PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1601654)

Clipboard (0)
None

Related Articles

1.  A regression model approach to enable cell morphology correction in high-throughput flow cytometry 
Large variations in cell size and shape can undermine traditional gating methods for analyzing flow cytometry data. Correcting for these effects enables analysis of high-throughput data sets, including >5000 yeast samples with diverse cell morphologies.
The regression model approach corrects for the effects of cell morphology on fluorescence, as well as an extremely small and restrictive gate, but without removing any of the cells.In contrast to traditional gating, this approach enables the quantitative analysis of high-throughput flow cytometry experiments, since the regression model can compare between biological samples that show no or little overlap in terms of the morphology of the cells.The analysis of a high-throughput yeast flow cytometry data set consisting of >5000 biological samples identified key proteins that affect the time and intensity of the bifurcation event that happens after the carbon source transition from glucose to fatty acids. Here, some yeast cells undergo major structural changes, while others do not.
Flow cytometry is a widely used technique that enables the measurement of different optical properties of individual cells within large populations of cells in a fast and automated manner. For example, by targeting cell-specific markers with fluorescent probes, flow cytometry is used to identify (and isolate) cell types within complex mixtures of cells. In addition, fluorescence reporters can be used in conjunction with flow cytometry to measure protein, RNA or DNA concentration within single cells of a population.
One of the biggest advantages of this technique is that it provides information of how each cell behaves instead of just measuring the population average. This can be essential when analyzing complex samples that consist of diverse cell types or when measuring cellular responses to stimuli. For example, there is an important difference between a 50% expression increase of all cells in a population after stimulation and a 100% increase in only half of the cells, while the other half remains unresponsive. Another important advantage of flow cytometry is automation, which enables high-throughput studies with thousands of samples and conditions. However, current methods are confounded by populations of cells that are non-uniform in terms of size and granularity. Such variability affects the emitted fluorescence of the cell and adds undesired variability when estimating population fluorescence. This effect also frustrates a sensible comparison between conditions, where not only fluorescence but also cell size and granularity may be affected.
Traditionally, this problem has been addressed by using ‘gates' that restrict the analysis to cells with similar morphological properties (i.e. cell size and cell granularity). Because cells inside the gate are morphologically similar to one another, they will show a smaller variability in their response within the population. Moreover, applying the same gate in all samples assures that observed differences between these samples are not due to differential cell morphologies.
Gating, however, comes with costs. First, since only a subgroup of cells is selected, the final number of cells analyzed can be significantly reduced. This means that in order to have sufficient statistical power, more cells have to be acquired, which, if even possible in the first place, increases the time and cost of the experiment. Second, finding a good gate for all samples and conditions can be challenging if not impossible, especially in cases where cellular morphology changes dramatically between conditions. Finally, gating is a very user-dependent process, where both the size and shape of the gate are determined by the researcher and will affect the outcome, introducing subjectivity in the analysis that complicates reproducibility.
In this paper, we present an alternative method to gating that addresses the issues stated above. The method is based on a regression model containing linear and non-linear terms that estimates and corrects for the effect of cell size and granularity on the observed fluorescence of each cell in a sample. The corrected fluorescence thus becomes ‘free' of the morphological effects.
Because the model uses all cells in the sample, it assures that the corrected fluorescence is an accurate representation of the sample. In addition, the regression model can predict the expected fluorescence of a sample in areas where there are no cells. This makes it possible to compare between samples that have little overlap with good confidence. Furthermore, because the regression model is automated, it is fully reproducible between labs and conditions. Finally, it allows for a rapid analysis of big data sets containing thousands of samples.
To probe the validity of the model, we performed several experiments. We show how the regression model is able to remove the morphological-associated variability as well as an extremely small and restrictive gate, but without the caveat of removing cells. We test the method in different organisms (yeast and human) and applications (protein level detection, separation of mixed subpopulations). We then apply this method to unveil new biological insights in the mechanistic processes involved in transcriptional noise.
Gene transcription is a process subjected to the randomness intrinsic to any molecular event. Although such randomness may seem to be undesirable for the cell, since it prevents consistent behavior, there are situations where some degree of randomness is beneficial (e.g. bet hedging). For this reason, each gene is tuned to exhibit different levels of randomness or noise depending on its functions. For core and essential genes, the cell has developed mechanisms to lower the level of noise, while for genes involved in the response to stress, the variability is greater.
This gene transcription tuning can be determined at many levels, from the architecture of the transcriptional network, to epigenetic regulation. In our study, we analyze the latter using the response of yeast to the presence of fatty acid in the environment. Fatty acid can be used as energy by yeast, but it requires major structural changes and commitments. We have observed that at the population level, there is a bifurcation event whereby some cells undergo these changes and others do not. We have analyzed this bifurcation event in mutants for all the non-essential epigenetic regulators in yeast and identified key proteins that affect the time and intensity of this bifurcation. Even though fatty acid triggers major morphological changes in the cell, the regression model still makes it possible to analyze the over 5000 flow cytometry samples in this data set in an automated manner, whereas a traditional gating approach would be impossible.
Cells exposed to stimuli exhibit a wide range of responses ensuring phenotypic variability across the population. Such single cell behavior is often examined by flow cytometry; however, gating procedures typically employed to select a small subpopulation of cells with similar morphological characteristics make it difficult, even impossible, to quantitatively compare cells across a large variety of experimental conditions because these conditions can lead to profound morphological variations. To overcome these limitations, we developed a regression approach to correct for variability in fluorescence intensity due to differences in cell size and granularity without discarding any of the cells, which gating ipso facto does. This approach enables quantitative studies of cellular heterogeneity and transcriptional noise in high-throughput experiments involving thousands of samples. We used this approach to analyze a library of yeast knockout strains and reveal genes required for the population to establish a bimodal response to oleic acid induction. We identify a group of epigenetic regulators and nucleoporins that, by maintaining an ‘unresponsive population,' may provide the population with the advantage of diversified bet hedging.
doi:10.1038/msb.2011.64
PMCID: PMC3202802  PMID: 21952134
flow cytometry; high-throughput experiments; statistical regression model; transcriptional noise
2.  Clustering phenotype populations by genome-wide RNAi and multiparametric imaging 
How to predict gene function from phenotypic cues is a longstanding question in biology.Using quantitative multiparametric imaging, RNAi-mediated cell phenotypes were measured on a genome-wide scale.On the basis of phenotypic ‘neighbourhoods', we identified previously uncharacterized human genes as mediators of the DNA damage response pathway and the maintenance of genomic integrity.The phenotypic map is provided as an online resource at http://www.cellmorph.org for discovering further functional relationships for a broad spectrum of biological module
Genetic screens for phenotypic similarity have made key contributions for associating genes with biological processes. Aggregating genes by similarity of their loss-of-function phenotype has provided insights into signalling pathways that have a conserved function from Drosophila to human (Nusslein-Volhard and Wieschaus, 1980; Bier, 2005). Complex visual phenotypes, such as defects in pattern formation during development, greatly facilitated the classification of genes into pathways, and phenotypic similarities in many cases predicted molecular relationships. With RNA interference (RNAi), highly parallel phenotyping of loss-of-function effects in cultured cells has become feasible in many organisms whose genome have been sequenced (Boutros and Ahringer, 2008). One of the current challenges is the computational categorization of visual phenotypes and the prediction of gene function and associated biological processes. With large parts of the genome still being in unchartered territory, deriving functional information from large-scale phenotype analysis promises to uncover novel gene–gene relationships and to generate functional maps to explore cellular processes.
In this study, we developed an automated approach using RNAi-mediated cell phenotypes, multiparametric imaging and computational modelling to obtain functional information on previously uncharacterized genes. To generate broad, computer-readable phenotypic signatures, we measured the effect of RNAi-mediated knockdowns on changes of cell morphology in human cells on a genome-wide scale. First, the several million cells were stained for nuclear and cytoskeletal markers and then imaged using automated microscopy. On the basis of fluorescent markers, we established an automated image analysis to classify individual cells (Figure 1A). After cell segmentation for determining nuclei and cell boundaries (Figure 1C), we computed 51 cell descriptors that quantified intensities, shape characteristics and texture (Figure 1F). Individual cells were categorized into 1 of 10 classes, which included cells showing protrusion/elongation, cells in metaphase, large cells, condensed cells, cells with lamellipodia and cellular debris (Figure 1D and E). Each siRNA knockdown was summarized by a phenotypic profile and differences between RNAi knockdowns were quantified by the similarity between phenotypic profiles. We termed the vector of scores a phenoprint (Figure 3C) and defined the phenotypic distance between a pair of perturbations as the distance between their corresponding phenoprints.
