PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (663674)

Clipboard (0)
None

Related Articles

1.  PlantCAZyme: a database for plant carbohydrate-active enzymes 
PlantCAZyme is a database built upon dbCAN (database for automated carbohydrate active enzyme annotation), aiming to provide pre-computed sequence and annotation data of carbohydrate active enzymes (CAZymes) to plant carbohydrate and bioenergy research communities. The current version contains data of 43 790 CAZymes of 159 protein families from 35 plants (including angiosperms, gymnosperms, lycophyte and bryophyte mosses) and chlorophyte algae with fully sequenced genomes. Useful features of the database include: (i) a BLAST server and a HMMER server that allow users to search against our pre-computed sequence data for annotation purpose, (ii) a download page to allow batch downloading data of a specific CAZyme family or species and (iii) protein browse pages to provide an easy access to the most comprehensive sequence and annotation data.
Database URL: http://cys.bios.niu.edu/plantcazyme/
doi:10.1093/database/bau079
PMCID: PMC4132414  PMID: 25125445
2.  Re-annotation of the CAZy genes of Trichoderma reesei and transcription in the presence of lignocellulosic substrates 
Background
Trichoderma reesei is a soft rot Ascomycota fungus utilised for industrial production of secreted enzymes, especially lignocellulose degrading enzymes. About 30 carbohydrate active enzymes (CAZymes) of T. reesei have been biochemically characterised. Genome sequencing has revealed a large number of novel candidates for CAZymes, thus increasing the potential for identification of enzymes with novel activities and properties. Plenty of data exists on the carbon source dependent regulation of the characterised hydrolytic genes. However, information on the expression of the novel CAZyme genes, especially on complex biomass material, is very limited.
Results
In this study, the CAZyme gene content of the T. reesei genome was updated and the annotations of the genes refined using both computational and manual approaches. Phylogenetic analysis was done to assist the annotation and to identify functionally diversified CAZymes. The analyses identified 201 glycoside hydrolase genes, 22 carbohydrate esterase genes and five polysaccharide lyase genes. Updated or novel functional predictions were assigned to 44 genes, and the phylogenetic analysis indicated further functional diversification within enzyme families or groups of enzymes. GH3 β-glucosidases, GH27 α-galactosidases and GH18 chitinases were especially functionally diverse. The expression of the lignocellulose degrading enzyme system of T. reesei was studied by cultivating the fungus in the presence of different inducing substrates and by subjecting the cultures to transcriptional profiling. The substrates included both defined and complex lignocellulose related materials, such as pretreated bagasse, wheat straw, spruce, xylan, Avicel cellulose and sophorose. The analysis revealed co-regulated groups of CAZyme genes, such as genes induced in all the conditions studied and also genes induced preferentially by a certain set of substrates.
Conclusions
In this study, the CAZyme content of the T. reesei genome was updated, the discrepancies between the different genome versions and published literature were removed and the annotation of many of the genes was refined. Expression analysis of the genes gave information on the enzyme activities potentially induced by the presence of the different substrates. Comparison of the expression profiles of the CAZyme genes under the different conditions identified co-regulated groups of genes, suggesting common regulatory mechanisms for the gene groups.
doi:10.1186/1475-2859-11-134
PMCID: PMC3526510  PMID: 23035824
Carbohydrate active enzymes; Cellulase; Hemicellulase; Lignocellulose; Transcriptome; Transcriptional profiling; Gene regulation; Wheat; Spruce; Bagasse; Biorefinery
3.  Carbohydrate-Active Enzymes in Pythium and Their Role in Plant Cell Wall and Storage Polysaccharide Degradation 
PLoS ONE  2013;8(9):e72572.
Carbohydrate-active enzymes (CAZymes) are involved in the metabolism of glycoconjugates, oligosaccharides, and polysaccharides and, in the case of plant pathogens, in the degradation of the host cell wall and storage compounds. We performed an in silico analysis of CAZymes predicted from the genomes of seven Pythium species (Py. aphanidermatum, Py. arrhenomanes, Py. irregulare, Py. iwayamai, Py. ultimum var. ultimum, Py. ultimum var. sporangiiferum and Py. vexans) using the “CAZymes Analysis Toolkit” and “Database for Automated Carbohydrate-active Enzyme Annotation” and compared them to previously published oomycete genomes. Growth of Pythium spp. was assessed in a minimal medium containing selected carbon sources that are usually present in plants. The in silico analyses, coupled with our in vitro growth assays, suggest that most of the predicted CAZymes are involved in the metabolism of the oomycete cell wall with starch and sucrose serving as the main carbohydrate sources for growth of these plant pathogens. The genomes of Pythium spp. also encode pectinases and cellulases that facilitate degradation of the plant cell wall and are important in hyphal penetration; however, the species examined in this study lack the requisite genes for the complete saccharification of these carbohydrates for use as a carbon source. Genes encoding for xylan, xyloglucan, (galacto)(gluco)mannan and cutin degradation were absent or infrequent in Pythium spp.. Comparative analyses of predicted CAZymes in oomycetes indicated distinct evolutionary histories. Furthermore, CAZyme gene families among Pythium spp. were not uniformly distributed in the genomes, suggesting independent gene loss events, reflective of the polyphyletic relationships among some of the species.
doi:10.1371/journal.pone.0072572
PMCID: PMC3772060  PMID: 24069150
4.  Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi 
BMC Genomics  2013;14:274.
Background
Fungi produce a variety of carbohydrate activity enzymes (CAZymes) for the degradation of plant polysaccharide materials to facilitate infection and/or gain nutrition. Identifying and comparing CAZymes from fungi with different nutritional modes or infection mechanisms may provide information for better understanding of their life styles and infection models. To date, over hundreds of fungal genomes are publicly available. However, a systematic comparative analysis of fungal CAZymes across the entire fungal kingdom has not been reported.
