Search tips
Search criteria

Results 1-25 (824914)

Clipboard (0)

Related Articles

1.  Cord Blood C-peptide, Insulin, HbA1c, and Lipids Levels in Small- and Large-for-Gestational-Age Newborns 
Small- and large-for-gestational-age (SGA, LGA) newborns are associated with metabolic syndrome in their later life. Cord blood C-peptide, insulin, glycosylated hemoglobin (HbA1c), and lipids levels may be altered in SGA and LGA newborns; however, the results are conflicting. Therefore, this study aimed to determine the effect of cord blood markers on SGA and LGA newborns.
This was a prospective cohort study and included 2873 term newborns of non-diabetic women. Among these newborns, 83 (2.9%) were SGA, 2236 (77.8%) were appropriate-for-gestational-age (AGA), and 554 (19.3%) were LGA newborns. Cord blood C-peptide, insulin, HbA1c, triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) levels were measured. The chi-square, Kruskal-Wallis, and Mann-Whitney tests were used to analyze categorical variables and continuous variables, respectively. Multinomial logistic regression analysis was used to determine the independent effect of these variables on SGA and LGA newborns.
Cord serum TG level was significantly higher in the SGA group than in AGA and LGA groups (p<0.05). The LGA group had significantly higher cord serum insulin level than AGA and SGA groups (p<0.05). After adjustment for confounding variables, including maternal age, parity, pre-pregnancy body mass index (BMI), education, annual household income, pregnancy-induced hypertension (PIH), mode of delivery, and newborn sex, high TG and insulin levels remained significantly associated with SGA and LGA newborns, respectively (p<0.05).
High cord serum TG and insulin levels are independently associated with SGA and LGA newborns, respectively.
PMCID: PMC4226317  PMID: 25357084
Lipids; Insulin; Small-For-Gestational Age Newborns; Large-For-Gestational Age Newborns
2.  Fetal Growth and Risk of Stillbirth: A Population-Based Case–Control Study 
PLoS Medicine  2014;11(4):e1001633.
Radek Bukowski and colleagues conducted a case control study in 59 US hospitals to determine the relationship between fetal growth and stillbirth, and find that both restrictive and excessive growth could play a role.
Please see later in the article for the Editors' Summary
Stillbirth is strongly related to impaired fetal growth. However, the relationship between fetal growth and stillbirth is difficult to determine because of uncertainty in the timing of death and confounding characteristics affecting normal fetal growth.
Methods and Findings
We conducted a population-based case–control study of all stillbirths and a representative sample of live births in 59 hospitals in five geographic areas in the US. Fetal growth abnormalities were categorized as small for gestational age (SGA) (<10th percentile) or large for gestational age (LGA) (>90th percentile) at death (stillbirth) or delivery (live birth) using population, ultrasound, and individualized norms. Gestational age at death was determined using an algorithm that considered the time-of-death interval, postmortem examination, and reliability of the gestational age estimate. Data were weighted to account for the sampling design and differential participation rates in various subgroups. Among 527 singleton stillbirths and 1,821 singleton live births studied, stillbirth was associated with SGA based on population, ultrasound, and individualized norms (odds ratio [OR] [95% CI]: 3.0 [2.2 to 4.0]; 4.7 [3.7 to 5.9]; 4.6 [3.6 to 5.9], respectively). LGA was also associated with increased risk of stillbirth using ultrasound and individualized norms (OR [95% CI]: 3.5 [2.4 to 5.0]; 2.3 [1.7 to 3.1], respectively), but not population norms (OR [95% CI]: 0.6 [0.4 to 1.0]). The associations were stronger with more severe SGA and LGA (<5th and >95th percentile). Analyses adjusted for stillbirth risk factors, subset analyses excluding potential confounders, and analyses in preterm and term pregnancies showed similar patterns of association. In this study 70% of cases and 63% of controls agreed to participate. Analysis weights accounted for differences between consenting and non-consenting women. Some of the characteristics used for individualized fetal growth estimates were missing and were replaced with reference values. However, a sensitivity analysis using individualized norms based on the subset of stillbirths and live births with non-missing variables showed similar findings.
Stillbirth is associated with both growth restriction and excessive fetal growth. These findings suggest that, contrary to current practices and recommendations, stillbirth prevention strategies should focus on both severe SGA and severe LGA pregnancies.
Please see later in the article for the Editors' Summary
Editors' Summary
Pregnancy is usually a happy time, when the parents-to-be anticipate the arrival of a new baby. But, sadly, about 20% of pregnancies end in miscarriage—the early loss of a fetus (developing baby) that is unable to survive independently. Other pregnancies end in stillbirth—fetal death after 20 weeks of pregnancy (in the US; after 24 weeks in the UK). Stillbirths, like miscarriages, are common. In the US, for example, one in every 160 pregnancies ends in stillbirth. How women discover that their unborn baby has died varies. Some women simply know something is wrong and go to hospital to have their fears confirmed. Others find out when a routine check-up detects no fetal heartbeat. Most women give birth naturally after their baby has died, but if the mother's health is at risk, labor may be induced. Common causes of stillbirth include birth defects and infections. Risk factors for stillbirth include being overweight and smoking during pregnancy.
Why Was This Study Done?
Stillbirths are often associated with having a “small for gestational age” (SGA) fetus. Gestation is the period during which a baby develops in its mother's womb. Gestational age is estimated from the date of the woman's last menstrual period and/or from ultrasound scans. An SGA fetus is lighter than expected for its age based on observed distributions (norms) of fetal weights for gestational age. Although stillbirth is clearly associated with impaired fetal growth, the exact relationship between fetal growth and stillbirth remains unclear for two reasons. First, studies investigating this relationship have used gestational age at delivery rather than gestational age at death as an estimate of fetal age, which overestimates the gestational age of stillbirths and leads to errors in estimates of the proportions of SGA and “large for gestational age” (LGA) stillbirths. Second, many characteristics that affect normal fetal growth are also associated with the risk of stillbirth, and this has not been allowed for in previous studies. In this population-based case–control study, the researchers investigate the fetal growth abnormalities associated with stillbirth using a new approach to estimate gestational age and accounting for the effect of characteristics that affect both fetal growth and stillbirth. A population-based case–control study compares the characteristics of patients with a condition in a population with those of unaffected people in the same population.
What Did the Researchers Do and Find?
The researchers investigated all the stillbirths and a sample of live births that occurred over 2.5 years at 59 hospitals in five US regions. They used a formula developed by the Stillbirth Collaborative Research Network to calculate the gestational age at death of the stillbirths. They categorized fetuses as SGA if they had a weight for gestational age within the bottom 10% (below the 10th percentile) of the population and as LGA if they had a weight for gestational age above the 90th percentile at death (stillbirth) or delivery (live birth) using population, ultrasound, and individualized norms of fetal weight for gestational age. Population norms incorporate weights for gestational age from normal pregnancies and from pregnancies complicated by growth abnormalities, whereas the other two norms include weights for gestational age from normal pregnancies only. Having an SGA fetus was associated with a 3- to 4-fold increased risk of stillbirth compared to having a fetus with “appropriate” weight for gestational age based on all three norms. LGA was associated with an increased risk of stillbirth based on the ultrasound and individualized norms but not the population norms. Being more severely SGA or LGA (below the 5th percentile or above the 95th percentile) was associated with an increased risk of stillbirth.