To visualize the distribution of all phenoprints, we plotted them in a genome-wide map as a two-dimensional representation of the phenotypic similarity relationships (Figure 3A). The complete data set and an interactive version of the phenotypic map are available at http://www.cellmorph.org. The map identified phenotypic ‘neighbourhoods', which are characterized by cells with lamellipodia (WNK3, ANXA4), cells with prominent actin fibres (ODF2, SOD3), abundance of large cells (CA14), many elongated cells (SH2B2, ELMO2), decrease in cell number (TPX2, COPB1, COPA), increase in number of cells in metaphase (BLR1, CIB2) and combinations of phenotypes such as presence of large cells with protrusions and bright nuclei (PTPRZ1, RRM1; Figure 3B).
To test whether phenotypic similarity might serve as a predictor of gene function, we focused our further analysis on two clusters that contained genes associated with the DNA damage response (DDR) and genomic integrity (Figure 3A and C). The first phenotypic cluster included proteins with kinetochore-associated functions such as NUF2 (Figure 3B) and SGOL1. It also contained the centrosomal protein CEP164 that has been described as an important mediator of the DNA damage-activated signalling cascade (Sivasubramaniam et al, 2008) and the largely uncharacterized genes DONSON and SON. A second phenotypically distinct cluster included previously described components of the DDR pathway such as RRM1 (Figure 3A–C), CLSPN, PRIM2 and SETD8. Furthermore, this cluster contained the poorly characterized genes CADM1 and CD3EAP.
Cells activate a signalling cascade in response to DNA damage induced by exogenous and endogenous factors. Central are the kinases ATM and ATR as they serve as sensors of DNA damage and activators of further downstream kinases (Harper and Elledge, 2007; Cimprich and Cortez, 2008). To investigate whether DONSON, SON, CADM1 and CD3EAP, which were found in phenotypic ‘neighbourhoods' to known DDR components, have a role in the DNA damage signalling pathway, we tested the effect of their depletion on the DDR on γ irradiation. As indicated by reduced CHEK1 phosphorylation, siRNA knock down of DONSON, SON, CD3EAP or CADM1 resulted in impaired DDR signalling on γ irradiation. Furthermore, knock down of DONSON or SON reduced phosphorylation of downstream effectors such as NBS1, CHEK1 and the histone variant H2AX on UVC irradiation. DONSON depletion also impaired recruitment of RPA2 onto chromatin and SON knockdown reduced RPA2 phosphorylation indicating that DONSON and SON presumably act downstream of the activation of ATM. In agreement to their phenotypic profile, these results suggest that DONSON, SON, CADM1 and CD3EAP are important mediators of the DDR. Further experiments demonstrated that they are also required for the maintenance of genomic integrity.
In summary, we show that genes with similar phenotypic profiles tend to share similar functions. The power of our computational and experimental approach is demonstrated by the identification of novel signalling regulators whose phenotypic profiles were found in proximity to known biological modules. Therefore, we believe that such phenotypic maps can serve as a resource for functional discovery and characterization of unknown genes. Furthermore, such approaches are also applicable for other perturbation reagents, such as small molecules in drug discovery and development. One could also envision combined maps that contain both siRNAs and small molecules to predict target–small molecule relationships and potential side effects.
Genetic screens for phenotypic similarity have made key contributions to associating genes with biological processes. With RNA interference (RNAi), highly parallel phenotyping of loss-of-function effects in cells has become feasible. One of the current challenges however is the computational categorization of visual phenotypes and the prediction of biological function and processes. In this study, we describe a combined computational and experimental approach to discover novel gene functions and explore functional relationships. We performed a genome-wide RNAi screen in human cells and used quantitative descriptors derived from high-throughput imaging to generate multiparametric phenotypic profiles. We show that profiles predicted functions of genes by phenotypic similarity. Specifically, we examined several candidates including the largely uncharacterized gene DONSON, which shared phenotype similarity with known factors of DNA damage response (DDR) and genomic integrity. Experimental evidence supports that DONSON is a novel centrosomal protein required for DDR signalling and genomic integrity. Multiparametric phenotyping by automated imaging and computational annotation is a powerful method for functional discovery and mapping the landscape of phenotypic responses to cellular perturbations.
doi:10.1038/msb.2010.25
PMCID: PMC2913390  PMID: 20531400
DNA damage response signalling; massively parallel phenotyping; phenotype networks; RNAi screening
3.  Quantitative Time-Lapse Fluorescence Microscopy in Single Cells 
The cloning of GFP 15 years ago revolutionized cell biology by permitting visualization of a wide range of molecular mechanisms within living cells. Though initially used to make largely qualitative assessments of protein levels and localizations, fluorescence microscopy has since evolved to become highly quantitative and high-throughput. Computational image analysis has catalyzed this evolution, enabling rapid and automated processing of large datasets. Here we review studies that combine time-lapse fluorescence microscopy and automated image analysis to investigate dynamic events at the single-cell level. We highlight examples where single-cell analysis provides unique mechanistic insights into cellular processes that cannot be otherwise resolved in bulk assays. Additionally, we discuss studies where quantitative microscopy facilitates the assembly of detailed 4D lineages in developing organisms. Finally, we describe recent advances in imaging technology, focusing especially on platforms that allow the simultaneous perturbation and quantitative monitoring of biological systems.
doi:10.1146/annurev.cellbio.042308.113408
PMCID: PMC3137897  PMID: 19575655
cell-to-cell variability; automated image analysis; lineage construction; microfluidic devices; fluorescent proteins
4.  Meaningful Interpretation of Subdiffusive Measurements in Living Cells (Crowded Environment) by Fluorescence Fluctuation Microscopy 
In living cell or its nucleus, the motions of molecules are complicated due to the large crowding and expected heterogeneity of the intracellular environment. Randomness in cellular systems can be either spatial (anomalous) or temporal (heterogeneous). In order to separate both processes, we introduce anomalous random walks on fractals that represented crowded environments. We report the use of numerical simulation and experimental data of single-molecule detection by fluorescence fluctuation microscopy for detecting resolution limits of different mobile fractions in crowded environment of living cells. We simulate the time scale behavior of diffusion times τD(τ) for one component, e.g. the fast mobile fraction, and a second component, e.g. the slow mobile fraction. The less the anomalous exponent α the higher the geometric crowding of the underlying structure of motion that is quantified by the ratio of the Hausdorff dimension and the walk exponent d f /dw and specific for the type of crowding generator used. The simulated diffusion time decreases for smaller values of α ≠ 1 but increases for a larger time scale τ at a given value of α ≠ 1. The effect of translational anomalous motion is substantially greater if α differs much from 1. An α value close to 1 contributes little to the time dependence of subdiffusive motions. Thus, quantitative determination of molecular weights from measured diffusion times and apparent diffusion coefficients, respectively, in temporal auto- and crosscorrelation analyses and from time-dependent fluorescence imaging data are difficult to interpret and biased in crowded environments of living cells and their cellular compartments; anomalous dynamics on different time scales τ must be coupled with the quantitative analysis of how experimental parameters change with predictions from simulated subdiffusive dynamics of molecular motions and mechanistic models. We first demonstrate that the crowding exponent α also determines the resolution of differences in diffusion times between two components in addition to photophyscial parameters well-known for normal motion in dilute solution. The resolution limit between two different kinds of single molecule species is also analyzed under translational anomalous motion with broken ergodicity. We apply our theoretical predictions of diffusion times and lower limits for the time resolution of two components to fluorescence images in human prostate cancer cells transfected with GFP-Ago2 and GFP-Ago1. In order to mimic heterogeneous behavior in crowded environments of living cells, we need to introduce so-called continuous time random walks (CTRW). CTRWs were originally performed on regular lattice. This purely stochastic molecule behavior leads to subdiffusive motion with broken ergodicity in our simulations. For the first time, we are able to quantitatively differentiate between anomalous motion without broken ergodicity and anomalous motion with broken ergodicity in time-dependent fluorescence microscopy data sets of living cells. Since the experimental conditions to measure a selfsame molecule over an extended period of time, at which biology is taken place, in living cells or even in dilute solution are very restrictive, we need to perform the time average over a subpopulation of different single molecules of the same kind. For time averages over subpopulations of single molecules, the temporal auto- and crosscorrelation functions are first found. Knowing the crowding parameter α for the cell type and cellular compartment type, respectively, the heterogeneous parameter γ can be obtained from the measurements in the presence of the interacting reaction partner, e.g. ligand, with the same α value. The product α⋅γ=γ˜ is not a simple fitting parameter in the temporal auto- and two-color crosscorrelation functions because it is related to the proper physical models of anomalous (spatial) and heterogeneous (temporal) randomness in cellular systems. We have already derived an analytical solution for γ˜ in the special case of γ = 3/2 . In the case of two-color crosscorrelation or/and two-color fluorescence imaging (co-localization experiments), the second component is also a two-color species gr, for example a different molecular complex with an additional ligand. Here, we first show that plausible biological mechanisms from FCS/ FCCS and fluorescence imaging in living cells are highly questionable without proper quantitative physical models of subdiffusive motion and temporal randomness. At best, such quantitative FCS/ FCCS and fluorescence imaging data are difficult to interpret under crowding and heterogeneous conditions. It is challenging to translate proper physical models of anomalous (spatial) and heterogeneous (temporal) randomness in living cells and their cellular compartments like the nucleus into biological models of the cell biological process under study testable by single-molecule approaches. Otherwise, quantitative FCS/FCCS and fluorescence imaging measurements in living cells are not well described and cannot be interpreted in a meaningful way.