Results
In this study, we systemically identified glycoside hydrolases (GHs), polysaccharide lyases (PLs), carbohydrate esterases (CEs), and glycosyltransferases (GTs) as well as carbohydrate-binding modules (CBMs) in the predicted proteomes of 103 representative fungi from Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota. Comparative analysis of these CAZymes that play major roles in plant polysaccharide degradation revealed that fungi exhibit tremendous diversity in the number and variety of CAZymes. Among them, some families of GHs and CEs are the most prevalent CAZymes that are distributed in all of the fungi analyzed. Importantly, cellulases of some GH families are present in fungi that are not known to have cellulose-degrading ability. In addition, our results also showed that in general, plant pathogenic fungi have the highest number of CAZymes. Biotrophic fungi tend to have fewer CAZymes than necrotrophic and hemibiotrophic fungi. Pathogens of dicots often contain more pectinases than fungi infecting monocots. Interestingly, besides yeasts, many saprophytic fungi that are highly active in degrading plant biomass contain fewer CAZymes than plant pathogenic fungi. Furthermore, analysis of the gene expression profile of the wheat scab fungus Fusarium graminearum revealed that most of the CAZyme genes related to cell wall degradation were up-regulated during plant infection. Phylogenetic analysis also revealed a complex history of lineage-specific expansions and attritions for the PL1 family.
Conclusions
Our study provides insights into the variety and expansion of fungal CAZyme classes and revealed the relationship of CAZyme size and diversity with their nutritional strategy and host specificity.
doi:10.1186/1471-2164-14-274
PMCID: PMC3652786  PMID: 23617724
Fungi; CAZymes; Glycoside hydrolase; Polysaccharide lyase; Carbohydrate esterase; Pectinase; Cutinase; Lignocellulase
5.  Correction: Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi 
BMC Genomics  2014;15:6.
Abstract
The version of this article published in BMC Genomics 2013, 14: 274, contains 9 unpublished genomes (Botryobasidium botryosum, Gymnopus luxurians, Hypholoma sublateritium, Jaapia argillacea, Hebeloma cylindrosporum, Conidiobolus coronatus, Laccaria amethystina, Paxillus involutus, and P. rubicundulus) downloaded from JGI website. In this correction, we removed these genomes after discussion with editors and data producers whom we should have contacted before downloading these genomes. Removing these data did not alter the principle results and conclusions of our original work. The relevant Figures 1, 2, 3, 4 and 6; and Table 1 have been revised. Additional files 1, 3, 4, and 5 were also revised. We would like to apologize for any confusion or inconvenience this may have caused.
Background
Fungi produce a variety of carbohydrate activity enzymes (CAZymes) for the degradation of plant polysaccharide materials to facilitate infection and/or gain nutrition. Identifying and comparing CAZymes from fungi with different nutritional modes or infection mechanisms may provide information for better understanding of their life styles and infection models. To date, over hundreds of fungal genomes are publicly available. However, a systematic comparative analysis of fungal CAZymes across the entire fungal kingdom has not been reported.
Results
In this study, we systemically identified glycoside hydrolases (GHs), polysaccharide lyases (PLs), carbohydrate esterases (CEs), and glycosyltransferases (GTs) as well as carbohydrate-binding modules (CBMs) in the predicted proteomes of 94 representative fungi from Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota. Comparative analysis of these CAZymes that play major roles in plant polysaccharide degradation revealed that fungi exhibit tremendous diversity in the number and variety of CAZymes. Among them, some families of GHs and CEs are the most prevalent CAZymes that are distributed in all of the fungi analyzed. Importantly, cellulases of some GH families are present in fungi that are not known to have cellulose-degrading ability. In addition, our results also showed that in general, plant pathogenic fungi have the highest number of CAZymes. Biotrophic fungi tend to have fewer CAZymes than necrotrophic and hemibiotrophic fungi. Pathogens of dicots often contain more pectinases than fungi infecting monocots. Interestingly, besides yeasts, many saprophytic fungi that are highly active in degrading plant biomass contain fewer CAZymes than plant pathogenic fungi. Furthermore, analysis of the gene expression profile of the wheat scab fungus Fusarium graminearum revealed that most of the CAZyme genes related to cell wall degradation were up-regulated during plant infection. Phylogenetic analysis also revealed a complex history of lineage-specific expansions and attritions for the PL1 family.
Conclusions
Our study provides insights into the variety and expansion of fungal CAZyme classes and revealed the relationship of CAZyme size and diversity with their nutritional strategy and host specificity.
doi:10.1186/1471-2164-15-6
PMCID: PMC3893384  PMID: 24422981
Fungi; CAZymes; Glycoside hydrolase; Polysaccharide lyase; Carbohydrate esterase; Pectinase; Cutinase; Lignocellulase
6.  Functional Diversity of Carbohydrate-Active Enzymes Enabling a Bacterium to Ferment Plant Biomass 
PLoS Genetics  2014;10(11):e1004773.
Microbial metabolism of plant polysaccharides is an important part of environmental carbon cycling, human nutrition, and industrial processes based on cellulosic bioconversion. Here we demonstrate a broadly applicable method to analyze how microbes catabolize plant polysaccharides that integrates carbohydrate-active enzyme (CAZyme) assays, RNA sequencing (RNA-seq), and anaerobic growth screening. We apply this method to study how the bacterium Clostridium phytofermentans ferments plant biomass components including glucans, mannans, xylans, galactans, pectins, and arabinans. These polysaccharides are fermented with variable efficiencies, and diauxies prioritize metabolism of preferred substrates. Strand-specific RNA-seq reveals how this bacterium responds to polysaccharides by up-regulating specific groups of CAZymes, transporters, and enzymes to metabolize the constituent sugars. Fifty-six up-regulated CAZymes were purified, and their activities show most polysaccharides are degraded by multiple enzymes, often from the same family, but with divergent rates, specificities, and cellular localizations. CAZymes were then tested in combination to identify synergies between enzymes acting on the same substrate with different catalytic mechanisms. We discuss how these results advance our understanding of how microbes degrade and metabolize plant biomass.