What Do These Findings Mean?
These findings indicate that, when the time of death is accounted for and norms for weight for gestational age only from uncomplicated pregnancies are used, stillbirth is associated with both restricted and excessive fetal growth. Overall, abnormal fetal growth was identified in 25% of stillbirths using population norms and in about 50% of stillbirths using ultrasound or individualized norms. Although the accuracy of these findings is likely to be affected by aspects of the study design, these findings suggest that, contrary to current practices, strategies designed to prevent stillbirth should focus on identifying both severely SGA and severely LGA fetuses and should use norms for the calculation of weight for gestational age based on normal pregnancies only. Such an approach has the potential to identify almost half of the pregnancies likely to result in stillbirth.
Additional Information
Please access these websites via the online version of this summary at
The March of Dimes, a nonprofit organization for pregnancy and baby health, provides information on stillbirth
Tommy's, a UK nonprofit organization that funds research into stillbirth, premature birth, and miscarriage and provides information for parents-to-be, also provides information on stillbirth (including personal stories)
The UK National Health Service Choices website provides information about stillbirth (including a video about dealing with grief after a stillbirth)
MedlinePlus provides links to other resources about stillbirth (in English and Spanish)
Information about the Stillbirth Collaborative Research Network is available
PMCID: PMC3995658  PMID: 24755550
3.  Maternal Lipids as Strong Determinants of Fetal Environment and Growth in Pregnancies With Gestational Diabetes Mellitus  
Diabetes Care  2008;31(9):1858-1863.
OBJECTIVE—To determine the contribution of maternal glucose and lipids to intrauterine metabolic environment and fetal growth in pregnancies with gestational diabetes mellitus (GDM).
RESEARCH DESIGN AND METHODS—In 150 pregnancies, serum triglycerides (TGs), cholesterol, free fatty acids (FFAs), glycerol, insulin, and glucose were determined in maternal serum and cord blood during the 3rd trimester. Maternal glucose values came from oral glucose tolerance testing and glucose profiles. Measurements of fetal abdominal circumference (AC) were performed simultaneously with maternal blood sampling and birth weight, and BMI and neonatal fat mass were obtained following delivery.
RESULTS—Maternal TGs and FFAs correlated with fetal AC size (at 28 weeks: triglycerides, P = 0.001; FFAs, P = 0.02), and at delivery they correlated with all neonatal anthropometric measures (FFA: birth weight, P = 0.002; BMI, P = 0.001; fat mass, P = 0.01). After adjustment for confounding variables, maternal FFAs and TGs at delivery remained the only parameters independently related to newborns large for gestational age (LGA) (P = 0.008 and P = 0.04, respectively). Maternal FFA levels were higher in mothers with LGA newborns than in those with appropriate for gestational age (AGA) newborns (362.8 ± 101.7 vs. 252.4 ± 10.1, P = 0.002). Maternal levels of TGs, FFAs, and glycerol at delivery correlated with those in cord blood (P = 0.003, P = 0.004, and P = 0.005, respectively). Fetal triglyceride and cholesterol levels were negatively correlated with newborn birth weight (P = 0.001), BMI (P = 0.004), and fat mass (P = 0.001). TGs were significantly higher in small for gestational age (SGA) newborns compared with AGA or LGA newborns, while insulin-to-glucose ratio and FFAs were the highest in LGA newborns.
CONCLUSIONS—In well-controlled GDM pregnancies, maternal lipids are strong predictors for fetal lipids and fetal growth. Infants with abnormal growth seem to be exposed to a distinct intrauterine environment compared with those with appropriate growth.
PMCID: PMC2518359  PMID: 18606978
4.  Primary Prevention of Gestational Diabetes Mellitus and Large-for-Gestational-Age Newborns by Lifestyle Counseling: A Cluster-Randomized Controlled Trial 
PLoS Medicine  2011;8(5):e1001036.
In a cluster-randomized trial, Riitta Luoto and colleagues find that counseling on diet and activity can reduce the birthweight of babies born to women at risk of developing gestational diabetes mellitus (GDM), but fail to find an effect on GDM.
Our objective was to examine whether gestational diabetes mellitus (GDM) or newborns' high birthweight can be prevented by lifestyle counseling in pregnant women at high risk of GDM.
Method and Findings
We conducted a cluster-randomized trial, the NELLI study, in 14 municipalities in Finland, where 2,271 women were screened by oral glucose tolerance test (OGTT) at 8–12 wk gestation. Euglycemic (n = 399) women with at least one GDM risk factor (body mass index [BMI] ≥25 kg/m2, glucose intolerance or newborn's macrosomia (≥4,500 g) in any earlier pregnancy, family history of diabetes, age ≥40 y) were included. The intervention included individual intensified counseling on physical activity and diet and weight gain at five antenatal visits. Primary outcomes were incidence of GDM as assessed by OGTT (maternal outcome) and newborns' birthweight adjusted for gestational age (neonatal outcome). Secondary outcomes were maternal weight gain and the need for insulin treatment during pregnancy. Adherence to the intervention was evaluated on the basis of changes in physical activity (weekly metabolic equivalent task (MET) minutes) and diet (intake of total fat, saturated and polyunsaturated fatty acids, saccharose, and fiber). Multilevel analyses took into account cluster, maternity clinic, and nurse level influences in addition to age, education, parity, and prepregnancy BMI. 15.8% (34/216) of women in the intervention group and 12.4% (22/179) in the usual care group developed GDM (absolute effect size 1.36, 95% confidence interval [CI] 0.71–2.62, p = 0.36). Neonatal birthweight was lower in the intervention than in the usual care group (absolute effect size −133 g, 95% CI −231 to −35, p = 0.008) as was proportion of large-for-gestational-age (LGA) newborns (26/216, 12.1% versus 34/179, 19.7%, p = 0.042). Women in the intervention group increased their intake of dietary fiber (adjusted coefficient 1.83, 95% CI 0.30–3.25, p = 0.023) and polyunsaturated fatty acids (adjusted coefficient 0.37, 95% CI 0.16–0.57, p<0.001), decreased their intake of saturated fatty acids (adjusted coefficient −0.63, 95% CI −1.12 to −0.15, p = 0.01) and intake of saccharose (adjusted coefficient −0.83, 95% CI −1.55 to −0.11, p  =  0.023), and had a tendency to a smaller decrease in MET minutes/week for at least moderate intensity activity (adjusted coefficient 91, 95% CI −37 to 219, p = 0.17) than women in the usual care group. In subgroup analysis, adherent women in the intervention group (n = 55/229) had decreased risk of GDM (27.3% versus 33.0%, p = 0.43) and LGA newborns (7.3% versus 19.5%, p = 0.03) compared to women in the usual care group.
The intervention was effective in controlling birthweight of the newborns, but failed to have an effect on maternal GDM.