doi:10.2174/138920110791591454
PMCID: PMC3583073  PMID: 20553227
Anomalous motion; broken ergodicity; Continuous Time Random Walks (CTRW); Continuous Time Random Walks (CTRW) on fractal supports; cellular crowding; Cytoplasmic Assembly of Nuclear RISC; ergodicity; FCS; FCCS; Fluorescence Fluctuation Microscopy; GFP-Ago1; GFP-Ago2; heterogeneity; living cells; meaningful interpretation of subdiffusive measurements; microRNA trafficking; physical model of crowding; physical model of heterogeneity; random walks on fractal supports; resolution limits of measured diffusion times for two components; RNA Activation (RNAa); Single Molecule; Small Activating RNA (saRNA); Temporal autocorrelation; Temporal two-color crosscorrelation; Fluorescence imaging; Time dependence of apparent diffusion coefficients.
5.  rsEGFP2 enables fast RESOLFT nanoscopy of living cells 
eLife  2012;1:e00248.
The super-resolution microscopy called RESOLFT relying on fluorophore switching between longlived states, stands out by its coordinate-targeted sequential sample interrogation using low light levels. While RESOLFT has been shown to discern nanostructures in living cells, the reversibly photoswitchable green fluorescent protein (rsEGFP) employed in these experiments was switched rather slowly and recording lasted tens of minutes. We now report on the generation of rsEGFP2 providing faster switching and the use of this protein to demonstrate 25–250 times faster recordings.
DOI: http://dx.doi.org/10.7554/eLife.00248.001
eLife digest
For decades it was assumed that the diffraction of light meant that optical microscopy could not resolve features that were smaller than about the half the wavelength of the light being used to create an image. However, various ‘super-resolution’ methods have allowed researchers to overcome this diffraction limit for fluorescence imaging, which is the most popular form of microscopy used in the life sciences. This approach involves tagging the biomolecules of interest with fluorescent molecules, such as green fluorescent protein (GFP), so that they can be identified in cells. An excitation laser then drives the fluorescent molecule, which is also known as a fluorophore, into an excited state: after a short time, the fluorophore can return to its ground state by releasing a fluorescence photon. Images of the sample are built up by detecting these photons.
In STED super-resolution microscopy a second laser is used to instantly send the molecules from their excited or ‘on’ states back to their ground or ‘off’ states before any fluorescence can occur. The second laser beam is usually shaped like a doughnut, with a small region of low light intensity surrounded by a region of much higher intensity. STED microscopy is able to beat the diffraction limit because the second laser turns all the fluorophores ‘off’ except those in the small sub-wavelength region at the centre of the doughnut. The image is build up by scanning both lasers over the sample so that the small region in which the fluorophores are ‘on’ probes the entire cell.
RESOLFT is a similar technique that employs fluorescent molecules with ‘on’ and ‘off’ times that are much longer than those used in STED microscopy. In particular, RESOLFT uses fluorescent molecules that can be rapidly switched back and forth between long-lived ‘on’ and ‘off’ states many times by the two lasers. The fact that both these states are long-lived states means that RESOLFT requires much lower laser intensities than STED, which makes it attractive for imaging biological samples over large areas or long times.
RESOLFT demonstrated its suitability for bioimaging for the first time last year, with a protein called rsEGFP (reversibly switchable enhanced GFP) being employed as the fluorophore. However, the time needed to switch this protein between the ‘on state’ and the ‘off state’ was relatively long, and it took about an hour to record a typical image. Now, Grotjohann et al. have modified this protein to make a new fluorophore called rsEGFP2 with a shorter switching time, and have used it to image various structures—including Vimentin, a protein that forms part of the cytoskeleton in many cells, and organelles called peroxisomes—inside live mammalian cells. They were able to record these images some 25–250 times faster than would have been possible with previous RESOLFT approaches. The combination of RESOLFT and rsEGFP2 should allow researchers to image a wide variety of structures and processes in living cells that have not been imaged before.
DOI: http://dx.doi.org/10.7554/eLife.00248.002
doi:10.7554/eLife.00248
PMCID: PMC3534202  PMID: 23330067
confocal microscopy; fluorescent probes; GFP; nanoscopy; superresolution; live-cell imaging; None
6.  A modular gradient-sensing network for chemotaxis in Escherichia coli revealed by responses to time-varying stimuli 
Combining in vivo FRET with time-varying stimuli, such as steps, ramps, and sinusoids allowed deduction of the molecular mechanisms underlying cellular signal processing.The bacterial chemotaxis pathway can be described as a two-module feedback circuit, the transfer functions of which we have characterized quantitatively by experiment. Model-driven experimental design allowed the use of a single FRET pair for measurements of both transfer functions of the pathway.The adaptation module's transfer function revealed that feedback near steady state is weak, consistent with high sensitivity to shallow gradients, but also strong steady-state fluctuations in pathway output.The measured response to oscillatory stimuli defines the frequency band over which the chemotaxis system can compute time derivatives.
In searching for better environments, bacteria sample their surroundings by random motility, and make temporal comparisons of experienced sensory cues to bias their movement toward favorable directions (Berg and Brown, 1972). Thus, the problem of sensing spatial gradients is reduced to time-derivative computations, carried out by a signaling pathway that is well characterized at the molecular level in Escherichia coli. Here, we study the physiology of this signal processing system in vivo by fluorescence resonance energy transfer (FRET) experiments in which live cells are stimulated by time-varying chemoeffector signals. By measuring FRET between the active response regulator of the pathway CheY-P and its phosphatase CheZ, each labeled with GFP variants, we obtain a readout that is directly proportional to pathway activity (Sourjik et al, 2007). We analyze the measured response functions in terms of mechanistic models of signaling, and discuss functional consequences of the observed quantitative characteristics.
Experiments are guided by a coarse-grained modular model (Tu et al, 2008) of the sensory network (Figure 1), in which we identify two important ‘transfer functions': one corresponding to the receptor–kinase complex, which responds to changes in input ligand concentration on a fast time scale, and another corresponding to the adaptation system, which provides negative feedback, opposing the effect of ligand on a slower time scale. For the receptor module, we calibrate an allosteric MWC-type model of the receptor–kinase complex by FRET measurements of the ‘open-loop' transfer function G([L],m) using step stimuli. This calibration provides a basis for using the same FRET readout (between CheY-P and CheZ) to further study properties of the adaptation module.
It is well known that adaptation in E. coli's chemotaxis system uses integral feedback, which guarantees exact restoration of the baseline activity after transient responses to step stimuli (Barkai and Leibler, 1997; Yi et al, 2000). However, the output of time-derivative computations during smoothly varying stimuli depends not only on the presence of integral feedback, but also on what is being integrated. As this integrand can in general be any function of the output, we represent it by a black-box function F(a) in our model, and set out to determine its shape by experiments with time-varying stimuli.
We first apply exponential ramp stimuli—waveforms in which the logarithm of the stimulus level varies linearly with time, at a fixed rate r. It was shown many years ago that during such a stimulus, the kinase output of the pathway changes to a new constant value, ac that is dependent on the applied ramp rate, r (Block et al, 1983). A plot of ac versus r (Figure 5A) can thus be considered as an output of time-derivative computations by the network, and could also be used to study the ‘gradient sensitivity' of bacteria traveling at constant speeds.
To obtain the feedback transfer function, F(a), we apply a simple coordinate transformation, identified using our model, to the same ramp-response data (Figure 5B). This function reveals how the temporal rate of change of the feedback signal m depends on the current output signal a. The shape of this function is analyzed using a biochemical reaction scheme, from which in vivo kinetic parameters of the feedback enzymes, CheR and CheB, are extracted. The fitted Michaelis constants for these enzymatic reactions are small compared with the steady-state abundance of their substrates, thus indicating that these enzymes operate close to saturation in vivo. The slope of the function near steady state can be used to assess the strength of feedback, and to compute the relaxation time of the system, τm. Relaxation is found to be slow (i.e. large τm), consistent with large fluctuations about the steady-state activity caused by the near-saturation kinetics of the feedback enzymes (Emonet and Cluzel, 2008).
Finally, exponential sine-wave stimuli are used to map out the system's frequency response (Figure 5C). The measured data points for both the amplitude and phase of the response are found to be in excellent agreement with model predictions based on parameters from the independently measured step and ramp responses. No curve fitting was required to obtain this agreement. Although the amplitude response as a function of frequency resembles a first-order high-pass filter with a well-defined cutoff frequency, νm, we point out that the chemotaxis pathway is actually a low-pass filter if the time derivative of the input is viewed as the input signal. In this latter perspective, νm defines an upper bound for the frequency band over which time-derivative computations can be carried out.