Author Summary
Plant-fermenting bacteria are important for the global carbon cycle, human nutrition, and industrial production of renewable fuels and commodities from cellulosic biomass. Plants are primarily composed of heterogeneous polysaccharides, requiring plant-degrading microbes to encode many carbohydrate-active enzymes (CAZymes) to cleave different sugar linkages. Here we develop a broadly applicable method to study how microbes catabolize plant biomass by determining the combination of CAZymes that depolymerize each polysaccharide into sugars, how the cell alters global mRNA expression, and the efficiency with which each polysaccharide is metabolized. We apply this method to investigate how Clostridium phytofermentans, a bacterium encoding 171 CAZymes, ferments polysaccharides. We assimilate our results into a genetic model of how this bacterium metabolizes plant biomass and discuss how these results further our understanding of microbial plant fermentation.
doi:10.1371/journal.pgen.1004773
PMCID: PMC4230839  PMID: 25393313
7.  The role of carbon starvation in the induction of enzymes that degrade plant-derived carbohydrates in Aspergillus niger 
Highlights
•The transriptomic response of Aspergillus niger to wheat straw is sequential.•The early response consists of genes encoding hemicellulolytic enzymes.•The later response to straw consists of genes encoding cellulases and pectinases.•The early response to carbon starvation overlaps with that to wheat straw.•CAZymes in starved cultures release mono- and oligosaccharides from lignocellulose.
Fungi are an important source of enzymes for saccharification of plant polysaccharides and production of biofuels. Understanding of the regulation and induction of expression of genes encoding these enzymes is still incomplete. To explore the induction mechanism, we analysed the response of the industrially important fungus Aspergillus niger to wheat straw, with a focus on events occurring shortly after exposure to the substrate. RNA sequencing showed that the transcriptional response after 6 h of exposure to wheat straw was very different from the response at 24 h of exposure to the same substrate. For example, less than half of the genes encoding carbohydrate active enzymes that were induced after 24 h of exposure to wheat straw, were also induced after 6 h exposure. Importantly, over a third of the genes induced after 6 h of exposure to wheat straw were also induced during 6 h of carbon starvation, indicating that carbon starvation is probably an important factor in the early response to wheat straw. The up-regulation of the expression of a high number of genes encoding CAZymes that are active on plant-derived carbohydrates during early carbon starvation suggests that these enzymes could be involved in a scouting role during starvation, releasing inducing sugars from complex plant polysaccharides. We show, using proteomics, that carbon-starved cultures indeed release CAZymes with predicted activity on plant polysaccharides. Analysis of the enzymatic activity and the reaction products, indicates that these proteins are enzymes that can degrade various plant polysaccharides to generate both known, as well as potentially new, inducers of CAZymes.
doi:10.1016/j.fgb.2014.04.006
PMCID: PMC4217149  PMID: 24792495
pNP-Cel, 4-Nitrophenyl-β-d-cellobioside; pNP-Ara, 4-Nitrophenyl-α-l-arabinofuranoside; pNP-β-Glc, 4-Nitrophenyl-β-d-glucopyranoside; pNP-Xyl, 4-Nitrophenyl-β-d-xylopyranoside; pNP-α-Glc, 4-Nitrophenyl-α-d-glucopyranoside; MWCO, molecular weight cut-off; DASH, DNA sequencer-assisted saccharide analysis in high throughput; DP, degree of polymerization; Aspergillus niger; Lignocellulose; CAZy enzymes; Transcriptome; Carbon starvation; Inducer
8.  Bioinformatic characterisation of genes encoding cell wall degrading enzymes in the Phytophthora parasitica genome 
BMC Genomics  2014;15(1):785.
Background
A critical aspect of plant infection by the majority of pathogens is penetration of the plant cell wall. This process requires the production and secretion of a broad spectrum of pathogen enzymes that target and degrade the many complex polysaccharides in the plant cell wall. As a necessary framework for a study of the expression of cell wall degrading enzymes (CWDEs) produced by the broad host range phytopathogen, Phytophthora parasitica, we have conducted an in-depth bioinformatics analysis of the entire complement of genes encoding CWDEs in this pathogen’s genome.
Results
Our bioinformatic analysis indicates that 431 (2%) of the 20,825 predicted proteins encoded by the P. parasitica genome, are carbohydrate-active enzymes (CAZymes) involved in the degradation of cell wall polysaccharides. Of the 431 proteins, 337 contain classical N-terminal secretion signals and 67 are predicted to be targeted to the non-classical secretion pathway. Identification of CAZyme catalytic activity based on primary protein sequence is difficult, nevertheless, detailed comparisons with previously characterized enzymes has allowed us to determine likely enzyme activities and targeted substrates for many of the P. parasitica CWDEs. Some proteins (12%) contain more than one CAZyme module but, in most cases, multiple modules are from the same CAZyme family. Only 12 P. parasitica CWDEs contain both catalytically-active (glycosyl hydrolase) and non-catalytic (carbohydrate binding) modules, a situation that contrasts with that in fungal phytopathogens. Other striking differences between the complements of CWDEs in P. parasitica and fungal phytopathogens are seen in the CAZyme families that target cellulose, pectins or β-1,3-glucans (e.g. callose). About 25% of P. parasitica CAZymes are solely directed towards pectin degradation, with the majority coming from pectin lyase or carbohydrate esterase families. Fungal phytopathogens typically contain less than half the numbers of these CAZymes. The P. parasitica genome, like that of other Oomycetes, is rich in CAZymes that target β-1,3-glucans.
Conclusions
This detailed analysis of the full complement of P. parasitica cell wall degrading enzymes provides a framework for an in-depth study of patterns of expression of these pathogen genes during plant infection and the induction or repression of expression by selected substrates.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-785) contains supplementary material, which is available to authorized users.
doi:10.1186/1471-2164-15-785
PMCID: PMC4176579  PMID: 25214042
CAZymes; Carbohydrate binding module; Carbohydrate esterase; Cell wall degrading enzymes; Glycoside hydrolase; Polysaccharide lyase; Phytophthora parasitica genome
9.  Comparative Analysis of Carbohydrate Active Enzymes in Clostridium termitidis CT1112 Reveals Complex Carbohydrate Degradation Ability 
PLoS ONE  2014;9(8):e104260.