Trial registration
Current Controlled Trials ISRCTN33885819
Please see later in the article for the Editors' Summary
Editors' Summary
Gestational diabetes mellitus (GDM) is diabetes that is first diagnosed during pregnancy. Like other types of diabetes, it is characterized by high levels of sugar (glucose) in the blood. Blood-sugar levels are normally controlled by insulin, a hormone that the pancreas releases when blood-sugar levels rise after meals. Hormonal changes during pregnancy and the baby's growth demands increase a pregnant woman's insulin needs and, if her pancreas cannot make enough insulin, GDM develops. Risk factors for GDM, which occurs in 2%–14% of pregnant women, include a high body-mass index (a measure of body fat), excessive weight gain or low physical activity during pregnancy, high dietary intake of polyunsaturated fats, glucose intolerance (an indicator of diabetes) or the birth of a large baby in a previous pregnancy, and a family history of diabetes. GDM is associated with an increased rate of cesarean sections, induced deliveries, birth complications, and large-for-gestational-age (LGA) babies (gestation is the time during which the baby develops within the mother). GDM, which can often be controlled by diet and exercise, usually disappears after pregnancy but increases a woman's subsequent risk of developing diabetes.
Why Was This Study Done?
Although lifestyle changes can be used to control GDM, it is not known whether similar changes can prevent GDM developing (“primary prevention”). In this cluster-randomized controlled trial, the researchers investigate whether individual intensified counseling on physical activity, diet, and weight gain integrated into routine maternity care visits can prevent the development of GDM and the occurrence of LGA babies among newborns. In a cluster-randomized controlled trial, groups of patients rather than individual patients are randomly assigned to receive alternative interventions, and the outcomes in different “clusters” are compared. In this trial, each cluster is a municipality in the Pirkanmaa region of Finland.
What Did the Researchers Do and Find?
The researchers enrolled 399 women, each of whom had a normal blood glucose level at 8–12 weeks gestation but at least one risk factor for GDM. Women in the intervention municipalities received intensified counseling on physical activity at 8–12 weeks' gestation, dietary counseling at 16–18 weeks' gestation, and further physical activity and dietary counseling at each subsequent antenatal visits. Women in the control municipalities received some dietary but little physical activity counseling as part of their usual care. 23.3% and 20.2% of women in the intervention and usual care groups, respectively, developed GDM, a nonstatistically significant difference (that is, a difference that could have occurred by chance). However, the average birthweight and the proportion of LGA babies were both significantly lower in the intervention group than in the usual care group. Food frequency questionnaires completed by the women indicated that, on average, those in the intervention group increased their intake of dietary fiber and polyunsaturated fatty acids and decreased their intake of saturated fatty acids and sucrose as instructed during counseling, The amount of moderate physical activity also tended to decrease less as pregnancy proceeded in the intervention group than in usual care group. Finally, compared to the usual care group, significantly fewer of the 24% of women in the intervention group who actually met dietary and physical activity targets (“adherent” women) developed GDM.
What Do These Findings Mean?
These findings indicate that intensified counseling on diet and physical activity is effective in controlling the birthweight of babies born to women at risk of developing GDM and encourages at least some of them to alter their lifestyle. However, the findings fail to show that the intervention reduces the risk of GDM because of the limited power of the study. The power of a study—the probability that it will achieve a statistically significant result—depends on the study's size and on the likely effect size of the intervention. Before starting this study, the researchers calculated that they would need 420 participants to see a statistically significant difference between the groups if their intervention reduced GDM incidence by 40%. This estimated effect size was probably optimistic and therefore the study lacked power. Nevertheless, the analyses performed among adherent women suggest that lifestyle changes might be a way to prevent GDM and so larger studies should now be undertaken to test this potential primary prevention intervention.
Additional Information
Please access these Web sites via the online version of this summary at
The US National Institute of Diabetes and Digestive and Kidney Diseases provides information for patients on diabetes and on gestational diabetes (in English and Spanish)
The UK National Health Service Choices website also provides information for patients on diabetes and on gestational diabetes, including links to other useful resources
The MedlinePlus Encyclopedia has pages on diabetes and on gestational diabetes; MedlinePlus provides links to additional resources on diabetes and on gestational diabetes (in English and Spanish)
More information on this trial of primary prevention of GDM is available
PMCID: PMC3096610  PMID: 21610860
5.  Maternal obesity, diabetes mellitus and cord blood biomarkers in large-for-gestational age infants 
Infants born large-for-gestational age (LGA) are at risk for early childhood obesity. The aims of this study were to investigate factors associated with LGA status and their relationship to inflammatory biomarkers that have been implicated in the LGA infant at birth. Included were 364 mother-infant pairs enrolled as part of an ongoing longitudinal cohort study of infant birth weight being conducted at Boston Medical Center (BMC). LGA was defined as birth weight (BW) ≥90th percentile of the reference population at BMC (N=45). Appropriate-for-gestational age (AGA) was defined as BW<90th and >10th percentile (N=319). Cord blood IL-6, IL-8, TNF-alpha and RANTES levels were analyzed from a larger panel of immune biomarkers measured using multiplex immunoassay. Multivariate regression models were used to determine the associations between LGA status, maternal BMI and diabetes (DM), which included either gestational or type 2 diabetes (T2DM), and cord blood biomarkers, with adjustment for important demographic and clinical variables. Maternal pre-pregnancy BMI within the obesity range (≥30 kg/m2), as well as DM, were each associated with increased risk of LGA (OR=2.64, 95%CI 1.31-6.20; OR=5.58, 95%CI 2.06-15.13, respectively). Among the 4 biomarkers, only RANTES (regulated on activation, normal T cell express and secreted upon uptake), which is a chemokine secreted by white adipose tissue, was significantly increased in LGA infants (beta-coefficient=0.37; 95% CI: 0.09, 0.65; P<0.01). This association remained essentially unchanged after adjustment for maternal DM and BMI (beta-coefficient=0.37; 95% CI: 0.08, 0.65; P=0.01). Ponderal index (PI=BW×100/length3) was also positively correlated with RANTES. Cord blood RANTES is selectively elevated with fetal macrosomia, independent of maternal factors. Further investigation of RANTES as a marker of LGA and future childhood health is warranted.
PMCID: PMC3148069  PMID: 21814537
Birth weight; large-for-gestational age; cord blood; inflammation; obesity; diabetes
6.  Retinol-Binding Protein 4: A Novel Adipokine Implicated In the Genesis of LGA in the Absence of Gestational Diabetes Mellitus 
Journal of perinatal medicine  2010;38(2):147-155.
Adipokines (cytokines produced by adipose tissue) play a major role in the control of body weight and energy distribution. Retinol-binding protein (RBP) 4, only recently recognized as an adipokine, has been proposed to modulate systemic insulin sensitivity. The goal of this study was to determine whether there is an association between maternal plasma RBP4 concentration and the birth of a large-for-gestational-age (LGA) newborn in women with and without gestational diabetes mellitus (GDM).