The two types of measurements yield complementary information regarding time-derivative computations by E. coli. The ramp-responses characterize the asymptotically constant output when a temporal gradient is held fixed over extended periods. Interestingly, the ramp responses do not depend on receptor cooperativity, but only on properties of the adaptation system, and thus can be used to reveal the in vivo adaptation kinetics, even outside the linear regime of the kinase response. The frequency response is highly relevant in considering spatial searches in the real world, in which experienced gradients are not held fixed in time. The characteristic cutoff frequency νm is found by working within the linear regime of the kinase response, and depends on parameters from both modules (it increases with both cooperativity in the receptor module, and the strength of feedback in the adaptation module).
Both ramp responses and sine-wave responses were measured at two different temperatures (22 and 32°C), and found to differ significantly. Both the slope of F(a) near steady state, from ramp experiments, and the characteristic cutoff frequency, from sine-wave experiments, were higher by a factor of ∼3 at 32°C. Fits of the enzymatic model to F(a) suggest that temperature affects the maximal velocity (Vmax) more strongly than the Michaelis constants (Km) for CheR and CheB.
Successful application of inter-molecular FRET in live cells using GFP variants always requires some degree of serendipity. Genetic fusions to these bulky fluorophores can impair the function of the original proteins, and even when fusions are functional, efficient FRET still requires the fused fluorophores to come within the small (<10 nm) Förster radius on interactions between the labeled proteins. Thus, when a successful FRET pair is identified, it is desirable to make the most of it. We have shown here that combined with careful temporal control of input stimuli, and appropriately calibrated models, a single FRET pair can be used to study the structure of multiple transfer functions within a signaling network.
The Escherichia coli chemotaxis-signaling pathway computes time derivatives of chemoeffector concentrations. This network features modules for signal reception/amplification and robust adaptation, with sensing of chemoeffector gradients determined by the way in which these modules are coupled in vivo. We characterized these modules and their coupling by using fluorescence resonance energy transfer to measure intracellular responses to time-varying stimuli. Receptor sensitivity was characterized by step stimuli, the gradient sensitivity by exponential ramp stimuli, and the frequency response by exponential sine-wave stimuli. Analysis of these data revealed the structure of the feedback transfer function linking the amplification and adaptation modules. Feedback near steady state was found to be weak, consistent with strong fluctuations and slow recovery from small perturbations. Gradient sensitivity and frequency response both depended strongly on temperature. We found that time derivatives can be computed by the chemotaxis system for input frequencies below 0.006 Hz at 22°C and below 0.018 Hz at 32°C. Our results show how dynamic input–output measurements, time honored in physiology, can serve as powerful tools in deciphering cell-signaling mechanisms.
doi:10.1038/msb.2010.37
PMCID: PMC2913400  PMID: 20571531
adaptation; feedback; fluorescence resonance energy transfer (FRET); frequency response; Monod–Wyman–Changeux (MWC) model
7.  Fast automatic quantitative cell replication with fluorescent live cell imaging 
BMC Bioinformatics  2012;13:21.
Background
live cell imaging is a useful tool to monitor cellular activities in living systems. It is often necessary in cancer research or experimental research to quantify the dividing capabilities of cells or the cell proliferation level when investigating manipulations of the cells or their environment. Manual quantification of fluorescence microscopic image is difficult because human is neither sensitive to fine differences in color intensity nor effective to count and average fluorescence level among cells. However, auto-quantification is not a straightforward problem to solve. As the sampling location of the microscopy changes, the amount of cells in individual microscopic images varies, which makes simple measurement methods such as the sum of stain intensity values or the total number of positive stain within each image inapplicable. Thus, automated quantification with robust cell segmentation techniques is required.
Results
An automated quantification system with robust cell segmentation technique are presented. The experimental results in application to monitor cellular replication activities show that the quantitative score is promising to represent the cell replication level, and scores for images from different cell replication groups are demonstrated to be statistically significantly different using ANOVA, LSD and Tukey HSD tests (p-value < 0.01). In addition, the technique is fast and takes less than 0.5 second for high resolution microscopic images (with image dimension 2560 × 1920).
Conclusion
A robust automated quantification method of live cell imaging is built to measure the cell replication level, providing a robust quantitative analysis system in fluorescent live cell imaging. In addition, the presented unsupervised entropy based cell segmentation for live cell images is demonstrated to be also applicable for nuclear segmentation of IHC tissue images.
doi:10.1186/1471-2105-13-21
PMCID: PMC3359210  PMID: 22292799
8.  CellSegm - a MATLAB toolbox for high-throughput 3D cell segmentation 
The application of fluorescence microscopy in cell biology often generates a huge amount of imaging data. Automated whole cell segmentation of such data enables the detection and analysis of individual cells, where a manual delineation is often time consuming, or practically not feasible. Furthermore, compared to manual analysis, automation normally has a higher degree of reproducibility. CellSegm, the software presented in this work, is a Matlab based command line software toolbox providing an automated whole cell segmentation of images showing surface stained cells, acquired by fluorescence microscopy. It has options for both fully automated and semi-automated cell segmentation. Major algorithmic steps are: (i) smoothing, (ii) Hessian-based ridge enhancement, (iii) marker-controlled watershed segmentation, and (iv) feature-based classfication of cell candidates. Using a wide selection of image recordings and code snippets, we demonstrate that CellSegm has the ability to detect various types of surface stained cells in 3D. After detection and outlining of individual cells, the cell candidates can be subject to software based analysis, specified and programmed by the end-user, or they can be analyzed by other software tools. A segmentation of tissue samples with appropriate characteristics is also shown to be resolvable in CellSegm. The command-line interface of CellSegm facilitates scripting of the separate tools, all implemented in Matlab, offering a high degree of flexibility and tailored workflows for the end-user. The modularity and scripting capabilities of CellSegm enable automated workflows and quantitative analysis of microscopic data, suited for high-throughput image based screening.
doi:10.1186/1751-0473-8-16
PMCID: PMC3850890  PMID: 23938087
Automated analysis; Cell segmentation; CellSegm; High-throughput; Nucleus staining; Surface staining
9.  Comparison of Microscopy and Alamar Blue Reduction in a Larval Based Assay for Schistosome Drug Screening 
Background
In view of the current widespread use of and reliance on a single schistosomicide, praziquantel, there is a pressing need to discover and develop alternative drugs for schistosomiasis. One approach to this is to develop High Throughput in vitro whole organism screens (HTS) to identify hits amongst large compound libraries.
Methodology/Principal Findings
We have been carrying out low throughput (24-well plate) in vitro testing based on microscopic evaluation of killing of ex-vivo adult S. mansoni worms using selected compound collections mainly provided through the WHO-TDR Helminth Drug Initiative. To increase throughput, we introduced a similar but higher throughput 96-well primary in vitro assay using the schistosomula stage which can be readily produced in vitro in large quantities. In addition to morphological readout of viability we have investigated using fluorometric determination of the reduction of Alamar blue (AB), a redox indicator of enzyme activity widely used in whole organism screening. A panel of 7 known schistosome active compounds including praziquantel, produced diverse effects on larval morphology within 3 days of culture although only two induced marked larval death within 7 days. The AB assay was very effective in detecting these lethal compounds but proved more inconsistent in detecting compounds which damaged but did not kill. The utility of the AB assay in detecting compounds which cause severe morbidity and/or death of schistosomula was confirmed in testing a panel of compounds previously selected in library screening as having activity against the adult worms. Furthermore, in prospective library screening, the AB assay was able to detect all compounds which induced killing and also the majority of compounds designated as hits based on morphological changes.
Conclusion
We conclude that an HTS combining AB readout and image-based analysis would provide an efficient and stringent primary assay for schistosome drug discovery.
Author Summary
Only one drug, praziquantel, is widely available for treating schistosomiasis, a disease affecting an estimated 200 million people. Because of increasing usage there is concern about development of praziquantel drug resistance and a perceived need to develop new schistosomicides. Possible sources of these are large collections of compounds held by pharmaceutical companies and academic institutions. Anti-schistosome activity can be detected in vitro by visually assessing damage to cultured adult schistosome worms, but these are large and are recovered from mice which somewhat limits screening throughput. By contrast, schistosomula can be produced in vitro and used for screening in microwell plates, thus allowing medium throughput screening. High throughput screening (HTS) would require automated readout of schistosomulicidal action rather than manual microscopy. Here we report on the use of Alamar blue (AB), a fluorescent indicator of cell viability which can be measured rapidly and automatically. The AB assay was readily able to detect compounds causing death or severe damage to the larvae but was less reliable than microscopy for more subtle morphological changes including those induced by some known schistosome drugs. It is concluded that an automated HTS would benefit from integrated use of both AB and automatic image-based morphology assays.
doi:10.1371/journal.pntd.0000795
PMCID: PMC2919390  PMID: 20706580
10.  Automated High-Content Live Animal Drug Screening Using C. elegans Expressing the Aggregation Prone Serpin α1-antitrypsin Z 
PLoS ONE  2010;5(11):e15460.