Clostridium termitidis strain CT1112 is an anaerobic, gram positive, mesophilic, cellulolytic bacillus isolated from the gut of the wood-feeding termite, Nasutitermes lujae. It produces biofuels such as hydrogen and ethanol from cellulose, cellobiose, xylan, xylose, glucose, and other sugars, and therefore could be used for biofuel production from biomass through consolidated bioprocessing. The first step in the production of biofuel from biomass by microorganisms is the hydrolysis of complex carbohydrates present in biomass. This is achieved through the presence of a repertoire of secreted or complexed carbohydrate active enzymes (CAZymes), sometimes organized in an extracellular organelle called cellulosome. To assess the ability and understand the mechanism of polysaccharide hydrolysis in C. termitidis, the recently sequenced strain CT1112 of C. termitidis was analyzed for both CAZymes and cellulosomal components, and compared to other cellulolytic bacteria. A total of 355 CAZyme sequences were identified in C. termitidis, significantly higher than other Clostridial species. Of these, high numbers of glycoside hydrolases (199) and carbohydrate binding modules (95) were identified. The presence of a variety of CAZymes involved with polysaccharide utilization/degradation ability suggests hydrolysis potential for a wide range of polysaccharides. In addition, dockerin-bearing enzymes, cohesion domains and a cellulosomal gene cluster were identified, indicating the presence of potential cellulosome assembly.
doi:10.1371/journal.pone.0104260
PMCID: PMC4125193  PMID: 25101643
10.  Genome-wide transcriptional profiling of Botrytis cinerea genes targeting plant cell walls during infections of different hosts 
Cell walls are barriers that impair colonization of host tissues, but also are important reservoirs of energy-rich sugars. Growing hyphae of necrotrophic fungal pathogens, such as Botrytis cinerea (Botrytis, henceforth), secrete enzymes that disassemble cell wall polysaccharides. In this work we describe the annotation of 275 putative secreted Carbohydrate-Active enZymes (CAZymes) identified in the Botrytis B05.10 genome. Using RNAseq we determined which Botrytis CAZymes were expressed during infections of lettuce leaves, ripe tomato fruit, and grape berries. On the three hosts, Botrytis expressed a common group of 229 potentially secreted CAZymes, including 28 pectin backbone-modifying enzymes, 21 hemicellulose-modifying proteins, 18 enzymes that might target pectin and hemicellulose side-branches, and 16 enzymes predicted to degrade cellulose. The diversity of the Botrytis CAZymes may be partly responsible for its wide host range. Thirty-six candidate CAZymes with secretion signals were found exclusively when Botrytis interacted with ripe tomato fruit and grape berries. Pectin polysaccharides are notably abundant in grape and tomato cell walls, but lettuce leaf walls have less pectin and are richer in hemicelluloses and cellulose. The results of this study not only suggest that Botrytis targets similar wall polysaccharide networks on fruit and leaves, but also that it may selectively attack host wall polysaccharide substrates depending on the host tissue.
doi:10.3389/fpls.2014.00435
PMCID: PMC4153048  PMID: 25232357
Botrytis; noble rot; plant pathogenic fungi; CAZymes; RNAseq; tomato; grape; lettuce
11.  Composition and Expression of Genes Encoding Carbohydrate-Active Enzymes in the Straw-Degrading Mushroom Volvariella volvacea 
PLoS ONE  2013;8(3):e58780.
Volvariella volvacea is one of a few commercial cultivated mushrooms mainly using straw as carbon source. In this study, the genome of V. volcacea was sequenced and assembled. A total of 285 genes encoding carbohydrate-active enzymes (CAZymes) in V. volvacea were identified and annotated. Among 15 fungi with sequenced genomes, V. volvacea ranks seventh in the number of genes encoding CAZymes. In addition, the composition of glycoside hydrolases in V. volcacea is dramatically different from other basidiomycetes: it is particularly rich in members of the glycoside hydrolase families GH10 (hemicellulose degradation) and GH43 (hemicellulose and pectin degradation), and the lyase families PL1, PL3 and PL4 (pectin degradation) but lacks families GH5b, GH11, GH26, GH62, GH93, GH115, GH105, GH9, GH53, GH32, GH74 and CE12. Analysis of genome-wide gene expression profiles of 3 strains using 3′-tag digital gene expression (DGE) reveals that 239 CAZyme genes were expressed even in potato destrose broth medium. Our data also showed that the formation of a heterokaryotic strain could dramatically increase the expression of a number of genes which were poorly expressed in its parental homokaryotic strains.
doi:10.1371/journal.pone.0058780
PMCID: PMC3595290  PMID: 23554925
12.  Complex Carbohydrate Utilization by the Healthy Human Microbiome 
PLoS ONE  2012;7(6):e28742.
The various ecological habitats in the human body provide microbes a wide array of nutrient sources and survival challenges. Advances in technology such as DNA sequencing have allowed a deeper perspective into the molecular function of the human microbiota than has been achievable in the past. Here we aimed to examine the enzymes that cleave complex carbohydrates (CAZymes) in the human microbiome in order to determine (i) whether the CAZyme profiles of bacterial genomes are more similar within body sites or bacterial families and (ii) the sugar degradation and utilization capabilities of microbial communities inhabiting various human habitats. Upon examination of 493 bacterial references genomes from 12 human habitats, we found that sugar degradation capabilities of taxa are more similar to others in the same bacterial family than to those inhabiting the same habitat. Yet, the analysis of 520 metagenomic samples from five major body sites show that even when the community composition varies the CAZyme profiles are very similar within a body site, suggesting that the observed functional profile and microbial habitation have adapted to the local carbohydrate composition. When broad sugar utilization was compared within the five major body sites, the gastrointestinal track contained the highest potential for total sugar degradation, while dextran and peptidoglycan degradation were highest in oral and vaginal sites respectively. Our analysis suggests that the carbohydrate composition of each body site has a profound influence and probably constitutes one of the major driving forces that shapes the community composition and therefore the CAZyme profile of the local microbial communities, which in turn reflects the microbiome fitness to a body site.
doi:10.1371/journal.pone.0028742
PMCID: PMC3374616  PMID: 22719820
13.  Carbohydrate-active enzymes from pigmented Bacilli: a genomic approach to assess carbohydrate utilization and degradation 
BMC Microbiology  2011;11:198.