Study design
This cross-sectional study included pregnant women at term in the following groups: 1) normal pregnancy with an appropriate-for-gestational-age (AGA) neonate (n=64); 2) normal pregnancy with an LGA neonate (n=44); 3) GDM with an AGA neonate (n=55); and 4) GDM with an LGA neonate (n=42). Maternal plasma RBP4 concentration was determined by ELISA. Parametric and non-parametric statistics were used for analyses.
1) Patients with GDM, either with AGA or LGA neonates, had a higher median plasma concentration of RBP4 than normal pregnant women who delivered an AGA neonate (p=0.01 and p=0.008, respectively); 2) mothers without GDM but with LGA neonates had a higher median plasma concentration of RBP4 than those with normal pregnancy and AGA newborns (p=0.001); 3) these findings remained significant after adjusting for maternal age, BMI and gestational age at blood sampling.
GDM is characterized by alterations in maternal circulating RBP4 concentrations akin to those of Type 2 DM. Retinol binding protein 4 concentrations in maternal plasma may play a role in accelerated fetal growth in the absence of overt carbohydrate intolerance.
PMCID: PMC3426355  PMID: 20146659
metabolism; pregnancy; appropriate-for-gestational-age (AGA); adipokine; cytokine; adipose tissue; BMI; overweight; obesity; insulin resistance; insulin sensitivity
7.  Is Asymmetric Dimethylarginine Associated with Being Born Small and Large for Gestational Age? 
Antioxidants & Redox Signaling  2014;20(15):2317-2322.
Low and high birth weights have been linked to increased susceptibility to cardiovascular and metabolic alterations. However, the natural history of cardiometabolic disturbances in children born small (SGA) and large (LGA) for gestational age is still unclear and no reliable biomarker of cardiovascular risk has definitively been identified in these subjects. Interestingly, asymmetric dimethylarginine (ADMA), antagonist of nitric oxide (NO) production, has been recognized as novel cardiovascular marker able to identify subjects at higher risk of health disturbances. Despite the well-described role of ADMA as a predictor of degenerative disease in adults, its potential application in pediatrics, and specifically in SGA and LGA children, has not been explored as only few data in preterm infants and SGA newborns are available. Therefore, we investigated potential alterations in circulating ADMA and NO levels in SGA and LGA children compared with those born appropriate (AGA) for gestational age. Of note, ADMA was significantly higher in SGA and LGA children than AGA peers. Intriguingly, SGA and LGA categories as well as insulin resistance were independently related to ADMA. Our observations lead to the intriguing hypothesis that ADMA could be involved in the development of cardiometabolic alterations in SGA and LGA children already during the prepubertal age. Antioxid. Redox Signal. 20, 2317–2322.
PMCID: PMC4005497  PMID: 24350633
8.  Intrauterine growth restriction and congenital malformations: a retrospective epidemiological study 
Intrauterine growth restriction (IUGR) and small for gestational age (SGA) birth have been considered possible indicators of the presence of malformations. The aim of this study is to evaluate such relationships in a population of newborns, along with other epidemiological and auxological parameters, in particular the ponderal index (PI).
We analyzed the birth data of 1093 infants, classified according to weight for gestational age as SGA, appropriate for gestational age (AGA) or large for gestational age (LGA). The prevalence of malformations was analyzed in relation to weight percentile at birth and SGA birth, maternal smoking, pregnancy diseases and PI.
Our analysis showed no significant relationship between the prevalence of malformations and SGA birth. Maternal smoking and pregnancy diseases were strongly related to SGA birth, but not to a higher prevalence of malformations. PI, however, had a significant relationship with a higher prevalence of malformations, if analyzed as either a continuous variable or a categorical variable (cutoff: < 2.4).
The association between congenital malformations and birth weight for gestational age seems to be weak. As part of diagnostic screening for malformations in the neonatal period, PI could be considered a better predictor of risk than weight percentile.
PMCID: PMC3639199  PMID: 23578323
Congenital malformations; SGA; Weight percentile; Ponderal index
9.  Progression of Cardio-Metabolic Risk Factors in Subjects Born Small and Large for Gestational Age 
PLoS ONE  2014;9(8):e104278.
Subjects born small (SGA) and large (LGA) for gestational age have an increased risk of cardio-metabolic alterations already during prepuberty. Nevertheless, the progression of their cardio-metabolic profile from childhood to adolescence has not been fully explored. Our aim was to assess potential changes in the cardio-metabolic profile from childhood to adolescence in subjects born SGA and LGA compared to those born appropriate (AGA) for gestational age.
This longitudinal study included 35 AGA, 24 SGA and 31 LGA subjects evaluated during childhood (mean age (±SD) 8.4±1.4 yr) and then re-assessed during adolescence (mean age 13.3±1.8 yr). BMI, blood pressure, insulin resistance (fasting insulin, HOMA-IR) and lipids were assessed. A cardio-metabolic risk z-score was applied and this consisted in calculating the sum of sex-specific z-scores for BMI, blood pressure, HOMA-IR, triglycerides and triglycerides:high-density lipoprotein cholesterol ratio.
Fasting insulin and HOMA-IR were higher in SGA and LGA than AGA subjects both during childhood (all P<0.01) and adolescence (all P<0.01). Similarly, the clustered cardio-metabolic risk score was higher in SGA and LGA than AGA children (both P<0.05), and these differences among groups increased during adolescence (both P<0.05). Of note, a progression of the clustered cardio-metabolic risk score was observed from childhood to adolescence within SGA and within LGA subjects (both P<0.05).
SGA and LGA subjects showed an adverse cardio-metabolic profile during childhood when compared to AGA peers, with a worsening of this profile during adolescence. These findings indicate an overtime progression of insulin resistance and overall estimated cardiovascular risk from childhood to adolescence in SGA and LGA populations.
PMCID: PMC4130586  PMID: 25117750
10.  Bone metabolism compensates for the delayed growth in small for gestational age neonates 
Organogenesis  2013;9(1):55-59.
The goal of the present study is to investigate the relationship between anthropometric and bone metabolism markers in a sample of neonates and their mothers. A sample of 20 SGA (small for the gestational age), AGA (appropriate for the gestational age) and LGA (large for the gestational age) term neonates and their 20 mothers was analyzed at birth and at exit. Elisa method was used to measure the OPG (Osteoprotegerin), RANK (Receptor activator of nuclear factor-kappaB), RANKL (Receptor activator of nuclear factor-kappaB Ligand), IGF-1 (Insulin-like growth factor 1), IGFBP3 (Insulin-like Growth Factor Binding Protein 3) and Leptin levels. Birth weight and length were positively correlated with RANKL, IGF-1 and IGFBP3 and negatively with the ratio OPG/RANKL. SGA neonates presented lower RANKL values and higher OPG/RANKL ratio while LGA neonates had higher RANK levels than AGA neonates. Positive association was shown between neonatal IGFBP3 and maternal IGF-1 values and between neonatal and maternal RANK values at birth and at exit. These results reveal a remarkable upregulation of OPG/RANKL ratio in SGA neonates, pointing out the role of bone turnover in compensating for the delayed neonatal growth.