The development of preclinical models amenable to live animal bioactive compound screening is an attractive approach to discovering effective pharmacological therapies for disorders caused by misfolded and aggregation-prone proteins. In general, however, live animal drug screening is labor and resource intensive, and has been hampered by the lack of robust assay designs and high throughput work-flows. Based on their small size, tissue transparency and ease of cultivation, the use of C. elegans should obviate many of the technical impediments associated with live animal drug screening. Moreover, their genetic tractability and accomplished record for providing insights into the molecular and cellular basis of human disease, should make C. elegans an ideal model system for in vivo drug discovery campaigns. The goal of this study was to determine whether C. elegans could be adapted to high-throughput and high-content drug screening strategies analogous to those developed for cell-based systems. Using transgenic animals expressing fluorescently-tagged proteins, we first developed a high-quality, high-throughput work-flow utilizing an automated fluorescence microscopy platform with integrated image acquisition and data analysis modules to qualitatively assess different biological processes including, growth, tissue development, cell viability and autophagy. We next adapted this technology to conduct a small molecule screen and identified compounds that altered the intracellular accumulation of the human aggregation prone mutant that causes liver disease in α1-antitrypsin deficiency. This study provides powerful validation for advancement in preclinical drug discovery campaigns by screening live C. elegans modeling α1-antitrypsin deficiency and other complex disease phenotypes on high-content imaging platforms.
doi:10.1371/journal.pone.0015460
PMCID: PMC2980495  PMID: 21103396
11.  An automatic method for robust and fast cell detection in bright field images from high-throughput microscopy 
BMC Bioinformatics  2013;14:297.
Background
In recent years, high-throughput microscopy has emerged as a powerful tool to analyze cellular dynamics in an unprecedentedly high resolved manner. The amount of data that is generated, for example in long-term time-lapse microscopy experiments, requires automated methods for processing and analysis. Available software frameworks are well suited for high-throughput processing of fluorescence images, but they often do not perform well on bright field image data that varies considerably between laboratories, setups, and even single experiments.
Results
In this contribution, we present a fully automated image processing pipeline that is able to robustly segment and analyze cells with ellipsoid morphology from bright field microscopy in a high-throughput, yet time efficient manner. The pipeline comprises two steps: (i) Image acquisition is adjusted to obtain optimal bright field image quality for automatic processing. (ii) A concatenation of fast performing image processing algorithms robustly identifies single cells in each image. We applied the method to a time-lapse movie consisting of ∼315,000 images of differentiating hematopoietic stem cells over 6 days. We evaluated the accuracy of our method by comparing the number of identified cells with manual counts. Our method is able to segment images with varying cell density and different cell types without parameter adjustment and clearly outperforms a standard approach. By computing population doubling times, we were able to identify three growth phases in the stem cell population throughout the whole movie, and validated our result with cell cycle times from single cell tracking.
Conclusions
Our method allows fully automated processing and analysis of high-throughput bright field microscopy data. The robustness of cell detection and fast computation time will support the analysis of high-content screening experiments, on-line analysis of time-lapse experiments as well as development of methods to automatically track single-cell genealogies.
doi:10.1186/1471-2105-14-297
PMCID: PMC3850979  PMID: 24090363
12.  Computer-based fluorescence quantification: a novel approach to study nucleolar biology 
BMC Cell Biology  2011;12:25.
Background
Nucleoli are composed of possibly several thousand different proteins and represent the most conspicuous compartments in the nucleus; they play a crucial role in the proper execution of many cellular processes. As such, nucleoli carry out ribosome biogenesis and sequester or associate with key molecules that regulate cell cycle progression, tumorigenesis, apoptosis and the stress response. Nucleoli are dynamic compartments that are characterized by a constant flux of macromolecules. Given the complex and dynamic composition of the nucleolar proteome, it is challenging to link modifications in nucleolar composition to downstream effects.
Results
In this contribution, we present quantitative immunofluorescence methods that rely on computer-based image analysis. We demonstrate the effectiveness of these techniques by monitoring the dynamic association of proteins and RNA with nucleoli under different physiological conditions. Thus, the protocols described by us were employed to study stress-dependent changes in the nucleolar concentration of endogenous and GFP-tagged proteins. Furthermore, our methods were applied to measure de novo RNA synthesis that is associated with nucleoli. We show that the techniques described here can be easily combined with automated high throughput screening (HTS) platforms, making it possible to obtain large data sets and analyze many of the biological processes that are located in nucleoli.
Conclusions
Our protocols set the stage to analyze in a quantitative fashion the kinetics of shuttling nucleolar proteins, both at the single cell level as well as for a large number of cells. Moreover, the procedures described here are compatible with high throughput image acquisition and analysis using HTS automated platforms, thereby providing the basis to quantify nucleolar components and activities for numerous samples and experimental conditions. Together with the growing amount of information obtained for the nucleolar proteome, improvements in quantitative microscopy as they are described here can be expected to produce new insights into the complex biological functions that are orchestrated by the nucleolus.
doi:10.1186/1471-2121-12-25
PMCID: PMC3126779  PMID: 21639891
13.  Visualization and correction of automated segmentation, tracking and lineaging from 5-D stem cell image sequences 
BMC Bioinformatics  2014;15(1):328.
Background
Neural stem cells are motile and proliferative cells that undergo mitosis, dividing to produce daughter cells and ultimately generating differentiated neurons and glia. Understanding the mechanisms controlling neural stem cell proliferation and differentiation will play a key role in the emerging fields of regenerative medicine and cancer therapeutics. Stem cell studies in vitro from 2-D image data are well established. Visualizing and analyzing large three dimensional images of intact tissue is a challenging task. It becomes more difficult as the dimensionality of the image data increases to include time and additional fluorescence channels. There is a pressing need for 5-D image analysis and visualization tools to study cellular dynamics in the intact niche and to quantify the role that environmental factors play in determining cell fate.
Results
We present an application that integrates visualization and quantitative analysis of 5-D (x,y,z,t,channel) and large montage confocal fluorescence microscopy images. The image sequences show stem cells together with blood vessels, enabling quantification of the dynamic behaviors of stem cells in relation to their vascular niche, with applications in developmental and cancer biology. Our application automatically segments, tracks, and lineages the image sequence data and then allows the user to view and edit the results of automated algorithms in a stereoscopic 3-D window while simultaneously viewing the stem cell lineage tree in a 2-D window. Using the GPU to store and render the image sequence data enables a hybrid computational approach. An inference-based approach utilizing user-provided edits to automatically correct related mistakes executes interactively on the system CPU while the GPU handles 3-D visualization tasks.
Conclusions
By exploiting commodity computer gaming hardware, we have developed an application that can be run in the laboratory to facilitate rapid iteration through biological experiments. We combine unsupervised image analysis algorithms with an interactive visualization of the results. Our validation interface allows for each data set to be corrected to 100% accuracy, ensuring that downstream data analysis is accurate and verifiable. Our tool is the first to combine all of these aspects, leveraging the synergies obtained by utilizing validation information from stereo visualization to improve the low level image processing tasks.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2105-15-328) contains supplementary material, which is available to authorized users.
doi:10.1186/1471-2105-15-328
PMCID: PMC4287543  PMID: 25281197
Volumetric texture rendering; 3-D display; Stereoscopic 3-D; Stem cell; Time lapse; Lineaging; Validation and correction; Confocal microscopy; CUDA; Image montage reconstruction
14.  Visualizing Escherichia coli Sub-Cellular Structure Using Sparse Deconvolution Spatial Light Interference Tomography 
PLoS ONE  2012;7(6):e39816.