Background
Spore-forming Bacilli are Gram-positive bacteria commonly found in a variety of natural habitats, including soil, water and the gastro-intestinal (GI)-tract of animals. Isolates of various Bacillus species produce pigments, mostly carotenoids, with a putative protective role against UV irradiation and oxygen-reactive forms.
Results
We report the annotation of carbohydrate active enzymes (CAZymes) of two pigmented Bacilli isolated from the human GI-tract and belonging to the Bacillus indicus and B. firmus species. A high number of glycoside hydrolases (GHs) and carbohydrate binding modules (CBMs) were found in both isolates. A detailed analysis of CAZyme families, was performed and supported by growth data. Carbohydrates able to support growth as the sole carbon source negatively effected carotenoid formation in rich medium, suggesting that a catabolite repression-like mechanism controls carotenoid biosynthesis in both Bacilli. Experimental results on biofilm formation confirmed genomic data on the potentials of B. indicus HU36 to produce a levan-based biofilm, while mucin-binding and -degradation experiments supported genomic data suggesting the ability of both Bacilli to degrade mammalian glycans.
Conclusions
CAZy analyses of the genomes of the two pigmented Bacilli, compared to other Bacillus species and validated by experimental data on carbohydrate utilization, biofilm formation and mucin degradation, suggests that the two pigmented Bacilli are adapted to the intestinal environment and are suited to grow in and colonize the human gut.
doi:10.1186/1471-2180-11-198
PMCID: PMC3178493  PMID: 21892951
14.  The carbohydrate-active enzymes database (CAZy) in 2013 
Nucleic Acids Research  2013;42(Database issue):D490-D495.
The Carbohydrate-Active Enzymes database (CAZy; http://www.cazy.org) provides online and continuously updated access to a sequence-based family classification linking the sequence to the specificity and 3D structure of the enzymes that assemble, modify and breakdown oligo- and polysaccharides. Functional and 3D structural information is added and curated on a regular basis based on the available literature. In addition to the use of the database by enzymologists seeking curated information on CAZymes, the dissemination of a stable nomenclature for these enzymes is probably a major contribution of CAZy. The past few years have seen the expansion of the CAZy classification scheme to new families, the development of subfamilies in several families and the power of CAZy for the analysis of genomes and metagenomes. This article outlines the changes that have occurred in CAZy during the past 5 years and presents our novel effort to display the resolution and the carbohydrate ligands in crystallographic complexes of CAZymes.
doi:10.1093/nar/gkt1178
PMCID: PMC3965031  PMID: 24270786
15.  The putative protein methyltransferase LAE1 controls cellulase gene expression in Trichoderma reesei 
Molecular Microbiology  2012;84(6):1150-1164.
Summary
Trichoderma reesei is an industrial producer of enzymes that degrade lignocellulosic polysaccharides to soluble monomers, which can be fermented to biofuels. Here we show that the expression of genes for lignocellulose degradation are controlled by the orthologous T. reesei protein methyltransferase LAE1. In a lae1 deletion mutant we observed a complete loss of expression of all seven cellulases, auxiliary factors for cellulose degradation, β-glucosidases and xylanases were no longer expressed. Conversely, enhanced expression of lae1 resulted in significantly increased cellulase gene transcription. Lae1-modulated cellulase gene expression was dependent on the function of the general cellulase regulator XYR1, but also xyr1 expression was LAE1-dependent. LAE1 was also essential for conidiation of T. reesei. Chromatin immunoprecipitation followed by high-throughput sequencing (‘ChIP-seq’) showed that lae1 expression was not obviously correlated with H3K4 di- or trimethylation (indicative of active transcription) or H3K9 trimethylation (typical for heterochromatin regions) in CAZyme coding regions, suggesting that LAE1 does not affect CAZyme gene expression by directly modulating H3K4 or H3K9 methylation. Our data demonstrate that the putative protein methyltransferase LAE1 is essential for cellulase gene expression in T. reesei through mechanisms that remain to be identified.
doi:10.1111/j.1365-2958.2012.08083.x
PMCID: PMC3370264  PMID: 22554051
16.  The putative protein methyltransferase LAE1 controls cellulase gene expression in Trichoderma reesei 
Molecular Microbiology  2012;84(6):1150-1164.
Summary
Trichoderma reesei is an industrial producer of enzymes that degrade lignocellulosic polysaccharides to soluble monomers, which can be fermented to biofuels. Here we show that the expression of genes for lignocellulose degradation are controlled by the orthologous T. reesei protein methyltransferase LAE1. In a lae1 deletion mutant we observed a complete loss of expression of all seven cellulases, auxiliary factors for cellulose degradation, β-glucosidases and xylanases were no longer expressed. Conversely, enhanced expression of lae1 resulted in significantly increased cellulase gene transcription. Lae1-modulated cellulase gene expression was dependent on the function of the general cellulase regulator XYR1, but also xyr1 expression was LAE1-dependent. LAE1 was also essential for conidiation of T. reesei. Chromatin immunoprecipitation followed by high-throughput sequencing (“ChIP-seq”) showed that lae1 expression was not obviously correlated with H3K4 di- or trimethylation (indicative of active transcription) or H3K9 trimethylation (typical for heterochromatin regions) in CAZyme coding regions, suggesting that LAE1 does not affect CAZyme gene expression by directly modulating H3K4 or H3K9 methylation. Our data demonstrate that the putative protein methyltransferase LAE1 is essential for cellulase gene expression in T. reesei through mechanisms that remain to be identified.
doi:10.1111/j.1365-2958.2012.08083.x
PMCID: PMC3370264  PMID: 22554051
LaeA/LAE1; heterochromatin; biofuels; Trichoderm; cellulases
17.  Carbohydrate-active enzymes exemplify entropic principles in metabolism 
Statistical thermodynamics and in vitro experimentation demonstrate that metabolic enzymes can be driven by an increase in the entropy of a reaction system, and point to a role for entropy gradients in the emergence of robust metabolic functions in vivo.
