store calcium through increased expression of the sarco(endo)plasmic reticulum Ca2+-ATPase pump (SERCA2a). Preclinical trials have also identified other proteins involved in calcium cycling in cardiac muscle that are promising targets for gene therapy in heart failure, including the following: protein phosphatase 1, adenylyl cyclase 6, G-protein-coupled receptor kinase 2, phospholamban, SUMO1, and S100A1. These preclinical and clinical trials represent a “quiet revolution” that may end up being one of the most significant and remarkable breakthroughs in modern medical practice. Of course, a number of uncertainties remain, including the long-term utility and wisdom of improving the contractile performance of “sick” muscle cells. In this regard, gene therapy may turn out to be a way of buying additional time for actual cardiac regeneration to occur using cardiac stem cells or induced pluripotent stem cells.
PMCID: PMC3732072  PMID: 23967378
22.  Convection-Enhanced Delivery of AAV2-PrPshRNA in Prion-Infected Mice 
PLoS ONE  2014;9(5):e98496.
Prion disease is caused by a single pathogenic protein (PrPSc), an abnormal conformer of the normal cellular prion protein PrPC. Depletion of PrPC in prion knockout mice makes them resistant to prion disease. Thus, gene silencing of the Prnp gene is a promising effective therapeutic approach. Here, we examined adeno-associated virus vector type 2 encoding a short hairpin RNA targeting Prnp mRNA (AAV2-PrP-shRNA) to suppress PrPC expression both in vitro and in vivo. AAV2-PrP-shRNA treatment suppressed PrP levels and prevented dendritic degeneration in RML-infected brain aggregate cultures. Infusion of AAV2-PrP-shRNA-eGFP into the thalamus of CD-1 mice showed that eGFP was transported to the cerebral cortex via anterograde transport and the overall PrPC levels were reduced by ∼70% within 4 weeks. For therapeutic purposes, we treated RML-infected CD-1 mice with AAV2-PrP-shRNA beginning at 50 days post inoculation. Although AAV2-PrP-shRNA focally suppressed PrPSc formation in the thalamic infusion site by ∼75%, it did not suppress PrPSc formation efficiently in other regions of the brain. Survival of mice was not extended compared to the untreated controls. Global suppression of PrPC in the brain is required for successful therapy of prion diseases.
PMCID: PMC4035323  PMID: 24866748
23.  Nerve Growth Factor Gene Therapy Using Adeno-Associated Viral Vectors Prevents Cardiomyopathy in Type 1 Diabetic Mice 
Diabetes  2011;61(1):229-240.
Diabetes is a cause of cardiac dysfunction, reduced myocardial perfusion, and ultimately heart failure. Nerve growth factor (NGF) exerts protective effects on the cardiovascular system. This study investigated whether NGF gene transfer can prevent diabetic cardiomyopathy in mice. We worked with mice with streptozotocin-induced type 1 diabetes and with nondiabetic control mice. After having established that diabetes reduces cardiac NGF mRNA expression, we tested NGF gene therapies with adeno-associated viral vectors (AAVs) for the capacity to protect the diabetic mouse heart. To this aim, after 2 weeks of diabetes, cardiac expression of human NGF or β-Gal (control) genes was induced by either intramyocardial injection of AAV serotype 2 (AAV2) or systemic delivery of AAV serotype 9 (AAV9). Nondiabetic mice were given AAV2–β-Gal or AAV9–β-Gal. We found that the diabetic mice receiving NGF gene transfer via either AAV2 or AAV9 were spared the progressive deterioration of cardiac function and left ventricular chamber dilatation observed in β-Gal–injected diabetic mice. Moreover, they were additionally protected from myocardial microvascular rarefaction, hypoperfusion, increased deposition of interstitial fibrosis, and increased apoptosis of endothelial cells and cardiomyocytes, which afflicted the β-Gal–injected diabetic control mice. Our data suggest therapeutic potential of NGF for the prevention of cardiomyopathy in diabetic subjects.
PMCID: PMC3237667  PMID: 22187379
24.  Intraperitoneal administration of AAV9-shRNA inhibits target gene expression in the dorsal root ganglia of neonatal mice 
Molecular Pain  2013;9:36.
There is considerable interest in inducing RNA interference (RNAi) in neurons to study gene function and identify new targets for disease intervention. Although short interfering RNAs (siRNAs) have been used to silence genes in neurons, in vivo delivery of RNAi remains a major challenge, especially by systemic administration. We have developed a highly efficient method for in vivo gene silencing in dorsal root ganglia (DRG) by using short hairpin RNA–expressing single-stranded adeno-associated virus 9 (ssAAV9-shRNA).
Intraperitoneal administration of ssAAV9-shRNA to neonatal mice resulted in highly effective and specific silencing of a target gene in DRG. We observed an approximately 80% reduction in target mRNA in the DRG, and 74.7% suppression of the protein was confirmed by Western blot analysis. There were no major side effects, and the suppression effect lasted for more than three months after the injection of ssAAV9-shRNA.
Although we previously showed substantial inhibition of target gene expression in DRG via intrathecal ssAAV9-shRNA administration, here we succeeded in inhibiting target gene expression in DRG neurons via intraperitoneal injection of ssAAV9-shRNA. AAV9-mediated delivery of shRNA will pave the way for creating animal models for investigating the molecular biology of the mechanisms of pain and sensory ganglionopathies.
PMCID: PMC3737086  PMID: 23866078
RNA interference; Adeno-associated virus 9; Dorsal root ganglia; Blood–nerve barrier
25.  An alpha-synuclein AAV gene silencing vector ameliorates a behavioral deficit in a rat model of Parkinson’s disease, but displays toxicity in dopamine neurons 
Brain research  2011;1395:94-107.
Effects of silencing ectopically expressed hSNCA in rat substantia nigra (SN) were examined as a novel therapeutic approach to Parkinson’s disease (PD). AAV-hSNCA with or without an AAV harboring a short-hairpin (sh)RNA targeting hSNCA or luciferase was injected into one SN. At 9wks, hSNCA-expressing rats had reduced SN dopamine (DA) neurons and exhibited a forelimb deficit. AAV-shRNA-SNCA silenced hSNCA and protected against the forelimb deficit. However, AAV-shRNA-SNCA also led to DA neuron loss suggesting undesirable effects of chronic shRNA expression. Effects on nigrostriatal-projecting neurons were examined using a retrograde tract tracer. Loss of striatal-projecting DA neurons was evident in the vector injection site, whereas DA neurons outside this site were lost in hSNCA-expressing rats, but not in hSNCA-silenced rats. These observations suggest that high levels of shRNA-SNCA were toxic to DA neurons, while neighboring neurons exposed to lower levels were protected by hSNCA gene silencing. Also, data collected on DA levels suggest that neurons other than or in addition to nigrostriatal DA neurons contributed to protection of forelimb use. Our observations suggest that while hSNCA gene silencing in DA neurons holds promise as a novel PD therapy, further development of silencing technology is required.
PMCID: PMC3105182  PMID: 21565333
neurodegeneration; RNAi; substantia nigra; gene therapy; tyrosine hydroxylase

Results 1-25 (680768)