Studying the 3D sub-cellular structure of living cells is essential to our understanding of biological function. However, tomographic imaging of live cells is challenging mainly because they are transparent, i.e., weakly scattering structures. Therefore, this type of imaging has been implemented largely using fluorescence techniques. While confocal fluorescence imaging is a common approach to achieve sectioning, it requires fluorescence probes that are often harmful to the living specimen. On the other hand, by using the intrinsic contrast of the structures it is possible to study living cells in a non-invasive manner. One method that provides high-resolution quantitative information about nanoscale structures is a broadband interferometric technique known as Spatial Light Interference Microscopy (SLIM). In addition to rendering quantitative phase information, when combined with a high numerical aperture objective, SLIM also provides excellent depth sectioning capabilities. However, like in all linear optical systems, SLIM's resolution is limited by diffraction. Here we present a novel 3D field deconvolution algorithm that exploits the sparsity of phase images and renders images with resolution beyond the diffraction limit. We employ this label-free method, called deconvolution Spatial Light Interference Tomography (dSLIT), to visualize coiled sub-cellular structures in E. coli cells which are most likely the cytoskeletal MreB protein and the division site regulating MinCDE proteins. Previously these structures have only been observed using specialized strains and plasmids and fluorescence techniques. Our results indicate that dSLIT can be employed to study such structures in a practical and non-invasive manner.
doi:10.1371/journal.pone.0039816
PMCID: PMC3386179  PMID: 22761910
15.  An image score inference system for RNAi genome-wide screening based on fuzzy mixture regression modeling 
With recent advances in fluorescence microscopy imaging techniques and methods of gene knock down by RNA interference (RNAi), genome-scale high-content screening (HCS) has emerged as a powerful approach to systematically identify all parts of complex biological processes. However, a critical barrier preventing fulfillment of the success is the lack of efficient and robust methods for automating RNAi image analysis and quantitative evaluation of the gene knock down effects on huge volume of HCS data. Facing such opportunities and challenges, we have started investigation of automatic methods towards the development of a fully automatic RNAi-HCS system. Particularly important are reliable approaches to cellular phenotype classification and image-based gene function estimation.
We have developed a HCS analysis platform that consists of two main components: fluorescence image analysis and image scoring. For image analysis, we used a two-step enhanced watershed method to extract cellular boundaries from HCS images. Segmented cells were classified into several predefined phenotypes based on morphological and appearance features. Using statistical characteristics of the identified phenotypes as a quantitative description of the image, a score is generated that reflects gene function. Our scoring model integrates fuzzy gene class estimation and single regression models. The final functional score of an image was derived using the weighted combination of the inference from several support vector-based regression models. We validated our phenotype classification method and scoring system on our cellular phenotype and gene database with expert ground truth labeling.
We built a database of high-content, 3-channel, fluorescence microscopy images of Drosophila Kc167 cultured cells that were treated with RNAi to perturb gene function. The proposed informatics system for microscopy image analysis is tested on this database. Both of the two main components, automated phenotype classification and image scoring system, were evaluated. The robustness and efficiency of our system were validated in quantitatively predicting the biological relevance of genes.
doi:10.1016/j.jbi.2008.04.007
PMCID: PMC2763194  PMID: 18547870
High-content screening; Image score inference
16.  Shedding Light on Filovirus Infection with High-Content Imaging 
Viruses  2012;4(8):1354-1371.
Microscopy has been instrumental in the discovery and characterization of microorganisms. Major advances in high-throughput fluorescence microscopy and automated, high-content image analysis tools are paving the way to the systematic and quantitative study of the molecular properties of cellular systems, both at the population and at the single-cell level. High-Content Imaging (HCI) has been used to characterize host-virus interactions in genome-wide reverse genetic screens and to identify novel cellular factors implicated in the binding, entry, replication and egress of several pathogenic viruses. Here we present an overview of the most significant applications of HCI in the context of the cell biology of filovirus infection. HCI assays have been recently implemented to quantitatively study filoviruses in cell culture, employing either infectious viruses in a BSL-4 environment or surrogate genetic systems in a BSL-2 environment. These assays are becoming instrumental for small molecule and siRNA screens aimed at the discovery of both cellular therapeutic targets and of compounds with anti-viral properties. We discuss the current practical constraints limiting the implementation of high-throughput biology in a BSL-4 environment, and propose possible solutions to safely perform high-content, high-throughput filovirus infection assays. Finally, we discuss possible novel applications of HCI in the context of filovirus research with particular emphasis on the identification of possible cellular biomarkers of virus infection.
doi:10.3390/v4081354
PMCID: PMC3446768  PMID: 23012631
filoviruses; High-Content Imaging; therapeutics; host-pathogen interactions; phenotype
17.  Detailed interrogation of trypanosome cell biology via differential organelle staining and automated image analysis 
BMC Biology  2012;10:1.
Background
Many trypanosomatid protozoa are important human or animal pathogens. The well defined morphology and precisely choreographed division of trypanosomatid cells makes morphological analysis a powerful tool for analyzing the effect of mutations, chemical insults and changes between lifecycle stages. High-throughput image analysis of micrographs has the potential to accelerate collection of quantitative morphological data. Trypanosomatid cells have two large DNA-containing organelles, the kinetoplast (mitochondrial DNA) and nucleus, which provide useful markers for morphometric analysis; however they need to be accurately identified and often lie in close proximity. This presents a technical challenge. Accurate identification and quantitation of the DNA content of these organelles is a central requirement of any automated analysis method.
Results
We have developed a technique based on double staining of the DNA with a minor groove binding (4'', 6-diamidino-2-phenylindole (DAPI)) and a base pair intercalating (propidium iodide (PI) or SYBR green) fluorescent stain and color deconvolution. This allows the identification of kinetoplast and nuclear DNA in the micrograph based on whether the organelle has DNA with a more A-T or G-C rich composition. Following unambiguous identification of the kinetoplasts and nuclei the resulting images are amenable to quantitative automated analysis of kinetoplast and nucleus number and DNA content. On this foundation we have developed a demonstrative analysis tool capable of measuring kinetoplast and nucleus DNA content, size and position and cell body shape, length and width automatically.
Conclusions
Our approach to DNA staining and automated quantitative analysis of trypanosomatid morphology accelerated analysis of trypanosomatid protozoa. We have validated this approach using Leishmania mexicana, Crithidia fasciculata and wild-type and mutant Trypanosoma brucei. Automated analysis of T. brucei morphology was of comparable quality to manual analysis while being faster and less susceptible to experimentalist bias. The complete data set from each cell and all analysis parameters used can be recorded ensuring repeatability and allowing complete data archiving and reanalysis.
doi:10.1186/1741-7007-10-1
PMCID: PMC3398262  PMID: 22214525
18.  Development of High-Throughput Quantitative Assays for Glucose Uptake in Cancer Cell Lines 
Purpose
Metabolism, and especially glucose uptake, is a key quantitative cell trait that is closely linked to cancer initiation and progression. Therefore, developing high-throughput assays for measuring glucose uptake in cancer cells would be enviable for simultaneous comparisons of multiple cell lines and microenvironmental conditions. This study was designed with two specific aims in mind: the first was to develop and validate a high-throughput screening method for quantitative assessment of glucose uptake in “normal” and tumor cells using the fluorescent 2-deoxyglucose analog 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxyglucose (2-NBDG), and the second was to develop an image-based, quantitative, single-cell assay for measuring glucose uptake using the same probe to dissect the full spectrum of metabolic variability within populations of tumor cells in vitro in higher resolution.
Procedure
The kinetics of population-based glucose uptake was evaluated for MCF10A mammary epithelial and CA1d breast cancer cell lines, using 2-NBDG and a fluorometric microplate reader. Glucose uptake for the same cell lines was also examined at the single-cell level using high-content automated microscopy coupled with semi-automated cell-cytometric image analysis approaches. Statistical treatments were also implemented to analyze intra-population variability.
Results
Our results demonstrate that the high-throughput fluorometric assay using 2-NBDG is a reliable method to assess population-level kinetics of glucose uptake in cell lines in vitro. Similarly, single-cell image-based assays and analyses of 2-NBDG fluorescence proved an effective and accurate means for assessing glucose uptake, which revealed that breast tumor cell lines display intra-population variability that is modulated by growth conditions.
Conclusions
These studies indicate that 2-NBDG can be used to aid in the high-throughput analysis of the influence of chemotherapeutics on glucose uptake in cancer cells.
doi:10.1007/s11307-010-0399-5
PMCID: PMC3627351  PMID: 20809209
2-NBDG; Metabolism; High-throughput; Single-cell; Glycolysis
19.  Absolute quantification of microbial proteomes at different states by directed mass spectrometry 
The developed, directed mass spectrometry workflow allows to generate consistent and system-wide quantitative maps of microbial proteomes in a single analysis. Application to the human pathogen L. interrogans revealed mechanistic proteome changes over time involved in pathogenic progression and antibiotic defense, and new insights about the regulation of absolute protein abundances within operons.
The developed, directed proteomic approach allowed consistent detection and absolute quantification of 1680 proteins of the human pathogen L. interrogans in a single LC–MS/MS experiment.The comparison of 25 extensive, consistent and quantitative proteome maps revealed new insights about the proteome changes involved in pathogenic progression and antibiotic defense of L. interrogans, and about the regulation of protein abundances within operons.The generated time-resolved data sets are compatible with pattern analysis algorithms developed for transcriptomics, including hierarchical clustering and functional enrichment analysis of the detected profile clusters.This is the first study that describes the absolute quantitative behavior of any proteome over multiple states and represents the most comprehensive proteome abundance pattern comparison for any organism to date.