By analyzing the equilibrium distributions of glycans in vitro, we demonstrate that several carbohydrate-active enzymes are driven by an increase in mixing entropy of the reaction system.We present a novel formalism for these 'entropic enzymes' that allows biochemical processes in glycobiology to be described by concepts from statistical thermodynamics, thereby establishing a sound theoretical framework for polymer-active enzymes in general.Our interdisciplinary study reveals a new role of entropy in metabolism and promotes a novel view of metabolism as an intricate interplay between energy- and entropy-driven processes.We demonstrate by stochastic modeling how the concerted action of entropic enzymes in vivo results in a robust and adaptive buffering function needed to ensure a constant provision of carbohydrates for downstream processes.
Glycans comprise ubiquitous and essential biopolymers, which usually occur as highly diverse mixtures. The myriad different structures are generated by a limited number of carbohydrate-active enzymes (CAZymes), which are unusual in that they catalyze multiple reactions by being relatively unspecific with respect to substrate size. Existing experimental and theoretical descriptions of CAZyme-mediated reaction systems neither comprehensively explain observed action patterns nor suggest biological functions of polydisperse pools in metabolism. Here, we overcome these limitations with a novel theoretical description of this important class of biological systems in which the mixing entropy of polydisperse pools emerges as an important system variable. In vitro assays of three CAZymes essential for central carbon metabolism confirm the power of our approach to predict equilibrium distributions and non-equilibrium dynamics. A computational study of the turnover of the soluble heteroglycan pool exemplifies how entropy-driven reactions establish a metabolic buffer in vivo that attenuates fluctuations in carbohydrate availability. We argue that this interplay between energy- and entropy-driven processes represents an important regulatory design principle of metabolic systems.
doi:10.1038/msb.2011.76
PMCID: PMC3261701  PMID: 22027553
energy metabolism; entropic enzymes; glycobiology; metabolic regulation
18.  AST: An Automated Sequence-Sampling Method for Improving the Taxonomic Diversity of Gene Phylogenetic Trees 
PLoS ONE  2014;9(6):e98844.
A challenge in phylogenetic inference of gene trees is how to properly sample a large pool of homologous sequences to derive a good representative subset of sequences. Such a need arises in various applications, e.g. when (1) accuracy-oriented phylogenetic reconstruction methods may not be able to deal with a large pool of sequences due to their high demand in computing resources; (2) applications analyzing a collection of gene trees may prefer to use trees with fewer operational taxonomic units (OTUs), for instance for the detection of horizontal gene transfer events by identifying phylogenetic conflicts; and (3) the pool of available sequences is biased towards extensively studied species. In the past, the creation of subsamples often relied on manual selection. Here we present an Automated sequence-Sampling method for improving the Taxonomic diversity of gene phylogenetic trees, AST, to obtain representative sequences that maximize the taxonomic diversity of the sampled sequences. To demonstrate the effectiveness of AST, we have tested it to solve four problems, namely, inference of the evolutionary histories of the small ribosomal subunit protein S5 of E. coli, 16 S ribosomal RNAs and glycosyl-transferase gene family 8, and a study of ancient horizontal gene transfers from bacteria to plants. Our results show that the resolution of our computational results is almost as good as that of manual inference by domain experts, hence making the tool generally useful to phylogenetic studies by non-phylogeny specialists. The program is available at http://csbl.bmb.uga.edu/~zhouchan/AST.php.
doi:10.1371/journal.pone.0098844
PMCID: PMC4044049  PMID: 24892935
19.  Viewing the human microbiome through three-dimensional glasses: integrating structural and functional studies to better define the properties of myriad carbohydrate-active enzymes 
Metagenomics has unleashed a deluge of sequencing data describing the organismal, genetic, and transcriptional diversity of the human microbiome. To better understand the precise functions of the myriad proteins encoded by the microbiome, including carbohydrate-active enzymes, it will be critical to combine structural studies with functional analyses.
Recent studies have provided an unprecedented view of the trillions of microbes associated with the human body. The human microbiome harbors tremendous diversity at multiple levels: the species that colonize each individual and each body habitat; the genes that are found in each organism’s genome; the expression of these genes and the interactions and activities of their protein products. The sources of this diversity are wide-ranging and reflect both environmental and host factors. A major challenge moving forward is defining the precise functions of members of various families of proteins represented in our microbiomes, including the highly diverse carbohydrate-active enzymes (CAZymes) involved in numerous biologically important chemical transformations, such as the degradation of complex dietary polysaccharides. Coupling metagenomic analyses to structural genomics initiatives and to biochemical and other functional assays of CAZymes will be essential for determining how these as well as other microbiome-encoded proteins operate to shape the properties of microbial communities and their human hosts.
doi:10.1107/S1744309110029088
PMCID: PMC2954214  PMID: 20944220
human microbiome; carbohydrate-active enzymes
20.  Automated Protein Subfamily Identification and Classification 
PLoS Computational Biology  2007;3(8):e160.