PMCID: PMC3674041  PMID: 23538775
Leptin; neonates; RANKL; OPG; IGF-1
11.  Effect of different maternal metabolic characteristics on fetal growth in women with gestational diabetes mellitus 
Background: Fetal growth in diabetic pregnancies is a complex process and probably abnormalities in other metabolic pathways such as protein and lipid, as well as carbohydrate are responsible for delivering of macrosomic newborn.
Objective: The purpose of this study was to investigate the association between fetal growth and different maternal metabolic parameters in women with gestational diabetes mellitus (GDM) in comparison to control group.
Materials and Methods: This was a prospective cohort study conducted between March 2011 and May 2012, on 112 pregnant women with GDM and 159 healthy pregnant women. In order to determine of lipids or lipoproteins changes during pregnancy and to investigate any possible effects on fetal growth, lipid components, glucose and insulin levels were obtained in maternal serum three times in third trimester.
Results: Maternal serum glucose, total cholesterol (TC), low and high density lipoprotein (LDL-c, HDL-c) levels did not show any significant difference between two groups. While insulin, homeostasis model assessment-insulin resistance (HOMA-IR) and triglyceride (TG) values were detected to be significantly higher in the GDM cases especially after 32 weeks of gestation (p<0.001). After adjustment for confounding variables, maternal hypertriglyceridemia remained as a significant risk factor for delivering large for gestational age (LGA) newborns (p=0.04); and according to spearman test the increase of TG level was correlated with increase of insulin resistance and HOMA-IR (p<0.001, CI: 0.312).
Conclusion: Due to positive correlation of hypertriglyceridemia and hyperinsulinemia with newborn weight, it is possible to assume that elevated TGs levels in GDM cases is a reflection of variation in maternal insulin levels.
PMCID: PMC3941422  PMID: 24639763
Gestational diabetes mellitus; Macrosomia; Lipid
12.  Impact of Birth Weight and Early Infant Weight Gain on Insulin Resistance and Associated Cardiovascular Risk Factors in Adolescence 
PLoS ONE  2011;6(6):e20595.
Low birth weight followed by accelerated weight gain during early childhood has been associated with adverse metabolic and cardiovascular outcomes later in life. The aim of this study was to examine the impact of early infant weight gain on glucose metabolism and cardiovascular risk factors in adolescence and to study if the effect differed between adolescents born small for gestational age (SGA) vs. appropriate for gestational age (AGA).
Methodology/Principal Findings
Data from 30 SGA and 57 AGA healthy young Danish adolescents were analysed. They had a mean age of 17.6 years and all were born at term. Data on early infant weight gain from birth to three months as well as from birth to one year were available in the majority of subjects. In adolescence, glucose metabolism was assessed by a simplified intravenous glucose tolerance test and body composition was assessed by dual-energy X-ray absorptiometry. Blood pressures as well as plasma concentrations of triglycerides and cholesterol were measured. Early infant weight gain from birth to three months was positively associated with the fasting insulin concentration, HOMA-IR, basal lipid levels and systolic blood pressure at 17 years. There was a differential effect of postnatal weight gain on HOMA-IR in AGA and SGA participants (P for interaction = 0.03). No significant associations were seen between postnatal weight gain and body composition or parameters of glucose metabolism assessed by the simplified intravenous glucose tolerance test. In subgroup analysis, all associations with early infant weight gain were absent in the AGA group, but the associations with basal insulin and HOMA-IR were still present in the SGA group.
This study suggests that accelerated growth during the first three months of life may confer an increased risk of later metabolic disturbances – particularly of glucose metabolism – in individuals born SGA.
PMCID: PMC3107215  PMID: 21655104
13.  Risk Factors and Adverse Perinatal Outcomes among Term and Preterm Infants Born Small-for-Gestational-Age: Secondary Analyses of the WHO Multi-Country Survey on Maternal and Newborn Health 
PLoS ONE  2014;9(8):e105155.
Small for gestational age (SGA) is not only a major indicator of perinatal mortality and morbidity, but also the morbidity risks in later in life. We aim to estimate the association between the birth of SGA infants and the risk factors and adverse perinatal outcomes among twenty-nine countries in Africa, Latin America, the Middle East and Asia in 359 health facilities in 2010–11.
We analysed facility-based, cross-sectional data from the WHO Multi-country Survey on Maternal and Newborn Health. We constructed multilevel logistic regression models with random effects for facilities and countries to estimate the risk factors for SGA infants using country-specific birthweight reference standards in preterm and term delivery, and SGA’s association with adverse perinatal outcomes. We compared the risks and adverse perinatal outcomes with appropriate for gestational age (AGA) infants categorized by preterm and term delivery.
A total of 295,829 singleton infants delivered were analysed. The overall prevalence of SGA was highest in Cambodia (18.8%), Nepal (17.9%), the Occupied Palestinian Territory (16.1%), and Japan (16.0%), while the lowest was observed in Afghanistan (4.8%), Uganda (6.6%) and Thailand (9.7%). The risk of preterm SGA infants was significantly higher among nulliparous mothers and mothers with chronic hypertension and preeclampsia/eclampsia (aOR: 2.89; 95% CI: 2.55–3.28) compared with AGA infants. Higher risks of term SGA were observed among sociodemographic factors and women with preeclampsia/eclampsia, anaemia and other medical conditions. Multiparity (> = 3) (AOR: 0.88; 95% CI: 0.83–0.92) was a protective factor for term SGA. The risk of perinatal mortality was significantly higher in preterm SGA deliveries in low to high HDI countries.
Preterm SGA is associated with medical conditions related to preeclampsia, but not with sociodemographic status. Term SGA is associated with sociodemographic status and various medical conditions.
PMCID: PMC4132094  PMID: 25119107
14.  TCF7L2 rs7903146 variant does not associate with smallness for gestational age in the French population 
BMC Medical Genetics  2007;8:37.
In adults, the TCF7L2 rs7903146 T allele, commonly associated with type 2 diabetes (T2D), has been also associated with a lower body mass index (BMI) in T2D individuals and with a smaller waist circumference in subjects with impaired glucose tolerance.
The present association study aimed at analyzing the contribution of the rs7903146 SNP to smallness for gestational age (SGA) and metabolic profiles in subjects with SGA or appropriate for gestational age birth weight (AGA). Two groups of French Caucasian subjects were selected on birth data: SGA (birth weight < 10th percentile; n = 764), and AGA (25th < birth weight < 75th percentile; n = 627). Family-based association tests were also performed in 3,012 subjects from 628 SGA and AGA pedigrees.
The rs7903146 genotypic distributions between AGA (30.7%) and SGA (29.0%) were not statistically different (allelic OR = 0.92 [0.78–1.09], p = 0.34). Family association-based studies did not show a distortion of T allele transmission in SGA subjects (p = 0.52). No significant effect of the T allele was detected on any of the metabolic parameters in the SGA group. However, in the AGA group, trends towards a lower insulin secretion (p = 0.03) and a higher fasting glycaemia (p = 0.002) were detected in carriers of the T allele.
The TCF7L2 rs7903146 variant neither increases the risk for SGA nor modulates birth weight and young adulthood glucose homeostasis in French Caucasian subjects born with SGA.