Over the last decade, mass spectrometry (MS)-based proteomics has evolved as the method of choice for system-wide proteome studies and now allows for the characterization of several thousands of proteins in a single sample. Despite these great advances, redundant monitoring of protein levels over large sample numbers in a high-throughput manner remains a challenging task. New directed MS strategies have shown to overcome some of the current limitations, thereby enabling the acquisition of consistent and system-wide data sets of proteomes with low-to-moderate complexity at high throughput.
In this study, we applied this integrated, two-stage MS strategy to investigate global proteome changes in the human pathogen L. interrogans. In the initial discovery phase, 1680 proteins (out of around 3600 gene products) could be identified (Schmidt et al, 2008) and, by focusing precious MS-sequencing time on the most dominant, specific peptides per protein, all proteins could be accurately and consistently monitored over 25 different samples within a few days of instrument time in the following scoring phase (Figure 1). Additionally, the co-analysis of heavy reference peptides enabled us to obtain absolute protein concentration estimates for all identified proteins in each perturbation (Malmström et al, 2009). The detected proteins did not show any biases against functional groups or protein classes, including membrane proteins, and span an abundance range of more than three orders of magnitude, a range that is expected to cover most of the L. interrogans proteome (Malmström et al, 2009).
To elucidate mechanistic proteome changes over time involved in pathogenic progression and antibiotic defense of L. interrogans, we generated time-resolved proteome maps of cells perturbed with serum and three different antibiotics at sublethal concentrations that are currently used to treat Leptospirosis. This yielded an information-rich proteomic data set that describes, for the first time, the absolute quantitative behavior of any proteome over multiple states, and represents the most comprehensive proteome abundance pattern comparison for any organism to date. Using this unique property of the data set, we could quantify protein components of entire pathways across several time points and subject the data sets to cluster analysis, a tool that was previously limited to the transcript level due to incomplete sampling on protein level (Figure 4). Based on these analyses, we could demonstrate that Leptospira cells adjust the cellular abundance of a certain subset of proteins and pathways as a general response to stress while other parts of the proteome respond highly specific. The cells furthermore react to individual treatments by ‘fine tuning' the abundance of certain proteins and pathways in order to cope with the specific cause of stress. Intriguingly, the most specific and significant expression changes were observed for proteins involved in motility, tissue penetration and virulence after serum treatment where we tried to simulate the host environment. While many of the detected protein changes demonstrate good agreement with available transcriptomics data, most proteins showed a poor correlation. This includes potential virulence factors, like Loa22 or OmpL1, with confirmed expression in vivo that were significantly up-regulated on the protein level, but not on the mRNA level, strengthening the importance of proteomic studies. The high resolution and coverage of the proteome data set enabled us to further investigate protein abundance changes of co-regulated genes within operons. This suggests that although most proteins within an operon respond to regulation synchronously, bacterial cells seem to have subtle means to adjust the levels of individual proteins or protein groups outside of the general trend, a phenomena that was recently also observed on the transcript level of other bacteria (Güell et al, 2009).
The method can be implemented with standard high-resolution mass spectrometers and software tools that are readily available in the majority of proteomics laboratories. It is scalable to any proteome of low-to-medium complexity and can be extended to post-translational modifications or peptide-labeling strategies for quantification. We therefore expect the approach outlined here to become a cornerstone for microbial systems biology.
Over the past decade, liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) has evolved into the main proteome discovery technology. Up to several thousand proteins can now be reliably identified from a sample and the relative abundance of the identified proteins can be determined across samples. However, the remeasurement of substantially similar proteomes, for example those generated by perturbation experiments in systems biology, at high reproducibility and throughput remains challenging. Here, we apply a directed MS strategy to detect and quantify sets of pre-determined peptides in tryptic digests of cells of the human pathogen Leptospira interrogans at 25 different states. We show that in a single LC–MS/MS experiment around 5000 peptides, covering 1680 L. interrogans proteins, can be consistently detected and their absolute expression levels estimated, revealing new insights about the proteome changes involved in pathogenic progression and antibiotic defense of L. interrogans. This is the first study that describes the absolute quantitative behavior of any proteome over multiple states, and represents the most comprehensive proteome abundance pattern comparison for any organism to date.
doi:10.1038/msb.2011.37
PMCID: PMC3159967  PMID: 21772258
absolute quantification; directed mass spectrometry; Leptospira interrogans; microbiology; proteomics
20.  High Content Phenotypic Cell-Based Visual Screen Identifies Mycobacterium tuberculosis Acyltrehalose-Containing Glycolipids Involved in Phagosome Remodeling 
PLoS Pathogens  2010;6(9):e1001100.
The ability of the tubercle bacillus to arrest phagosome maturation is considered one major mechanism that allows its survival within host macrophages. To identify mycobacterial genes involved in this process, we developed a high throughput phenotypic cell-based assay enabling individual sub-cellular analysis of over 11,000 Mycobacterium tuberculosis mutants. This very stringent assay makes use of fluorescent staining for intracellular acidic compartments, and automated confocal microscopy to quantitatively determine the intracellular localization of M. tuberculosis. We characterised the ten mutants that traffic most frequently into acidified compartments early after phagocytosis, suggesting that they had lost their ability to arrest phagosomal maturation. Molecular analysis of these mutants revealed mainly disruptions in genes involved in cell envelope biogenesis (fadD28), the ESX-1 secretion system (espL/Rv3880), molybdopterin biosynthesis (moaC1 and moaD1), as well as in genes from a novel locus, Rv1503c-Rv1506c. Most interestingly, the mutants in Rv1503c and Rv1506c were perturbed in the biosynthesis of acyltrehalose-containing glycolipids. Our results suggest that such glycolipids indeed play a critical role in the early intracellular fate of the tubercle bacillus. The unbiased approach developed here can be easily adapted for functional genomics study of intracellular pathogens, together with focused discovery of new anti-microbials.
Author Summary
One of the major virulence mechanisms of the tuberculosis bacillus, Mycobacterium tuberculosis, is its ability to resist killing by phagocytic cells of the host immune system, namely the macrophages. Macrophages degrade invading microbes by engulfment inside a vacuole, or phagosome, that progressively acidifies and accumulates hydrolytic properties. M. tuberculosis has the unique ability to block phagosome maturation and acidification. To identify mycobacterial genes involved in phagosome maturation arrest, we developed a novel high-throughput technology based on automated confocal microscopy. We screened a library containing over 11,000 M. tuberculosis mutants, and we could identify 10 mutants that had lost their ability to resist phagosome acidification. Genetic characterization of these mutants revealed that they carried lesions in genes involved in various cell processes, including biogenesis of the cell envelope. In particular, two independent mutants in the same genetic locus showed altered production of two lipids, namely diacyltrehalose (DAT) and sulfoglycolipid (SGL). In vitro experiments showed that SGL can indeed influence phagosome maturation. Our study unravels the role of novel lipid molecules in mycobacterial intracellular parasitism; our approach may be useful to identify virulence genes in other intracellular pathogens, and to identify novel antimicrobials.
doi:10.1371/journal.ppat.1001100
PMCID: PMC2936551  PMID: 20844580
21.  A zebrafish high throughput screening system used for Staphylococcus epidermidis infection marker discovery 
BMC Genomics  2013;14:255.
Background
Staphylococcus epidermidis bacteria are a major cause of biomaterial-associated infections in modern medicine. Yet there is little known about the host responses against this normally innocent bacterium in the context of infection of biomaterials. In order to better understand the factors involved in this process, a whole animal model with high throughput screening possibilities and markers for studying the host response to S. epidermidis infection are required.
Results
We have used a zebrafish yolk injection system to study bacterial proliferation and the host response in a time course experiment of S. epidermidis infection. By combining an automated microinjection system with complex object parametric analysis and sorting (COPAS) technology we have quantified bacterial proliferation. This system was used together with transcriptome analysis at several time points during the infection period. We show that bacterial colony forming unit (CFU) counting can be replaced by high throughput flow-based fluorescence analysis of embryos enabling high throughput readout. Comparison of the host transcriptome response to S. epidermidis and Mycobacterium marinum infection in the same system showed that M. marinum has a far stronger effect on host gene regulation than S. epidermidis. However, multiple genes responded differently to S. epidermidis infection than to M. marinum, including a cell adhesion gene linked to specific infection by staphylococci in mammals.
Conclusions
Our zebrafish embryo infection model allowed (i) quantitative assessment of bacterial proliferation, (ii) identification of zebrafish genes serving as markers for infection with the opportunistic pathogen S. epidermidis, and (iii) comparison of the transcriptome response of infection with S. epidermidis and with the pathogen M. marinum. As a result we have identified markers that can be used to distinguish common and specific responses to S. epidermidis. These markers enable the future integration of our high throughput screening technology with functional analyses of immune response genes and immune modulating factors.
doi:10.1186/1471-2164-14-255
PMCID: PMC3638012  PMID: 23586901
Zebrafish; Staphylococcus epidermidis; High throughput screening; Transcriptome analysis; RNA deep sequencing; COPAS; Host pathogen interaction
22.  ScreenMill: A freely available software suite for growth measurement, analysis and visualization of high-throughput screen data 
BMC Bioinformatics  2010;11:353.