Function prediction by homology is widely used to provide preliminary functional annotations for genes for which experimental evidence of function is unavailable or limited. This approach has been shown to be prone to systematic error, including percolation of annotation errors through sequence databases. Phylogenomic analysis avoids these errors in function prediction but has been difficult to automate for high-throughput application. To address this limitation, we present a computationally efficient pipeline for phylogenomic classification of proteins. This pipeline uses the SCI-PHY (Subfamily Classification in Phylogenomics) algorithm for automatic subfamily identification, followed by subfamily hidden Markov model (HMM) construction. A simple and computationally efficient scoring scheme using family and subfamily HMMs enables classification of novel sequences to protein families and subfamilies. Sequences representing entirely novel subfamilies are differentiated from those that can be classified to subfamilies in the input training set using logistic regression. Subfamily HMM parameters are estimated using an information-sharing protocol, enabling subfamilies containing even a single sequence to benefit from conservation patterns defining the family as a whole or in related subfamilies. SCI-PHY subfamilies correspond closely to functional subtypes defined by experts and to conserved clades found by phylogenetic analysis. Extensive comparisons of subfamily and family HMM performances show that subfamily HMMs dramatically improve the separation between homologous and non-homologous proteins in sequence database searches. Subfamily HMMs also provide extremely high specificity of classification and can be used to predict entirely novel subtypes. The SCI-PHY Web server at http://phylogenomics.berkeley.edu/SCI-PHY/ allows users to upload a multiple sequence alignment for subfamily identification and subfamily HMM construction. Biologists wishing to provide their own subfamily definitions can do so. Source code is available on the Web page. The Berkeley Phylogenomics Group PhyloFacts resource contains pre-calculated subfamily predictions and subfamily HMMs for more than 40,000 protein families and domains at http://phylogenomics.berkeley.edu/phylofacts/.
Author Summary
Predicting the function of a gene or protein (gene product) from its primary sequence is a major focus of many bioinformatics methods. In this paper, the authors present a three-stage computational pipeline for gene functional annotation in an evolutionary framework to reduce the systematic errors associated with the standard protocol (annotation transfer from predicted homologs). In the first stage, a functional hierarchy is estimated for each protein family and subfamilies are identified. In the second stage, hidden Markov models (HMMs) (a type of statistical model) are constructed for each subfamily to model both the family-defining and subfamily-specific signatures. In the third stage, subfamily HMMs are used to assign novel sequences to functional subtypes. Extensive experimental validation of these methods shows that predicted subfamilies correspond closely to functional subtypes identified by experts and to conserved clades in phylogenetic trees; that subfamily HMMs increase the separation between homologs and non-homologs in sequence database discrimination tests relative to the use of a single HMM for the family; and that specificity of classification of novel sequences to subfamilies using subfamily HMMs is near perfect (1.5% error rate when sequences are assigned to the top-scoring subfamily, and <0.5% error rate when logistic regression of scores is employed).
doi:10.1371/journal.pcbi.0030160
PMCID: PMC1950344  PMID: 17708678
21.  A Thermostable Glucoamylase from Bispora sp. MEY-1 with Stability over a Broad pH Range and Significant Starch Hydrolysis Capacity 
PLoS ONE  2014;9(11):e113581.
Background
Glucoamylase is an exo-type enzyme that converts starch completely into glucose from the non-reducing ends. To meet the industrial requirements for starch processing, a glucoamylase with excellent thermostability, raw-starch degradation ability and high glucose yield is much needed. In the present study we selected the excellent Carbohydrate-Activity Enzyme (CAZyme) producer, Bispora sp. MEY-1, as the microbial source for glucoamylase gene exploitation.
Methodology/Principal Findings
A glucoamylase gene (gla15) was cloned from Bispora sp. MEY-1 and successfully expressed in Pichia pastoris with a high yield of 34.1 U/ml. Deduced GLA15 exhibits the highest identity of 64.2% to the glucoamylase from Talaromyces (Rasamsonia) emersonii. Purified recombinant GLA15 was thermophilic and showed the maximum activity at 70°C. The enzyme was stable over a broad pH range (2.2–11.0) and at high temperature up to 70°C. It hydrolyzed the breakages of both α-1,4- and α-1,6-glycosidic linkages in amylopectin, soluble starch, amylose, and maltooligosaccharides, and had capacity to degrade raw starch. TLC and H1-NMR analysis showed that GLA15 is a typical glucoamylase of GH family 15 that releases glucose units from the non-reducing ends of α-glucans. The combination of Bacillus licheniformis amylase and GLA15 hydrolyzed 96.14% of gelatinized maize starch after 6 h incubation, which was about 9% higher than that of the combination with a commercial glucoamylase from Aspergillus niger.
Conclusion/Significance
GLA15 has a broad pH stability range, high-temperature thermostability, high starch hydrolysis capacity and high expression yield. In comparison with the commercial glucoamylase from A. niger, GLA15 represents a better candidate for application in the food industry including production of glucose, glucose syrups, and high-fructose corn syrups.
doi:10.1371/journal.pone.0113581
PMCID: PMC4240638  PMID: 25415468
22.  The CAZyome of Phytophthora spp.: A comprehensive analysis of the gene complement coding for carbohydrate-active enzymes in species of the genus Phytophthora 
BMC Genomics  2010;11:525.
Background
Enzymes involved in carbohydrate metabolism include Carbohydrate esterases (CE), Glycoside hydrolases (GH), Glycosyl transferases (GT), and Polysaccharide lyases (PL), commonly referred to as carbohydrate-active enzymes (CAZymes). The CE, GH, and PL superfamilies are also known as cell wall degrading enzymes (CWDE) due to their role in the disintegration of the plant cell wall by bacterial and fungal pathogens. In Phytophthora infestans, penetration of the plant cells occurs through a specialized hyphal structure called appressorium; however, it is likely that members of the genus Phytophthora also use CWDE for invasive growth because hyphal forces are below the level of tensile strength exhibited by the plant cell wall. Because information regarding the frequency and distribution of CAZyme coding genes in Phytophthora is currently unknown, we have scanned the genomes of P. infestans, P. sojae, and P. ramorum for the presence of CAZyme-coding genes using a homology-based approach and compared the gene collinearity in the three genomes. In addition, we have tested the expression of several genes coding for CE in cultures grown in vitro.