PMCID: PMC1920504  PMID: 17593304
15.  Maternal Glycemia and Risk of Large-for-Gestational-Age Babies in a Population-Based Screening 
Diabetes Care  2009;32(12):2200-2205.
Gestational diabetes is a risk factor for large-for-gestational-age (LGA) newborns, but many LGA babies are born to mothers with normal glucose tolerance. We aimed to clarify the association of maternal glycemia across the whole distribution with birth weight and risk of LGA births in mothers with normal glucose tolerance.
We undertook a population-based gestational diabetes screening in an urban area of Hungary in 2002–2005. All singleton pregnancies of mothers ≥18 years of age, without known diabetes or gestational diabetes (World Health Organization criteria) and data on a 75-g oral glucose tolerance test at 22–30 weeks of gestation, were included (n = 3,787, 78.9% of the target population). LGA was determined as birth weight greater than the 90th percentile using national sex- and gestational age–specific charts.
Mean ± SD maternal age was 30 ± 4 years, BMI was 22.6 ± 4.0 kg/m2, fasting blood glucose was 4.5 ± 0.5 mmol/l, and postload glucose was 5.5 ± 1.0 mmol/l. The mean birth weight was 3,450 ± 476 g at 39.2 ± 1.2 weeks of gestation. There was a U-shaped association of maternal fasting glucose with birth weight (Pcurve = 0.004) and risk of having an LGA baby (lowest values between 4 and 4.5 mmol/l, Pcurve = 0.0004) with little change after adjustments for clinical characteristics. The association of postload glucose with birth weight (P = 0.03) and the risk of an LGA baby (P = 0.09) was weaker and linear.
Both low and high fasting glucose values at 22–30 weeks of gestation are associated with increased risk of an LGA newborn. We suggest that the excess risk related to low glucose reflects the increased use of nutrients by LGA fetuses that also affects the mothers' fasting glucose.
PMCID: PMC2782977  PMID: 19729526
16.  Birth weight- and fetal weight-growth restriction: impact on neurodevelopment 
Early human development  2012;88(9):765-771.
The newborn classified as growth-restricted on birth weight curves, but not on fetal weight curves, is classified prenatally as small for gestational age (SGA), but postnatally as appropriate for gestational age (AGA).
To see (1) to what extent the neurodevelopmental outcomes at 24 months corrected age differed among three groups of infants (those identified as SGA based on birth weight curves (B-SGA), those identified as SGA based on fetal weight curves only (F-SGA), and the referent group of infants considered AGA, (2) if girls and boys were equally affected by growth restriction, and (3) to what extent neurosensory limitations influenced what we found.
Study design
Observational cohort of births before the 28 week of gestation. Outcome measures: Mental Development Index (MDI) and Psychomotor Development Index (PDI) of the Bayley Scales of Infant Development II.
B-SGA, but not F-SGA girls were at an increased risk of a PDI < 70 (OR=2.8; 95% CI: 1.5, 5.3) compared to AGA girls. B-SGA and F-SGA boys were not at greater risk of low developmental indices than AGA boys. Neurosensory limitations diminished associations among girls of B-SGA with low MDI, and among boys B-SGA and F-SGA with PDI < 70.
Only girls with the most severe growth restriction were at increased risk of neurodevelopmental impairment at 24 months corrected age in the total sample. Neurosensory limitations appear to interfere with assessing growth restriction effects in both girls and boys born preterm.
PMCID: PMC3694609  PMID: 22732241
17.  Intrauterine growth pattern and birthweight discordance in twin pregnancies: a retrospective study 
Twins, compared to singletons, have an increased risk of perinatal mortality and morbidity, due mainly to a higher prevalence of preterm birth and low birthweight. Intrauterine growth restriction (IUGR) is also common and can affect one or both fetuses. In some cases, however, one twin is much smaller than the other (growth discordance). Usually, high birthweight discordance is associated with increased perinatal morbidity. The aim of this study is to describe the epidemiological features of a population of twins at birth, with particular reference to the interpretation and clinical effects of birthweight discordance.
We evaluated retrospectively the clinical features of 70 infants born from twin pregnancies and assessed birthweight discordance in 31 pregnancies where both twins were followed at our institution. Discordance was treated both as a continuous and a categorical variable, using a cutoff of 18%. Possible relationships between birthweight discordance and other variables, such as maternal age, gestational age, birthweight percentile, number of SGA newborns in the pair, Hematocrit (Ht) discordance and neonatal anemia, prevalence of malformations, neonatal morbidity and death, were analyzed.
In our cohort birthweight percentile decreased slightly with increasing gestational age. Birthweight discordance, on the contrary, increased slightly with the increase of gestational age.
A high discordance is associated to the presence of one SGA twin, with the other AGA or LGA. In our population, all 6 pregnancies in which discordance exceeded 18% belonged to this category (one SGA twin).
Ht discordance at birth is associated to the presence of neonatal anemia in a twin, but it is not significantly related to weight discordance.
Finally, in our case history, weight discordance is not associated in any way with the prevalence of malformations, morbidity and mortality.
Birthweight discordance is an important indicator of complications that act asymmetrically on the two fetuses, affecting intrauterine growth in one of them, and usually determining the birth of a SGA infant.
Our case history shows a significant statistical association between pair discordance and IUGR in one of the twins, but we could not demonstrate any relationship between discordance and the prevalence of malformations, morbidity and mortality.
PMCID: PMC4018970  PMID: 24887062
Twins; Birthweight discordance; SGA; Weight percentile; Neonatal anemia
18.  Two hour blood glucose levels in at-risk babies: An audit of Canadian guidelines 
Paediatrics & Child Health  2009;14(4):238-244.
The Canadian guidelines recommend blood glucose (BG) screening starting at 2 h of age in asymptomatic ‘at-risk’ babies (including small-for-gestational-age [SGA] and large-for-gestational-age [LGA] infants), with intervention cut-offs of 1.8 mmol/L and 2.6 mmol/L. The present study reviews and audits this practice in full-term newborn populations.
A literature review meta-analyzed BG values in appropriate-for-gestational age (AGA) term newborns to establish normal 1 h, 2 h and 3 h values. A clinical review audited screening of ‘at-risk’ SGA and LGA term newborns, evaluating both clinical burden and validity.
The review included six studies, although none clearly defined the plasma glucose standard. The pooled mean (plasma) BG level in AGA babies 2 h of age was 3.35 mmol/L (SD=0.77), significantly higher than 1 h levels (3.01 mmol/L, SD=0.96). In the audit, 78 SGA and 142 LGA babies each had an average of 6.0 and 4.7 BG tests, respectively. The mean 2 h BG levels for SGA (3.42 mmol/L, SD=1.02) and LGA (3.31 mmol/L, SD=0.66) babies did not differ significantly from the AGA pooled mean. Receiver operating characteristic curves showed that 2 h BG levels in LGA and SGA babies predicted later hypoglycemia (defined as a BG level lower than 2.6 mmol/L), but sensitivities and specificities were poor.