Background
Many high-throughput genomic experiments, such as Synthetic Genetic Array and yeast two-hybrid, use colony growth on solid media as a screen metric. These experiments routinely generate over 100,000 data points, making data analysis a time consuming and painstaking process. Here we describe ScreenMill, a new software suite that automates image analysis and simplifies data review and analysis for high-throughput biological experiments.
Results
The ScreenMill, software suite includes three software tools or "engines": an open source Colony Measurement Engine (CM Engine) to quantitate colony growth data from plate images, a web-based Data Review Engine (DR Engine) to validate and analyze quantitative screen data, and a web-based Statistics Visualization Engine (SV Engine) to visualize screen data with statistical information overlaid. The methods and software described here can be applied to any screen in which growth is measured by colony size. In addition, the DR Engine and SV Engine can be used to visualize and analyze other types of quantitative high-throughput data.
Conclusions
ScreenMill automates quantification, analysis and visualization of high-throughput screen data. The algorithms implemented in ScreenMill are transparent allowing users to be confident about the results ScreenMill produces. Taken together, the tools of ScreenMill offer biologists a simple and flexible way of analyzing their data, without requiring programming skills.
doi:10.1186/1471-2105-11-353
PMCID: PMC2909220  PMID: 20584323
23.  Multi-Scale Imaging and Informatics Pipeline for In Situ Pluripotent Stem Cell Analysis 
PLoS ONE  2014;9(12):e116037.
Human pluripotent stem (hPS) cells are a potential source of cells for medical therapy and an ideal system to study fate decisions in early development. However, hPS cells cultured in vitro exhibit a high degree of heterogeneity, presenting an obstacle to clinical translation. hPS cells grow in spatially patterned colony structures, necessitating quantitative single-cell image analysis. We offer a tool for analyzing the spatial population context of hPS cells that integrates automated fluorescent microscopy with an analysis pipeline. It enables high-throughput detection of colonies at low resolution, with single-cellular and sub-cellular analysis at high resolutions, generating seamless in situ maps of single-cellular data organized by colony. We demonstrate the tool's utility by analyzing inter- and intra-colony heterogeneity of hPS cell cycle regulation and pluripotency marker expression. We measured the heterogeneity within individual colonies by analyzing cell cycle as a function of distance. Cells loosely associated with the outside of the colony are more likely to be in G1, reflecting a less pluripotent state, while cells within the first pluripotent layer are more likely to be in G2, possibly reflecting a G2/M block. Our multi-scale analysis tool groups colony regions into density classes, and cells belonging to those classes have distinct distributions of pluripotency markers and respond differently to DNA damage induction. Lastly, we demonstrate that our pipeline can robustly handle high-content, high-resolution single molecular mRNA FISH data by using novel image processing techniques. Overall, the imaging informatics pipeline presented offers a novel approach to the analysis of hPS cells that includes not only single cell features but also colony wide, and more generally, multi-scale spatial configuration.
doi:10.1371/journal.pone.0116037
PMCID: PMC4281228  PMID: 25551762
24.  A Computational Framework for Ultrastructural Mapping of Neural Circuitry 
PLoS Biology  2009;7(3):e1000074.
Circuitry mapping of metazoan neural systems is difficult because canonical neural regions (regions containing one or more copies of all components) are large, regional borders are uncertain, neuronal diversity is high, and potential network topologies so numerous that only anatomical ground truth can resolve them. Complete mapping of a specific network requires synaptic resolution, canonical region coverage, and robust neuronal classification. Though transmission electron microscopy (TEM) remains the optimal tool for network mapping, the process of building large serial section TEM (ssTEM) image volumes is rendered difficult by the need to precisely mosaic distorted image tiles and register distorted mosaics. Moreover, most molecular neuronal class markers are poorly compatible with optimal TEM imaging. Our objective was to build a complete framework for ultrastructural circuitry mapping. This framework combines strong TEM-compliant small molecule profiling with automated image tile mosaicking, automated slice-to-slice image registration, and gigabyte-scale image browsing for volume annotation. Specifically we show how ultrathin molecular profiling datasets and their resultant classification maps can be embedded into ssTEM datasets and how scripted acquisition tools (SerialEM), mosaicking and registration (ir-tools), and large slice viewers (MosaicBuilder, Viking) can be used to manage terabyte-scale volumes. These methods enable large-scale connectivity analyses of new and legacy data. In well-posed tasks (e.g., complete network mapping in retina), terabyte-scale image volumes that previously would require decades of assembly can now be completed in months. Perhaps more importantly, the fusion of molecular profiling, image acquisition by SerialEM, ir-tools volume assembly, and data viewers/annotators also allow ssTEM to be used as a prospective tool for discovery in nonneural systems and a practical screening methodology for neurogenetics. Finally, this framework provides a mechanism for parallelization of ssTEM imaging, volume assembly, and data analysis across an international user base, enhancing the productivity of a large cohort of electron microscopists.
Author Summary
Building an accurate neural network diagram of the vertebrate nervous system is a major challenge in neuroscience. Diverse groups of neurons that function together form complex patterns of connections often spanning large regions of brain tissue, with uncertain borders. Although serial-section transmission electron microscopy remains the optimal tool for fine anatomical analyses, the time and cost of the undertaking has been prohibitive. We have assembled a complete framework for ultrastructural mapping using conventional transmission electron microscopy that tremendously accelerates image analysis. This framework combines small-molecule profiling to classify cells, automated image acquisition, automated mosaic formation, automated slice-to-slice image registration, and large-scale image browsing for volume annotation. Terabyte-scale image volumes requiring decades or more to assemble manually can now be automatically built in a few months. This makes serial-section transmission electron microscopy practical for high-resolution exploration of all complex tissue systems (neural or nonneural) as well as for ultrastructural screening of genetic models.
A framework for analysis of terabyte-scale serial-section transmission electron microscopic (ssTEM) datasets overcomes computational barriers and accelerates high-resolution tissue analysis, providing a practical way of mapping complex neural circuitry and an effective screening tool for neurogenetics.
doi:10.1371/journal.pbio.1000074
PMCID: PMC2661966  PMID: 19855814
25.  Ranked retrieval of segmented nuclei for objective assessment of cancer gene repositioning 
BMC Bioinformatics  2012;13:232.
Background
Correct segmentation is critical to many applications within automated microscopy image analysis. Despite the availability of advanced segmentation algorithms, variations in cell morphology, sample preparation, and acquisition settings often lead to segmentation errors. This manuscript introduces a ranked-retrieval approach using logistic regression to automate selection of accurately segmented nuclei from a set of candidate segmentations. The methodology is validated on an application of spatial gene repositioning in breast cancer cell nuclei. Gene repositioning is analyzed in patient tissue sections by labeling sequences with fluorescence in situ hybridization (FISH), followed by measurement of the relative position of each gene from the nuclear center to the nuclear periphery. This technique requires hundreds of well-segmented nuclei per sample to achieve statistical significance. Although the tissue samples in this study contain a surplus of available nuclei, automatic identification of the well-segmented subset remains a challenging task.
Results
Logistic regression was applied to features extracted from candidate segmented nuclei, including nuclear shape, texture, context, and gene copy number, in order to rank objects according to the likelihood of being an accurately segmented nucleus. The method was demonstrated on a tissue microarray dataset of 43 breast cancer patients, comprising approximately 40,000 imaged nuclei in which the HES5 and FRA2 genes were labeled with FISH probes. Three trained reviewers independently classified nuclei into three classes of segmentation accuracy. In man vs. machine studies, the automated method outperformed the inter-observer agreement between reviewers, as measured by area under the receiver operating characteristic (ROC) curve. Robustness of gene position measurements to boundary inaccuracies was demonstrated by comparing 1086 manually and automatically segmented nuclei. Pearson correlation coefficients between the gene position measurements were above 0.9 (p < 0.05). A preliminary experiment was conducted to validate the ranked retrieval in a test to detect cancer. Independent manual measurement of gene positions agreed with automatic results in 21 out of 26 statistical comparisons against a pooled normal (benign) gene position distribution.
Conclusions
Accurate segmentation is necessary to automate quantitative image analysis for applications such as gene repositioning. However, due to heterogeneity within images and across different applications, no segmentation algorithm provides a satisfactory solution. Automated assessment of segmentations by ranked retrieval is capable of reducing or even eliminating the need to select segmented objects by hand and represents a significant improvement over binary classification. The method can be extended to other high-throughput applications requiring accurate detection of cells or nuclei across a range of biomedical applications.
doi:10.1186/1471-2105-13-232
PMCID: PMC3484015  PMID: 22971117

Results 1-25 (1601654)