Results
We have found that P. infestans, P. sojae and P. ramorum contain a total of 435, 379, and 310 CAZy homologs; in each genome, most homologs belong to the GH superfamily. Most GH and PL homologs code for enzymes that hydrolyze substances present in the pectin layer forming the middle lamella of the plant cells. In addition, a significant number of CE homologs catalyzing the deacetylation of compounds characteristic of the plant cell cuticle were found. In general, a high degree of gene location conservation was observed, as indicated by the presence of sequential orthologous pairs in the three genomes. Such collinearity was frequently observed among members of the GH superfamily. On the other hand, the CE and PL superfamilies showed less collinearity for some of their putative members. Quantitative PCR experiments revealed that all genes are expressed in P. infestans when this pathogen grown in vitro. However, the levels of expression vary considerably and are lower than the expression levels observed for the constitutive control.
Conclusions
In conclusion, we have identified a highly complex set of CAZy homologs in the genomes of P. infestans, P. sojae, and P. ramorum, a significant number of which could play roles critical for pathogenicity, by participating in the degradation of the plant cell wall.
doi:10.1186/1471-2164-11-525
PMCID: PMC2997016  PMID: 20920201
23.  Comparative analysis of the Trichoderma reesei transcriptome during growth on the cellulase inducing substrates wheat straw and lactose 
Background
Renewable lignocellulosic biomass is an advantageous resource for the production of second generation biofuels and other biorefinery products. In Middle Europe, wheat straw is one of the most abundant low-cost sources of lignocellulosic biomass. For its efficient use, an efficient mix of cellulases and hemicellulases is required. In this paper, we investigated how cellulase production by T. reesei on wheat straw compares to that on lactose, the only soluble and also cheap inducing carbon source for enzyme production.
Results
We have examined and compared the transcriptome of T. reesei growing on wheat straw and lactose as carbon sources under otherwise similar conditions. Gene expression on wheat straw exceeded that on lactose, and 1619 genes were found to be only induced on wheat straw but not on lactose. They comprised 30% of the CAZome, but were also enriched in genes associated with phospholipid metabolism, DNA synthesis and repair, iron homeostatis and autophagy. Two thirds of the CAZome was expressed both on wheat straw as well as on lactose, but 60% of it at least >2-fold higher on the former. Major wheat straw specific genes comprised xylanases, chitinases and mannosidases. Interestingly, the latter two CAZyme families were significantly higher expressed in a strain in which xyr1 encoding the major regulator of cellulase and hemicellulase biosynthesis is non-functional.
Conclusions
Our data reveal several major differences in the transcriptome between wheat straw and lactose which may be related to the higher enzyme formation on the former and their further investigation could lead to the development of methods for increasing enzyme production on lactose.
doi:10.1186/1754-6834-6-127
PMCID: PMC3847502  PMID: 24016404
24.  Metagenomic Insights into the Carbohydrate-Active Enzymes Carried by the Microorganisms Adhering to Solid Digesta in the Rumen of Cows 
PLoS ONE  2013;8(11):e78507.
The ruminal microbial community is a unique source of enzymes that underpin the conversion of cellulosic biomass. In this study, the microbial consortia adherent on solid digesta in the rumen of Jersey cattle were subjected to an activity-based metagenomic study to explore the genetic diversity of carbohydrolytic enzymes in Jersey cows, with a particular focus on cellulases and xylanases. Pyrosequencing and bioinformatic analyses of 120 carbohydrate-active fosmids identified genes encoding 575 putative Carbohydrate-Active Enzymes (CAZymes) and proteins putatively related to transcriptional regulation, transporters, and signal transduction coupled with polysaccharide degradation and metabolism. Most of these genes shared little similarity to sequences archived in databases. Genes that were predicted to encode glycoside hydrolases (GH) involved in xylan and cellulose hydrolysis (e.g., GH3, 5, 9, 10, 39 and 43) were well represented. A new subfamily (S-8) of GH5 was identified from contigs assigned to Firmicutes. These subfamilies of GH5 proteins also showed significant phylum-dependent distribution. A number of polysaccharide utilization loci (PULs) were found, and two of them contained genes encoding Sus-like proteins and cellulases that have not been reported in previous metagenomic studies of samples from the rumens of cows or other herbivores. Comparison with the large metagenomic datasets previously reported of other ruminant species (or cattle breeds) and wallabies showed that the rumen microbiome of Jersey cows might contain differing CAZymes. Future studies are needed to further explore how host genetics and diets affect the diversity and distribution of CAZymes and utilization of plant cell wall materials.
doi:10.1371/journal.pone.0078507
PMCID: PMC3818352  PMID: 24223817
25.  Development and Validation of a Microarray for the Investigation of the CAZymes Encoded by the Human Gut Microbiome 
PLoS ONE  2013;8(12):e84033.
Distal gut bacteria play a pivotal role in the digestion of dietary polysaccharides by producing a large number of carbohydrate-active enzymes (CAZymes) that the host otherwise does not produce. We report here the design of a custom microarray that we used to spot non-redundant DNA probes for more than 6,500 genes encoding glycoside hydrolases and lyases selected from 174 reference genomes from distal gut bacteria. The custom microarray was tested and validated by the hybridization of bacterial DNA extracted from the stool samples of lean, obese and anorexic individuals. Our results suggest that a microarray-based study can detect genes from low-abundance bacteria better than metagenomic-based studies. A striking example was the finding that a gene encoding a GH6-family cellulase was present in all subjects examined, whereas metagenomic studies have consistently failed to detect this gene in both human and animal gut microbiomes. In addition, an examination of eight stool samples allowed the identification of a corresponding CAZome core containing 46 families of glycoside hydrolases and polysaccharide lyases, which suggests the functional stability of the gut microbiota despite large taxonomical variations between individuals.
doi:10.1371/journal.pone.0084033
PMCID: PMC3877134  PMID: 24391873

Results 1-25 (663674)