Published 2 h BG levels for AGA babies are higher than 1 h values and are similar to audited 2 h levels in SGA and LGA babies. Clinically, 2 h levels are predictive of later hypoglycemia but may require repeat BG testing. Audit is an important tool to validate national guidelines, to minimize their burden and to maximize their utility.
PMCID: PMC2690537  PMID: 20357922
Blood glucose; Hypoglycemia; Large for gestational age; Neonatal; Normal values; Plasma glucose; Small for gestational age
19.  Birth and developmental correlates of birth weight in a sample of children with potential sensory processing disorder 
BMC Pediatrics  2013;13:29.
Most research examining birth history (i.e. related birth complications) and developmental milestone achievement follow outcomes for infants at-risk with very specific birth weight categories and gestational age classifications. The purpose of this study was to examine how birth weight relates to infants’ birth histories and developmental milestone achievement when they fall into a variety of birth weight and gestational age categories.
In the current study, we examined birth histories and onset ages for developmental milestones by analyzing a convenience sample of anonymous existing data from 663 developmental histories completed by parents at the time of an initial evaluation at a pediatric outpatient occupational therapy clinic. Infants fell into 3 birth weight categories; low birth weight (LBW), normal birth weight (NBW), and high birth weight (HBW) and 3 gestational age classifications considered with birth weight; small for gestational age (SGA), appropriate for gestational age (AGA), and large for gestational age (LGA).
NBW, AGA, and SGA infants with related birth complications had lower birth weights than infants without birth complications. Larger birth weights were associated with earlier ages for independent sitting for HBW infants, earlier ages for eating solids for NBW infants, and earlier walking onsets for LBW and NBW infants. Higher birth weights were also linked with rolling at a younger age for LGA infants, earlier walking and speaking words for AGA infants, and sooner independent sitting for SGA and AGA infants.
Our findings suggest that birth weight and gestational age categories provide unique insights into infants’ birth history and developmental milestone achievement.
PMCID: PMC3598529  PMID: 23442948
Development; Birth weight; Child
20.  The impact of exposure misclassification on associations between prepregnancy body mass index and adverse pregnancy outcomes 
Obesity (Silver Spring, Md.)  2010;18(11):2184-2190.
Prepregnancy body mass index (BMI) is a widely used marker of maternal nutritional status that relies on maternal self-report of prepregnancy weight and height. Pregravid BMI has been associated with adverse health outcomes for the mother and infant, but the impact of BMI misclassification on measures of effect has not been quantified. The authors applied published probabilistic bias analysis methods to quantify the impact of exposure misclassification bias on well-established associations between self-reported prepregnancy BMI category and five pregnancy outcomes (small- and large-for gestational age birth (SGA; LGA), spontaneous preterm birth (sPTB), gestational diabetes (GDM), and preeclampsia) derived from a hospital-based delivery database in Pittsburgh, PA (2003-2005; n=18 362). The bias analysis method recreates the data that would have been observed had BMI been correctly classified, assuming given classification parameters. The point estimates derived from the bias analysis account for random error as well as systematic error caused by exposure misclassification bias and additional uncertainty contributed by classification errors. In conventional multivariable logistic regression models, underweight women were at increased risk of SGA and sPTB, and reduced risk of LGA, while overweight, obese, and severely obese women had elevated risks of LGA, GDM, and preeclampsia compared with normal-weight women. After applying the probabilistic bias analysis method, adjusted point estimates were attenuated, indicating the conventional estimates were biased away from the null. However, the majority of relations remained readily apparent. This analysis suggests that in this population, associations between self-reported prepregnancy BMI and pregnancy outcomes are slightly overestimated.
PMCID: PMC2888636  PMID: 20168307
pregnancy; body mass index; epidemiology; birth weight
21.  Multiple micronutrient supplementation during pregnancy in low-income countries: A meta-analysis of effects on birth size and length of gestation 
Food and nutrition bulletin  2009;30(4 Suppl):S533-S546.
Multiple micronutrient deficiencies are common among women in low-income countries and may adversely affect pregnancy outcomes.
This meta-analysis reports the effects on newborn size and duration of gestation of multiple micronutrient supplementation mainly compared with iron plus folic acid during pregnancy in recent randomized, controlled trials.
Original data from 12 randomized, controlled trials in Bangladesh, Burkina Faso, China, Guinea-Bissau, Indonesia, Mexico, Nepal, Niger, Pakistan, and Zimbabwe, all providing approximately 1 recommended dietary allowance (RDA) of multiple micronutrients to presumed HIV-negative women, were included. Outcomes included birthweight, other birth measurements, gestation, and incidence of low birthweight (LBW) (< 2,500 g), small-for-gestational age birth (SGA, birthweight below the within-each-population 10th percentile), large-for-gestational age birth (LGA, birthweight above the within-each-population 90th percentile), and preterm delivery (< 37 weeks).
Compared with control supplementation (mainly with iron–folic acid), multiple micronutrient supplementation was associated with an increase in mean birthweight (pooled estimate: +22.4 g [95% CI, 8.3 to 36.4 g]; p = .002), a reduction in the prevalence of LBW (pooled OR = 0.89 [95% CI, 0.81 to 0.97]; p = .01) and SGA birth (pooled OR = 0.90 [95% CI, 0.82 to 0.99]; p = .03), and an increase in the prevalence of LGA birth (pooled OR = 1.13 [95% CI, 1.00 to 1.28]; p = .04). In most studies, the effects on birthweight were greater in mothers with higher body mass index (BMI). In the pooled analysis, the positive effect of multiple micronutrients on birthweight increased by 7.6 g (95% CI, 1.9 to 13.3 g) per unit increase in maternal BMI (p for interaction = .009). The intervention effect relative to the control group was + 39.0 g (95% CI, +22.0 to +56.1 g) in mothers with BMI of 20 kg/m2 or higher compared with –6.0 g (95% CI, –8.8 to +16.8 g) in mothers with BMI under 20 kg/m2. There were no significant effects of multiple micronutrient supplementation on birth length or head circumference nor on the duration of gestation (pooled effect: +0.17 day [95% CI, –0.35 to +0.70 day]; p = .51) or the incidence of preterm birth (pooled OR = 1.00 [95% CI, 0.93 to 1.09]; p = .92).
Compared with iron–folic acid supplementation alone, maternal supplementation with multiple micronutrients during pregnancy in low-income countries resulted in a small increase in birthweight and a reduction in the prevalence of LBW of about 10%. The effect was greater among women with higher BMI.
PMCID: PMC3541502  PMID: 20120795
Birth outcomes; birthweight; iron–folic acid; maternal body mass index; meta-analysis; multiple micronutrients; pregnancy; preterm delivery
22.  Comparisons of mortality and pre-discharge respiratory outcomes in small-for-gestational-age and appropriate-for-gestational-age premature infants 
BMC Pediatrics  2004;4:9.
There are differences in the literature regarding outcomes of premature small-for-gestational-age (SGA) and appropriate-for gestational-age (AGA) infants, possibly due to failure to take into account gestational age at birth.
To compare mortality and respiratory morbidity of SGA and AGA premature newborn infants.
A retrospective study was done of the 2,487 infants born without congenital anomalies at ≤36 weeks of gestation and admitted to the neonatal intensive care unit (NICU) at John Dempsey Hospital, between Jan. 1992 and Dec. 1999. Recent (1994–96) U.S. birth weight percentiles for gestational age (GA), race and gender were used to classify neonates as SGA (<10th percentile for GA) or AGA (10th–90th percentile for GA). Using multivariate logistic regression and survival analyses to control for GA, SGA and AGA infants were compared for mortality and respiratory morbidity.
Controlling for GA, premature SGA infants were at a higher risk for mortality (Odds ratio 3.1, P = 0.001) and at lower risk of respiratory distress syndrome (OR = 0.71, p = 0.02) than AGA infants. However multivariate logistic regression modeling found that the odds of having respiratory distress syndrome (RDS) varied between SGA and AGA infants by GA. There was no change in RDS risk in SGA infants at GA ≤ 32 wk (OR = 1.27, 95% CI 0.32 – 1.98) but significantly decreased risk for RDS at GA > 32 wk (OR = 0.41, 95% CI 0.27 – 0.63; p < 0.01). After controlling for GA, SGA infants were observed to be at a significantly higher risk for developing chronic lung disease as compared to AGA infants (OR = 2.2, 95% CI = 1.2 – 3.9, P = 0.01). There was no significant difference between SGA and AGA infants in total days on ventilator. Among infants who survived, mean length of hospital stay was significantly higher in SGA infants born between 26–36 wks GA than AGA infants.
Premature SGA infants have significantly higher mortality, significantly higher risk of developing chronic lung disease and longer hospital stay as compared to premature AGA infants. Even the reduced risk of RDS in infants born at ≥32 wk GA, (conferred possibly by intra-uterine stress leading to accelerated lung maturation) appears to be of transient effect and is counterbalanced by adverse effects of poor intrauterine growth on long term pulmonary outcomes such as chronic lung disease.
PMCID: PMC434508  PMID: 15186501
23.  Prothrombotic State, Cardiovascular, and Metabolic Syndrome Risk Factors in Prepubertal Children Born Large for Gestational Age 
Diabetes Care  2010;33(11):2468-2470.
To evaluate metabolic syndrome and cardiovascular disease risk factors in prepubertal children born large for gestational age (LGA) to nondiabetic, nonobese mothers.
At 6–7 years of age, the comparison of various factors was made between 31 LGA and 34 appropriate-for-gestational-age (AGA) children: fibrinogen, antithrombin III, protein C and S, fasting insulin, glucose, homeostasis assessment model of insulin resistance (HOMA-IR) index, adiponectin, leptin, visfatin, IGF-1, IGF-binding protein (IGFBP)-1, IGFBP-3, lipids, and the genetic factors V Leiden G1691A mutation, prothrombin 20210A/G polymorphism, and mutation in the enzyme 5,10-methylenetetrahydrofolate-reductase gene (MTHFR-C677T).
LGA children had higher levels of leptin (P < 0.01), fasting insulin (P < 0.01), and HOMA-IR (P < 0.01), but lower IGFBP-3 (P = 0.0001), fibrinogen (P = 0.0001), and lipoprotein(a) (P < 0.001) than AGA children. Significantly more LGA children were homozygous for the MTHFR-C677T mutation (P = 0.0016).
Being born LGA to nondiabetic, nonobese mothers is associated with diverse effects on cardiometabolic risk factors at prepuberty.
PMCID: PMC2963515  PMID: 20724652
24.  Maternal Prepregnancy Body Mass Index and Gestational Weight Gain on Pregnancy Outcomes 
PLoS ONE  2013;8(12):e82310.
The aim of the present study was to evaluate the single and joint associations of maternal prepregnancy body mass index (BMI) and gestational weight gain (GWG) with pregnancy outcomes in Tianjin, China.
Between June 2009 and May 2011, health care records of 33,973 pregnant women were collected and their children were measured for birth weight and birth length. The independent and joint associations of prepregnancy BMI and GWG based on the Institute of Medicine (IOM) guidelines with the risks of pregnancy and neonatal outcomes were examined by using Logistic Regression.
After adjustment for all confounding factors, maternal prepregnancy BMI was positively associated with risks of gestational diabetes mellitus (GDM), pregnancy-induced hypertension, caesarean delivery, preterm delivery, large-for-gestational age infant (LGA), and macrosomia, and inversely associated with risks of small-for-gestational age infant (SGA) and low birth weight. Maternal excessive GWG was associated with increased risks of pregnancy-induced hypertension, caesarean delivery, LGA, and macrosomia, and decreased risks of preterm delivery, SGA, and low birth weight. Maternal inadequate GWG was associated with increased risks of preterm delivery and SGA, and decreased risks of LGA and macrosomia, compared with maternal adequate GWG. Women with both prepregnancy obesity and excessive GWG had 2.2–5.9 folds higher risks of GDM, pregnancy-induced hypertension, caesarean delivery, LGA, and macrosomia compared with women with normal prepregnancy BMI and adequate GWG.
Maternal prepregnancy obesity and excessive GWG were associated with greater risks of pregnancy-induced hypertension, caesarean delivery, and greater infant size at birth. Health care providers should inform women to start the pregnancy with a BMI in the normal weight category and limit their GWG to the range specified for their prepregnancy BMI.
PMCID: PMC3869661  PMID: 24376527
25.  Changes in Birth Weight between 2002 and 2012 in Guangzhou, China 
PLoS ONE  2014;9(12):e115703.
Recent surveillance data suggest that mean birth weight has begun to decline in several developed countries. The aim of this study is to examine the changes in birth weight among singleton live births from 2002 to 2012 in Guangzhou, one of the most rapidly developed cities in China.
We used data from the Guangzhou Perinatal Health Care and Delivery Surveillance System for 34108 and 54575 singleton live births with 28–41 weeks of gestation, who were born to local mothers, in 2002 and 2012, respectively. The trends in birth weight, small (SGA) and large (LGA) for gestational age and gestational length were explored in the overall population and gestational age subgroups.
The mean birth weight decreased from 3162 g in 2002 to 3137 g in 2012 (crude mean difference, −25 g; 95% CI, −30 to −19). The adjusted change in mean birth weight appeared to be slight (−6 g from 2002 to 2012) after controlling for maternal age, gestational age, educational level, parity, newborn's gender and delivery mode. The percentages of SGA and LGA in 2012 were 0.6% and 1.5% lower than those in 2002, respectively. The mean gestational age dropped from 39.2 weeks in 2002 to 38.9 weeks in 2012. In the stratified analysis, we observed the changes in birth weight differed among gestational age groups. The mean birth weight decreased among very preterm births (28–31 weeks), while remained relatively stable among other gestational age subcategories.
Among local population in Guangzhou from 2002 to 2012, birth weight appeared to slightly decrease. The percentage of SGA and LGA also simultaneously dropped, indicating that newborns might gain a healthier weight for gestational age.
PMCID: PMC4274089  PMID: 25531295

Results 1-25 (824914)